1,448 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Realization Theory for LPV State-Space Representations with Affine Dependence

    Get PDF
    In this paper we present a Kalman-style realization theory for linear parameter-varying state-space representations whose matrices depend on the scheduling variables in an affine way (abbreviated as LPV-SSA representations). We deal both with the discrete-time and the continuous-time cases. We show that such a LPV-SSA representation is a minimal (in the sense of having the least number of state-variables) representation of its input-output function, if and only if it is observable and span-reachable. We show that any two minimal LPV-SSA representations of the same input-output function are related by a linear isomorphism, and the isomorphism does not depend on the scheduling variable.We show that an input-output function can be represented by a LPV-SSA representation if and only if the Hankel-matrix of the input-output function has a finite rank. In fact, the rank of the Hankel-matrix gives the dimension of a minimal LPV-SSA representation. Moreover, we can formulate a counterpart of partial realization theory for LPV-SSA representation and prove correctness of the Kalman-Ho algorithm. These results thus represent the basis of systems theory for LPV-SSA representation.Comment: The main difference with respect to the previous version is as follows: typos have been fixe

    Macroscopic modelling and robust control of bi-modal multi-region urban road networks

    Get PDF
    The paper concerns the integration of a bi-modal Macroscopic Fundamental Diagram (MFD) modelling for mixed traffic in a robust control framework for congested single- and multi-region urban networks. The bi-modal MFD relates the accumulation of cars and buses and the outflow (or circulating flow) in homogeneous (both in the spatial distribution of congestion and the spatial mode mixture) bi-modal traffic networks. We introduce the composition of traffic in the network as a parameter that affects the shape of the bi-modal MFD. A linear parameter varying model with uncertain parameter the vehicle composition approximates the original nonlinear system of aggregated dynamics when it is near the equilibrium point for single- and multi-region cities governed by bi-modal MFDs. This model aims at designing a robust perimeter and boundary flow controller for single- and multi-region networks that guarantees robust regulation and stability, and thus smooth and efficient operations, given that vehicle composition is a slow time-varying parameter. The control gain of the robust controller is calculated off-line using convex optimisation. To evaluate the proposed scheme, an extensive simulation-based study for single- and multi-region networks is carried out. To this end, the heterogeneous network of San Francisco where buses and cars share the same infrastructure is partitioned into two homogeneous regions with different modes of composition. The proposed robust control is compared with an optimised pre-timed signal plan and a single-region perimeter control strategy. Results show that the proposed robust control can significantly: (i) reduce the overall congestion in the network; (ii) improve the traffic performance of buses in terms of travel delays and schedule reliability, and; (iii) avoid queues and gridlocks on critical paths of the network

    Survey of Gain-Scheduling Analysis & Design

    Get PDF
    The gain-scheduling approach is perhaps one of the most popular nonlinear control design approaches which has been widely and successfully applied in fields ranging from aerospace to process control. Despite the wide application of gain-scheduling controllers and a diverse academic literature relating to gain-scheduling extending back nearly thirty years, there is a notable lack of a formal review of the literature. Moreover, whilst much of the classical gain-scheduling theory originates from the 1960s, there has recently been a considerable increase in interest in gain-scheduling in the literature with many new results obtained. An extended review of the gainscheduling literature therefore seems both timely and appropriate. The scope of this paper includes the main theoretical results and design procedures relating to continuous gain-scheduling (in the sense of decomposition of nonlinear design into linear sub-problems) control with the aim of providing both a critical overview and a useful entry point into the relevant literature

    An Overview of Integral Quadratic Constraints for Delayed Nonlinear and Parameter-Varying Systems

    Full text link
    A general framework is presented for analyzing the stability and performance of nonlinear and linear parameter varying (LPV) time delayed systems. First, the input/output behavior of the time delay operator is bounded in the frequency domain by integral quadratic constraints (IQCs). A constant delay is a linear, time-invariant system and this leads to a simple, intuitive interpretation for these frequency domain constraints. This simple interpretation is used to derive new IQCs for both constant and varying delays. Second, the performance of nonlinear and LPV delayed systems is bounded using dissipation inequalities that incorporate IQCs. This step makes use of recent results that show, under mild technical conditions, that an IQC has an equivalent representation as a finite-horizon time-domain constraint. Numerical examples are provided to demonstrate the effectiveness of the method for both class of systems

    Applicability Results of a Nonlinear Model-Based Robust Blood Glucose Control Algorithm

    Get PDF
    INTRODUCTION: Generating optimal control algorithms for an artificial pancreas is an intensively researched problem. The available models are all nonlinear and rather complex. Model predictive control or run-to-run-based methodologies have proven to be efficient solutions for individualized treatment of type 1 diabetes mellitus (T1DM). However, the controller has to ensure safety and stability under all circumstances. Robust control methods seek to provide this safety and guarantee to handle even the worst-case situations and, hence, to generalize and complement results obtained by individualized control algorithms. METHODS: Modern robust (e.g., H(inf)) control is a linear model-based methodology that we have combined with the nonlinear model-based linear parameter varying technique. The control algorithm was designed on the high-complexity modified nonlinear glucose–insulin model of Sorensen, and it was compared step-by- step with linear model-based H(inf) control results published in the literature. The applicability of the developed algorithm was tested first on a control cohort of 10 healthy persons’ oral glucose tolerance test results and then on a large meal absorption profile adapted from the literature. In the latter case, two preliminary virtual patients were generated based on 1–1 week real continuous glucose monitor measurements. RESULTS: We have found that the algorithm avoids hypoglycemia (not caused by physical activity or stress) independently from the considered absorption profiles. CONCLUSION: Use of hard constraints proved their efficiency in fitting blood glucose level within a defined interval. However, in the future, more data of different T1DM patients will be collected and tested, including dynamic absorption model and in silico tests on validated simulators
    • …
    corecore