15 research outputs found

    A Review: Video Steganography for Hiding Data

    Get PDF
    Steganography is an art of hiding the secrete message that is being send in the other non secret text. The benefit of steganography is that the expected mystery message does not pull in thoughtfulness regarding itself as an object of investigation. Our point is to conceal mystery data and picture behind the sound and feature document individually. Sound records are generally compacted for capacity or speedier transmission. Sound records can be sent in short remain solitary portions

    Advanced Steganography for Hiding Data and Image using Audio-Video

    Get PDF
    Steganography is an art of hiding the secrete message that is being send in the other non secret text. The benefit of steganography is that the expected mystery message does not pull in thoughtfulness regarding itself as an object of investigation. Our point is to conceal mystery data and picture behind the sound and feature document individually with. Sound records are generally compacted for capacity or speedier transmission. Sound records can be sent in short remain solitary portions. 4LSB is used for video steganography and cryptographic algorithm for encryption and decryption. Parity coding is used for Audio Steganography

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior

    Design and Implementation of Complexity Reduced Digital Signal Processors for Low Power Biomedical Applications

    Get PDF
    Wearable health monitoring systems can provide remote care with supervised, inde-pendent living which are capable of signal sensing, acquisition, local processing and transmission. A generic biopotential signal (such as Electrocardiogram (ECG), and Electroencephalogram (EEG)) processing platform consists of four main functional components. The signals acquired by the electrodes are amplified and preconditioned by the (1) Analog-Front-End (AFE) which are then digitized via the (2) Analog-to-Digital Converter (ADC) for further processing. The local digital signal processing is usually handled by a custom designed (3) Digital Signal Processor (DSP) which is responsible for either anyone or combination of signal processing algorithms such as noise detection, noise/artefact removal, feature extraction, classification and compres-sion. The digitally processed data is then transmitted via the (4) transmitter which is renown as the most power hungry block in the complete platform. All the afore-mentioned components of the wearable systems are required to be designed and fitted into an integrated system where the area and the power requirements are stringent. Therefore, hardware complexity and power dissipation of each functional component are crucial aspects while designing and implementing a wearable monitoring platform. The work undertaken focuses on reducing the hardware complexity of a biosignal DSP and presents low hardware complexity solutions that can be employed in the aforemen-tioned wearable platforms. A typical state-of-the-art system utilizes Sigma Delta (Σ∆) ADCs incorporating a Σ∆ modulator and a decimation filter whereas the state-of-the-art decimation filters employ linear phase Finite-Impulse-Response (FIR) filters with high orders that in-crease the hardware complexity [1–5]. In this thesis, the novel use of minimum phase Infinite-Impulse-Response (IIR) decimators is proposed where the hardware complexity is massively reduced compared to the conventional FIR decimators. In addition, the non-linear phase effects of these filters are also investigated since phase non-linearity may distort the time domain representation of the signal being filtered which is un-desirable effect for biopotential signals especially when the fiducial characteristics carry diagnostic importance. In the case of ECG monitoring systems the effect of the IIR filter phase non-linearity is minimal which does not affect the diagnostic accuracy of the signals. The work undertaken also proposes two methods for reducing the hardware complexity of the popular biosignal processing tool, Discrete Wavelet Transform (DWT). General purpose multipliers are known to be hardware and power hungry in terms of the number of addition operations or their underlying building blocks like full adders or half adders required. Higher number of adders leads to an increase in the power consumption which is directly proportional to the clock frequency, supply voltage, switching activity and the resources utilized. A typical Field-Programmable-Gate-Array’s (FPGA) resources are Look-up Tables (LUTs) whereas a custom Digital Signal Processor’s (DSP) are gate-level cells of standard cell libraries that are used to build adders [6]. One of the proposed methods is the replacement of the hardware and power hungry general pur-pose multipliers and the coefficient memories with reconfigurable multiplier blocks that are composed of simple shift-add networks and multiplexers. This method substantially reduces the resource utilization as well as the power consumption of the system. The second proposed method is the design and implementation of the DWT filter banks using IIR filters which employ less number of arithmetic operations compared to the state-of-the-art FIR wavelets. This reduces the hardware complexity of the analysis filter bank of the DWT and can be employed in applications where the reconstruction is not required. However, the synthesis filter bank for the IIR wavelet transform has a higher computational complexity compared to the conventional FIR wavelet synthesis filter banks since re-indexing of the filtered data sequence is required that can only be achieved via the use of extra registers. Therefore, this led to the proposal of a novel design which replaces the complex IIR based synthesis filter banks with FIR fil-ters which are the approximations of the associated IIR filters. Finally, a comparative study is presented where the hybrid IIR/FIR and FIR/FIR wavelet filter banks are de-ployed in a typical noise reduction scenario using the wavelet thresholding techniques. It is concluded that the proposed hybrid IIR/FIR wavelet filter banks provide better denoising performance, reduced computational complexity and power consumption in comparison to their IIR/IIR and FIR/FIR counterparts

    Circuit paradigm in the 21

    Get PDF
    reviewe

    Analogue filter networks: developments in theory, design and analyses

    Get PDF
    Not availabl

    Computation of the one-dimensional unwrapped phase

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 101-102). "Cepstrum bibliography" (p. 67-100).In this thesis, the computation of the unwrapped phase of the discrete-time Fourier transform (DTFT) of a one-dimensional finite-length signal is explored. The phase of the DTFT is not unique, and may contain integer multiple of 27r discontinuities. The unwrapped phase is the instance of the phase function chosen to ensure continuity. This thesis presents existing algorithms for computing the unwrapped phase, discussing their weaknesses and strengths. Then two composite algorithms are proposed that use the existing ones, combining their strengths while avoiding their weaknesses. The core of the proposed methods is based on recent advances in polynomial factoring. The proposed methods are implemented and compared to the existing ones.by Zahi Nadim Karam.S.M

    MOOC Adventures in Signal Processing

    Get PDF

    Audio for Virtual, Augmented and Mixed Realities: Proceedings of ICSA 2019 ; 5th International Conference on Spatial Audio ; September 26th to 28th, 2019, Ilmenau, Germany

    Get PDF
    The ICSA 2019 focuses on a multidisciplinary bringing together of developers, scientists, users, and content creators of and for spatial audio systems and services. A special focus is on audio for so-called virtual, augmented, and mixed realities. The fields of ICSA 2019 are: - Development and scientific investigation of technical systems and services for spatial audio recording, processing and reproduction / - Creation of content for reproduction via spatial audio systems and services / - Use and application of spatial audio systems and content presentation services / - Media impact of content and spatial audio systems and services from the point of view of media science. The ICSA 2019 is organized by VDT and TU Ilmenau with support of Fraunhofer Institute for Digital Media Technology IDMT
    corecore