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Abstract—Compressed sensing has attracted much attention in 
researches due to its new thoughts and superior performances 
in data compression.  For the delivery of compressed 
information, because it is vulnerable to channel errors during 
transmission, error control for compressed information has 
long been a practical topic for researches and applications. In 
this paper, we aim at the error control of compressed sensing 
of images. With compressed sensing, very few amounts of 
coefficients are capable of reconstructing the image with 
reasonable quality. For the delivery of compressively sensed 
coefficients over independent and lossy channels, reconstructed 
image with reasonable quality over a variety of lossy rates can 
be obtained. Simulation results have pointed out that with the 
proposed algorithm, the applicability and superiority in 
performances can be acquired over conventional algorithm in 
this field. 

Keywords-compressed sensing; error control; image quality; 
transmission 

I.  INTRODUCTION 
Data compression has long been an important topic in the 
field of signal processing. With the widely use of 
smartphone cameras or tablets, vast amounts of multimedia 
contents, mostly images, have accumulated drastically. Thus, 
how to efficiently perform data compression on the 
multimedia contents would be in urgent needs. There have 
been successful and popular standards for image 
compression, including the well-known JPEG, which 
employs discrete cosine transform (DCT), and JPEG 2000, 
which applies discrete wavelet transform (DWT), for 
compression. With the evolution of new techniques, 
advancements in data compression can also be expected, and 
compressed sensing presents some novelties over its 
predecessors. 

Compressed sensing [1] [2] is a newly developed branch 
in data compression researches in the last couple of years. It 
requires the sampling rate, which is far less than the Nyquist 
rate, with the capability of reconstructing the original signal 
to be above some acceptable level. After performing 
compression at the encoder, compressed signals need to be 
transmitted to the decoder over lossy channels. Finally, at the 
decoder, received signals need to be reconstructed to be as 
resemble as its counterpart at the encoder. Besides the 

compression capabilities, in this paper, we aim at the error 
control of compressively sensed signals for transmitting over 
lossy channels. For transmitting the compressively sensed 
signals over multiple independent channels, reconstructed 
quality presents much better than those delivered over the 
single-channel transmission. Besides looking for 
compression performances and error control capabilities, 
compressed sensing can extend to relating topics, such as 
image compression [3][4], theoretic derivations [5], and 
information hiding [6][7]. 

This paper is organized as follows. In Sec. II, we briefly 
describe the fundamentals and mathematical representations 
of compressed sensing. In Sec. III, we present the proposed 
method for transmitting compressively sensed signals over 
independent and lossy channels. Simulation results are 
demonstrated in Sec. IV, which point out the vulnerability of 
compressively sensed signals for the transmission over a 
single channel, and the alleviation of image quality 
degradation with our algorithm for multiple channel 
transmission. Finally, we address the conclusion of this paper 
in Sec. V. 

II. FUNDAMENTAL DESCRIPTIONS OF COMPRESSED 
SENSING 

Compressed sensing, abbreviated as CS, aims at looking for 
new sampling scheme that goes against conventional 
sampling theorem, or the widely acquainted Nyquist-
Shannon theorem. With CS, a much smaller rate than twice 
the maximal bandwidth can be achieved to meet perfect 
recovery of reconstruction. 

In compressed sensing, it is composed of the sparsity 
principle, and the incoherence principle [1][2], described as 
follows.  
�  For the sparsity principle, it implies the 

information rate in data compression. In 
compressive sampling, it is expected to be much 
smaller than the sampling rate required, and can be 
represented with the proper basis Ψ , NNC ×∈Ψ , 
and C means the complex number.  More 
specifically, Ψ  is the basis to reach sparsity with a 
k-sparse coefficient vector x , 1×∈ NCx , with the 
condition that 

xf Ψ= . (1)
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Here, f  denotes the reconstruction corresponding 
to the original signal. 

�  For the incoherence principle, it extends the duality 
between time and frequency. The measurement 
basis Φ , NmC ×∈Φ , which acts like noiselet, is 
employed for sensing the signal f , with the 
condition that 

 fy Φ= . (2) 
Here, y  denotes the measurement vector. We note 
that Eq. (2) is an underdetermined system. 

Considering Eq. (1) and Eq. (2), by minimizing the l1-
norm of x , i.e., 

1
min x , subject to yx =ΦΨ , compressed 

sensing guarantees the perfect recovery with probability 
close to 1.0. Besides, because of looking for 

0
min x , or l0-

minimization is an NP-hard combinatorial problem, we look 
for l1-minimization instead. 

III. PROPOSED ALGORITHM 
From the past experiences in data compression, due to the 
fact that compressed multimedia contents are vulnerable to 
channel errors, error-controlled transmission would be 
required [8]. In this paper, during delivery from the encoder 
to the decoder, we employ the concept of multi-channel 
transmission to alleviate the degradation of reconstructed 
image quality. Here, the channels imply the packet-loss 
channel with the provided packet loss rate pe, with the 
subscript e denoting the error induced during transmission. 
In the multiple-channel scenario, each channel is 
independent with the other channels. 

We describe the delivery of compressed sensing 
coefficients and propose our algorithm for error-controlled 
transmission as follows.  

A. Image Compression with Compressed Sensing 
In this paper, we employ the test image, airport, with size 
of 1024×1024, in Fig. 1. We use large test images to show 
the performances of CS. 

By following [3], for compressing with CS, we choose K1 
= 4,000 coefficients in Ψ , and K2 = 80,000 coefficients in 
Φ , from the 1024×1024 = 1,048,576 pixels in the original 
image. With this setting, compression ratio of 262 times can 
be reached. Figure 2 presents the reconstruction with CS 
coefficients after decompression, with the peak signal-to-
noise ratio (PSNR) of 25.159 dB. Subjective and objective 
qualities in Fig. 2 serve as the baseline for the comparison 
with the following simulations for lossy transmission. 

B. Transmission of Compressed Sensing Coefficients over 
Lossy Channels 

Based on Eq. (2), compressed sensing coefficients are ready 
for transmitting over lossy channels. We set the loss rate pe = 
0.25 for convenience, meaning that 25% of the compressed 
sensing coefficients may be lost during delivery. 

Figure 3 demonstrates the resulting performance after 
experiencing 25% of loss rate, causing the PSNR of 17.370 
dB. Degradations can be easily observed by comparisons 
between Fig. 3 and Fig. 2. 

Figure 1.  Test image of airport, with size of 1024×1024. 

Figure 2.  Compressed sensing of Fig. 1 with K1 = 4,000 and K2 = 80,000. 
Resulting PSNR = 25.159 dB. 

Figure 3.  Compressively sensed image of Fig. 1 with K1 = 4,000 and K2 = 
80,000. Loss rate  pe = 0.25. Reconstructed PSNR = 17.370 dB. 
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Ch. 1: down Ch. 2: 23.596 dB

 
Ch. 3: 23.582 dB Ch. 4: 23.559 dB

Figure 4.  Transmission over multiple independent channels, with K1 = 
1,000 and K2 = 20,000 for each channel.  Suppose one of four channels, or 
Channel 1, is down, and Channels 2 to 4 are alive. Total loss rate is 0.25. 

Figure 5.  Recovery of coefficients in Ch. 1 by taking the median from 
corresponding channels, and reconstruct the image from recovered Ch. 1 
coefficients and received coefficients from other channels. Reconstructed 

quality in PSNR = 23.467 dB. 

C. Recovery of CS Coefficients and Reconstruction of 
Image 

For transmission over lossy channels, every compressed 
sensing coefficient experiences the loss rate  pe , and it may 
be lost during transmission. To alleviate the reconstruction 
quality as depicted in Fig. 3, CS coefficients may be 
transmitted sequentially over multiple channels. Due to the 
high correlations between sub-sampled originals, CS 
coefficients tend to be similar at the same transmission order. 
Once the coefficient is lost, it should be recovered from 
corresponding coefficients in other channels. 

For simplicity, we split the original image into four sub-
sampled images; each one experiences the compression with 

compressed sensing. For keeping the compression ratio, we 
choose K1 = 1,000 and K2 = 20,000 for each sub-sampled 
image with the size of 512×512, which corresponds to 25% 
of that in Fig. 2. Suppose that there are four channels for 
transmission in this paper. Then, coefficients corresponding 
to each sub-sampled images are transmitted over four 
independent channels. Suppose Channel 1 is down, and 
Channels 2 to 4 are alive, which also results in the loss rate 
of 0.25. In Fig. 4, we demonstrate the scenarios described 
above. For making up the lost coefficients in Channel 1, we 
take the median value of corresponding coefficients in 
Channels 2, 3, and 4 to replace the lost coefficient in 
Channel 1. Recovered image is depicted in Fig. 5, with the 
PSNR = 23.467 dB. We can easily observe that the quality in 
Fig. 5 is much better than that in Fig. 3. Moreover, due to 
channel loss, even the reconstruction scheme is applied, the 
reconstructed quality in Fig. 5 is still a bit inferior to that in 
Fig. 2. With the scenario presented, reconstruction of lost 
coefficients may be predicted from the correctly received 
coefficients from other channels. 

Due to the randomness in the packet-loss channels, it 
would not be as easy as reconstructing the scenario in Fig. 4. 
Still, we make comparisons with the coefficients at the same 
position in the four channels. We first sort the magnitudes of 
the four received coefficients in decreasing order. And there 
are several cases that are possible for the recovery of CS 
coefficients. We omit the case that four coefficients are 
received correctly because no reconstruction is necessary. 
� Suppose one coefficient among the four is lost in 

this case. If the smallest magnitude (or the fourth 
coefficient) is smaller than some threshold (for 
example, 5%) of the magnitude of the third 
coefficient, the fourth coefficient is recovered by 
taking the median of the remaining three 
coefficients. 

� Suppose two coefficients among the four are lost in 
this case. When the magnitude of the third 
coefficient is smaller than 5% of the second one, we 
assume that two coefficients are lost. The lost 
coefficients are replaced by the median of the first 
and second coefficients. 

� Suppose three coefficients among the four are lost 
in this case. All the lost coefficients are replaced by 
the first coefficient. 

� Suppose all the four coefficients are lost in this case 
if the magnitude of the first coefficient lie below 
some small value around zero. No reconstruction is 
applicable. 

 With our algorithm, we expect to obtain enhanced 
performances with multiple-channel transmission than those 
with single-channel transmission, as depicted in Fig. 3. 

IV. SIMULATION RESULTS 

In our simulations, as we stated before, we choose the test 
image of airport, with the picture sizes of 1024×1024, 
for conducting simulations. As we noted in Sec. III, in each 
sub-sampled image, we set K1 = 1000 compressed sensing 
coefficients, and K2 = 2000 for noiselets for keeping the 
compression ratio. 
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Ch. 1: 8.392 dB Ch. 2: 16.864 dB

 
Ch. 3: 17.458 dB Ch. 4: 17.091 dB

Figure 6.  Transmission over multiple independent channels. Loss rate  pe 
= 0.25 for each channel. Results in Channel 1 performs inferior because 

coefficients with large magnitudes are lost due to channel errors. 

Figure 7.  Recovery of coefficients by taking the median from correctly 
received channels. Reconstructed quality in PSNR = 22.044 dB. 

We split the original image into four sub-sampling 
images with the size of 512×512, and each of them is 
transmitted over independent lossy channels with pe = 0.25 
for the ease of comparisons with Fig. 4. Simulation results 
are depicted in Fig. 6. For the received image in Channel 1, 
because the large magnitude coefficients may be lost during 
transmission, severe degradation can be observed. For the 
reconstructed sub-sampled images from Channels 2 to 4, 
they result in similar qualities. With the reconstruction 
schemes described in Sec. III.C, reconstructed image can be 
recovered by taking the median from the correctly received 
channels in Fig. 7. We can also make comparisons between 
the results in Fig. 5 and Fig. 7. Reconstructed quality in Fig. 
5 presents better than that in Fig. 7 even when the loss rate 
are 0.25 for the two cases. On the one hand, because we set 

the condition that Channel 1 is down in Fig. 5, reconstructed 
coefficients can be correctly recovered. On the other hand, 
because we apply random loss for all coefficients among 
four channels, erroneous detection of lost coefficients may 
be expected, which leads to the degradation in image quality. 
From the results presented above, proposed algorithm point 
out the applicability for transmitting over lossy channels. 

V. CONCLUSIONS 

In this paper, we observed the vulnerability of compressively 
sensed information for transmission over lossy channels, and 
proposed our algorithm to transmit compressed information 
over multiple independent and lossy channels. Based on the 
experiences in the field of data compression, there is the 
need for protecting compressed coefficients, including 
compressively sensed ones, from channel errors for 
transmitting over lossy channels. There are high correlations 
between sub-sampled images in the original image. By use 
of transmitting compressively sensed coefficients from sub-
sampled images, lost coefficients have the possibility to be 
recovered by use of taking the median from the correctly 
received coefficients from other channels. Simulation results 
have presented the enhanced performances with multiple 
channel transmission over single channel transmission of 
compressively sensed coefficients. We are going to look for 
other effective means to ensure the error-controlled 
transmission for compressed sensing of images. 
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