20 research outputs found

    Error-control for compressed sensing of images with multi-channel transmission

    Get PDF
    [[conferencetype]]國際[[conferencedate]]20140827~20140829[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Kitakyushu, Japa

    Robust information hiding in low-resolution videos with quantization index modulation in DCT-CS domain

    Get PDF
    Video information hiding and transmission over noisy channels leads to errors on video and degradation of the visual quality notably. In this paper, a video signal fusion scheme is proposed to combine sensed host signal and the hidden signal with quantization index modulation (QIM) technology in the compressive sensing (CS) and discrete cosine transform (DCT) domain. With quantization based signal fusion, a realistic solution is provided to the receiver, which can improve the reconstruction video quality without requiring significant extra channel resource. The extensive experiments have shown that the proposed scheme can effectively achieve the better trade-off between robustness and statistical invisibility for video information hiding communication. This will be extremely important for low-resolution video analytics and protection in big data era

    Fundamental Limits in Multimedia Forensics and Anti-forensics

    Get PDF
    As the use of multimedia editing tools increases, people become questioning the authenticity of multimedia content. This is specially a big concern for authorities, such as law enforcement, news reporter and government, who constantly use multimedia evidence to make critical decisions. To verify the authenticity of multimedia content, many forensic techniques have been proposed to identify the processing history of multimedia content under question. However, as new technologies emerge and more complicated scenarios are considered, the limitation of multimedia forensics has been gradually realized by forensic researchers. It is the inevitable trend in multimedia forensics to explore the fundamental limits. In this dissertation, we propose several theoretical frameworks to study the fundamental limits in various forensic problems. Specifically, we begin by developing empirical forensic techniques to deal with the limitation of existing techniques due to the emergence of new technology, compressive sensing. Then, we go one step further to explore the fundamental limit of forensic performance. Two types of forensic problems have been examined. In operation forensics, we propose an information theoretical framework and define forensicability as the maximum information features contain about hypotheses of processing histories. Based on this framework, we have found the maximum number of JPEG compressions one can detect. In order forensics, an information theoretical criterion is proposed to determine when we can and cannot detect the order of manipulation operations that have been applied on multimedia content. Additionally, we have examined the fundamental tradeoffs in multimedia antiforensics, where attacking techniques are developed by forgers to conceal manipulation fingerprints and confuse forensic investigations. In this field, we have defined concealability as the effectiveness of anti-forensics concealing manipulation fingerprints. Then, a tradeoff between concealability, rate and distortion is proposed and characterized for compression anti-forensics, which provides us valuable insights of how forgers may behave under their best strategy

    Generalized Tensor Summation Compressive Sensing Network (GTSNET) : An Easy to Learn Compressive Sensing Operation

    Get PDF
    The efforts in compressive sensing (CS) literature can be divided into two groups: finding a measurement matrix that preserves the compressed information at its maximum level, and finding a robust reconstruction algorithm. In the traditional CS setup, the measurement matrices are selected as random matrices, and optimization-based iterative solutions are used to recover the signals. Using random matrices when handling large or multi-dimensional signals is cumbersome especially when it comes to iterative optimizations. Recent deep learning-based solutions increase reconstruction accuracy while speeding up recovery, but jointly learning the whole measurement matrix remains challenging. For this reason, state-of-the-art deep learning CS solutions such as convolutional compressive sensing network (CSNET) use block-wise CS schemes to facilitate learning. In this work, we introduce a separable multi-linear learning of the CS matrix by representing the measurement signal as the summation of the arbitrary number of tensors. As compared to block-wise CS, tensorial learning eases blocking artifacts and improves performance, especially at low measurement rates (MRs), such as {MRs} < 0.1. The software implementation of the proposed network is publicly shared at https://github.com/mehmetyamac/GTSNET.Peer reviewe

    Multi-Level Reversible Data Anonymization via Compressive Sensing and Data Hiding

    Get PDF
    Recent advances in intelligent surveillance systems have enabled a new era of smart monitoring in a wide range of applications from health monitoring to homeland security. However, this boom in data gathering, analyzing and sharing brings in also significant privacy concerns. We propose a Compressive Sensing (CS) based data encryption that is capable of both obfuscating selected sensitive parts of documents and compressively sampling, hence encrypting both sensitive and non-sensitive parts of the document. The scheme uses a data hiding technique on CS-encrypted signal to preserve the one-time use obfuscation matrix. The proposed privacy-preserving approach offers a low-cost multi-tier encryption system that provides different levels of reconstruction quality for different classes of users, e.g., semi-authorized, full-authorized. As a case study, we develop a secure video surveillance system and analyze its performance.publishedVersionPeer reviewe

    A review of compressive sensing in information security field

    Full text link
    The applications of compressive sensing (CS) in the fi eld of information security have captured a great deal of researchers\u27 attention in the past decade. To supply guidance for researchers from a comprehensive perspective, this paper, for the fi rst time, reviews CS in information security field from two aspects: theoretical security and application security. Moreover, the CS applied in image cipher is one of the most widespread applications, as its characteristics of dimensional reduction and random projection can be utilized and integrated into image cryptosystems, which can achieve simultaneous compression and encryption of an image or multiple images. With respect to this application, the basic framework designs and the corresponding analyses are investigated. Speci fically, the investigation proceeds from three aspects, namely, image ciphers based on chaos and CS, image ciphers based on optics and CS, and image ciphers based on chaos, optics, and CS. A total of six frameworks are put forward. Meanwhile, their analyses in terms of security, advantages, disadvantages, and so on are presented. At last, we attempt to indicate some other possible application research topics in future

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    Resiliency Assessment and Enhancement of Intrinsic Fingerprinting

    Get PDF
    Intrinsic fingerprinting is a class of digital forensic technology that can detect traces left in digital multimedia data in order to reveal data processing history and determine data integrity. Many existing intrinsic fingerprinting schemes have implicitly assumed favorable operating conditions whose validity may become uncertain in reality. In order to establish intrinsic fingerprinting as a credible approach to digital multimedia authentication, it is important to understand and enhance its resiliency under unfavorable scenarios. This dissertation addresses various resiliency aspects that can appear in a broad range of intrinsic fingerprints. The first aspect concerns intrinsic fingerprints that are designed to identify a particular component in the processing chain. Such fingerprints are potentially subject to changes due to input content variations and/or post-processing, and it is desirable to ensure their identifiability in such situations. Taking an image-based intrinsic fingerprinting technique for source camera model identification as a representative example, our investigations reveal that the fingerprints have a substantial dependency on image content. Such dependency limits the achievable identification accuracy, which is penalized by a mismatch between training and testing image content. To mitigate such a mismatch, we propose schemes to incorporate image content into training image selection and significantly improve the identification performance. We also consider the effect of post-processing against intrinsic fingerprinting, and study source camera identification based on imaging noise extracted from low-bit-rate compressed videos. While such compression reduces the fingerprint quality, we exploit different compression levels within the same video to achieve more efficient and accurate identification. The second aspect of resiliency addresses anti-forensics, namely, adversarial actions that intentionally manipulate intrinsic fingerprints. We investigate the cost-effectiveness of anti-forensic operations that counteract color interpolation identification. Our analysis pinpoints the inherent vulnerabilities of color interpolation identification, and motivates countermeasures and refined anti-forensic strategies. We also study the anti-forensics of an emerging space-time localization technique for digital recordings based on electrical network frequency analysis. Detection schemes against anti-forensic operations are devised under a mathematical framework. For both problems, game-theoretic approaches are employed to characterize the interplay between forensic analysts and adversaries and to derive optimal strategies. The third aspect regards the resilient and robust representation of intrinsic fingerprints for multiple forensic identification tasks. We propose to use the empirical frequency response as a generic type of intrinsic fingerprint that can facilitate the identification of various linear and shift-invariant (LSI) and non-LSI operations
    corecore