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Abstract— Recent advances in intelligent surveillance systems
have enabled a new era of smart monitoring in a wide range
of applications from health monitoring to homeland security.
However, this boom in data gathering, analyzing and sharing
brings in also significant privacy concerns. We propose a Com-
pressive Sensing (CS) based data encryption that is capable
of both obfuscating selected sensitive parts of documents and
compressively sampling, hence encrypting both sensitive and
non-sensitive parts of the document. The scheme uses a data
hiding technique on CS-encrypted signal to preserve the one-
time use obfuscation matrix. The proposed privacy-preserving
approach offers a low-cost multi-tier encryption system that
provides different levels of reconstruction quality for different
classes of users, e.g., semi-authorized, full-authorized. As a case
study, we develop a secure video surveillance system and analyze
its performance.

Index Terms— Reversible privacy preservation, multi-level
encryption, compressive sensing, video monitoring.

I. INTRODUCTION

MANY emergent smart surveillance applications (i.e.,
buildings, infrastructure, stores, ambient-assisted liv-

ing, public areas) necessitate time-continuous data gathering
and processing. Upcoming 5G and IoT technologies will
enable continuous data collection and processing for per-
sistent monitoring [1]. For example, an intelligent building
system equipped with monitoring sensors such as CO2 meters,
thermometers, cameras or other types of IoT devices will
be instrumental in effectively automating tasks of heating,
ventilation, and conditioning (HVAC) systems, or in improving
the fault and hazard detection performance [2]. Another case
in point is an intelligent network of cameras for continuous
site surveillance or a health monitoring system [3], which
gathers users’ bio-signals along with video/speech data to be
processed remotely. These applications and their variants that
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collect data via sensors or edge devices bear the concern of the
privacy of people and possibly of sites. In fact, the European
General Data Protection Regulation (GDPR) legislation [4] has
specifically addressed these privacy concerns in data collection
and processing.

Currently, there exist a plethora of privacy-preserving tech-
nologies that vary in the data type and in the application
scenario. Even the definition of privacy is up to change
for different application areas and use cases, depending on
whether it is signal processing, a database system, secure
communication, etc., [5]. Under privacy concern, documents
are considered to consist of private, i.e., sensitive parts, those
parts that could potentially expose compromising information
to unauthorized users, and of public, i.e., non-sensitive parts.
Privacy-preserving data processing then aims to encrypt the
private parts of a document without deteriorating its public
parts. Recent comprehensive surveys provide useful guidelines
in privacy-preserving data mining [6], [7], signal process-
ing [8], [9], and privacy metrics [5].

In principle, a naive application of strong cryptography
methods such as AES [10] or RSA [11] would provide a high
degree of security, in addition to privacy. However first, these
encryption methods are relatively costly; but more importantly,
it is neither useful nor necessary to encrypt the whole signal
in real-time multimedia applications such as in video [12],
image, health [13] monitoring systems or other types of IoT
applications. Only the selected parts of the multimedia docu-
ment deemed to carry private information need to be protected;
this then gives rise to a two-tier approach. More generally in
a multi-tiered approach, different parts of the document can
be privacy protected at differential levels, the most strongly
protected parts accessible by the highest authorization level,
and so forth. We can also state the three desiderata of privacy-
protection algorithms: a) The technique should be able to
secure the privacy of selected sensitive portions of the data;
e.g., for face hiding, it should be stronger than any automatic
face recognition algorithm; b) The method should not degrade
the non-sensitive parts of the documents; c) It should be
able to reverse the sensitive part encryption (for authorized
users) in good quality. A concomitant desideratum is that the
computation cost of the data encryption should be reasonably
low.

Although Compressive Sensing (CS) [14] is an alternative
data acquisition strategy to conventional Nyquist/Shannon
based technique, it also provides encryption with a reasonable
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security level via its randomized sensing mechanism. In con-
sequence, using CS setup alone or with another lightweight
encryption shell applied on top of it has recently been a
popular approach for multimedia applications [15].

In this work, we pursue the approach of compressive sensing
to accomplish both compression and cryptographic security on
the whole data, and data hiding technology [16], [17] to hide
and then recover the masked-out private parts of the document.
The novel method achieves privacy protection by obfuscating
the sensitive parts of the document while the CS-encryption
is applied to the whole document, i.e., the combined public
and private parts. We assume that the document has been pre-
processed and segmented into its sensitive and non-sensitive
parts. We use terms de-identification and anonymization inter-
changeably, in the sense of rendering unintelligible the privacy
bearing segments of a document. Although our method is
applicable to any document type, images, video, audio, etc.,
with appropriate modifications, in the sequel we will consider
images as an application case.

Our scheme provides a two-tiered privacy, in which the
semi-authorized user, i.e., the entity with lower authorization
level can decode and view only the non-sensitive parts of
the image, while the fully-authorized user decodes and sees
the entire image. The semi-authorized one with only key
A (CS-Encryption matrix) is able to recover images whose
sensitive parts remain obfuscated after decoding whereas the
fully authorized person with keys A and B (the latter being
watermark embedding matrix) is able to recover the whole
image. In both cases, the image quality is stipulated to remain
close to the original quality. The significant merits of our
proposed method are first to enable a low-cost, two-level
encryption and second to provide reversible anonymization
for the selected authorized users. Although the experiments
are run only on image data, our method is general enough to
be applied to any data involving privacy concerns, such as to
videos as detailed in Section VI, or to bio-signals. In this work,
we select face de-identification problem [18], [19] as a case
study, within the context of a privacy-preserving image/video
monitoring system.

The privacy protection concern in image/video has been
addressed in a plethora of papers in the last decades. In sum-
mary, the technical solutions can be discussed in three groups:
a) automatic blurring of faces, context-dependent blurring,
e.g., bystanders only; b) blacking out of faces with random pat-
terns, and recently; c) anonymous face substitutions or iterative
regeneration schemes. Our method is in line with the noise
pattern overlay methods in the literature. However, we differ
from these methods in two respects: i) while we are able to
fully remove the obfuscating noise pattern, we provide multi-
tier differential protection; ii) we use compressive sensing for
data reduction and cryptographic security, and watermark the
compressed signal with the data hiding pattern).

A privacy-preserving method to which our method has some
resemblance was recently described in [20]. In the method
of [20], the images are first processed through a parallel group
of trained auto-encoders, each generating its own sufficiently
diversified sparse code. They obfuscate the sparse code by
adding random noise with statistics similar to sparse code

statistics to coefficients to a group of coefficients outside
the sparse code support set. The support set is predefined
or shared via a secret channel to the trusted user. Only the
trusted user possesses the key to recover the support set of
the sparse code coefficients, and thus is able to decode the
sensitive image (the face). Codes from multiple auto-encoders
are used to successively refine the results, i.e., incrementally
improve reconstructed image quality. In contrast, our method
is not face specific, does not need to find sparse codes in the
encoding part, does hence not require a separate secret channel
to share the obfuscation key. In addition, data reduction via
CS-compression is a byproduct of our scheme.

A preliminary version of this work was presented at [21].
This early version had briefly introduced the methodology and
presented some test results on a token dataset (6 faces in a
controlled laboratory environment). In this article, we provide
a theoretical worst-case analysis on the watermark guarantee
conditions (Lemma 1, Theorem 4). We have extended the
paper by incorporating a discussion on the design of alternative
obfuscating matrices [21] as well as on the alternative designs
of the watermark embedding matrix (see Section IV-E). Sim-
ulation experiments are run on a realistic public dataset with a
much bigger size (a subset of YouTube Faces Database [22])
containing 100 classes (videos of 100 identities). We have also
briefly described two extensions of the proposed method: 1.
Its adaptation to video signals, beyond the simple frame-by-
frame privacy processing; 2. A three-tiered privacy protection
in images. In the detailed performance evaluation, we illustrate
the reconstruction accuracy of masked regions as a function
of watermark embedding power and the choice of obfuscat-
ing masks, both being user-defined parameters. Recognition
accuracies with original faces, with de-identified faces, and
with faces reverse de-identified via recovered watermark are
given. The result of a test against an adversary with a strong
computational capability and with access to the full labeled
training set is also reported.

The rest of the paper is organized as follows. The nota-
tion is provided in Section II. We give a brief overview of
compressive sensing and its usage in encryption systems in
Section III. We emphasize the compressive sensing properties
that we have exploited in our proposed scheme. In Section IV,
the proposed two-tier privacy-preserving system is presented
in detail. Section V introduces a case study of the proposed
method in video monitoring and gives the results of the
extensive simulation studies. Finally, conclusions are drawn
in Section VII.

II. NOTATIONS

In this work, the �p norm of a vector x ∈ R
N is given

as �x�p =
��N

i=1 |xi |p
�1/p

for p ≥ 1. We also define the

�0-norm of the vector x ∈ R
N as �x�0 =

lim p→0
�N

i=1 |xi |p = #{l : xl �= 0}. The exactly (or
strictly) k-sparse signal in some appropriate domain is
the signal, x ∈ R

N with �x�0 ≤ k. On the other hand,
the approximately k-sparse signal (or compressible) is a
signal x with �x − x̆�

2
≤ κ , where κ is a small constant and

x̆ is obtained via zero-outing the elements of x except the
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TABLE I

FROM LEFT TO RIGHT: a) SYMBOLS OF THE FREQUENTLY USED VARI-
ABLES IN THE ARTICLE. b) DENOTATIONS OF THESE SYMBOLS. c) THE

CORRESPONDING CRYPTOGRAPHIC TERMINOLOGY, IF APPLICA-
BLE. d) THE CONDITIONS THE VARIABLES MUST SATISFY FOR

THE ENCRYPTION SCHEME TO WORK PROPERLY

ones with k-largest magnitude. For convenience, we show
in Table I the list of frequently used symbols, the terminology
used in paper and their synonymous definitions in the
cryptography literature.

III. PRELIMINARIES AND PRIOR ART

Our interest in compressive sensing is twofold: to compress
the signal if it is already sampled or to sample analog signals
directly at rates below the Nyquist-Shannon bound and to
exploit the inherent cryptographic capability of compressive
sensing.

A. Compressive Sensing

Compressive sensing (CS) theory has significantly impacted
the field of signal processing since its inception in 2005 [14].
According to the CS theory, a signal can be sampled using
far fewer measurements than the traditional Nyquist-Shannon
acquisition rate, provided it is sparse or compressible in some
proper domain. CS-based MRI imaging [23], radar monitor-
ing systems [24], [25], and ECG measurements in a health
monitoring system [13] are some of its success stories. It is
also seen as a potential solution for hardware/software design
in the applications requiring very high sampling frequencies
such as wideband spectrum sensing [26] and ultra-wideband
communication schemes [27]. In fact, CS is expected to

play an important role in the next-generation communications
systems such as 5G [28].

Let us consider the linear mapping of a discrete signal
s ∈ R

N as

y = As, (1)

where A ∈ R
m×N is known as the measurement matrix with

m < N . The minimum-energy solution for the underdeter-
mined linear system of equations (1) is given by

min
s

�s�2
2 subject to As = y. (2)

The solution of (2) is unique and has a closed form solu-
tion, ŝ = AT

�
AAT

�−1
y provided that rank (A) = m ≤

N which makes AAT invertible. The minimum achievable
reconstruction error is

��s − ŝ
��

2 = sT
�

I − AT
�
AAT

�−1
A

�
s,

which shows that exact recovery is not possible since
I �= AT

�
AAT

�−1
A when m < N . The CS theory addresses

signals that are sparse in a proper domain, � ∈ R
N×N ,

i.e., s = �x with �x�0 ≤ k. Therefore, (1) can be re-
formulated as follows,

y = As = A�x = Hx, (3)

where H = A�, and even if (3) has infinitely many solution
we can look for the sparsest one,

min
x

�x�0 subject to Hx = y. (4)

Eq. (4) is also known as sparse representation of y in H and
it is unique, provided that the minimum number of linearly
independent columns of H, as defined in [29], is greater than
2k. Thus for spark(H) ≥ 2k, any two distinct k-sparse signals
x�, x�� can be uniquely recovered from their undersampled
measurements y�, y�� if m ≥ 2k. Put differently, one has the
surprising result that, while it is not possible to recover s
exactly using minimum norm decoder as in (2), exact recovery
of the signal is possible in the sparsifying domain.

The nonconvex problem (4) with �0-quasi-norm can be
relaxed to its closest convex form, �1 as

min
x

�x�1 subject to x ∈ ϒ (y) , (5)

where ϒ (y) = {x : Hx = y}, an optimization problem that is
also known as Basis Pursuit [30]. The equivalence of �0-�1
minimization problems is well investigated in the literature in
terms of the properties of H. For instance, the Null Space
Property (NSP) [31] not only satisfies the �0-�1 equivalence
but also comes very handy for the recovery performance
analysis when x is not exactly k-sparse but only compressible.
In the case we deal with approximately sparse signals or/and
with a case where the measurements are contaminated by
additive noise, the problem can be relaxed with ϒ (y) =�
x : �Hx − y�2 ≤ �

	
, where � is a small positive constant.

Problem (5), with this new constraint, is known as Basis
Pursuit Denoising (BPDN) [32]. The stability conditions of
CS signal recovery techniques are also well understood: a
stable solution, x̂, is expected to obey

��x − x̂
��

2 ≤ κ �z� with
a small constant, κ for additive noise z perturbation in the
measurements, y = Hx + z.

When approximately sparse signals are measured under
noise, a property stronger than NSP gives a stable
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recovery guarantee. This property is called Restricted Isometry
Property (RIP), which is defined as follows:

Definition 1 (Restricted Isometry Property): A matrix
H ∈ R

m×N has RIP with order k, if there exist a smallest
δk(H) that satisfies

(1 − δk(H)) �x�2
2 ≤ �Hx�2

2 ≤ (1 + δk(H)) �x�2
2 (6)

for all k-sparse signal, x ∈ R
N . The constant, δk(H) is

called the Restricted Isometry Constant (RIC) of order k for
matrix H.

The stability and �0-�1 equivalence conditions w.r.t. RIC of
a measurement matrix are thoroughly studied in the literature.
The authors in [33] show that the �0-�1 equivalence is achieved
when δ2k(H) ≤ √

2 − 1. Likewise, the stability of the �1
minimization problem is investigated in Basis Pursuit Denois-
ing [34] and Dantzig Selector [35]. In [34], it is shown that
for ϒ (y) = �

x : �Hx − y�2 ≤ �
	

and �z�2 ≤ �, the solution
of (5) satisfies ��x − x̂

��
2 ≤ C0�, (7)

where C0 depends on δ2k(H) <
√

2 − 1 [33]. Notice that the
recovery guarantee conditions of an arbitrary k-sparse signal
enforce 2k-order RIC, δ2k(H) instead of δk(H). The intuition
behind this is simply that for noise-free measurements, the null
space analysis indicates that spark(H) ≥ 2k in order for H
not to map any two arbitrary but distinct k−sparse signals
x� and x�� to the same point, so that one always has Hx� �=
Hx��. In this sense, RIP gives us a stronger guarantee that after
mapping with a H, the distance between points x�, x�� should
be preserved at least as follows: (1 − δ2k(H))

��x� − x����2
2 ≤��Hx� − Hx����2

2.
The good measurement matrices A that preserve the infor-

mation in the sparse domain �, or alternatively A� = H
are the ones that satisfy the RIP property. Certain random
measurement matrices are known to satisfy this property, one
popular such case being the matrix whose elements Ai, j are
i.i.d. (independent identically distributed) and drawn from a
Gaussian distribution, i.e.,

Ai, j ∼ N



0,
1

m

�
(8)

and for m > k(log(N/k)), and H inherits this property as
well. We recall the following lemma that gives the stability
condition of BPDN for measurements under additive white
Gaussian noise (AWGN) contamination, since it will be handy
in the sequel for the stability analysis of our encryption
scheme.

Corollary 1 (Refined from Corrollary 1.1 of [35, p. 32]):
Let H ∈ R

m×N satisfy the RIP of order 2k with δ2k(H) <√
2 − 1. Assume that measurements are corrupted by i.i.d.

noise with elements zi drawn from N
�

0, 1
σ 2

�
. Then, the error

of the solution of (5) with ϒ (y) = �
x : �Hx − y�2 ≤ �

	
is

upper bounded by��x − x̂
��

2 ≤ 4

√
1 + δ2k(H)

1 − (1 + √
2)δ2k(H)

(1 + γ )
√

mσ (9)

with probability of at least 1− exp(− 3m
4 γ 2) where 0 < γ < 1

and � = (1 + γ )
√

mσ .

B. Compressive Sensing Based Encryption

Since in the CS setup, a signal is linearly sampled using
random or pseudo-random measurement matrices, there exists
an inherent capability to provide privacy and cryptographic
protection [36], [37]. One advantage of CS-based encryption
is that the linearity and the dimensionality reduction of the
CS scheme result in low-cost operations. This could be a
crucial advantage for data encryption carried out on the edge
devices before data transmission to a cloud or a fusion center.
In fact, it has been reported in several works [38], [39] that
CS-based encryption has a much lower cost as compared to
well-established encryption standards such as AES [10] or
RSA [11].

The idea of formally using CS theory in the encryption sys-
tem was first introduced in [40]. These authors have considered
a sparse signal x as a plain-text input signal and encrypted it
in cipher-text y. A Gaussian measurement matrix, as in (8),
was used in the role of the CS-encryption matrix, i.e., y = Hx.
They consider the Shannon perfect secrecy [41] definition as
a metric of security. CS-based encryption can be viewed as
a particular case of a multiplicative randomization technique,
which is also a well-known privacy-preserving method. Using
the definition of Shannon [41], CS-based encryption litera-
ture generally defines the perfect secrecy in the information-
theoretical sense as follows:

Definition 2 (PerfectEncryption System): A perfect encryp-
tion system satisfies

Pr (x|y) = Pr (x) (10)

for any plain-text x and cipher-text y pair.
The authors of [40] conclude that even if the Shannon

perfect secrecy is not satisfied with the CS-based encryption
scheme since the CS-measurements preserve the energy of
plain-text as H must satisfy the condition, they argue that
CS-based encryption guarantees computational secrecy, i.e., an
attacker with bounded time. In a later work, it is shown that the
CS-based encryption with the Gaussian compression matrix
used only once and re-drawn for each coding instance reveals
only the energy of x [42]. Therefore, a Gaussian CS-encryption
can be said to satisfy perfect secrecy if the cipher-text, y is
normalized to some constant energy [36, Theorem 4]. Efforts
on giving privacy guarantee conditions for both normalized
and unnormalized energy cipher-texts for different measure-
ment matrix schemes continue [43], [44] (using different secu-
rity metrics). Similarly, instead of Shannon perfect secrecy,
Wyner-sense perfect secrecy, or their extended version have
also been used in security analysis for CS-based encryption
schemes [45]. In the meantime, the robustness of the CS-based
encryption against attacks is investigated in [46], [47]. In [46],
the authors consider a brute force and structural attack where
an adversary tries a grid search to estimate the CS-encryption
matrix, A. This attack type can be considered as a known
cipher-text attack under one-time usage (or one-time secret,
OTS). They conclude that the computational complexity of
such an attack makes this type of brute-force attack infeasible.
The known plain-text type attack (KPA) under one time usage
is addressed in [47], where the adversary captures the plaintext
and ciphertext pair, (x, y). Furthermore, the systems that use
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Fig. 1. Proposed Reversible Privacy-Preserving Video Monitoring.

the same CS-encryption matrix many times are well known to
be unsecure against this type of attacks [40], [42].

Due to interest in application scenarios of CS-based encryp-
tion, recently hybrid models that use both CS and conven-
tional cipher systems have become popular. For instance, [48]
applies a homomorphic cryptography function on top of the
CS-encryption in a wireless sensor network system. In that
sense, even in multi-usage of A, the system can be made
resilient against KPA. In another vein, authors in [49] have
proposed a multi-class encryption system where the CS-
encryption matrix is partially corrupted differently for each
user, i.e., A = A + 
A, 
A being the partial perturba-
tion matrix. Their scheme suggests a framework to partially
corrupt the CS-encryption matrix in order to obfuscate the
sensitive region of the signal. However, it is not obvious how
one transmits 
A to the receiving party for reversible de-
identification. One intuitive approach would be sending 
A in
a secure channel, which could be problematic, especially when
the obfuscation pattern changes from usage to usage. Another
solution is to use steganographic methods [16], [17], [50] to
embed 
A directly on CS measurements, that is, by encoding
the obfuscation matrix directly on the cipher-text y. This is the
path we follow and its details are introduced in the following
section.

It is worth mentioning some recent work in the vein of
compression (via sparsification) and encryption strategy. These
methods extract a sparse code, x, of the private signal and
then obfuscate it. In [51]–[53] a ternary representation of
the signal is extracted from its sparse code. Then this code
is ambiguated for the privacy-protected data-sharing applica-
tions, e.g., outsourced media search or person identification
applications. In [54], the authors study the reconstruction
capability of sparse ternary codes given the information loss
during its encoding to a ternary code. A more recent work [20]
ambiguates the sparse code directly by noise addition while
enabling high-quality recovery with successive refinement
user.

IV. PROPOSED TWO-TIERED ENCRYPTION

The proposed method exploits techniques of compressive
sampling, compressive encryption and data hiding [14], [16],

[17], [36], [37], [55]–[57]. The advantage of the CS-based
technique is, on one side, that exact recovery (in strictly sparse
case) or stable recovery (in approximately sparse case) of
the undersampled signal is possible, and on the other side,
cryptographic security can be provided.

As shown in Fig. 1, one tier of the security consists
of the generation of a random corruption mask (one-time
usage) to obfuscate the sensitive parts of the image. This
information is then embedded directly onto the CS-encrypted
signal with a ternary watermark. This data hiding scheme
provides reversibility and one-time usage of the random cor-
ruption mask, which is essential for secure de-identification.
In the two-tiered protection scheme, the semi-authorized user
will be able to recover only the non-sensitive part while
a fully authorized user is allowed to recover the whole
signal.

A. Problem Definition

In the following section, we first start by giving a formal
definition of the two-tiered protection scheme in the spirit
of Shannon secrecy. We will define the desiderata that the
ideal triple consisting of two decoders (type A, B) and an
encoder must satisfy. The problem becomes then formally the
design of the three mappings that guarantee the recovery and
secrecy properties. Following these definitions, we give our
compressive sensing based solution to the problem with a
discussion of the advantages of the proposed system.

The signals of interest, s ∈ R
N is composed of a sensitive

part and a non-sensitive part, denoted as an orthogonal sum

s = sn + ss, (11)

where ss is the sensitive part of the signal that can be obtained
by zero-outing the coefficients of s which are not indexed by
the corresponding index set �p , and sn is the remaining non-
sensitive part of the signal whose non-zero coefficients are
indexed by �c

p . In what follows, we state the information-
theoretic desiderata of the encoder and of the two decoders.

Definition 3: Fully Secure and Stable Encoder-Decoders
Triple: E∗ (.), D∗

1 (.), D∗
2 (.)

1) We define the data coding operator (CS-Encryption) as
E∗ (.) that encrypts both the sensitive and non-sensitive
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parts,

E∗ (s) = y, (12)

which is perfectly secure in that the coded signal, y does
not reveal any information about s, i.e., Pr (s|y) = Pr (s).

2) The first-tier decoder, D∗
1 (.) which stably recovers the

non-sensitive part while not disclosing any information
about the sensitive part is characterized as follows����D∗

1
�E∗ (s) + e

��
�c

p
− s�c

p

���
2

≤ κ �e�2 (13)

and

Pr
�

s�p |
�D∗

1
�E∗ (s) + e

��
�p

�
≈ Pr

�
s�p

�
, (14)

where e is a possible additive perturbation on y, i.e.,
y = E∗ (s) + e.

3) Finally, the second-tier decoder that stably recovers both
sensitive and non-sensitive parts is defined as���D∗

2

�E∗ (s) + e
�� − s

��
2 ≤ κ �e�2 . (15)

The goal now is to find a practical coding operator, E (.) that
jointly encrypts the sensitive and non-sensitive parts, which is
as close as possible to the ideal operator E∗ (.).

B. Embedding Operator, E(.)

1) Obfuscation of the Sensitive Part Within CS-Encryption:
The proposed embedding operator obfuscates the sensitive part
s�p of the signal with the masking pattern 
�p , and then com-
pressively samples the whole, consisting of the combination
of the non-sensitive part sn and the masked sensitive part. The
resulting intermediate code yd is given by:

yd = A�c
p
s�c

p
+ A�p
�p s�p = Asn + A�p
�p s�p , (16)

where s�p and s�c
p

are the extracted sensitive and non-

sensitive parts of s, respectively. Here 
�p ∈ R|�p|×|�p|
is the multiplicative obfuscation operator, i.e., a diagonal
matrix consisting of random numbers and operates only on
the (vectorized) sensitive part of the signal, ss. In other words,
A�p ∈ R

m×|�p| and A�c
p

∈ R
m×(N−|�p|) are the matrices

consisting of the subsets of columns of A that are indexed by
index sets �p and �c

p , respectively. The encoding in yd can
also be formulated as an additive mask:

yd = (A + M) s, (17)

where M ∈ R
m×N is the masking matrix with all zeros except

the columns, M�p ∈ R
m×|�p|. The non-zero columns of the

masking matrix form can be easily calculated from Eq. (16),
i.e., M�p = A�p
�p − A�p .

2) Data Hiding With Reversibility: The obfuscation matrix

�p and its location information (if necessary) are converted
to a binary code to be secretly embedded on top of the
compressively sensed (encrypted) signal yd. The conversion
of this information to a binary code is necessary to achieve
reversibility. Indeed, the exact recovery of the watermark
sequence is possible [16], even in noisy case (In our scheme,
noise corresponds to the masking in the sensitive part) pro-
vided the signal, s, is sparse. In a practical application, errors

in a few bits on the recovered watermark is tolerable. We can
define a procedure that spits out a watermark w� corresponding
to the binary representation of β

�

�p

�
,

β
�

�p

� → w� ∈ {−a,+a}T �
, (18)

where β
�

�p

�
is sufficient information to re-produce 
�p .

An example of such an operator is given in Eqs. (35) -
(36c). We also need an inverse operator of (18) in order to

reproduce 
�p from watermark signal, i.e., w� as ŵ
β−1

→ ˆ
�p .
This operator is defined in Eqs. (25)- (28). Note that the
length of the watermark, T �, can change for each use case.
To accommodate varying length watermarks one can fix a
maximum watermark length, T , and extend the binary code w�
to a ternary one by stuffing with zeros the remaining T − T �
bits, i.e.,

β
�

�p

� → w ∈ {−a,+a, 0}T . (19)

Data hiding limits [16], [17] determine the maximum stegano-
graphic capacity T one can expect to realize. Finally, a water-
mark embedding matrix (based on the second authorization
key) B ∈ R

m×T , T < m is generated to linearly spread the
watermark w directly onto the CS-encrypted signal, i.e., the
cipher-text

yw = yd + Bw = (A + M)s + Bw. (20)

An embedding power constraint �Bw� ≤ PE must be imposed
in order to limit the degeneration of the recovered (non-
sensitive) part of the image for semi-authorized users. The
proposed embedding scheme, E (.) is given in Algorithm 1.

Algorithm 1 Proposed Embedding, E (.)

Input: s, A, B;
1. Determine the mask and the obfuscation matrix, 
�p

2. Generate the watermark: β
�

�p

� → w ∈ {−a,+a, 0}T

3. Joint CS-encryption and sensitive part obfuscation:
yd = A�c

p
s�c

p
+ A�p
�p s�p

4. Watermark Embedding: yw = yd + Bw
Return: yw

C. Design of the Two-Tiered Decoders, D1(.), D2(.)

Users (type A or B) receive the watermarked and encrypted
signal, yw which can be re-cast as

yw = (A + M)s + Bw = Hx + Bw + n, (21)

where Hx = A�x = As, and x ∈ R
N is the sparse representa-

tion of s in �, and the masked part can be expressed as noise
term, i.e., n = Ms = M�p s�p = �

A�p
�p − A�p

�
s�p . For

the receiver of Type-A (the semi-authorized user A) only the
key A is available. Since this user does not have the watermark
encrypting key, B, (s)he will perceive the cyper-text as

yw = Hx + z, (22)

where z behaves like an additive structural noise, i.e.,
z = Bw+n. In the light of the discussion in Section 1, the �1-
minimization scheme in (5) can be used to recover x with
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ϒ (y) = �
x : �Hx − y�2 ≤ �

	
. Afterwards, using the outcome

of the �1 minimization technique, x̂, one can obtain an estimate
of the signal s with mask, ŝ, straightforwardly via ŝ = �x̂. The
decoding algorithm for semi-authorized users, D1 (.) is given
in Algorithm 2.

Algorithm 2 Type a Decoding Algorithm, D1 (.)

Input: yw, A, �;
Hyper-parameters: �
1. Estimate x̂: x̃ = arg minx �x�1 s.t. �yw − Hx�2 ≤ �
2. ŝ = �x̂.
Return: ŝ

The receiver of Type-B, (the fully-authorized user B) will
possess both CS-encryption key, A, and watermark encryption
key, B. Type-B decoder must recover the whole signal sn + ss
with as low a reconstruction error as possible. A three-stage
recovery scheme is proposed, which is adapted from the
recovery method proposed in [16]: First, a raw estimate of
the sparse signal is obtained by disregarding the watermark
part Bw and using the �1-minimization (5). Second, after
having a preliminary estimation of x, the watermark can be
recovered from the over-determined system of linear equations
by subtracting the estimated x component from yw. In the final
stage, the masking matrix, M, can be produced via the recov-
ered watermark, and an improved estimation is obtained using
the A + M as CS-encryption matrix and �1-minimization. The
details of the proposed scheme are as follows:

First, we produce a left annihilator matrix F ∈ R
p×m of

B ∈ R
m×T so that FB = 0, where p = m−T . Left multiplying

yw with F we obtain,

ỹ = Fyw = F (Hx + Bw + n) = FHx + n�, (23)

where n� = Fn. Eq. (23) is also an underdetermined linear
system of equations and can be solved via �1-minimization as
discussed in Section 1:

x̃ = arg min �x�1 s.t. �ỹ − FHx�2 ≤ �. (24)

After inserting the pre-estimation of x in Hx̃ and subtracting
it from the yw, we get an over-determined system of linear
equations: yw − Hx̃ = Bw. Therefore, a raw estimation of the
watermark can be obtained via

w�� = (BT B)−1BT (yw − Hx̃). (25)

The 0’s in the ternary watermark, w can be extracted using
simple thresholding if the length of active bits T � is unknown
to user B:

w̃ = w�� 
 1|w��
i |>η, (26)

where η is the threshold value

1|w��
i |>η,i =

�
1, if



w��
i



 > η, (27a)

0 else, (27b)

and 
 denotes the element-wise multiplication operator
between two vectors. In some practical applications such as
person de-identification on video streams (details will be given
in Section V), this step is simplified to w̃ = w�� 
 1T � , where

1T � is T -length vector with the first T � elements 1’s and the
rest is all zeros. The locations of the non-zero elements of 1T �
can be found using the information of �p , inherent in the pre-
estimated signal, �x̃. Alternatively, a pre-allocated set from
watermark, w, can be dedicated to secretly carry information
about T �. Hereafter, the finer estimation of w can be easily
found via

ŵi = a × sgn(w̃i ). (28)

Meanwhile the decoder can obtain the masking matrix, M,

i.e., M̂ =
�

A�p
ˆ
�p − A�p

�
, where ŵ

β−1

→ ˆ
�p . Finally,
the sensitive and non-sensitive parts can be jointly recovered
as:
x̂ = arg min

x
�x�1 s.t.

���(y − Bŵ) − (A + M̂)�x
���

2
≤ �.

(29)

Algorithm 3 Type B Decoding Algorithm, D2 (.)

Input: yw, A, B, �;
Hyper-parameters: �, a, η
1. Apply F to yw: ỹ = Fyw
2. Estimate x̃: x̃ = arg minx �x�1 s.t. �ỹ − FHx�2 ≤ �
3. Estimate w��: w�� = (BTB)−1BT(yw − Hx̃)
4a. Thresholding w��: w̃ = w�� 
 1|w��

i |>η

4b. Forming ŵ, where ŵi = a ∗ sgn(w̃i )

5. Obtain M̂ from ŵ: i) ŵ
β−1

→ ˆ
�p ii) M̂ =�
A�p

ˆ
�p − A�p

�
6. x̂ = arg minx �x�1 s.t.

���(yw − Bŵ) − (A + M̂)�x
���

2
≤

�
7. ŝ = �x̂.
Return: ŝ

D. Impact of Random Matrices on CS Encryption
Performance

Generations of the CS-encryption matrix A and of the
watermark embedding matrix B play an important role for
the security and recovery robustness of the encryption scheme
E (.) ,D1 (.) ,D2 (.). The choice of random Gaussian matrices
as in (8) for A is convenient because they are known to be uni-
versally optimum in the sense that they satisfy both robustness
and security conditions regardless of the sparsifying basis �.
These matrices have been well investigated in the literature in
terms of both recovery performance as in Corollary 1 and
in terms of security metrics as discussed in Section III-B.
In the sequel, we will consider A as in (8) and B consisting
of orthonormal columns. For this scenario, we make a RIP
based theoretical guarantee condition in watermark recovery
for D2 (.). The following lemma will be useful for the stability
analysis of the decoder type-B:

Lemma 1: Consider that the embedding, E (.), given by
Algorithm 1 produces an encrypted signal yw from s with keys
A and B, i.e., E (s) = yw = Hx + Bw + n. Let sp ∈ R|�p|×1

denote the perturbation on the sensitive part of the signal
such that sp = 
�p s�p − s�p . Let also A be an m × N



YAMAÇ et al.: MULTI-LEVEL REVERSIBLE DATA ANONYMIZATION VIA CS AND DATA HIDING 1021

CS-encryption matrix with elements Ai, j drawn i.i.d. accord-
ing to N (0, 1

m ). Therefore the noise pattern n in (21) is also
a Gaussian random vector which has i.i.d. elements

ni ∼ N (0,

��sp
��2

2

m
). (30)

Proof: Let Ai,�p be the the i th row of A�p . Then
the elements of the vector, A�p sp ∈ R

m×1 will be ni =�
Ai,�p , sp

�
independent Gaussian random variables with zero

means, where �v1, v2� refers to inner product of vectors v1, v2.

Therefore, it remains to prove that E(n2
i ) = �sp�2

2
m , which can

be straightforwardly obtained (using i.i.d. property)

E

�
n2

i

�
= E

��
Ai,�p , sp

�2� = E

⎛
⎝ �

j∈�p

A2
i, j s2

p j

⎞
⎠

=
�
j∈�p

s2
p j

E

�
A2

i, j

�
= 1

m

�
j∈�p

s2
p j

=
��sp

��2
2

m
. (31)

Having Lemma (1), and using Corollary 1 from the litera-
ture, we are ready to state the following theorem for watermark
recovery probability of D2 (.):

Theorem 4: Consider the Gaussian CS-encryption matrix
defined in Eq. (8). Let the watermark-encoding matrix B have
orthonormal columns. δ2k(H) <

√
2−1 and δ2k(FH) <

√
2−1

are given. Let also the annihilator matrix F have orthogonal
rows such that

��Fi,:
��

2 = m
p , where Fi,: denotes the i t h row

of F. For a marked ciphertext, yw, for a particular setting of
� = (1 + γ )

√
mσn, Eq. (28) to be used in Algorithm 3 can

recover wi , the watermark bits, correctly Pr(wi = ŵi ) with
probability at least�

1 − 2 exp

�
−a�2 m

8
�
C2(1 + γ )2

	 ��sp
��2

��

×



1 − exp



−3 p

4
γ 2

��
, (32)

where C = 4
√

1+δ2k(FH)

1−(1+√
2)δ2k(FH)

and a� = a − η, where a, � and
η are hyper-parameters used in Algorithm 3.

The proof of the theorem is given in Appendix VII.
Theorem 4 establishes a bound on the watermark recovery
probability as a function of the energy of perturbation on
the sensitive part, RIC of the matrix FH and watermark
embedding strength a. This type of analysis based on RIP
for the CS reconstruction algorithm as in Corollary 1 is
known as theoretical guarantee conditions in worst-case sce-
nario [58]. In general, for most of the practical applica-
tions, the algorithms perform much better than the perfor-
mance bounds given by this kind of RIP based analysis.
Nevertheless, it gives us an indication on how to design
the related matrices for the encoder (such as A, B, H)
and how to choose hyperparameters for the decoders. For
example, choosing both F and H as Gaussian matrices may
not be the right decision since the product of two random
Gaussian matrices is a random matrix with coefficients drawn
from a heavy-tailed distribution [59], which yields a δ2k (FH)
bigger than the Gaussian case.

E. Choice of the Encryption Matrix

Although random measurement matrices are optimal in
the universal sense, they become computationally unwieldy
for realistic signal and measurement dimensions, N and m,
respectively. Recall that the iterative signal reconstruction
algorithms require transposition and multiplication of the
measurement matrix several times. To ease this computational
burden, one can choose the rows of the measurement (CS-
encryption) matrix randomly as a subset of an orthonormal and
fast implementable transform base such as Fourier, DCT, or
Hadamard. In other words, one can choose m rows randomly
out of the N the rows of an orthonormal transform, �.
These rows are indexed by � ∈ {1, 2, 3, . . . , N}, i.e., with
cardinality |�| = m. Thanks to these types of structural
CS matrices, the computational cost of As can be reduced
significantly, i.e., down to O(N log N) flops from O(m × N)
flops for general random CS matrices. For a good choice of
the measurement matrix, A = �� in terms of a sparsifying
basis � the rows of H must be as flat (dense with nonzero
elements) as possible. This can be satisfied when the rows of
the measurement matrix A are not sparse in the sparsifying
basis �. This requirement can be quantified via the “mutual
coherence” functional, i.e, μ(H) = maxi, j



Hi, j


. The per-

formance limits of the �1-decoding schemes such as (BPDN)
case are given in terms of the functional μ(H). If one chooses
randomly m rows of an orthonormal basis, �, indexed by
� ∈ {1, 2, 3, . . . , N} to build a measurement matrix A, then a
k-sparse signal can be exactly reconstructed as a solution of the
�1-decoding (BP) in (5), satisfying m ≥ O(μ2(�)×k×log N),
with an overwhelming probability [60].

We have chosen the Noiselet basis and the 2-D Wavelet
basis to create a CS-encryption matrix and a sparsifying
matrix, respectively. First, since these two transforms are
known to be maximally incoherent with each other, and sec-
ond because they have fast implementations. The indices of
the chosen rows are randomly drawn and then permuted to
increase the security level.

F. Design of the Annihilator Matrix F and Its Corresponding
Watermark Embedding Matrix B

The watermark embedding matrix B, which must be the
right null space matrix of F, can also be chosen from a fast
transform. For example, one can constitute the columns of
B by choosing randomly a subset of the rows of DCT basis
matrix, then, the rows of F can be made up of the remaining
rows of this DCT matrix.

Theorem 4 implies that the choice of matrices F and H influ-
ences the performance of the Algorithm 3. To investigate the
impact of the choice of F on FH, we compare the performance
of the �1 minimization on the recovery of sparse signal x from
y = FHx, for three different settings: (i) First, with the random
Gaussian measurement matrix FH as in Lemma 1, Theorem 4.
(ii) Second, for the case where F is made up of a subset of the
rows of DCT, A is similarly made of a subset of Noiselet basis,
sparsifying matrix � is chosen as Haar basis. Figure 2a shows
the average mutual coherence values of FH under different
setups. Figure 2b shows the exact recovery probabilities at
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Fig. 2. Average mutual coherence of the matrix FH = FA� for different
realizations of A and calculated probability of exact recovery over 250 trials.
An exactly sparse signal is synthetically produced for N = 256 and k = 30.

Fig. 3. Q-Q plots of the elements of the measurement matrices in reduced
dimension, FH. Vertical: sample data quantiles; horizontal: standard normal
quantiles. a) FH = Noiselet × Wavelet b) FH = DCT × Noiselet × Wavelet
c) FH = DCT × Bernoulli × Noiselet × Wavelet.

different measurement rates for the three different choices
of F. These results prove that even if the random measurement
matrix is universally optimum in the sense that it guarantees
the exact recovery for any sparsifying basis in the worst
case scenario, in practice structured matrices obtained from
orthonormal transforms can perform even better. We make
use of the mutual coherence functional; the formula below is
slightly different from that given in the previous subsection,

though related to it: μ (H) = max1≤i≤ j≤N

� |<hi,hj>|
�hi��hj�

�
where

hi is the i th column of matrix H.
(iii) Alternatively, based on the arguments in [61], a ran-

domization matrix can be applied to F, i.e., F� = FR, where
R is m ×m matrix of all zeros, except the diagonal terms that
are drawn from the Bernoulli distribution. In [61], it is proven
that the matrix FRH with any orthonormal basis pair, F, H
and randomization matrix R with diagonal Bernoulli elements,
approaches a Gaussian matrix. This is, in fact, illustrated
in Figure 3 as quantile-quantile plots. Although, this does not
result in any performance increase vis-à-vis mutual coherence
and recovery performance as shown in Figure 2, this scheme
will enhance the security level with only negligible additional
computation in the recovery part. In Figure 3, the vertical
axis denotes the level at which the empirical distribution
falls below a Q level (e.g., 50%), while the horizontal axis
indicates the quantiles for the standard Gaussian distribution.
In all cases, the similarity between the distribution of the
FH sensing matrices and that of a Gaussian sensing matrix
is obvious. Distribution of sensing matrices approaching that
of a Gaussian is a desirable characteristic both for data hiding
and CS-encryption purposes.

G. Design of the Obfuscation Matrix

The region of interest (e.g., a face) to be obfuscated is
delineated by �p . Obfuscation matrix is constituted with all
zero entries except for the diagonal elements that are drawn

from a Bernoulli distribution with probability p1, i.e.,

Pr
��


�p

�
i,i

= ±1
�

= p1 (33)

The corresponding masking matrix M will be

Mi, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if j ∈ �p and
�

�p

�
i,i

= 1

(34a)

−2 ∗ Ai, j , if j ∈ �p and
�

�p

�
i,i

= −1

(34b)

0, j /∈ �p. (34c)

Thus, the watermark generating procedure, will be

β
�

�p

� → �
w� w��� , (35)

where T �� bits w� are allocated for the location information
of the sensitive part, i.e., the starting and ending points of
rectangular region of interest including faces in the image and

w��
i =

⎧⎪⎨
⎪⎩

a, if i ≤ 

�p


 and

�

�p

�
i,i

= 1 (36a)

−a, if i ≤ 

�p


 and

�

�p

�
i,i

= −1 (36b)

0 i >


�p



. (36c)

Alternatively, having the intermediate estimation of image
s̃ = �x̃, the obfuscated region can be easily deduced and
extracted, without the need of data hiding the location infor-
mation in w�.

H. More Secure Obfuscation With a Key for
a Gaussian Vector

A semi-authorized user with only key-A may try to make
a brute-force attack, by trying out all possible binary com-
binations of

�

�p

�
i,i

’s to un-hide the obfuscated region.
Even though the computational complexity of this attack is
impractically high, i.e., 2|�p|, to make the privacy protection
stronger one can make use a third key, g. This can be realized
using a predefined vector g ∈ R

N , that is known only to fully-
authorized user (type B), which is used to generate another
obfuscation matrix as

�

�p

�
i,i

=
� �

g�p

�
i

with probability p1, (37a)

− �
g�p

�
i

with probability 1 − p1, (37b)

where g j ∼ N
�
μg, σ 2

g

�
.

V. A CASE STUDY: REVERSIBLE PRIVACY-PRESERVING

VIDEO MONITORING

As a use case of the proposed two-tier image encryption
algorithm, we investigate a video surveillance application
where sensitive segments are to be concealed from semi-
authorized users and revealed only to fully-authorized users.
The sensitive parts of the image are the faces of people in the
scene.

For face de-identification performance, we use two criteria:
i) the Structural SIMilarity (SSIM) index [62] to measure the
quality of the decoded and reconstructed image parts [63];
ii) face recognition accuracy via a machine learning algorithm
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Fig. 4. Sample recovered frames for the semi-authorized (User A) and
authorized (User B) (measurement rates 0.6, 0.7).

as an indicator of privacy protection [64], [65]. For the semi-
authorized user (with only key A), we aim to have both min-
imum classification accuracy in the concealed parts and also
minimum degradation in the reconstructed non-sensitive parts.
For the fully-authorized user, we want to achieve the highest
classification accuracy and highest reconstruction accuracy
when both A and B keys are used for decoding.

We also test an attack scenario where the malicious user
(e.g., a semi-authorized one or an attacker who has stolen the
CS-encryption key, A) has access to the labels of face images
in the training set, so that (s)he can train a classifier to make
inferences from de-identified images. The experimental results
(Section V-C and Table VI) show that our one-time usage
of random obfuscation matrix prevents an adversarial from
making an inference (identify the faces) even if the labels of
the training set are captured.

A. Experimental Setup

The experimental evaluation is conducted on the YouTube
Faces Database [22] to demonstrate the viability of the pro-
posed method in such applications as video surveillance, intel-
ligent access control, and in general, analytics for intelligent
buildings. Accordingly, we have randomly chosen 5000 frames
from YouTube Faces Database corresponding to 100 identities
(50 frames per identity). Recovery performances are reported
using 3000 frames while non-overlapping 2000 frames are
collected to build the training set for privacy preserva-
tion performance evaluations. The Matlab implementation of
the experiments and additional demos can be downloaded
from https://github.com/mehmetyamac/CS-Privacy-Protection.
We use a randomly chosen subset of the rows of noiselet
basis as the measurement matrix. The implementation of
the real-valued “dragon” noiselet is borrowed from [66].
As the sparsifying matrix, we choose wavelet “Coiflet 2”
and use WaveLab850 [67] wavelet toolbox.1 The columns
of the encoding matrix B were chosen from the random
subset of the columns of m × m DCT basis, and then were

1The original packet requires the input images to be square with dyadic
sides, the Matlab modification in http://gtwavelet.bme.gatech.edu/ can be used
to perform wavelet transformation with rectangular images with dyadic sides.

TABLE II

LIST OF THE USER DEFINED PARAMETERS

shuffled. Therefore, the rows of the annihilator matrix, F has
been picked from the remaining columns and shuffled (i.e.,
H = Noiselet × Wavelet and F = DCT). Moreover, Gradient
Projection for Sparse Reconstruction (GPSR) [68] was used
for �1-minimization.

The various parameters taking place in the experiments are
listed in Table II. For different watermark embedding power-
to-signal ratio, �Bw�

�yd� , and compression (measurement) rates,
the performance of the decoders is reported in Section V-B.

B. Recovery Performance of D∗
1(.) and D∗

2(.)

Choice of the watermark amplitude, a or alternatively the
watermark embedding power is the determining factor in the
watermark recovery performance (recall Theorem 4). In other
words, the embedding power-to-signal ratio, �Bw�

�yd� , forms the
trade-off between the type A non-sensitive image recovery
quality and type B sensitive image recovery quality. On the
one hand, a should not be too small since the erroneous
estimation of the watermark bits affects the recovery of w
and ˆ
�p , hence the quality of the reconstructed sensitive
part. On the other hand, increasing a could impede the
decompression performance compromising the overall,ss + sns
signal recovery, because the embedded watermark Bw acts as
an additive noise in the decoder (Eq. (22)). This trade-off,
recovery quality of sensitive regions (type B) and non-sensitive
region for type A user, is observed in Figure 5. We have found
empirically that good values of a are in the [0.085, 0.15] range,
based on peak signal-to-noise ratios (PSNRs) and quality of
recovered images.

In Table III, we show the recovery performance of type A
and type B decoders for the concealed region, for the non-
concealed region, and for the whole frame. Recovery qualities
are reported for different compression rates (CS measurement
rates: MR = m/N) and for two chosen values of �Bw�

�yd� ,
namely, 0.15 and 0.085. Based on the visual assessment of the
sample frames in Figure 4 and on the reported PSNR values
in Table III, we can say that User A’s reconstructed faces are
unrecognizable, whereas their outside regions have adequate
quality, albeit around 5 dB lower in PSNRs as compared
to those of User B, especially at low MRs. For User B,
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TABLE III

PSNR VALUES OVER SENSITIVE AND NON-SENSITIVE REGIONS OF THE FRAMES FOR DIFFERENT MEASUREMENT RATES (MR) WITH A BINARY

MASK AND A BINARY MASKED GAUSSIAN FOR MASKING, AND FOR EMBEDDING STRENGTH
�Bw�
�yd� = 0.085 (TABLES a AND b); �Bw�

�yd� = 0.15
(TABLES c AND d), RESPECTIVELY

TABLE IV

STRUCTURAL SIMILARITY INDEX (SSIM) OVER ANONYMIZED REGIONS FOR DIFFERENT MEASUREMENT RATES (MR) USING BINARY

MASK AND BINARY MASKED GAUSSIAN FOR MASKING FOR EMBEDDING STRENGTH
�Bw�
�yd� = 0.085 IN (a) AND 0.15 IN (b)

Fig. 5. Peak signal-to-noise ratios (PSNRs, dB) over recovered non-sensitive
part (red curve), and sensitive part (blue curve) with the keys, respectively,
of User A and User B. Measurement rate is fixed at 0.6.

the reconstruction quality of both the concealed regions and
the whole frame are satisfactory; there is only small detail
losses in the privacy-sensitive parts.

In Table IV, SSIM values for the concealed region of
reconstructed images are reported. It can be seen that faces
in recovered images with using only Key A result in very
low SSIM scores, making the unrecognizable, while their
SSIM scores are very high for user type B, especially at MRs
above 0.5.

C. Performance in Privacy Preservation

Privacy-preserving performance of the proposed method is
evaluated by demonstrating its robustness against the state-
of-art face recognition attacks. To this end, we employed
a pre-trained Convolutional Neural Network (CNN) pro-
vided by the dlib library [69] to extract the facial features.
Then, face recognition is performed as follows: We extract
128-dimensional embedded (CNN) face recognition features
and build a database consisting of labeled faces for the query;
then, perform a nearest-neighbor search and select the first
nearest identity as the classification output. The experimental
results are evaluated for two types of attacks.

1) Attack Type I: Known Plain-Text (Original Faces),
Known Labels: In this scenario, a malicious user with the
stolen Key A (or a malevolent type A user) may capture
the training set with its labels to train a classifier to deci-
pher the anonymized faces. The experiment designed to test
the de-identification robustness against this type of attack
is as follows: We construct a query database consisting
of 2000 original clear frames (20 frames per identity). Then,
we perform face recognition in the face regions that have
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TABLE V

FACE RECOGNITION RATES OF USER A AND USER B, THE SEMI-AUTHORIZED AND AUTHORIZED USERS, RESPECTIVELY, FOR DIFFERENT MEASURE-
MENT RATES (MR) USING A BINARY MASK AND A BINARY MASKED GAUSSIAN FOR MASKING, AT

�Bw�
�yd� = 0.085 (TABLES a AND b), AND AT

�Bw�
�yd� = 0.15 (TABLES c AND d), RESPECTIVELY. THE RECOGNITION ACCURACY ON ORIGINAL FRAMES IS 77.37%

TABLE VI

FACE RECOGNITION RATES OF THE SEMI-AUTHORIZED USER WHEN THE

CORRUPTED IMAGES FROM USER A ARE ADDED INTO SEARCH SPACE

FOR NEAREST-NEIGHBOR. THE ACCURACIES ARE REPORTED FOR
DIFFERENT MEASUREMENT RATES (MR) WITH

�Bw�
�yd� = 0.085,

AND 0.15 USING A BINARY MASK AND A BINARY MASKED
GAUSSIAN FOR THE MASKING

been reconstructed with User A Key A and with the two User
B keys. The recognition accuracies are reported in Table V.
The performance of User A is about 1%, which is like
a random guessing score while accuracies for User B are
very satisfactory, i.e., around 75% for high MRs. This is
comparable to the recognition rate achieved when the same
face recognition software is tested on the original images.

2) Attack Type II: Known Plain-Text (Original Faces),
Known Anonymized and Their Labels: The ability of the pro-
posed method to withstand a more challenging case, the parrot
attack [70], where the user with Key A has captured both
labeled clear images and their anonymized counterparts in
the training set, is tested in the following experiment: The
aforementioned query with NN-search is constructed in a way
that each identity has 20 clean and 10 anonymized images
with true labels. Face recognition algorithm is run over face
regions in recovered images of type A. The results in Table VI
reveal that the reconstructed faces for User A do not leak any
useful information that can be exploited in a parrot attack
since a different randomized corruption matrix was employed
for each frame, i.e., the occurrence of the face with the same
identity.

VI. DISCUSSION

A. Privacy Protection in Video

We have so far tacitly assumed that privacy protection
in video were to be realized in a frame-by-frame privacy

processing mode. Thus, the sensitive part in each frame, e.g.,
face region was to be separately obfuscated and each such
frame CS-encrypted via the B, i.e., yw = (A + M)s + Bw
formulation. A simple extension to a multi-frame video case
would be to vectorize groups of frames, and straightforwardly
adapt the above methodology, where now s�p and 
�p denote
the sensitive parts and masking patterns striding over the
frames in the group. A more principled way to extend the
scheme to multi-frame video must leverage a tensor based
CS-encryption scheme [71]. The video is considered as a
3-D signal, S ∈ R

n1×n2×n3 , which is a sequence of n3
consecutive n1×n2 images. Then, the CS-encryption matrices,
A1 ∈ R

m1×n1 , A2 ∈ R
m2×n2 , A3 ∈ R

m3×n3 , can be applied
over to S in order to obtain an encrypted and compressed
tensor, i.e., Y = S ×1 A1 ×2 A2 ×3 A3, where S ×i Ai is the i-
mode product of tensor S and matrix Ai. Let Ss be the sensitive
part of the video that is obtained by zero-outing the coefficients
of S and Sn is non-sensitive part of it. Similar to our matrix-
vector notation, jointly CS-encrypted and anonymized tensor
can be obtained via Yd = (Sn + P ◦ Ss) ×1 A1 ×2 A2 ×3 A3
where P is the degradation tensor and ◦ is element-wise
(Hadamard) product of two tensors. Then, the marked vector,
yw can be easily obtained i.e., yw = vec(Yd) + Bw. In the
decoder part, a recovery algorithm with D1 (.) and D2 (.)
similar to those in Algorithm 2 and Algorithm 3 can be used
with replacing �1 based sparse vector recovery to a sparse
tensor estimation method.

B. Multi-Tier Privacy Protection

It is possible to extend the proposed scheme to more
than two-tiers by replicating the scheme outlined in
Subsection IV-C and Figure 1. Recall that the obfuscation
mask encoded as w and embedded via an appropriate water-
marking matrix B resulted in the expression yw = (A + M)s
+ Bw. Consider, for example, a three-tier scenario, where ss1

and ss2 are identified as sensitive parts, the higher indexed
components having, for example, a higher privacy concern.
The respective obfuscation matrices, M1 and M2 are encoded
by their corresponding watermarks w1 and w2. These water-
mark signals can be spread over yd, for example, as yw =
(A + M1 + M2)s + B1w1 + B2w2 or yw = (A + M1 + M2)s +
[B1 B2] [w1; w2]. If desired, the resulting signal yw can be
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finally subjected to another layer of light-weight encryption.
The decoding of the three-tier scheme follows steps similar to
Section IV-C and Algorithm 3.

In this work, we have considered privacy protection in
images and video as an application case. However, the pro-
posed signal acquisition, privacy-protection and encryption
scheme can be applied to any multimedia data that can be
differentiated into sensitive (private) and non-sensitive (public)
parts. A case in point could be the monitoring data of a
wireless sensor network [72]. In such a distributed sensing
mechanism, one may want to hide data in the sensor readings
that would lead to traffic analysis and flow tracing. Another
example would be a CS-based telehealth system [13] where
health personnel with different authorization would have dif-
ferential access to parts of medical data and biosignals.

Furthermore, using CS-encryption together with other light-
weight encryption techniques is a common practice in the
literature. For instance, in [72], the authors used Pailier
cryptosystem over y = As, to strengthen the security. Similar
approaches can be applied over yw provided that invertibility
of the applied encryption method.

VII. CONCLUSION

We have presented a two-tiered (potentially, multi-tiered)
privacy-preserving scheme based on compressive sensing the-
ory. The scheme accommodates two levels of users: A public
user A (with only Key A), who can recover only the non-
sensitive portions of the document, and private B, i.e., the
fully-authorized user who (with keys A and B) who can
recover the whole document. This prioritization is enabled via
a data hiding technique such that the full user in possession
of (Key B) can undo the obfuscation from within the CS-
enciphered signal.

The watermark capacity of the system allows one-time
usage of the obfuscation matrix, which in turn provides a
higher level of security against any attacker, e.g., a curious
semi-authorized user. In conclusion, the proposed approach
satisfies all the criteria of privacy-protecting encoding, as item-
ized in the introduction section. Security can be corroborated
by extra randomization as in Eq. (37a)-(37b). Extensive tests
on a face anonymization use case revealed that the system is
robust against cipher breaking attacks (i.e., face recognition)
and that the image recovery quality is adequate for measure-
ment rates m/N above 0.5. The experiments yielded guidelines
for the selection of system parameters like compression rate
and watermark embedding strength.

The proposed scheme with its experimentally proven merits
of reversible anonymization provides a promising alterna-
tive of privacy-protecting encryption. An application scenario
would be a video surveillance system where the collected
real-time data must be transmitted and uploaded in a security
monitoring center.

APPENDIX

PROOF OF THEOREM 4
Using Equation 9 in Lemma 1 of [16] and the fact that

n�
i ∼ N (0, m

p σ 2
n ), where n� = Fn we get

Pr(�Fn�2 ≥ (1 + γ )

√
m√
p

√
pσn) ≤ e− 3p

4 γ 2
. (A.1)

Therefore, when we set � = (1+γ )
√

mσn in Algorithm 3 and
use the inequality that x̃ in (24) satisfies

�x − x̃�2 ≤ C� (A.2)

with probability at least 1 − exp(− 3p
4 γ 2), where

C = 4

√
1 + δ2k(FH)

1 − (1 + √
2)δ2k(FH)

(A.3)

Now, we define the error causing uncertainty, z on over-
determined system, yw − Hx̃ = Bw + z. When we insert the
x̃ in Equation (21), we get

yw = Bw + H(x −Qx) + HQx + n, (A.4)

which can be re-cast as

yw − Hx̃ = Bw + H(x − x̃) + n = Bw + z�, (A.5)

where z� = H(x − x̃) + n. Given �x − x̃�2 ≤ C� and
Hi, j ∼ N (0, 1

m ). Via a similar mathematical derivation given
in Lemma 1, we can claim that H(x− x̃) is a Gaussian random
vector where each element has a variance σ 2 ≤ C2�2

m =
C2(1+γ )2 mσ 2

n
m = C2(1 + γ )2σ 2

n . Therefore, elements of z�
is also a Gaussian vector with elements having variance
σ 2

z� ≤ 4
�
C2(1 + γ )2

	
σ 2

n . Knowing that the matrix B has
orthonormal vectors, the pre-estimation w�� from (25) satisfies

w − w�� = BT z� = z��, (A.6)

with zi
�� ∼ N

�
0, σ 2

z�
�

. Finally, using Equation 2.17 in [73,
Chapter 2], the probability of making an error in watermark
bits can be easily found as

Pr(wi �= ŵi |{�x − x̃�2 ≤ C�}) = Pr
�

(zi

�

 ≥ a��
≤ 2 exp

�
−a�2

2σ 2
z�

�
= 2 exp

�
−a�2 m

8
�
C2(1 + γ )2

	 ��sp
��2

�
, (A.7)

where a� = a − η with a and η are user defined parameters to
be used in Algorithm 3.
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