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Abstract— The efforts in compressive sensing (CS) literature
can be divided into two groups: finding a measurement matrix
that preserves the compressed information at its maximum
level, and finding a robust reconstruction algorithm. In the
traditional CS setup, the measurement matrices are selected
as random matrices, and optimization-based iterative solutions
are used to recover the signals. Using random matrices when
handling large or multi-dimensional signals is cumbersome
especially when it comes to iterative optimizations. Recent deep
learning-based solutions increase reconstruction accuracy while
speeding up recovery, but jointly learning the whole measurement
matrix remains challenging. For this reason, state-of-the-art
deep learning CS solutions such as convolutional compressive
sensing network (CSNET) use block-wise CS schemes to facilitate
learning. In this work, we introduce a separable multi-linear
learning of the CS matrix by representing the measurement
signal as the summation of the arbitrary number of tensors.
As compared to block-wise CS, tensorial learning eases blocking
artifacts and improves performance, especially at low mea-
surement rates (MRs), such as MRs < 0.1. The software
implementation of the proposed network is publicly shared at
https://github.com/mehmetyamac/GTSNET.

Index Terms— Compressive sensing, deep reconstruction,
tensorial compressive learning, separable compressive learning.

I. INTRODUCTION

COMPRESSIVE sensing (CS) theory has attracted a lot of
attention since its first appearance in 2005 [1]. CS theory

claims that a signal can be sampled with far fewer measure-
ments than the conventional Nyquist/Shannon-based sampling
methods use. It has been applied in many fields such as
CS-based MRI imaging [2], radar monitoring systems [3],
[4], and ECG measurements in a health monitoring system
[5]. Along with sampling, the technology has been adopted in
many other fields. For instance, in a conventional CS system,
random or pseudo-random measurement matrices are used,
enabling a CS-based encryption mechanism [6], [7].
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In Nyquist/Shannon based data acquisition systems, the
reconstruction process is performed by sinc interpolation,
which is a linear process and does not require expensive com-
putations. The traditional CS-based data acquisition systems
require advanced optimization-based iterative algorithms such
as ℓ1-minimization techniques [8], [9], [10]. Even if convex
relaxation can bring a guarantee of sparse recovery with
polynomial time, most solvers work in an iterative manner, and
it makes them infeasible for real-time applications especially
for large-scale signals, such as vectorized images. Moreover,
ℓ1 type estimators may lead to an unbiased estimation of the
sparse signal [11]. There have been significant efforts spent to
have faster recovery algorithms such as [12], [13], and [14]
which are more feasible for a CS imaging system or similar
multi-dimensional signals. However, the optimization-based
recovery in a sparse domain can completely fail under some
measurement rates, which are determined by the phase transi-
tion of the algorithms [15]. Moreover, the signal of interest
in real applications rarely becomes strictly sparse in any
sparsifying domain.

The first category of the deep learning-based CS approaches
includes the works that use neural networks only for the
reconstruction part [16], [17], [18]. They generally use con-
ventional random matrices as the CS operators. To handle
the images (2D signal), they apply the CS matrices to the
vectorized smaller blocks of the image of interest. The well-
known state-of-the art examples of this category of work can
be listed as stacked denoising autoencoder (SDA) [16], non-
iterative reconstruction of the compressively sensed images
using CNN (ReconNet) [17], and learned version of iterative
shrinkage thresholding algorithm for CS imaging (ISTA-Net)
[18]. Among them, SDA uses the fully connected layers while
the others adopt convolutional layers in their network. As a
reconstruction part, ReconNet introduces fully convolutional
layers, and this is why it is a non-iterative recovery framework
that significantly reduces the computational time. ISTA-Net is
based on iterative soft thresholding algorithms, and can be put
into the category of deep unrolling techniques.

The second category of deep learning attempts can be
enlisted as the ones that jointly learn CS matrices and
reconstruction part instead of using conventional CS matri-
ces. The recent state-of-the-art networks in this category
are convolutional compressive sensing network (CSNET)
[19] and scalable convolutional compressive sensing net-
work (SCSNET) [20]. These works also handle CS of both
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gray-scale and RGB images in a block-by-block manner.
However, they learn these CS matrices using convolutional
kernels having the same size as the image blocks. In the
reconstruction part they use convolutional layers to recover
the full image as a whole. In this way, they can significantly
improve the blocking artifacts.

In this study, we propose a novel network, Generalized
Tensor Summation Networks (GTSNETs), that can jointly
learn both CS matrix and reconstruction algorithm. With
the proposed learned CS operator, conventional CS setup,
matrix-vector multiplication, is approximated as T -number of
measurement tensors’ summation, where each measurement
tensor is determined by the mode product of tensor and
matrices (i.e. smaller sizes than full-sized CS matrices). As a
result, GTSNETs can factorize and approximate unfactorized
full-size CS matrices (i.e., matrices that can be applied to a
vectorized image or multidimensional signal in the traditional
CS setting) using Kronecker products [21] of smaller-size
matrices. In contrast to previous attempts, a GTSNET is capa-
ble of replacing a wide range of compressive sensing systems,
such as sub-Gaussian [22], separable [23], and structural CS
matrices (e.g., sparsifying basis as a part of the CS matrix [6],
[24], [25]). Some CS systems, however, in which hardware
limitations impose special requirements over CS matrices (e.g.,
CS MRI [26], [27], CS Radar [3], [4] etc.), are outside the
scope of this study.

In a GTSNET, CS operation can be performed directly over
the spatial domain or in any other separable transformation
basis like CS in the frequency domain using DCT. This is
why GTSNET can generalize many CS systems, and thus we
use the term Generalized Tensor Summation (GTS). When
it comes to the performance comparison with a traditional
deep learning approach, especially for lower measurement
rates, the proposed system exhibits a superior performance in
terms of PSNR and SSIM with a particular improvement over
the fine details. At the same time, GTSNET performs signal
reconstruction from compressively sensed measurements in a
feed-forward manner and this significantly reduces the com-
putational complexity compared to the iterative approaches.

The rest of the paper is organized as follows. In Section II,
we shall make a brief introduction to compressive sensing,
separable and multidimensional. Then, the proposed learn-
able compressive sensing operations will be presented in
Section III. In Section IV extensive experimental results will
be presented for the CS in both gray-scale and RGB images.
We shall then present comparative evaluations in spatial and
frequency domains. In addition, we shall investigate which
information is more preserved when T is increased. Finally,
the conclusions are drawn in Section VI.

II. PRELIMINARIES AND PRIOR ART

A. Compressive Sensing

CS [1], [28] theory has shown that a sparse signal can
be recovered from far fewer measurements than traditional
Shannon-Nyquist-based data acquisition methods use. Math-
ematically speaking, let a CS scheme linearly extracts m
number of measurements of the signal, s ∈ RN , i.e.,

y = 9s, (1)

where the measurement matrix, 9 ∈ Rm×N represents the
linear data acquisition with m ≪ N . In the CS literature, the
efforts of designing such a linear measurement system can be
categorized into two groups: (i) Finding a measurement matrix,
9 which maximally preserves the information of s while
transforming it in a lower-dimensional subspace as in (1).
(ii) Finding a robust reconstruction algorithm, which is able
to recover s from y in a reasonable time with a tolerable
reconstruction error.

From elementary linear algebra, one can easily say that
(1) is an underdetermined linear system of equations where
for a given 9 and y pair, s has infinitely many solutions.
Therefore, at least one more assumption is needed to have
unique solution. For instance, if we know that the signal of
interest, s, is sparse in a proper sparsifying domain 8, then
(1) can be expressed as

y = 98x = Ax, (2)

where x ∈ RN is sparse or compressible coefficient vector
(e.g., if it is k-sparse ∥x∥ℓN

0
≤ k) and A = 98, which can

be named as equivalent dictionary [29]. Under the assumption
that the coefficient vector is k-sparse, then the following sparse
representation,

min
x

∥x∥0 subject to Ax = y (3)

is unique if m ≥ 2k and the minimum number of linearly
dependent columns of A (see the definition of spark of a
matrix [30]) is greater than 2k [30]. However, the problem
in (3) is non-convex and known to be NP-hard. Fortunately,
the most common approach will be the relaxation of it to an
ℓ1 minimization problem,

arg min
x

∥x∥1 s.t. x ∈ ℧ (y) (4)

where ℧ (y) = {x : Ax = y} in noisy-free case, which is
known as Basis Pursuit (BP) [8]. To guarantee the equiva-
lence of the solutions of (3) and (4), some properties of A
are needed such as Null Space Property (NSP) [31], [32].
NSP can also be used to deal with approximately sparse
signals. Moreover, if one should deal with approximately
sparse signals in a noisy environment, a stronger property
known as Restricted Isometry Property (RIP) [33], [34] can
be borrowed from the CS literature. In this noisy case, the
constraint in the optimization problem can be relaxed by
setting ℧ (y) =

{
x : ∥Ax − y∥2 ≤ ϵ

}
which is known as Basis

Pursuit Denoising (BPDN) [9] or Dantzig Selector [35] if we
set ℧ (y) =

{
x :

∥∥A′ (y − Ax)
∥∥

∞
≤ λ

}
. Although RIP can be

used for both stability and uniqueness analysis, the calculation
of Restricted Isometric Constant (RIC) of A (defined with RIP
of A) generally requires a combinatorial search. Therefore,
instead of RIC of a matrix, another important measure of
a measurement matrix is defined in the literature. This is a
functional µ(A) = maxi, j

∣∣Ai, j
∣∣, which is known as coher-

ence. In CS literature, choosing the best measurement matrix
9 according to sparsifying matrix 8 is well studied in terms
of µ(A). The system in (2) is nothing but a linear dimensional
reduction system. To be able to preserve enough information
while transforming x to y, we generally wish each row of
matrix A to get enough information from each element of x.
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In other words, the flatness of the rows of A is desired. This
can be satisfied when the rows of the measurement matrix 9
is not sparse in 8. To describe this concept, the functional
called “mutual coherence” is defined,

µ (9,8) := max
1≤k≤m,1≤ j≤N

∣∣〈ψk, φ j
〉∣∣ (5)

which measures the coherence between 9 and 8, where
ψk is the k’th row of 9 and φ j is the j’th column of 8.
It is clear that µ(9,8) ∈

[
1

√
N
, 1

]
when 9 has normalized

rows and 8 has normalized columns. A theoretical lower
bound to guarantee exact recovery for BP on the number of
measurement in terms of defined mutual coherence can be
found in [36] and [37] as,

m ≥ κ.N .µ2(9,8).k. log N , (6)

where κ is a positive constant. In plain terms, the minimum
number of required measurements is dictated by the mutual
coherence, and one wishes to keep it a minimum in a CS
system. For instance, the measurement matrices, which have
random waveforms with i.i.d elements such as Gaussian,
are well known to be incoherent with any fixed basis, i.e.,

µ (9,8) ≈

√
2 log(N )
√

N
[38].

B. Multi-Dimensional and Separable Compressive Sensing

As reviewed above, the mathematical foundation of the
conventional CS scheme is well established. However, this
traditional scheme, where dimensional reduction is per-
formed via vector-matrix multiplication and recovery is
represented via ℓ1-minimization, may not be convenient in
most multi-dimensional signal acquisition schemes such as
compressive sensing of imaging systems. For instance, assume
that the signal of interest is a 512 × 512 gray-scale image,
S. Assume that we wish to build a sub-Gaussian CS system
with a measurement rate of m

N = 0.36. In that CS scheme
that samples the vectorized image, s ∈ RN with N = 5122,
the measurement matrix size will be m × N = 94372 ×

262144. The conventional CS recovery algorithms such as ℓ1-
minimization techniques are iterative algorithms and in each
iteration, they perform matrix-vector multiplications using
CS matrix and the transpose of it. However, even saving
alone such massive size matrices requires more than 80GB
of storage. Therefore, the computational complexity of the
iterative recovery algorithms becomes cumbersome. As a
remedy, block-base CS and separable CS imaging [23] have
become the most frequently used approaches. Among them,
separable CS (also known as Kronecker CS) has the advantage
of introducing fewer blocking artifacts. In a separable CS
imaging introduced in [23], the CS sampling operator is
separable over horizontal and vertical axes, i.e., Y = 91S9 ′

2,
where S ∈ R

√
N×

√
N is the input image, s ∈ RN , in its original

matrix form, and 91 ∈ R
√

m×
√

N and 92 ∈ R
√

m×
√

N are the
measurement matrices. In that way, the computational cost of
the matrix multiplications is reduced from 2 × m × N flops
to 4 ×

√
m × N flops compared to conventional CS setup.

Moreover, this separable CS setup can be easily formulated
in a traditional CS setup, which makes the analysis and

algorithms of CS theory still valid. For instance, consider that
the sparsifying basis is also separable as in 2D DCT matrices,
then CS in matrix-vector form is nothing but vec(Y) =

91 ⊗ 92 vec(S) = A1 ⊗ A2 vec(X), where Ai = 9i8i ,
X ∈ R

√
N×

√
N is a sparse coefficient matrix and ⊗ is the

Kronecker product. Let us assume the separable measurement
matrices are Gaussian projection matrices, then mutual coher-
ence between 91 ⊗92 and 81 ⊗82 can be easily calculated,
i.e., µ (81 ⊗82, 91 ⊗92) ≈

log(N )
√

N
. Hence, the mutual

coherence increases
√

1
2 log(N ) times and the number of the

necessary measurement increases by the square of it compared
to a conventional setup where CS matrix is unfactorized Gaus-
sian projection matrix. That is to say, in a separable CS setup,
although computational complexity decreases, the minimum
number of required measurements increases as a trade-off
compared to conventional unfactorized CS scheme. On the
other hand, based on RIP or mutual coherence properties, these
types of analysis for the CS reconstruction algorithm have
been referred to by the term theoretical guarantee conditions
in the worst-case scenario [39]. It is generally found, however,
that algorithms perform much better than the performance
bounds given by these types of worst-case scenario analyses,
especially for recovering structurally sparse signals [27], [40].

In general multi dimensional and separable CS setup, the
J -dimensional signal, S ∈ Rn1×n2...×n J with N =

∏J
j=1 n j ,

can be acquired by separable sensing operator:

Y = S ×1 91 ×2 92 . . . 9J−1 ×J 9J , (7)

where S ×i 9i is the i-mode product of tensor S and matrix
9i ∈ Rmi ×ni and Y ∈ Rm1×m2...×m J is CS tensor, with
m =

∏J
j=1 m j . Assuming that the sparsifying basis is also

separable, then (7) can be re-cast as,

Y = X ×1 A1 ×2 A2 . . .AJ−1 ×J AJ (8)

where Ai = 9i8i and X ∈ Rn1×n2...×n J is the sparse
representation tensor. (8) can be cast as a vector-matrix mul-
tiplication,

y = (A1 ⊗ A2 ⊗ . . .⊗ AJ ) x, (9)

where y = vec(Y) and x = vec(X ). Therefore, the con-
ventional CS recovery techniques defined in (4) can be used
and this setup is also known as tensor compressive sensing or
Kronecker compressive sensing [21].

III. GENERALIZED STRUCTURAL TENSOR SUM
COMPRESSIVE SENSING

A. Tensor Sum as a Computationally Efficient Approximation
of Non-Separable CS Matrix

Earlier, we discussed in detail the trade-off for computa-
tional complexity versus the minimum number of measure-
ments when we move from conventional non-separable CS
scheme to separable CS setup. In the sequel, to our knowledge
for the first time in literature, we will demonstrate that
non-separable or unfactorized CS matrix can be approximated
with the summation of tensorial sum operation. By doing this,
while preserving the “goodness” of the CS matrix (i.e., the
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probability of exact sparse signal recovery) as possible as
close to unfactorized CS case, we can reduce the number of
parameters to represent the CS matrix. This will enable us
to have a feasible number of learnable parameters when we
will attempt to jointly learn CS operation and recovery system
using a neural network architecture. Mathematically speaking,
let us sum T number of different separable CS tensor obtained
from S:

Y =

T∑
t=1

S ×1 9
(t)
1 ×2 9

(t)
2 . . . 9

(t)
J−1 ×J 9

(t)
J , (10)

where 9(t)i is the i th dimension CS matrix of t th operation.
(10) can be re-formulated in a non-separable CS setup via

y =

T∑
t=1

(
9
(t)
1 ⊗9

(t)
2 ⊗ . . .⊗9

(t)
J

)
s =

T∑
t=1

P(t)s = Ps,

(11)

where P(t) =

(
9
(t)
1 ⊗9

(t)
2 ⊗ . . .⊗9

(t)
J

)
and P =

∑T
t=1 P(t).

Note that (11) is nothing but conventional non-separable CS
operation with measurement matrix P. For special case where
T = 1, (10) reduces to a separable CS scheme as in (7).
Compared to the conventional CS, y = 9s with unfactorized
CS matrix 9, the number of parameters to represent the CS
matrix is reduced from m N =

∏J
j=1 m j n j to T

∑J
j=1 m j n j .

We design an experiment to show how the goodness of the
new CS matrix P is increased with T . For the goodness
metric, we selected the probability of exact recovery of the k-
sparse signal in our experimental results. As the CS matrices,
we selected Gaussian random projection matrices; in the case
of 9 which is unfactorized,

∏J
j=1 m j ×

∏J
j=1 n j size Gaussian

matrix is produced with each element of it is randomly drawn
from the Gaussian distribution. For the new case, CS matrix
P is generated with the summation of Kronecker products of
the separable random Gaussian matrices as shown in (11).
Figure 1 shows us that when T increases the probability
of exact recovery from y = Px also increases. The sparse
signal length is set to 1024 and orthogonal matching pursuit
algorithm [41] was used as the CS recovery algorithm. For
T = 5, P can achieve similar performance in recovery when
k = 80. The exact recovery probability is estimated over
250 trials.

B. Structural Tensor Sum or Transformation Basis as a Part
of the CS Matrix

In the literature, adjusting the measurement matrix as the
multiplication of two or more matrices is a common practice.
For instance, in [42], structural compressive sensing matrices
are constructed as the multiplication of random permutation,
an orthonormal basis, and sub-sampling matrices. Thanks to
such pseudo-random matrices, faster recovery can be possi-
ble compared to the CS system with full random matrices.
Moreover, in [24] and [25], CS matrix is in the form of
multiplication of a sparsifying basis and a random matrix (i.e.,
an ordinary CS sensing matrix such as Gaussian projection
matrix) i.e., 9 = 9∗�′, where �′ is transformation domain

Fig. 1. Estimated probability of exact recovery over 250 trials for different
realizations of CS matrix. An exactly sparse signal is synthetically produced
for N = 1024 and k = 80.

Fig. 2. CS Matrix configuration. Left: The CS operation modeled as the
summation of tensor sums. Right: An individual tensor sum for the case of
3D tensors.

basis, and 9∗ is ordinary random CS matrix. Even though this
CS system was originally proposed for CS-based encryption
in the frequency domain, in Section V we will discuss that
the learned CS systems in the frequency domain may slightly
carry more high-frequency details compared to the learned CS
system in the spatial domain. If the transformation basis is
also separable like DCT, such a system can also be injected in
the proposed tensorial and sum of tensorial CS scheme, i.e.,
9
(t)
i = 9

(t)
i

∗

�
(t)′
i , where �(t)

′

i is i th-coordinate matrix of the
separable transformation basis.

C. Generalized Tensor Summation Compressive Sensing
Network (GTSNET)

In this section, we propose a neural network architecture
that jointly learns the CS sensing mechanism (CS matrix),
and the reconstruction of the signal. The proposed network is
composed of three parts: i) A CS operation, ii) Adjoint of the
CS operation (or coarse estimation of the signal), and iii) a
refinement module.

1) Separable and Multi-Linear Learning of CS Operation
(i.e., Learnable CS matrix): Our learnable CS matrix P is
factorized as

P =

T∑
t=1

(
9
(t)
1 ⊗9

(t)
2 ⊗ . . .⊗9

(t)
J

)
, (12)

where 9
(t)
i = 9

(t)
i

∗

�
(t)′
i , �(t)

′

i is i th-coordinate matrix of
the t th separable transformation matrix such as the one that
represents 8 × 8 size block-wise 2D DCT on the horizontal
axis and 9(t)i

∗

learnable i th-coordinate matrix of the t th term
in the summation. The CS operation can be factorized using a
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Fig. 3. Course estimation module. Left: The adjoint operation modeled as
the summation of tensor sums. Right: An individual tensor sum with an input
tensor in 3D.

reasonable number of training parameters thanks to the mode-j
product:

Y =

T∑
t=1

S ×1

(
9
(t)
1

∗

�
(t)′
1

)
×2 . . .×J

(
9
(t)
J

∗

�
(t)′
J

)
. (13)

A schematic explanation of (13) is given in Figure 2.
• For special case, �(t)

′

J = I, the CS system reduces to
an un-structural tensor sum system, which is the learned
version of the CS system defined in (10).

• For T = 1, the unfactorized system reduces to a separable
CS system (e.g., the learned version of the separable CS
imaging [23]).

• The system is valid for compressively sensing of any
signal, S.

• Thanks to the formulation in (13), the number of train-
able parameters for unfactorized CS matrix is reduced
from

∏J
j=1 m j n j to T

∑J
j=1 m j n j , compared to conven-

tional matrix-vector multiplication formula. Therefore,
it makes the learning unfactorized CS sensing possible
for large-scale and multi-dimensional signals.

Considering these properties, we call our learnable CS opera-
tion Generalized Tensor Summation Compressive Sensing.

2) A Coarse Estimation of the Signal: Separable Learning
of Adjoint of CS Operation: In traditional iterative CS recon-
struction algorithms, the transposition or the pseudo-inverse
of the CS matrix is used in each iteration. On the other hand,
in reconstruction-free inference tasks over CS signals [43],
[44] or non-iterative deep learning-based recovery algorithms
[17], a coarse estimation of the signal, also known as the
proxy of the signal is first obtained, i.e., s̃ = 9 ′y. Although,
it is also possible to obtain such a proxy using the regularized
pseudo inverse of CS matrix, i.e., s̃ =

(
9 ′9 + λI

)−1
9 ′y [45],

we follow the notation with the transpose or adjoint operator
in general for simplicity. Eventually, the adjoint operator will
be a learnable linear transformation. The adjoint of the P
that is defined with the factorization in (12) can simply be
expressed as,

P′
=

T∑
t=1

(
9
(t)
1 ⊗9

(t)
2 ⊗ . . .⊗9

(t)
J

)′

=

T∑
t=1

(
9
(t)′
J ⊗9

(t)′
J−1 ⊗ . . .⊗9

(t)′
1

)
. (14)

where 9(t)
′

i = �
(t)
i

(
9
(t)∗
i

)′

, �(t)i is i th-coordinate matrix of

the inverse of the t th separable transformation matrix such as
the one that represents the inverse operation of the 8 × 8 size
block-wise 2D DCT transformation on the horizontal axis and

(
9
(t)∗
i

)′

is the transpose of
(
9
(t)∗
i

)
. As stated above we

introduce to learn the adjoint CS matrix from the training set.
Mathematically speaking, we wish to have the proxy signal,
s̃ = By where the operation B is learned by a neural network
instead of directly applying P′. In practice, there is no need
to formulate it in vector-matrix multiplication formulation
since the adjoint can be applied directly on the tensorized
measurement. As shown in Figure 3, it can be expressed as,

S̃ =

T∑
t=1

Y ×1

(
�
(t)′
J B(t)

∗

1

)
×2 . . .×J

(
�
(t)
J B(t)

∗

J

)
, (15)

where B(t)
∗

i is the i th- coordinate learnable adjoint operation
matrix for the t th term and �(t)i is the corresponding fix (non-
trainable) inverse transformation operation. As it was in the
case of CS operation, the tensorial factorization in (15) makes
the adjoint operation trainable instead of attempting directly
to learn the elements of the unfactorized matrix B.

3) Reconstruction Free Recovery With Deep Neural Net-
work: Having the proxy signal, S̃, we train a conventional
CNN, C(.), which takes the proxy signal, S̃ as input and
produce a finer estimation of the signal, i.e., Ŝ = C(S̃).
In that way, a non-iterative reconstruction network and CS
operation can jointly be optimized (learned). The final network
is called Generalized Tensor Summation Compressive Sensing
Network (GTSNET-T ) which includes T tensor summation
in its formula. Our solution introduces a generalized but
flexible learning paradigm, it encapsulated many special cases
which are set as the adjustable parameter of the network. For
instance, one can set T = 1 to have a separable optimal
CS operation and its reconstruction. Or alternatively, the
transformation �(t)i can be set to the identity operator to sense
in the spatial domain.

For the refinement module, C(.), we incorporate a modified
version of the Residual Dense Network (RDN) [46]. Such
network takes advantage of the so-called residual dense blocks
(RDBs), within which all the layer outputs are fully utilized via
local feature fusion. The outputs of each RDB are further con-
nected via a global feature fusion, where the information from
each block is effectively preserved. The performance of the
network is improved by both local and global residual learning.
We modify the original RDN configuration by omitting the
upscale layer as it was proposed for image super-resolution
[46]. Furthermore, we adapt the overall RDN structure as a
residual network, i.e., the output of the modified RDN is added
to the input proxy signal, S̃, to obtain Ŝ.

The overall GTSNET-T structure is illustrated in Figure 4,
including the learnable CS matrix and the adjoint operation,
as well as the final refinement module. The adjoint operation
matrices �(t)j B(t)

∗

j are denoted altogether as B(t)j = �
(t)
j B(t)

∗

j
for simplicity. Each branch t in the CS matrix (pink blocks
in Figure 4) performs a single tensor product with the input
tensor S, while the final CS operation is the summation
over the products as dictated by (10) and (11). Similarly,
the adjoint operation is the summation over the individual
tensor products with the compressed signal Y (green blocks in
Figure 4), as given by (15). The refinement module composes
of D RDBs, each of which having C convolution layers with
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Fig. 4. Overall block diagram of the proposed end-to-end system.

rectified linear units (ReLUs) [47] as activation functions. The
input feature map to each RDN, F (d−1) has G0 channels, while
each convolution layer inside has G filters with a 3 × 3 filter
size. The concatenated feature maps at the end of the RDB
are processed through one 1 × 1 convolution layer to map the
output channel size back to G0. In our implementation, we set
D = 4, C = 3, G0 = 30, and G = 12.

We train the network with an overall loss function
L(S̃, Ŝ,S), which is the combination of two loss functions
defined over the proxy signal, S̃, and the final output, Ŝ,
respectively. The loss over the proxy signal, L̃(S̃,S), is set
to be a simple L1-loss, as it was previously demonstrated to
achieve better performance compared to the L2-loss in various
image processing problems [48]. Assuming each training batch
contains K input tensors {S1,S2, . . . ,SK },

L̃(S̃,S) =
1
K

K∑
k=1

∥̃sk − sk∥1 . (16)

The loss over the final output, L̂(Ŝ,S), is also an L1-loss with
an additional regularization term, R̂(Ŝ,S),

L̂(Ŝ,S) =
1
K

K∑
k=1

(
∥̂sk − sk∥1 + α R̂(Ŝk,Sk)

)
, (17)

where α is a hyperparameter. Our regularization term is a
modified sparse gradient prior [49] applied on the spatial
domain, which has been proposed for image debluring as it
provides sharper details compared to, e.g., Gaussian prior. The
mathematical description of the regularization is expressed as
follows:

R̂(Ŝ,S) =

∑
n1,...,n J

exp (−β|∇n1S|
γ )|∇n1 Ŝ|

γ

+

∑
n1,...,n J

exp (−β|∇n2S|
γ )|∇n2 Ŝ|

γ , (18)

where ∇n1 and ∇n2 are the discrete differential operators
over the first and second dimensions, respectively. The expo-
nential weights exp (−β|∇n1S|

γ ) and exp (−β|∇n2S|
γ ) are

introduced to decrease the prior term over the edges of the
original tensor S, as proposed in [49]. We empirically set,

α = 0.005, β = 10, and γ = 0.9. Finally, the overall loss
function is L(S̃, Ŝ,S) = L̃(S̃,S)+ L̂(Ŝ,S).

IV. EXPERIMENTAL SETUP AND RESULTS

A. Training Setup

We prepare the training dataset in the following manner:
Div2K image dataset was used and 256 × 256 image patches
were selected with stride 512 and they were cropped. Data
augmentation was applied during the data generation with
rotations in four different degrees; 0, 90, 180, and 270, flipping
and downsampling with scale factors; 1, 0.8, and 0.6. Hence,
by using the training set of DIV2K total of 89272 image
patches were obtained to be used as the training set. Similarly,
as the validation set, we obtained 1512 images from the
validation set of DIV2K. All the images are normalized to
range [0, 1]. The batch size was selected as 16 and the
networks were trained with 100 epochs. During training, the
learning rates are scheduled to be 10−3 for the first 50 epoch,
10−4 for the later 30 epoch, and 10−5 for the last 20 epoch.
The network of the 100. epoch was chosen as final. The
implementation of the GTSNET was done using MatConvNet
package [50].

B. Comparative Evaluations

As traditional CS reconstruction methods, which are well-
known state-of-the-art sparse recovery methods, comparative
evaluations are performed against the following three methods;
Gradient Projection for Sparse Reconstruction (GPSR) [14],
TV Minimization by Augmented Lagrangian and Alternat-
ing Direction Algorithms (TVAL3) [12] and Denoising-based
AMP (D-AMP) [13]. GPSR is a sparse recovery algorithm that
was specifically proposed as computationally more efficient
and feasible to apply for any image CS framework. As the
CS matrix, a randomly selected subset of the rows of noiselet
basis [51] was used. As the sparsifying transform, wavelet
“Coiflet 2” was used with the toolbox WaveLab850 [52].
TVAL3 is one of the state-of-the-art TV minimization solvers.
Walsh Hadamard Transform whose fast implementation avail-
able in the TVAL3 toolbox was used as the CS matrix. The
parameters on TVAL3 toolbox were set as follows: µ = 213,
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TABLE I
PERFORMANCE METRICS (PSNR AND SSIM) OBTAINED BY THE COMPETING AND PROPOSED METHODS OVER THREE BENCHMARK DATASETS

β = 26, µ0 = 22, β0 = 2−2, tol = 10−6, maxit = 300.
D-AMP was proposed to improve the performance of CS
recovery for the natural signals by employing off-the-shelf
denoising algorithms. We test the algorithm with default
settings, where the elements of the CS matrix are picked
from i.i.d. Gaussian distribution and BM3D [53] is used as
the denoiser. The number of iterations and the image block
size are empirically set as 30 and 128 × 128, respectively.

As the akin state-of-the-art deep learning methods,
we selected CSNET [19] and SCSNET [20]. The algorithms
and the trained models were taken from the competing algo-
rithms’ web pages. Both methods jointly learn the CS matrix
and reconstruction of the image from the measurement as
proposed in this study. However, these methods learn the
block-wise CS matrix using convolution operation in a non-
overlapping manner. In that sense, when the kernel size is
increased to full image size, the method turns out to be the
classical unfactorized CS setup with an infeasible increase in
the number of parameters to train.

We trained two GTSNET versions; GTSNET-1 and
GTSNET-3. Among them GTSNET-1 learns tensorial repre-
sentation of CS matrix, therefore suitable for both separable
and unfactorized CS schemes. For this network, separable
transformation matrices �′

1 and �′

2 were chosen as 8 × 8
DCT transformation matrices in the horizontal and vertical
directions, respectively. GTSNET-3 includes the three-tensor
summation as the CS operation and represents an unfactorized
CS setup. As the sparsifying matrices, �(t)

′

i , we selected
8 × 8, 16 × 16 and 32 × 32 2D DCT transformations for
t = 1, t = 2, t = 3, respectively. All the competing algorithms
were tested on three commonly-used datasets: Set14 [54], Set5
[55], and Set11 [17]. The results on five different measurement
rates (MRs) are presented in Table I. Against the competing
traditional methods, GPRS, TVAL3 and DAMP, a significant
gap on the average performance is observed. In particular,
we achieve 7.21 dB, 4.55 dB, 1.6 dB, 1.63 dB, and 2.81 dB
improvements in PSNRs compared to the closest performance,

for MRs of 0.01, 0.05, 0.1, 0.2 and 0.3, respectively. When
we compare against the deep learning-based competing meth-
ods, CSNET+ and SCSNET, GTSNET-T shows superiority
for the lower MRs (< 0.2), i.e., 0.3 dB, 0.3 dB, 0.18 dB
PSNR improvement over the best competing method, for the
MRs of 0.01, 0.05 and 0.1, respectively. Figure 1 presents
visual comparisons over the state-of-the-art CS methods.
Although there is no significant gap between the PSNR and
SSIM of GTSNET-1 and GTSNET-3 results, one can observe
GTSNET-3 outputs preserve high frequency details better, e.g.,
see Parrot and Flinstone images in Figure 5 and Figure 6. The
performance gap in both PSNR and SSIM measures becomes
significant in RGB images while the visual quality of the
GTSNET-3 outputs especially at the fine details noticeably
improves.

C. Comparative Evaluations Against Deep Learning-Based
CS Methods

As the competing deep learning-based solutions,
(i) the stacked denoising autoencoder (SDA) [16], which is

the pioneer method,
(ii) non-iterative reconstruction of the compressively sensed

images using CNN (ReconNet) [17]
(iii) the learned version of iterative shrinkage thresholding

algorithm for CS imaging (ISTA-Net),
(iv) akin state of the art techniques convolutional compres-

sive sensing network (CSNET) [19]
(v) scalable convolutional compressive sensing network

(SCSNET) [20],
(vi) memory augmented cascading Network (MAC-Net)

[56],
(vii) dual-path attention network for compressed sensing

(DPA-Net) [57], and the most recent deep unrolling
techniques,

(viii) OPINE-NET [58],
(ix) AMP-Net+ [59], and
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(x) COAST [60]
are selected as the most recent techniques. This article was
updated to include a few more deep learning-based solutions
[61], [62] while it was being prepared. Through self-attention
mechanisms, these algorithms enhance the performance of
recovery refinement parts of end-to-end CS networks based on
vision transformers [63], which have recently become an active
research area. While learning compressively sensing operator
part, however, they use a strided convolution (block-by-block
sensing) based module similar (or identical) to the ones used
by CSNET, SCSNET, OPINE-NET, and AMP-Net.

For ISTA-Net, CSNET, and AMPNet we choose their
improved versions ISTA-Net+, CSNET+, and AMP-Net+,
respectively. The comparative evaluations are conducted on
the benchmark SET11 dataset. The results for different mea-
surement rates are presented in Table II. All the algorithms
and the trained models were downloaded from authors’ web
pages and run over SET11 except SDA and DPA-Net, whose
source codes are not available online. The results of SDA
were taken from [17] and the results of DPA-Net were taken
from [57]. The average PSNR values show the superiority of
the proposed network over all competing methods especially
for the case of lower sampling rates, e.g., for MR < 0.1.
Figure 6 shows samples for the qualitative performance com-
parison where it is clear that the outputs of SDA, ReconNet,
and ISTA-Net+ may exhibit strong blocking artifacts. The
reason is that they use block-by-block sampling strategy to
compressively sense the signal, and then apply block-by-block
recovery strategy. On the other hand, CSNET, MAC-Net, and
SCSNet algorithms have block-by-block compressive sensing
setup, but their reconstruction step recovers the image as a
whole by using convolutional layers. Therefore, their outputs
show fewer blocking artifacts. On the other hand, GTSNET-1
CS module is convenient for both separable and unfactorized
(conventional vector-matrix CS system) CS setup. When it
comes to reconstruction, it uses a CNN similar to CSNET
and SCSNET and recovers the image as a whole. For the
use case, where one wants to use a traditional sampling setup
with a better approximation of unfactorized CS matrices, the
GTSNET-T (T > 1) can be used. The sampling strategies of
deep learning methods are summarized in Table I. Although
there is no significant gap in PSNR and SSIM values on
average, GTSNET-3 can recover more high-frequency details
as seen in the Parrot image in Figure 6. In Section V, we will
discuss the effects of the tensor sum in the frequency domain.

D. Comparative Evaluations Over RGB Images

Unfortunately, most aforementioned competing methods
except CSNET were designed only for gray-scale images.
Therefore, we compare GTSNET with CSNET. An extensive
set of comparative evaluations was conducted on the following
benchmark RGB image datasets: Set5, Set11, Manga109 [64],
and Urban100 [65]. The results are reported in Table III.
For GTSNET-5, as the sparsifying matrices, we selected,
8 × 8, 16 × 16, 32 × 32, 64 × 64 and 128 × 128
2D DCT transformations for �(1)

′

, �(2)
′

, �(3)
′

, �(4)
′

and
�(5)

′

, respectively. As clearly observable from the table that

TABLE II
SAMPLING AND RECOVERY STRATEGIES OF THE DEEP

LEARNING-BASED ALGORITHMS. GTSNET-T CAN
BE USED FOR BOTH CLASSICAL (UNFACTORIZED)

CS AND SEPARABLE CS SYSTEMS

TABLE III
PSNR LEVELS OBTAINED BY THE COMPETING AND

PROPOSED METHODS OVER SET11 DATASET

the performance gap between GTSNET-1 and GTSNET-T
(T > 1) widens in terms of PSNR and SSIM. Compared to
CSNET+, a comparable performance with the separable CS
setup (GTSNET-1) is achieved. For the unfactorized CS matrix
setup (T > 1), the performance gap between CSNET+ and
the best operating GTSNET configuration becomes significant,
i.e., 1.15 dB, 0.92 dB and 2.91 dB for sampling rates of 0.05,
0.1 and 0.2, respectively. Moreover, some samples for visual
comparison of the recovered images are shown in Figure 5.
The outputs of CSNET+ exhibit certain level of blocking
artifacts that are entirely absent in any of the outputs of the
proposed GTSNET-T networks.

V. DISCUSSION

A. Tensor Vs Tensor Sum for CS Matrix Learning

In this section, we perform an ablation study concerning
the effects of the number of tensor sums, T , over the final
reconstruction quality. As a starting point, we plot the PSNR
values of each image in Set5, sensed and reconstructed via
three different setups, for T = 1, T = 3, and T = 5.
We perform analysis on both gray-scale and RGB images,
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Fig. 5. Visual comparison with the state-of-the-art on grayscale images with varying measurement rates.

TABLE IV
PERFORMANCE METRICS (PSNR AND SSIM) OBTAINED BY THE COMPETING AND PROPOSED METHODS

OVER FOUR BENCHMARK RGB IMAGE DATASETS

where the measurement rate is set as 0.1. The gray-scale
images are constructed via taking the luminance channel of
each image in YCbCr color space. The results are shown in
Figure 6. While the performance gap is negligible difference
on the gray-scale images, we observe a significant performance
improvement in reconstructing the RGB images as T increases
from 1 to 3, e.g., up to 2.74 dB PSNR improvement on the

“woman” image. An interesting observation worth mentioning
is that GTSNET-T with T = 3 outperforms the one with
T = 5, both for each individual image in Set5, and for the
average of each dataset presented in Table III. This might
seem at first contradictory to our derivations within the theo-
retical discussions, where we demonstrate in Section III-A and
Figure 1 that the mutual coherence decreases as T increases.
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Fig. 6. The recovered images of the competing and proposed methods with the GT image on the left.

However, within such analysis each tensor is chosen to be
composed of Gaussian random matrices. As in practice we
further learn the CS matrices to improve performance over
the random matrices, an inherent trade-off occurs, where the
number of learned parameters increases linearly with increas-
ing T . The experimental analysis shows that T = 3 provides
best of both worlds with a consistently superior image quality
for MR = 0.1.

To enrich the discussion above, we visually compare the
three methods over a rather tricky color image: “zebra” from
Set14. In particular, we examine the frequency responses of
both the proxy signals, S̃, as the immediate reconstruction,
and the final outputs, Ŝ. The results are shown in Figure 9.
The differences between each method are clearly visible over
the frequency responses of the proxy signals (middle row),
where the cut-off frequency of GTSNET-3 is higher compared
to that of GTSNET-1 and GTSNET-5. Subsequently, the
final output of GTSNET-3 can preserve the higher frequency
information while providing better quantitative result in terms
of PSNR value.

Having shown the improvement in image quality with
T > 1, we now provide the information flowing from each

branch of the adjoint operator. Figure 10 illustrate the tenta-
tive reconstruction results, where one of the branches (B(3))
performs the majority of the reconstruction over the lower
frequency region and the residual high-frequency details
are recovered through branches B(1) and B(2). In addition,
the first and second branches carry information regard-
ing the different regions of the spectrum; the support of
B(2) is more concentrated towards the low-frequency region,
whereas the frequency response of the first branch con-
tains higher frequencies. The proximal signal, S̃ (Figure 10,
fourth column), is the summation of each output, having a
wider response than each individual branch.

B. Tensor Sum vs Structural Tensor for CS Matrix Learning

In Section III-C1, we discuss that the proposed method is
suitable for designs of both structured and unstructured tensor
summations, whereas we mainly demonstrate our results via
the learned structured matrices. In this subsection, we compare
a network trained for unstructured tensor sums, i.e., �(t)

′

J = I,
with the previously discussed structured tensors. We train both
setups for GTSNET-3, where the measurement rate is set as
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TABLE V
PERFORMANCE COMPARISON OF TIED VS. UNTIED LEARNING OF CS MATRICES

Fig. 7. The recovered images of the competing and proposed methods with the GT image on the left.

0.1. A test image is picked from the Urban100 dataset for the
experiment, carrying high-frequency components with fixed
patterns. Figure 11 shows the results. While the differences
are not prominent through visual inspection on the spatial
domain at first, the proxy output of the structured tensor

summation is observed to contain a wider frequency response.
We also notice a decrease in the high-frequency region of
the final output with the unstructured tensor sum, visible as
a box in the middle of the frequency response (Figure 11,
bottom left), and a decrease of 0.43 dB in PSNR. For such
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Fig. 8. Quantitative reconstruction results of Set5 dataset, with varying
number of tensor sums T . Left: Gray-scale (luminance) images. Right:
Original color (RGB) images. The measurement rate is set to be 0.1 in both
scenarios.

Fig. 9. Frequency analysis with varying number of tensor sums. Top: Final
outputs Ŝ in spatial domain. Middle: Proxy signals Ŝ in frequency domain.
Bottom: Final outputs Ŝ in frequency domain. Measurement rate is set as 0.1.

purposes, we proceed with the structured matrices. Neverthe-
less, it is important to demonstrate that the proposed method
has flexibility generalizing various types of CS matrix designs.

C. Performance on Sparse Signals

The proposed GTSNET-T scheme is able to sense the
images in sparsifying domain e.g., DCT basis directly. The
adjoint operator consists of two parts; one is a learned adjoint
matrix and the other is the fixed inverse transform basis of
the sparsifying transform. Therefore, the coarse estimation of
the image is also done in sparsifying, firstly. However, the
natural images do not exhibit exact sparsity but approximate
sparsity in any sparsifying domain. This is why in the sequel,
we will investigate the the performance of the GTSNET-T in
the recovery of exact sparse signals.

In this section, we use the MNIST dataset for our experi-
ments. Images in this dataset have resolutions of 28×28 pixels,
and intensities ranging from 0 to 1. The background of each
image covers a larger area than the foreground, making it
a sparse signal in the canonical basis. Non-zero coefficients
to vectorized signal dimension ratios (i.e., k

N ) range from
0.05 to 0.4 [45]. Therefore it is actually a challenging sparse
signal dataset for the traditional CS setup since it includes
a large number of less sparse samples. The dataset includes
70000 samples, among them 50000 were used to train the
networks, and 20000 were used for the test.

Fig. 10. Tentative reconstruction result of each individual adjoint operation
in GTSNET-3, as well as the proxy signal Ŝ as the summation of each branch.

Fig. 11. Visual comparison between the unstructured and structured (DCT)
Tensor sums. Top: Final outputs Ŝ in the spatial domain. Middle: Proxy signals
Ŝ in the frequency domain. Bottom: Final outputs Ŝ in the frequency domain.
The results are shown for GTSNET-3 with MR = 0.1.

1) Tied Learning (B = A′) vs Untied Learning B ̸= A′: In
conventional solutions for linear inverse problems, the adjoint
operator is taken as the transpose of the linear degradation
matrix A, i.e., B = AT . However, the adjoint B is also
learned without any constraint depending on A. In this section,
we will investigate the advantages/disadvantages of such a
learning scheme instead of tied learning where A and B are
learned with a constraint B = AT . For the MNIST dataset,
we assume that the i th vectorized sparse signal xi ∈ RN=784

is compressively sensed, yi = Axi, where A ∈ Rm×N for
different m values. The measurement matrix A is selected
in three different ways: a) Unfactorized full-size Gaussian
matrix. b) Learned CS matrix with GTSNET-T with constraint
B = AT . c) Learned CS matrix with GTSNET-T without such
constraint.

As an example let us consider that one wants to take
m = 81 measurements. In this setup, the number of parameters
to represent the unfactorized conventional Gaussian matrix can
be calculated as 81 × 728 = 58968. On the contrary for
the learning matrix with T = 3-tensor sum scheme will be
2 × T × 9 × 28 = 1512 since each Kronecker product is
represented by left and right matrix multiplications with the
matrices of size 9 × 28. If there is no constraint in the adjoint
operator then the number of parameters to represent the abjoint
B will be the same. In the meanwhile, when there is a such
constraint then, there is no additional parameter in order to
represent the adjoint matrix.
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Fig. 12. Comparison of Gaussian measurement matrix and learned measurement matrix: Proxy, minimum norm solution, ℓ1-minimization results from the
measurement vector As when A is Gaussian matrix (on the left) and when A is learned with proposed tensorial sum approach (on the right).

Table V shows the comparison of the reconstruction per-
formance of these three setups with different measurement
rates and with different T values. For the conventional CS
setup, we used ℓ1-minimization to solve the recovery problem:
x̂ = arg minx ∥x∥1 s.t ∥y − Ax∥

2
2. There is a clear pattern that

shows that untied learning can achieve superior performance
with increasing margin, especially when MR gets smaller.
On the other hand, conventional CS setup performs very poorly
due to the fact that the data sparsity ratio makes the sparse
recovery very challenging.

2) Learned Measurement Matrix Within ℓ1-Minimization
Based Sparse Recovery: In order to compare the good-
ness of the learned measurement matrices to conventional
sub-Gaussian matrices, the following experimental setup is
designed: Learned measurement matrices are obtained via
A =

∑T
t=1 A(t)1 ⊗ A(t)2 , where A(t)1 and A(t)2 are left and

right multiplication matrices for t th Kronecker product. Then,
compressive sensing of vectorized sparse signal, x, is done,
i.e., y = Ax. In order to recover recover sparse signal,
ℓ1-minimization is used: x̂ = arg minx ∥x∥1 s.t ∥y − Ax∥

2
2.

ADMM [66] is used to solve this optimization problem.
Figure 7 shows an example visual comparison of the recovered
outputs in this vector CS setup for conventional Gaussian
CS matrix vs. learned CS matrix. Even coarse estimations
of x via minimum norm solution and simple matrix vector
multiplication with adjoint matrix (tied learning is used in this
experiment, i.e., B = AT) are significantly improved compared
to the ones from conventional Gaussian projection CS setup.

VI. CONCLUSION AND FUTURE WORK

We propose generalized tensor summation networks for fast
and high-quality CS. Our framework incorporates end-to-end
learning where the parameters of both the CS matrix and the
signal recovery are jointly optimized. On the sensing part, the
CS matrices are modeled as the summation of T tensors, which
has certain critical advantages. On one hand, the complexity
and the number of parameters are greatly reduced thanks to the
separability of tensors. By keeping T = 1, for instance, we can
reduce the system to a Kronecker CS. On the other hand,
unfactorized CS matrices can be approximated well enough by
increasing T . In addition, we can design structured matrices
by incorporating any separable basis into our framework, such
as DCT.

The reconstruction step of the proposed algorithm takes
advantage of an adjoint operator learned similarly in tenso-
rial sum representation to perform a tentative reconstruction.

In this proof of concept work, a non-iterative, CNN-based
deep learning architecture is used as the refinement module.
To further increase the performance, one can use the most
advance deep backbone structures such as transformers or
optimization-inspired deep neural networks in future works.
We further note that increasing T improves the recovery until
it reaches a maximum value at a certain T value (generally at
T = 3 or 4). However, contrary to the expectation of staying
in saturation, after this point, the performance metric starts
decreasing with a further increase in T . Future works can be
devoted to analyzing the reason for such behavior which may
lead to better training strategies and increased performance.
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