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a b s t r a c t 

The paper concerns the integration of a bi-modal Macroscopic Fundamental Diagram 

(MFD) modelling for mixed traffic in a robust control framework for congested single- 

and multi-region urban networks. The bi-modal MFD relates the accumulation of cars and 

buses and the outflow (or circulating flow) in homogeneous (both in the spatial distri- 

bution of congestion and the spatial mode mixture) bi-modal traffic networks. We intro- 

duce the composition of traffic in the network as a parameter that affects the shape of 

the bi-modal MFD. A linear parameter varying model with uncertain parameter the vehi- 

cle composition approximates the original nonlinear system of aggregated dynamics when 

it is near the equilibrium point for single- and multi-region cities governed by bi-modal 

MFDs. This model aims at designing a robust perimeter and boundary flow controller for 

single- and multi-region networks that guarantees robust regulation and stability, and thus 

smooth and efficient operations, given that vehicle composition is a slow time-varying pa- 

rameter. The control gain of the robust controller is calculated off-line using convex opti- 

misation. To evaluate the proposed scheme, an extensive simulation-based study for single- 

and multi-region networks is carried out. To this end, the heterogeneous network of San 

Francisco where buses and cars share the same infrastructure is partitioned into two ho- 

mogeneous regions with different modes of composition. The proposed robust control is 

compared with an optimised pre-timed signal plan and a single-region perimeter control 

strategy. Results show that the proposed robust control can significantly: (i) reduce the 

overall congestion in the network; (ii) improve the traffic performance of buses in terms 

of travel delays and schedule reliability, and; (iii) avoid queues and gridlocks on critical 

paths of the network. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

1. Introduction 

Urban transport systems consist of multiple modes sharing and competing for the same road space including pedestrians,

bicycles, cars, taxis, delivery vehicles and modes carrying more passengers, such as buses and trams. Realistic modelling
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and control of multimodal transport systems remain an important challenge, due to limited understanding of the dynamic

interactions of the modes at the network level. 

The focus of this paper is on bi-modal urban networks consisting of private cars and public transport. We develop a

robust perimeter and boundary flow control approach that adapts the traffic signal settings for mixed traffic networks. The

objective is to consider the interactions between the two modes through an aggregated network level approach, as described

by a bi-modal network macroscopic fundamental diagram. This is significantly different than most existing approaches for

preferential treatment of buses that consider local level decisions (e.g. transit signal priority strategies). We are able to

show that even if a city does not have dedicated space for buses (e.g. due to the lack of road space or the high cost

of implementation) and traffic signals do not provide special priority, the overall performance of network is significantly

improved for both modes in terms of efficiency (total delays) and reliability (bus scheduling). This work builds on recent

findings for multimodal network modelling. Our analysis shows that for various demand conditions of bi-modal traffic,

adaptive traffic lights at the perimeter of the network (single-region) and/or the boundary of neighbour regions (multi-

region), which have much smaller implementation cost, can improve traffic conditions for all modes in the network; while

any infrastructure changes have to be associated with system interference and higher costs. To the best of our knowledge,

this is the first effort to develop efficient control schemes for networks with multiple modes of transport with the use of

bi-modal MFDs. 

Some recent developments optimise in real-time traffic signals at the local level to provide bus priority with an objective

to maximise passenger flows ( Christofa et al., 2013; 2016; Hu et al., 2015 ). Other works have investigated how to redistribute

urban space between different modes to maximise passenger flows for idealised networks ( Zheng and Geroliminis, 2013 ).

Optimisation of passenger flows with special treatment of more efficient modes has been analysed at the local level or for

arterial streets (e.g. dedicated bus lanes), but at the network level is quite premature, especially in the dynamic case. An

aggregated modelling for multi-modal systems following the concept of an MFD can be an alternative if it unveils similar

properties as in the single-mode case of vehicular traffic. 

With respect to networks with car being the main mode of travel, it has been reported in many publications from

empirical and simulated data for many networks that by spatially aggregating the highly scattered plots of flow versus

density from individual links, the scatter almost disappeared and a well-defined MFD arises between space-mean flow and

density (see e.g. Geroliminis and Daganzo, 2008; Buisson and Ladier, 2009; Ji et al., 2010; Mahmassani et al., 2013 ). The

idea of an MFD with a critical accumulation belongs to Godfrey (1969) and reinitiated later in Mahmassani et al. (1987) ,

Daganzo (2007) , and other works. Despite these recent findings for the existence of MFDs in the dynamic case with low

scatter, recent findings (see e.g. Geroliminis and Sun, 2011; Mazloumian et al., 2010; Gayah and Daganzo, 2011 , and others)

have identified the spatial distribution of vehicle density in the network as one of the important parameters that influence

MFDs. The concept of an MFD can be applied for heterogeneous cities with multiple centres of congestion, if these cities

can be partitioned into a small number of homogeneous clusters, as for example proposed in Ji and Geroliminis (2012) and

Saeedmanesh and Geroliminis (2016) . For a comprehensive review of MFD modelling and control for single-mode systems

the reader could refer to Haddad et al. (2013) or Saberi et al. (2014) . 

Latest works extend the MFD from single-mode application to bi-modal, where cars and buses share the same infras-

tructure and look at passenger flow dynamics in addition to vehicular dynamics ( Geroliminis et al., 2014; Chiabaut et al.,

2014; Chiabaut, 2015 ). Gonzales and Daganzo (2012 ; 2013 ) provide an analysis of the morning and evening commute for

aggregated dynamics for bi-modal networks that gives interesting insights for the interactions of the modes under con-

gested and system optimum conditions. The existence of a mixed traffic, bi-modal (three-dimensional) MFD is investigated in

Geroliminis et al. (2014) , via micro-simulation studies for a large network with dynamic features. Remarkably, the extended

versions of the MFD relate the accumulation (equivalent to traffic density) of cars and buses to vehicular and passenger

flows, reflecting congestion dynamics and provide inspiration for investigating MFD control strategies for these networks.

Empirical observations besides simulation studies are under current development. This is described later in more details. 

The MFD concept can contribute to the development of simple perimeter flow control schemes to maximise through-

put in single-region homogeneous networks ( Daganzo, 2007; Keyvan-Ekbatani et al., 2012; Haddad and Shraiber, 2014 ) and

multi-region heterogeneous networks ( Geroliminis et al., 2013; Aboudolas and Geroliminis, 2013; Ramezani et al., 2015;

Keyvan-Ekbatani et al., 2015; Kouvelas et al., 2017; Haddad, 2017; Haddad and Mirkin, 2017 ). The main idea of a perimeter

control policy is to “meter” the input flow to the system and hold vehicles outside the controlled area if necessary, so that

to avoid states in the congested regime of the MFD. A key advantage of this approach is that it does not require high com-

putational effort if proxies of the critical accumulation are available and the current state of the network can be observed

in real-time (e.g. with detector data). Stability analysis for the effect of demand and adaptive signal control in systems with

MFD dynamics can be found in Aboudolas et al. (2010) , Haddad and Geroliminis (2012) , Gayah and Daganzo (2011) , Gayah

et al. (2014) and Zhang et al. (2013) . 

In this work, we deal with the perimeter flow control problem in single- and two-region bi-modal urban networks

with the use of a bi-modal MFD, which is recently introduced by the authors in Geroliminis et al. (2014) . When demand

conditions are light the influence of the public transport stops to pick up and alight passengers to car traffic is quite small,

but for severe congestion and high frequency in time and space of these stops, the network capacity can be influenced and

interactions should be integrated. The bi-modal MFD relates the accumulation of cars and buses with the total circulating

flow in the bimodal network. It was observed via simulation studies that the impact of each mode on the traffic flow in

the network is different, i.e., each bus cannot be considered as equivalent to some number of passenger cars. In particular,
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Fig. 1. (a) Approximated bi-modal vehicle MFD relating accumulation of cars and buses with output (circulating flow); (b) Approximated bi-modal vehicle 

MFD relating accumulation of cars and buses with space-mean speed; (c) Approximated bi-modal passenger MFD relating accumulation of cars and buses 

with passenger flow. (Source of bi-modal vehicle and passenger MFDs from Geroliminis et al., 2014 .) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cars are usually faster than buses (because of the bus stops) but if the percentage of buses in the overall accumulation is

high, then the average speed of vehicles certainly differs from the one sustainable without the interference of buses. Thus

the maximum throughput (capacity) varies with the composition of traffic in the network. For this reason, we introduce

the composition of traffic in the network as an uncertain parameter that affects the shape of the bi-modal MFD. Empirical

studies should be a research priority to further investigate the conditions under which a bi-modal MFD holds for different

types of networks. 

While for the single-region problem the composition of traffic is assumed uniformly distributed over the network, and

a single perimeter flow controller in the external boundary of the city is applied, we also notice that the centre of the

network contains more buses than the periphery. Thus, in the two-region case, a modified partitioning approach (based on

Ji and Geroliminis (2012) ) is applied to cluster the network into two regions with different mode composition. A robust

control approach is developed for both cases. To this end, the bi-modal MFD is used to describe the aggregated traffic dy-

namics in the bi-modal urban network. A linear system subject to uncertain time-varying vehicle composition is used as a

basis for designing a Proportional–Integral (PI) robust perimeter flow controller. The control gain of the proposed scheme

is calculated off-line using Linear Matrix Inequalities (LMIs) and Semi-Definite Programming (SDP). To evaluate the pro-

posed scheme, a simulation-based comparison of single- and two-region robust perimeter flow control with an optimised

pre-timed signal plan and a previously proposed single-region perimeter flow control strategy (of bang-bang type similar to

the policy introduced by Daganzo (2007) ) for an area of the Downtown San Francisco is carried out. Section 2 of the paper

presents the methodological framework of the bi-modal MFD. Section 3 develops the dynamics of multi-region bi-modal ur-

ban networks govern by bi-modal MFDs to facilitate the design of the proposed robust control approach, which is described

in Section 4 . Section 5 presents the results and insights of the single- and two-region robust control via micro-simulation,

while discussion follows in Section 6 . 

2. Macroscopic modelling of bi-modal multi-region urban networks 

Consider a heterogeneous bi-modal urban network, where the traffic flow comprises two vehicle classes, i.e., passenger

cars and buses. We assume that the heterogeneous network can be partitioned into N regions with homogeneous bi-modal

traffic ( Geroliminis et al., 2014 ). Let n i (t) = n i,c (t) + n i,b (t) be the accumulation of mixed traffic in region i = 1 , . . . , N, where

n i,c ( t ) and n i,b ( t ) are the accumulation of cars and buses in each region i at time t , respectively. We assume that each

region i has an extensive network of public transport lines with a varying range of service frequencies. The number of

public lines and the service frequency can determine the composition of traffic δi ( t ) ∈ (0, 1) in each region i at time t ,

where n i,c (t) = δi (t) n i (t ) and n i,b (t ) = (1 − δi (t)) n i (t) , 0 < δi < 1, i = 1 , . . . , N. The composition of traffic is assumed slowly

time-varying. Let Q i be the regional circulating flow (in vehicles per unit time per lane) as can be estimated with Edie ’s

(1963) generalised definition of flow, i.e., weighted average of link flows with link lengths. If we further assume that the

trip length in each region is constant and given by L i , and l i is the total network length (in lane-km), then the output

and space-mean speed of the region i can be expressed in the steady-state as O i = Q i l i /L i and V i = Q i l i /n i , respectively.

The output O i consists of the trips finishing within a region plus the trips that transfer to neighbour regions through the

boundaries. In the case of mixed bi-modal traffic, the output flow is not only a function of the accumulation n i ( t ), but also of

the composition of traffic δi ( t ) in each region i , i.e., O i = O (n i (t) , δi (t)) , i = 1 , . . . , N. Geroliminis et al. (2014) considered the

number of passengers occupying of each mode m ∈ { c, b } and also obtained a passenger bi-modal MFD relating accumulation

of cars and buses with passenger flow P . 

Fig. 1 (a)–(c) depict the shape of Q, V , and P (subscript i is omitted) in function of n c and n b , respectively, for a 2.5 miles

square area of Downtown San Francisco shown in Fig. 3 (a). Fig. 4 (a) illustrates some representative public transport lines
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Fig. 2. Robust feedback control design block diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

out of a total of 29 bus lines crossing the network modelled in micro-simulation. The shape of Q and P is the best-fit curve

from an exponential family, see Geroliminis et al. (2014) for details. Fig. 1 (a) confirms the existence of an MFD like-shape

for bi-modal mixed traffic, which shape depends on the accumulation of both cars and buses. As can be seen the circulating

flow Q increases for small n c and n b and then decreases monotonically for values of n c and n b larger than some critical

values, albeit with different slopes. Remarkably the slope of buses is higher that the slope of cars. This indicates that the

effect of an additional bus in the network is higher than an additional car. A simple explanation (among others) is that

buses make additional (to traffic) stops for passenger alighting and boarding, and thus negatively influencing traffic. Thus

the maximum throughput varies with the composition of traffic δ in the network, which is a function of n c and n b . In other

words, the composition of traffic in the network affects the shape of the bi-modal MFD. 

Fig. 1 (b) shows the derivation of network space-mean speed as a function of bus and car accumulations from the ex-

ponential function in Fig. 1 (a). Note that speed is a convex function both with n b and n c . In particular, cars are usually

faster than buses (because of bus stops) but if the percentage of buses in the overall accumulation is high, then the average

speed of vehicles certainly differs from the one sustainable without the interference of buses. Note also that a non-linear

shape for small accumulations is followed by an almost 2D planar shape. For the purposes of control we consider a linear

approximation of speed. While this approximation might create some errors for the uncongested regime, it is close to exact

around the critical values that maximise flows, which is the region that the controller will be designed. 

Finally from Fig. 1 (c) it can be seen that the shape of the bi-modal passenger MFD is significantly different from the one

observed in Fig. 1 (a) (bi-modal vehicle MFD). More precisely, for a given n c passenger flow P first monotonically increases

as n b increases to a critical ˆ n b and then decreases for n b > ˆ n b . Thus, having buses in the network will significantly increase

the efficiency of the system, but overloading the network with buses will eventually cause delays for all vehicles and reduce

passenger throughput. Comparing Fig. 1 (c) with Fig. 1 (a) an interesting observation is that the passenger MFD maximises

passenger throughput P at a non-zero accumulation of buses (observe the contour plot in Fig. 1 (c)), while the vehicle MFD

maximises vehicle flow for δ ≈ 1 (zero accumulation of buses). We will integrate this important observation later when

designing our controller in Section 3 . The dynamics of the bi-modal system will be presented there as well. The shape

of Q, V , and P can be captured by different functions, e.g. quadratic or exponential. Analytical formulas for the critical

accumulation ˆ n as a function of the composition of traffic δ can be developed as in Appendix A . Such a functional form is

required in the development of the control framework. 

3. Dynamics of multi-region bi-modal urban networks 

Given the existence of a bi-modal MFD Q i ( n i ( t ), δi ( t )) for each homogeneous region i = 1 , . . . , N, bi-modal regional traffic

could be treated macroscopically as a single-region dynamic system with total accumulation n i as a state variable and δi

as a single parameter that affects the shape of the bi-modal MFD. Furthermore, we assume that the composition rate δi

belongs to a polytopic compact set �i = 

{
δi (t) | δi, min ≤ δi (t) ≤ δi, max , t ≥ 0 

}
, i = 1 , . . . , N, which is state independent, wher e

δi ,min and δi ,max are the minimum and maximum composition of traffic in each region i (see Appendix B for details on the

polytopic uncertainty). The set �i can be easily specified for a given network partitioned in N regions from the number of

public transport lines in each region i and their operational frequency or it can be directly observed with real-time data

(e.g., from GPS equipped vehicles and loop detectors). 

Let q i ,in ( t ) and q i ,out ( t ) be the inflow and outflow in region i at time t , respectively; S i be a set with elements the origin

regions whose outflow will go to destination region i . Also, let d i ( t ) be the uncontrolled traffic demand (disturbances) in

region i at time t . Note that d ( t ) includes both internal and external non-controlled inflows. The conservation equation for
i 
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Fig. 3. (a) Snapshot of Downtown San Francisco; red colour indicates the external protected network area where single-region control is applied to 15 

signalised junctions illustrated with blue arrows; orange colour indicates the internal protected network area where boundary control is applied to 8 

signalised junctions illustrated with purple arrows; (b) The bi-modal MFD of Downtown San Francisco relating accumulation of cars and buses with cir- 

culating flow; the cross-section of the 3D surface for a constant accumulation of buses n b = 200 veh demonstrating the typical dependence of flow with 

the composition of traffic in the network; (c) The relation of n c and n b (composition of traffic δ) for three different scenarios, each scenario ran for two 

replications. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

each neighbour region i = 1 , . . . , N reads: 

dn i (t) 

dt 
= q i, in (t) − q i, out (t) + d i (t) . (1) 

Since the state n i ( t ) and composition of bi-modal traffic δi ( t ) evolve slowly with time t , we may assume that the flow

q i ,out ( t ) is given by the output Q i ( n i ( t ), δi ( t )) (the bi-modal MFD), which is a function of the total accumulation n i ( t ) and

composition δi ( t ). We assume that Q i consists of the trips finishing within a region plus the trips that transfer to neighbour

regions through the boundaries. The inflow to region i = 1 , . . . , N is given by 

q i, in (t) = βi (t) + 

∑ 

j∈S i 
γ ji Q j (n j (t) , δ j (t)) (2) 

where β i ( t ) is the input flow to region i at time t (from the perimeter and neighbour regions), to be calculated by the

controller (decision variable). The second term in (2) is the uncontrolled input flow to region i from its neighbour regions.

The parameters γ ji represent the fraction (splitting rates) of inbound boundary flow rate to region i , j ∈ S i , which is assumed

constant and known (transfer flows). The parameters γ ji can be readily specified for a given multi-region network from

sensors (e.g. loop detectors) along the boundary of neighbour regions. Errors associated with the estimation of γ ji may be

accommodated within the uncontrolled demand d i in (1) . 

Introducing (2) in (1) we obtain the following nonlinear state equation for each region i 

dn i (t) 

dt 
= βi (t) + 

∑ 

j∈S i 
γ ji Q j (n j (t) , δ j (t)) − Q i (n i (t) , δi (t)) + d i (t) . (3) 

Both accumulation n i and composition of traffic δi can be observed in real-time. Vehicle accumulation can be obtained with

different types of sensors while buses are currently equipped with GPS devices capable of providing locational data at any

given time. Note that the third term Q i in (3) represents the output of region i . This consists of trip endings within region i ,

plus transfer flows to neighbour regions j belong to S i . These transfer flows might be controlled by β j ( t ), as there are inputs

for regions j . Nevertheless, as we do not decompose accumulations based on destination this value cannot be accurately

estimated. We consider this a reasonable approximation and we expect that the controllers β i will be able to keep the

system at the desired set points. Integrating more complex dynamics will create non-linearities that cannot be easily treated

with this methodology. Alternatively, one could apply more complex approaches but the state observation might be more
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Fig. 4. (a) Snapshot of Downtown San Francisco and partitioning into two regions; red colour indicates the city centre; green colour indicates the rest 

of the network; numbers with different colours indicate major public transport lines in the network; (b, c) The bi-modal MFD of the centre and outside 

region relating accumulation of cars n c and buses n b with circulating flow, respectively. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

challenging (see e.g. Zheng and Geroliminis, 2013 ). While future work could shed more light in the theoretical basis of such

approximation, the results highlight that the controller is capable of keeping the state of the system at the desired levels. 

Given the existence of a bi-modal MFD Q i ( n i ( t ), δi ) with an optimum accumulation ˆ n i at which maximum flow is reached

for different δi , the nonlinear model (3) may be linearised around some set point ( ̂  n i , ˆ βi , 
ˆ d i ) . The set points ˆ n i may be

determined by fixing the composition rate δi as in analytical formulas (A.6) and (A.11) , see Section Appendix A for details.

The set points ˆ βi can be derived from the inverse image of the corresponding bi-modal MFDs for given ˆ n i . Finally, the set-

points ˆ d i are usually determined via historical traffic data of a network. Denoting �x i = x i − ˆ x i analogously for all variables

and considering fixed composition rate δi , the linearisation for each region i = 1 , . . . , N yields (derivative of Q i is taken with

respect to n i ) 
1 

� ˙ n i (t) = �βi (t) + 

∑ 

j∈S i 
γ ji Q 

′ 
j ( ̂  n j , δ j )�n j (t) − Q 

′ 
i ( ̂  n i , δi )�n i (t) + �d i (t) . (4)

Model (4) is Linear Parameter Varying (LPV) with uncertain parameters δi ∈ �i . It approximates the original nonlinear

system (3) when we are near the equilibrium point ( ̂  n i , ˆ βi , 
ˆ d i ) about which the system was linearised. This LPV model will

be used as a basis for robust control design in next section. 

The basic dynamical system (4) can be extended to consider a broader class of inequality state and control constraints

that are consistent with the physics of traffic. More precisely, input flow β i ( t ), i = 1 , . . . , N is constrained as β i ,min ≤ β i ( t )

≤ β i ,max , where β i ,min , β i ,max are the minimum and maximum permissible entrance flow of mixed traffic, respectively,

and β i ,min > 0 to avoid long queues and delays at the perimeter of the network. Moreover, the total accumulation n i ( t ),

i = 1 , . . . , N is constrained as 0 ≤ n i ( t ) ≤ n i ,max , where n i ,max is the maximum accumulation in region i = 1 , . . . , N. It should

be noted that our approach does not directly consider the control constraints (integrated indirectly in the implementation

phase), while the state constraints are satisfied by appropriate selection of some weighting matrices in the design phase as

explained in the next section. 

4. Model uncertainty and robust control 

The basic assumption in this work is that the bi-modal multi-region network has an extensive network of public transport

lines with a varying range of service frequencies. Given any composition of traffic with rate δi ∈ �i in each region i, δi

varies slowly with time, the bi-modal MFD in Fig. 1 (a) 2 and the LPV system (4) , we aim at designing a perimeter control

strategy for the bi-modal network. This strategy minimises an upper bound of a worst-case cost criterion L (n , β) given

the uncertainty of the composition rate δ ∈ � and an initial condition, where n ∈ R 

N , β ∈ R 

N , δ ∈ R 

N are the state, control
1 Notation: For functions ( ·) ′ indicates first-derivate. For matrices and vectors (·) T indicates transpose. 
2 A similar approach could also be pursued with the passenger MFD in Fig. 1 (c). 
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and parameter vectors, respectively (with elements n i , β i , δi , i = 1 , . . . , N); and � = ∪ 

N 
i =1 

�i . In addressing this problem,

there are several possibilities for generating the perimeter flow control input β( t ). Fig. 2 depicts the typical block diagram

for robust feedback control design. The system’s output or performance is measured via suitable criteria L (n , β) , which

would have a physical meaning such as total time spent or trip completion by all vehicles in the network over a time

horizon, throughput, etc. If both the state of the system n and uncertainty δ are measurable in real-time, a state feedback

control law �β(t) = K 

(
�n (t ) , δ(t ) 

)
, where K is a non-linear mapping, which is explicitly depends on the uncertainty can

be implemented. This is the so-called gain-scheduled controller but its derivation and implementation is complex and out

of the scope of this work. A simpler control law is that of constant state-feedback Proportional-Integral (PI) control given by

�β(t) = −K 

[
�n (t ) T z (t ) T 

]T 
(5) 

where z (t) ∈ R 

p is an additional state vector and K ∈ R 

N ×(N + p) is a steady-state time-invariant control gain matrix. The

vector z ( t ) computes the integral of the error signal (see (8) below), which is then used as a feedback term in (5) to provide

zero steady-state error under persistent disturbances. In this case, the state of the system n (total accumulation in the bi-

modal network) is measurable in real-time while the uncertain parameter δ ∈ � is assumed known at design time and the

control gain K is indirectly dependent on the uncertainty. 

A suitable cost criterion for deriving the state-feedback controller (5) is given by the infinite horizon quadratic cost 

L = 

1 

2 

∫ ∞ 

0 

(
‖ �n (t) ‖ 

2 
W 

+ ‖ �β(t) ‖ 

2 
R + ‖ z (t) ‖ 

2 
Z 

)
dt (6)

where W ∈ R 

N×N , R ∈ R 

N×N and Z ∈ R 

p×p are diagonal weighting matrices that are positive semi-definite, positive definite

and positive semi-definite, respectively. The weighting matrices can influence the magnitude of the state and control ac-

tions and their selection should be performed through a trial-and-error procedure during which the resulting control from

(5) should be checked carefully in simulation. The selection of W � diag(1/ n i , max ), i = 1 , . . . , N, guarantees that overflow

phenomena within each region of study would be avoided (see Aboudolas and Geroliminis (2013) and the design phase in

Sections 5.2 –5.3 for details), i.e. the state constraints should be directly satisfied to some extent. This criterion aims at main-

taining the LPV system (4) to operate around the desired steady-state ( ̂  n , ˆ β) for given δ ∈ �, while the system’s throughput

is maximised and steady-state error is minimised. 

Applying the LPV model (4) to a bi-modal network partitioned in N regions the following state equation (in vector form)

describes the evolution of the system in time (assuming �d constant or slowly time-varying, i.e. �d (t) ≈ 0 ) 

� ˙ n (t) = F (δ)�n (t) + G �β(t) , n (0) = n 0 (7)

where �n ∈ R 

N and �β ∈ R 

N are the state and control deviations vectors, respectively; and F ∈ R 

N×N and G ∈ R 

N×N are

the parameter-varying state and control matrices, respectively. In particular, F is a square matrix with diagonal elements

F ii = −Q 

′ 
i 
( ̂  n i , δi ) and off-diagonal elements F ji = γ ji (t) Q 

′ 
j 
( ̂  n j , δ j ) if j ∈ S i , and F ji = 0 otherwise; G is an identity square matrix

of dimension N . 

To provide zero steady-state error under persistent disturbances, we augment the description of the original system

(7) with a new state given by 

˙ z (t) = H �n (t) , z (0) = z 0 (8) 

where z ∈ R 

p is the integral vector, H ∈ R 

p×N , and p ≤ N must hold for control-theoretic reasons. The matrix H typically

consists of 0’s and 1’s such that p components (or linear combinations of components) of accumulation of vehicles are

integrated in (7) . 

Considering the cost criterion (6) and continuous-time system (7), (8) , we obtain the following augmented state, control

and weighting matrices 

A (δ) = 

[
F (δ) 0 

H 0 

]
B = 

[
G 

0 

]
S = 

[
W 0 

0 Z 

]
. (9) 

To calculate the time-invariant gain matrix K in (5) , which depends only upon the augmented matrices A ( δ), B, S and R , the

uncertain parameter vector δ ∈ � is assumed known at design time and A ( δ) is parameterised over the polytopic uncertainty

region � (see Appendix B ). In this way, the control gain K is indirectly dependent on the uncertainty. 

The LPV state-feedback control problem (6) –(8) with associated matrices (9) can be formulated as a parameter dependent

Linear Matrix Inequality (LMI) constraints problem ( Becker and Packard, 1994 ) (see Appendix C ). This problem can be solved

using Semi-definite Programming (SDP) ( Boyd et al., 1994 ) and efficient interior-point optimisation algorithms ( Nesterov

and Nemirovskii, 1994 ). The calculation of control gain K that minimises an upper bound of the worst-case infinite horizon

quadratic cost (6) subject to the LPV system (7) –(8) can be effectuated via solution of the following SDP problem: 

min 

P , K 
trace (P ) 

subject to: (10) (
A (δ) + BK 

)T 
P + P 

(
A (δ) + BK 

)
+ S + K 

T RK � 0 
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where P is a positive definite matrix of appropriate dimension. Note that n 

T (0) Pn (0) , for all n (0) � = 0 with P 
0 is an

upper bound on the worst-case cost if it holds for all possible A ( δ) that satisfy the parameter dependent algebraic Riccati

inequality above. This problem is nonconvex in P and K that leads to a Bilinear Matrix Inequality (BMI) but can be expressed

as a parameter dependent LMI by performing a congruence transformation with Y = P 

−1 , introducing L = KY , applying the

Schur complement lemma, and solving the following convex SDP problem (see Appendix C ): 

max 
Y , L 

trace (Y ) 

subject to: (11)⎡ 

⎣ 

−
(
A (δ) Y + BL 

)T −
(
A (δ) Y + BL 

)
Y L T 

Y S −1 0 

L 0 R 

−1 

⎤ 

⎦ � 0 . 

This problem may be readily solved by public available software (e.g., CSDP Borchers (1999) ) if the uncertain vector δ ∈ �
is known and A ( δ) in (11) is parameterised over the polytopic uncertainty region � (see Appendix B ). Further, the required

computational effort is polynomial even for large-scale problems. After the solution of SDP problem (11) , the control gain

K can be recovered from K = LY 

−1 ( Y is invertible). Moreover, this computational effort is required only off-line, while on-

line (i.e. in real-time) the calculations are limited to the execution of (5) with a given constant control gain K and state

measurements n ( t ). 

To satisfy the control constraints in Section 3 , we next incorporate a saturation function in the controller (5) and simply

saturate the input signal when it violates the constraint. This leads to the control law: 

β(t) = sat 

{ 

ˆ β − K 

[
�n (t ) T z (t ) T 

]T 
} 

, (12)

where the saturation function is given by 

sat 

{ 

βi (t) 
} 

� 

{ 

βi, min , if βi (t) < βi, min 

βi, max , if βi (t) > βi, max 

βi (t) , otherwise . 
(13)

On the other hand, the state constraints can be satisfied to some extent by appropriate selection of the weighting matrix

S in (6) . The controller (12) is activated in real-time at a specific sample interval T (e.g. every 3–5 min) and only within

specific time windows, where the system approaches or exceeds ˆ n . The obtained saturated β values (arriving flows) are then

used to define the green times at a number of signalised junctions located along the boundary of neighbour regions or the

perimeter of the network. To this end, the arriving flows are distributed to the corresponding junctions and converted to an

entrance link green stage duration with respect to the saturation flow of the link, the number of lanes and the cycle time of

the junctions (although different splitting policies may be employed). More advanced distribution strategies, as for example

queue equalisation can be considered as future work. 

5. Application and results 

5.1. Network description 

The test site is a 2.5 square mile area of Downtown San Francisco (see Fig. 3 (a) for a snapshot modelled via the AIMSUN

micro-simulator), including 100 junctions and 400 links with lengths varying from 40 0 ft to 130 0 ft. The traffic signals are

all multi-phase operating on a common cycle length of 90 s for the west boundary of the protected area and 60 s for the

rest. Simulations were performed with time-dependent asymmetric Origin-Destination (OD) tables, starting from different

initial compositions of bi-modal traffic. To simulate somewhat adaptive drivers and account for drivers’ route choice effects

in the OD scenarios, the Dynamic Traffic Assignment (DTA) module (C-Logit route choice model ( Cascetta et al., 1996 )) is

activated every 3 min, a time interval that is consistent with the average trip length of the test site. Driver adaptation

creates MFDs with less hysteresis that represent better real-life conditions ( Mahmassani et al., 2013 ). The initial profile for

cars is based on real OD data while the profile for buses is determined by the number of public lines in the network and

their operational frequency. Bus routes and frequencies for 29 bus lines in the network have been obtained from the San

Francisco Municipal Transportation Agency (SFMTA). Higher demand scenarios are also analysed to generate various mode

compositions. The simulation step for the microscopic simulation model of the test site, was set to 0.5 s. The simulation

horizon for each scenario is 6 h (08:0 0–14:0 0) and pairs of data ( n c , n b ) were gathered every 5 min from the simulator to

construct the bi-modal MFDs in Fig. 1 . 

The implementation of the proposed perimeter strategy to the test site corresponds to the design and application of (12) .

In the sequel, the proposed controller is designed for both single- and multi-region cases. In the single-region case the com-

position of traffic is assumed uniformly distributed over the network (see Fig. 3 (a)), and a single perimeter controller to 15

signalised junctions (illustrated with blue arrows) in the external boundary of the city (in red colour) is applied. Note that

the external boundary involves 24 signalised junctions in total. We also notice that the centre of the network contains more
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buses than the periphery. Thus, in a two-region approach, a partitioning scheme is applied to cluster the network in two re-

gions with different mode composition (see Fig. 4 (a)). In this case, a two-region robust perimeter controller in the perimeter

and the boundaries of neighbour regions is applied. To this end, the arriving flows β resulting from (12) (operational con-

strained flows) are distributed to 8 (illustrated with purple arrows in Fig. 3 (a)) and 15 signalised junctions (illustrated with

blue arrows in Fig. 3 (a)) located at the perimeter and common boundary of the centre ( i = 1 ) and outside ( i = 2 ) regions,

respectively. It should be noted that both cars and buses are subject to perimeter control at the external boundary shown

in Fig. 3 (a). Moreover, when buses are close to gated junction some priority is provided to enter the network by extending

the arriving link green times and/or skipping stages. No other priority is provided to the buses once they are circulating in

the network, as there is no dedicated space or lanes (i.e., mixed traffic). In both cases, the implementation of (12) in the

network is effectuated by approximating the continuous space to discrete with sample interval T = 180 s ( Apkarian, 1997 ). 

Controlling the external boundary of a network will restrict vehicles from entering the network resulting in virtual

queues. The delays for these vehicles are estimated as they do not have an option to change their routes and they are

obliged to wait until they enter the network. If the majority of these trips are planning to travel in the central region

and the control strategy does not affect their aggregated route patterns, then the anticipated benefits of the controller are

correctly estimated. Nevertheless, if there are multiple destinations outside the simulated areas or if vehicles change their

route choice to avoid the city centre, then indeed a more detailed analysis is necessary to better integrate these effects.

Other studies have investigated the effect of perimeter control with MFDs in multi-region cases without controlling the

external boundary of the network ( Kouvelas et al., 2017 ) or with route choice integration ( Yildirimoglu et al., 2015 ). Both

studies consider car as the only mode of transport. Integrating bi-modal interactions should be a research priority. 

5.2. Design of single-region robust perimeter flow control 

To design the single-region controller ( N = 1 ) the approximation of bi-modal MFD with linear and exponential type speed

functions of Section Appendix A is utilised (see also Fig. 1 (a)). In particular, the exponential approximation of the bi-modal

MFD in Fig. 1 (a) and its estimated parameters can be found in Geroliminis et al. (2014) . This model is then used to specify

the state matrices F ( δ) and G in (7) (or A ( δ) and B in (9) ) after linearisation of (3) at ( ̂  n , ˆ β) (see below for appropriate

set-point values). Note that G is an identity square matrix of dimension N , i.e., G = 1 . 

Fig. 3 (b) depicts a cross-section (cutting plane) of the 3D surface in Fig. 1 (a) for a constant accumulation of buses n b 
corresponding to a specific number of public transport lines and service frequency in the network (property of the infras-

tructure), and thus to a slowly time-varying composition of traffic δ. This demonstrates the typical dependence of the flow

with the composition of traffic in the network where the maximum flow for fixed δ (operational point) results from an

one-variable derivative test of the logarithm of (A.9) with respect to n . In fact, the projection of the 3D surface on the cut-

ting plane n b = 200 veh provides a typical MFD relating the total accumulation n (where n b is constant) with the outflow

in the network. The shape and characteristics of this MFD for the Downtown San Francisco are similar to those found in

Aboudolas and Geroliminis (2013) for single mode traffic with δ� 1. Thus, for different composition of traffic values δ dif-

ferent controllers might be designed. Alternatively, the controller (12) can be designed by solving the SDP problem (11) to

achieve robust regulation for all δ ∈ �, where � = { δ(t) | δmin ≤ δ(t) ≤ δmax , t ≥ 0 } (see Section 3 for details). 

To determine the compact set �, simulations have been performed for different demand scenarios to generate various

mode compositions with respect to SFMTA real data for the bus frequencies in the public transport lines. Fig. 3 (c) depicts

the results obtained for three different scenarios. It can be seen that the composition of traffic varies from δmin = 2% to

δmax = 15% , i.e. � = { δ(t) | 0 . 02 ≤ δ(t) ≤ 0 . 15 , t ≥ 0 } . To design the robust controller, the desired accumulation ˆ n is selected

within the optimal range of the bi-modal MFD for maximum output with respect to �. More specifically, the value ˆ n = 2500

veh (approximately 80% of 30 0 0 veh, corresponding nominal arriving flow 

ˆ β = 93 , 540 veh/h) is selected and the state

matrix A (δ) = A (δ) in (11) is parametrised over �. The minimum and maximum permissible entrance flow of mixed traffic

are given by βmin = 20 , 0 0 0 veh/h and βmax = 120 , 0 0 0 veh/h, respectively. The arriving flows (operational constrained flows)

are distributed to 15 signalised junctions located at the perimeter of the network (illustrated with blue arrows in Fig. 3 (a)).

The selection of the weighting matrices S = diag (W, Z) and R = R (see (6) and (9) ) should be performed through a trial-and-

error procedure during which the resulting control from (11) should be checked carefully in simulation. In fact, high values

of Z and R may result in very strong weighting and may lead to a nervous control behaviour, and possibly instability of

the control system. Thus from a trial-and-error procedure, the weighting matrices in the cost criterion are chosen equal to

W = 1 /n max ( n max = 10 , 0 0 0 veh), Z = 0 . 0 0 0 0 01 , and R = 0 . 0 0 01 , respectively. The selection of W = 1 /n max guarantees that

overflow phenomena within the region of study would be avoided and that regions of different sizes will be treated in a

comparable way (see the first term in (6) and Aboudolas and Geroliminis (2013) for details). These values of the parameters

above, were found to lead via the solution of problem (11) to control gain K = 0 . 0 6 67 1/h. Note that although the weighting

matrices S = diag (W, Z) and R = R are chosen via a trial-and-error procedure, the designed control is robust with respect to

any uncertainty in �. 

5.3. Design of two-region robust perimeter and boundary control 

Fig. 4 (a) depicts a snapshot of the network and its partitioning into two regions ( N = 2 ). The clustering builds on a

modified partitioning algorithm proposed in Ji and Geroliminis (2012) . The objective of partitioning networks with bi-modal
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traffic is to obtain small variance of traffic composition δζ
i 

for all links ζ within each region i = 1 , 2 . As can be seen in

Fig. 4 (a) there exists a strong heterogeneity in the spatial distribution of δζ
i 

(and, thus congestion), when comparing the

mode composition between the city centre (red colour) and the rest of the network (green colour). Fig. 4 (b)–(c) depict the

resulting bi-modal vehicle MFDs of the two regions (centre and outside) relating accumulation of cars n c and buses n b with

circulating flow, after partitioning. As a first remark, Fig. 4 (b)–(c) confirm the existence of bi-modal MFD like-shapes for the

two urban regions (cf. with the bi-modal MFD of the whole network in Fig. 1 (a)). Note that the one region is larger than

the other and n b of the centre region has a higher range of values, as this region is covered by more public transport lines.

Clearly the composition of traffic δi in each region i affects the shape of the bi-modal MFD (cf. Fig. 4 (b) with Fig. 4 (c)).

Details on the development of the two bi-modal MFDs can be found in Geroliminis et al. (2014) . 

For designing the controller in the case of N = 2 the bi-modal MFDs in Fig. 4 (b)–(c) are used. Following the same

procedure as in Section 5.2 , the controller (12) can be designed by solving the SDP problem (11) to achieve robust reg-

ulation for all δ = [ δ1 δ2 ] 
T ∈ � = ∪ 

2 
i =1 

�i , where �i = 

{
δi (t) | δi, min ≤ δi (t) ≤ δi, max , t ≥ 0 

}
for regions i = 1 , 2 . Simulation

tests were revealed that the composition of traffic δi in each region i (centre i = 1 and outside i = 2 ) belongs to the set

�1 = { δ1 (t) | 0 . 02 ≤ δ1 (t) ≤ 0 . 14 } and �2 = { δ2 (t) | 0 . 01 ≤ δ2 (t) ≤ 0 . 06 } , respectively. The value γ ji = 1 , ∀ i, j = 1 , 2 is se-

lected for the splitting rates. The desired accumulation ˆ n i , i = 1 , 2 is selected within the optimal range of the corresponding

bi-modal MFDs in Fig. 4 (b) and (c) for maximum flow with respect to �i , i = 1 , 2 . More specifically, the values ˆ n 1 = 800 veh

(corresponds to a nominal arriving flow 

ˆ β1 = 73 , 150 veh/h) and ˆ n 2 = 1250 veh (corresponds to a nominal arriving flow
ˆ β2 = 80 , 420 veh/h) are selected and the state matrix A ( δ) is parametrised over �. Note that the summation ˆ n 1 + ˆ n 2 is

smaller than the critical ˆ n of the single region controller, as the two regions reach congestion at different times with differ-

ent compositions δi , i = 1 , 2 . The minimum and maximum permissible entrance flow of mixed traffic of the centre ( i = 1 )

and outside ( i = 2 ) regions are given by β1 , min = 20 , 0 0 0 veh/h and β1 , max = 80 , 0 0 0 veh/h; β2 , min = 20 , 0 0 0 veh/h and

β2 , max = 10 0 , 0 0 0 veh/h, respectively. The weighting matrices S = diag (W , Z ) and R in the cost criterion (6) are chosen di-

agonal. More precisely, the diagonal elements of W are set equal to the inverses of the maximum accumulation of the

corresponding regions, i.e. W ii = 1 /n i, max , i = 1 , 2 , where n 1 , max = 30 0 0 veh and n 2 , max = 40 0 0 veh. The diagonal elements

of matrices R and Z were set equal to R ii = 0 . 001 and Z ii = 0 . 0 0 01 , i = 1 , 2 , respectively. These values of weights, were found

to lead via the solution of problem (11) to a control gain K ∈ R 

2 ×2 that exhibits robust regulation and good performance. 

5.4. Single-region robust control results 

Fig. 5 (a) and (b) depict the resulting MFD of five scenarios under pre-timed and single-region robust perimeter control

cases. When perimeter control is applied, the network operates under efficient traffic conditions and states in the decreasing

part of the MFD are not observed; under pre-timed control, the network becomes severely congested with states in the

congested regime of the MFD. Moreover, the outflow is maintained to high values around the set point ˆ β . We can also

observe that the hysteresis formed in the offset period of congestion is reduced significantly. Fig. 5 (c) depicts the resulting

average performance (space-mean speed of buses and cars in km/h, average delay of buses and cars in min/km/veh, and

stops of mixed traffic in number of stops/km/veh) for ten replications. Clearly the proposed perimeter control significantly

increases the speed and decreases delays and number of stops in both modes of traffic. It also shows boxplots for the 25%,

50% and 75% percentiles. It is evident that the reliability of both modes have increased besides the decrease in all congestion

performance measures. This highlights the robustness of the feedback controller to demand uncertainty and stochasticity in

variables that are not utilised by the controller, like the route choice, the driver behaviour and the detailed bus routes. 

Traffic conditions are identical for both control cases up to around 10:00. When perimeter control is switched on (as the

total accumulation in the network reaches its set point), the perimeter strategy restricts the flow vehicles are allowed to

enter the network to keep it from becoming congested. This results in a small drop in speed within the considered public

transport lines for a short time period after perimeter control is activated. However, these temporary delays under perimeter

control are proved beneficial for the total network circulating flow and the operation of the public transport lines, as can be

seen from the speed profiles after 11:00. Thus, even if cars and buses are restricted in the perimeter of the network, they

are able to reach their destinations faster than in the pre-time control case. Moreover, buses are able to travel with free flow

traffic conditions inside the protected network and follow their normal time schedule. In particular, improvement is more

significant for public transport lines that cover the centre of the network, especially the Market Avenue, one of the severely

congested avenues in San Francisco, where largely covered by public transport lines 12, 15 and 17 (see Fig. 4 (a)). 

An analysis of the spatiotemporal dimension of traffic congestion in the central avenue (Market Avenue) of the network

and its upstream links (southeast) can shed some light in the perimeter control actions within the transport public lines.

The considered path includes the entire route for public lines 15 and 19 and six other public transport lines that overlap

part of the path (see Fig. 4 (a)), to investigate the interaction among conflicting public transport lines. To gather the bus

trajectories that traverse this path, we simulate buses equipped with GPS-based trackers reporting location and speed every

3 s. Fig. 6 (a) and (b) display the gathered bus trajectories for eight public transport lines (each with different colour) during

the heart of the rush (11:00 to 13:00), when pre-timed control and single-region robust perimeter control are applied.

Fig. 6 (c), which illustrates the two-region robust control, is analysed later in the text. In these plots, the x -axis reflects

the simulation time, while the y -axis reflects the one-dimensional distance travelled. Given that the studied network is a

grid, the two-dimensional road distance is transformed into one-dimensional by calculating the Manhattan distance ( � -
1 
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Fig. 5. (a) and (b): MFDs under pre-timed and single-region robust perimeter control cases, respectively (colors represent 5 different scenarios). Accumu- 

lation at x -axis indicates mixed bi-modal traffic; (c) and (d): minimum, maximum, and median values of different performance indices for the two modes 

of traffic under pre-timed control, single- and two-region robust perimeter control. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

norm) between the GPS-reported location of a bus and the starting point of the path. The horizontal distance between

consecutive bus trajectories with the same colour indicates the time headway between two buses servicing the same public

transport line. The location of junctions and bus stops are also reported (see caption of Fig. 6 for details) to allow a better

understanding of the stop-and-go phenomena within the public transport lines. 

Fig. 6 (a) and (b) underline the superiority of single-region robust perimeter flow control over pre-timed control to main-

tain public transport lines normal time schedule. As can be seen, traffic conditions are almost identical for both control cases

from 11:00 to 11:20, as time goes on, in the pre-timed control case, buses entering their transport lines (upstream traffic)

suffer increasing delays waiting other buses and cars in the centre of the network between 700 m and 1200 m (downstream

traffic) to be served. Then traffic conditions are deteriorated in the centre of the network, link queues start spilling back and

blocking upstream junctions; thus the entering traffic approximately matches the speed of the downstream traffic. This cre-

ates multiple backward moving shockwaves with negative speed that are illustrated with arrows in Fig. 6 (a). Clearly when

perimeter control is applied (cf. Fig. 6 (b) with Fig. 6 (a)) the network operates under free-flow traffic conditions and buses

are able to follow their normal time schedule (with slight travel delays). More specifically, it can be seen that buses only

experience delays between 11:50 and 12:30 at the same spatial distance. To further investigate what caused these delays,

the traffic conditions in public transport lines 10 and 11 (among others) were carefully analysed. The inspection of differ-

ent replications eventually shown that the delays are mainly caused by a sudden increase of left turn demand of cars and

buses at a specific junction close to the protected network. Note that the existence of such cases can be possible under the

perimeter control scheme, since we only control junctions at the perimeter of the network. In these cases, local control can

be employed for smoothing the bus movements within regions. 

5.5. Comparison between single-region and two-region robust control 

The motivation and rationale behind the development of a two-region robust perimeter and boundary flow control

scheme is attributed to the fact that the centre of the network contains more public transport lines than the periphery
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Fig. 6. Time-space diagrams for bus trajectories in eight public transport lines in the network during the heart of rush, under (a) pre-timed control, (b) 

single-region robust perimeter control, and (c) two-region robust perimeter and boundary control. Horizontal dotted lines indicate the location of junctions; 

horizontal dashed lines indicate the location of bus stops. 

 

 

 

 

 

 

 

 

(especially the Market Avenue is covered by a high number of public transport lines, see Fig. 4 (a)). Thus, the traffic compo-

sition δζ for all links ζ within the centre and the rest of the network could observe high variances. The results presented

in the sequel are based on the two-region clustering in Fig. 4 and the control design in Section 5.3 . It is used to exploit and

illustrate the benefits of two-region perimeter and boundary control over single-region (whole network) perimeter control.

Single-region (whole network) robust perimeter control is designed according to Fig. 3 and Section 5.2 . 

Fig. 5 (d) depicts the average performance (space-mean speed, delay, stops) and same percentiles as in Fig. 5 (c) of each

mode of traffic for ten replications of a demand scenario with strong heterogeneity in the spatial distribution of δi , i = 1 , 2

for the centre and outside regions, respectively. It can be seen that the two-region control increases the speed and decreases

delays and number of stops in both modes of traffic in average by 10%. It should be noted that for scenarios with small

variability of δ the performance of the two-region over single-region control is slightly deteriorated, as expected. 
i 
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Fig. 7. Comparison of single- and two-region control: (a, b) MFDs under single-region control for the centre ( i = 1 ) and outside ( i = 2 ) regions; (c, d) MFDs 

under two-region control for the centre ( i = 1 ) and outside ( i = 2 ) regions. Accumulation at x -axis indicates mixed bi-modal traffic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To further exploit and illustrate the benefits of two-region perimeter and boundary control over single-region (whole

network) perimeter control, Fig. 6 (c) displays the gathered bus trajectories under two-region perimeter and boundary flow

control. Under single-region robust control (see Fig. 6 (b)), it can be seen that buses being served in the centre of the net-

work between 70 0 m and 10 0 0 m at 11:50–12.40 facing delays because of conflicting public transport lines that overlap

parts of the two regions and heterogeneity in the spatial distribution of δi , i = 1 , 2 . Comparing the bus trajectories with

Fig. 6 (b), two-region robust control is seen to be significantly better than single-region control. Thus, two-region control

manages better the heterogeneity in the spatial distribution of vehicle composition and congestion. This is deemed to the

actions of two-region control at the common boundary of the neighbour regions. On the other hand, it seems that the two

region perimeter control causes delays at the perimeter of the network (spatial distance between 0 m and 100 m). How-

ever, this proves beneficial for the reliability of bus services and efficiency of the network. Efficiency and equity are partially

competitive criteria, so in the next section we present some results that would shed some light on the bus service reliability

and equity. 

Fig. 7 (a)–(d) depict the MFDs of the centre ( i = 1 ) and outside ( i = 2 ) regions resulting from the application of single-

and two-region perimeter control. As a first remark, the diagrams indicate a hysteresis, i.e., a different path of measurement

points when filling the network (onset of congestion) than when emptying (offset of congestion). It should be noted that

DTA is active during the simulation (see Section 2 ), which allows for the drivers to choose their routes adaptively in response

to traffic conditions and utilise less congested routes in the network. Given that hysteresis is more pronounced in the MFDs
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of the outside region (see Fig. 7 (b) and (d)), we conjecture 3 that it might be attributed to the longer trip lengths occurred

in the periphery of the network than the centre (see Fig. 4 (a)) and the stronger heterogeneity in the spatial distribution of

congestion and the bus lines. We can also observe that the hysteresis formed in the offset period of congestion is reduced

significantly for both regions when two-region control is applied. Comparing Fig. 7 (a) with Fig. 7 (c) (centre region) and

Fig. 7 (b) with Fig. 7 (d) (outside region), two-region control outperforms single-region control in terms of traffic states visited

in the congested regimes, which underlines the utility of partitioning in the case that traffic composition indicates a high

variability between neighbour regions. 

5.6. Comparison between robust perimeter flow control and conventional control 

In this section, we compare single- and two-region robust control with the bang-bang control approach proposed by

Daganzo (2007) , see Eq. (11) in Aboudolas and Geroliminis (2013) . The purpose is to demonstrate the advantage of employ-

ing a robust control design approach in case of uncertain mode composition in the network. Bang-bang control is proven

very efficient in case of single-region perimeter control, even though exhibits an oscillatory control behaviour, as demon-

strated in Aboudolas and Geroliminis (2013) . To this end, a second realistic scenario was employed with varying mode

compositions based on SFMTA real data for the bus frequencies in the public transport lines. Four different control ap-

proaches applied and tested, namely optimised pre-timed control, single-region bang-bang perimeter control, single-region

robust control, and two-region robust control. To design the single-region bang-bang strategy the values of ˆ n , βmin , and

βmax are selected according to the analysis in Section 5.2 . The bang-bang control is applied only to 15 junctions located at

the perimeter of the test network (see Fig. 3 (a)), as in single-region robust control case. 

Fig. 8 displays the gathered bus trajectories for the four control approaches. Under pre-timed signal control and single-

region bang-bang control (cf. Fig. 8 (a) with Fig. 8 (b)), it can be seen that buses being served in the centre of the network

between 70 0 m and 10 0 0 m after 11:30 facing significant delays. As expected, bang-bang control indicates better perfor-

mance than the optimised pre-timed signal control. Nevertheless, it mainly shifts the active bottleneck a couple of intersec-

tions downstream, but still delays for the buses are unavoidable. Fig. 8 (c) and Fig. 8 (d) demonstrate that both single- and

two-region robust control are more efficient than conventional bang-bang control, while two-region robust control is seen

to be superior to all other strategies. Buses are slowing down during the heavy period, but they are able to traverse the

most congested parts of the network with significantly lower stops and spillbacks very rarely occur (only a few horizontal

lines that last for a couple of minutes). 

Fig. 9 depicts the average speeds and average delays for the four control approaches. As can be seen pre-timed signal

control and bang-bang control perform quite well from 11:00 to 11:30 but their efficiency is significantly deteriorate after

11.30 when demand input is at the highest values and congestion develops in the network. The ranking of the strategies

with respect to these two criteria is in agreement with the findings of previous sections and the time-space diagrams in

Fig. 8 . In particular, at the end of the simulated congestion (13:00), the average speeds are (see Fig. 9 (a)) 5 km/h for the

pre-timed signal control, 8 km/h for the single-region bang-bang control, 10 km/h for the single-region robust control, and

12 km/h for the two-region robust control. As expected, the average delays per trip follow the opposite trend as shown in

Fig. 9 (b). As it will be explained in the next section, improvements are more significant if we look at detailed performance

measures, as average speed also integrates buses moving at less congested parts of the network. 

5.7. Level of bus service and equity 

While the main goal of the control law (12) is to avoid states in the congested regime of the bi-modal MFD with respect

to the variability of δ, it significantly improves the reliability of bus services, even if they share the same infrastructure

with cars. To investigate the performance of the buses under the proposed control scheme, bus headway data is collected

and headway distribution is chosen as a performance indicator of the bus service reliability. As the analysed public transport

lines operate at high frequency, deviation from the ideal headway is more important than the scheduled arrival at bus stops.

Fig. 10 (a)–(c) display the headway distributions of four selected public transport lines while Fig. 11 (a) displays the nor-

malised headway distribution under pre-timed control, single-region bang-bang control, and two-region robust control. The

scheduled headway of each line is provided next to the line number, and the mean and the standard deviation of the actual

headways are calculated ( Fig. 10 (a)–(c)). The four public transport lines are operating through the main streets of the net-

work. The headways are collected for every bus stop during the peak period from 11:00 to 13:00, while the normalisation

is calculated as (h i − s i ) /s i , where h i and s i are the real and scheduled headways of public transport line i , respectively. It

can be observed that the mean headways are nearly close to the scheduled ones under two-region robust perimeter control

(compare the mean with scheduled headways in Fig. 10 (c)), and the deviation from schedule is much less than the one un-

der pre-timed and single-region bang-bang control ( Fig. 10 (a) and (b)). The perimeter control also avoids significant delays,

as there are hardly cases with headways higher than 20 min. Standard deviation is also two to three times smaller with

the robust perimeter control. 

The normalised bus headway distribution for all lines together provides additional insights for the reliability of the sys-

tem as a whole. A larger concentration of values around 0 indicates a smaller deviation from the schedule and higher
3 Here we exclude the well-known limitations of micro-simulation tools to emulate the human behaviour and adaptive drivers. 



630 K. Ampountolas et al. / Transportation Research Part B 104 (2017) 616–637 

Fig. 8. Time-space diagrams for bus trajectories in eight public transport lines in the network during the heart of rush, under (a) pre-timed control; (b) 

bang-bang perimeter control; (c) single-region robust control; (d) two-region robust control. 
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Fig. 9. (a) Average speeds and (b) average delays per trip for robust perimeter flow control and conventional bang-bang control. 

Fig. 10. Bus headway distributions and service irregularity of 4 selected public transport lines under: (a) pre-timed control, (b) single-region bang-bang 

control, (c) two-region robust control. 
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Fig. 11. (a) Normalised headway distributions for all public transport lines under pre-timed control, bang-bang perimeter flow control, and two-region 

perimeter and boundary flow control; (b) Cumulative distributions of TTKT for the two modes of traffic under various control schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reliability (cf. the three subfigures in Fig. 11 (a)). Note that under pre-timed control (see the first two subfigures in Fig. 11 (a))

the distribution is positively skewed (skewness measures distribution asymmetry) and quite often the deviation from sched-

ule is high, which results to higher waiting times for the passengers at bus stops. This indicates that the proposed robust

perimeter control improves the performance of buses without providing bus signal priority or considering dedicated bus

lanes. Thus such a control policy can influence the traditional way of public transport management, increase mobility and

improve the reliability of bus services in congested bi-modal networks. 

Let us now investigate the efficiency and equity properties of both modes of traffic under various control schemes. Travel

Time per Kilometre-distance Travelled (TTKT) is chosen as performance indicator. Considering TTKT allows us to compare

travel times of the same scale in case those travel times vary significantly due to different trip lengths. Different trip lengths

are natural because the size of the two regions is uneven and the two modes of traffic generate different trips. Fig. 11 (b) dis-

plays the cumulative probability distribution of the TTKT for each region and mode (cars and buses). TTKTs were calculated

for 5 scenarios, every 5-min for a 2.5-h peak period. The three curves (with blue, red, and black colour) in each of the four

subplots depict cumulative distributions of TTKT under single-region robust control, two-region robust control, and single-

region bang-bang control, respectively. The median and the standard deviation of each distribution are displayed. As can

be seen, the two-region robust control performs better than both single-region robust control and single-region bang-bang

control. The median value of TTKT for cars improve by about 10% for both regions. For buses the improvement in terms of

median is quite small (about 3%), but reliability increases (standard deviation is 20% smaller). Remarkably, the two-region

control increases the reliability of the network as its cumulative curve of TTKT is less spreading. Finally, it is stimulating to

observe that the two-region control provides fairly equal improvements to both regions, albeit the centre region seems to

benefit slightly more than the outside region. 

6. Discussion 

In this paper, we addressed the problem of perimeter flow control in bi-modal multi-region urban networks. We pre-

sented a bi-modal MFD for mixed urban traffic and described the dynamics of cars and buses by an LPV system with

bounded uncertainty for single- and multi-region cities. We then designed a PI controller for the LPV system that guaran-

tees robust regulation and stability around a desired set point at the bi-modal MFD, while the system’s throughput (for
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both travel modals) is maximised. We also considered extensions in case each region has different values of mode compo-

sition. We implemented the proposed controller in a simulation study in Downtown San Francisco. Results showed that the

designed robust control can significantly: (i) reduce the overall congestion in the network, (ii) improve the traffic perfor-

mance of buses in terms of travel delays and schedule reliability, and (iii) avoid queues and gridlock on critical paths of the

network. 

While the main goal of the developed robust control strategy is to avoid states in the congested regime of the bi-modal

MFD with respect to the variability of vehicle composition, it significantly improves the efficiency and reliability of bus

services, even if they share the same infrastructure with cars. The proposed strategy could be easily integrated with more

detailed control strategies that have local objectives. For instance, equalising queues and avoiding spill backs at the perimeter

intersections or even within the partitioned regions (see e.g., the TUC strategy ( Diakaki et al., 20 02; 20 03 ), store-and-forward

paradigm ( Aboudolas et al., 2009 ), max pressure control ( Kouvelas et al., 2014 ), or optimising offsets for major routes of the

city or for bimodal systems strategies as dynamic bus lanes, pre-signals for buses and local bus priority (see e.g., Skabardonis

and Geroliminis, 2008; Guler and Cassidy, 2012; Guler and Menendez, 2014; Christofa et al., 2013; 2016 ). The fact that the

upper level MFD type control is able to bring the system at less congested and more efficient states, it facilitates also the

performance of local strategies, which would be unable to operate efficiently under heavily congested conditions. The reason

is that local controllers might have conflicting objectives under heavy congestion, but these conflicts are not as severe under

normal conditions, for example queues do not spill back from one intersection to the other. Further research is needed

towards the system of systems control direction and how to further connect upper and lower level controllers. 

On the modelling side, strong demand fluctuations either for cars or buses can create fast evolving transient states, spa-

tial heterogeneity of congestion or route choice effects that influence the trip length distribution of vehicles in the network.

As a result, the outflow in Eq. (1) might exhibit some variations or hysteresis ( Mahmassani et al., 2013; Yildirimoglu and

Geroliminis, 2014 ) and the outflow-MFD might not provide a good approximation as it is “memoryless,” i.e. it ignores the

history of the system. While such a model is firstly mentioned in Arnott (2013) and later described in Lamotte and Gerolimi-

nis (2016) , its complexity makes the integration in control very challenging. Towards the same direction, another challenging

topic is the theoretical analysis of the multi-region bi-modal nonlinear system with time varying delays, in order to develop

a controller that takes into account the state-dependent delays and compare it with the one presented here. This is expected

to shed more light on the importance of these delays under various demand and mode composition variations. 
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Appendix A. Analytical derivations for the critical vehicle accumulation 

We provide in this subsection analytical derivations of the critical network accumulation that maximizes the flow as a

function of the mode composition for different functional forms. This analysis is useful to determine in a rigorous way the

set-points of the developed control strategies in Section 3 . 

For each class of vehicle we assume a linear-decreasing relationship between average speed and accumulation given by

(subscript i is omitted) 

V c (n c , n b ) = αc n c + βc n b + γc (A.1)

V b (n c , n b ) = αb n c + βb n b + γb (A.2)

where V c and V b are the space-mean speed of cars and buses, respectively, and αm 

, βm 

, γ m 

, m ∈ { c, b } are constant model

parameters that can be estimated with real data for buses and cars (e.g., GPS equipped vehicles and loop detectors). The

space-mean speed in the network is given by 

V = 

V c n c + V b n b 

n c + n b 

(A.3)

where n = n c + n b is the total accumulation in the network. For given (A .1) –(A .3) a city-scale bi-modal vehicle MFD for

mixed traffic may be calculated as follows 

Q(n c , n b ) = nV/L = (n c V c + n b V b ) /L 

= 

(
αc n 

2 
c + βb n 

2 
b + (αb + βc ) n c n b + γc n c + γb n b 

)
/L (A.4)

http://dx.doi.org/10.13039/501100000269
http://dx.doi.org/10.13039/501100000781
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where L is the average trip length of all vehicles moving in the network. Consider now a composition of traffic n c = δn and

n b = (1 − δ) n, where 0 < δ < 1, 4 the bi-modal MFD in (A.4) can be rewritten as 

Q(n, δ) = 

([
αc δ

2 + βb (1 − δ) 2 + (αb + βc ) δ(1 − δ) 
]
n 

2 + 

[
γc δ + γb (1 − δ) 

]
n 

)
/L. (A.5) 

In this model, the output is not only a function of the accumulation, but also of the composition of bi-modal traffic in the

network Q � Q ( n, δ). 

Now if we want to calculate the critical accumulation n cr , we may first fix the composition rate δ, and then take the

one-variable derivative of (A.5) with respect to n and set it equal to zero 

n cr � 

ˆ n = −1 

2 

γc δ + γb (1 − δ) 

αc δ2 + βb (1 − δ) 2 + (αb + βc ) δ(1 − δ) 
. (A.6) 

This formula provides the critical accumulation for different values of the composition rate δ and constant model parameters

αm 

, βm 

, γ m 

, m ∈ { c, b }. 

Let us also consider the case where an exponential-decreasing relationship between space-mean speed and accumulation

is given by 

V c (n c , n b ) = e c exp [ −q c (n c , n b ) ] (A.7) 

V b (n c , n b ) = e b exp [ −q b (n c , n b ) ] (A.8) 

where e c and e b are constant parameters and the exponent term q m 

( n c , n b ), m ∈ { c, b }, is a polynomial function of n c and n b .

Furthermore, we assume e � e c = e b and q � −q c = −q b for simplification and to be consistent with Geroliminis et al. (2014) .

Similarly to the derivation of (A.5) above, a more detailed bi-modal MFD for mixed traffic may be calculated as follows 

Q(n, δ) = en exp [ q (n, δ) ] /L (A.9) 

where 

q (n, δ) � q (n c , n b ) = αn 

2 
c + βn 

2 
b + γ n c n b + εn c + θn b 

= 

[
αδ2 + β(1 − δ) 2 + γ δ(1 − δ) 

]
n 

2 + [ εδ + θ (1 − δ) ] n (A.10) 

if q ( n c , n b ) is assumed quadratic and α, β , γ , ε, θ are constant model parameters. This second more detailed flow model is

consistent with the exponential approximation proposed in Geroliminis et al. (2014) . 

In order to find the critical accumulation that maximises the 3D-MFD is convenient to work with the logarithm of (A.9) .

The logarithm is a continuous strictly increasing function over the range of (A.9) , thus values that maximise O ( n, δ) will also

maximise its logarithm. In this case the critical accumulation for fixed composition rate δ is given by 

n cr � 

ˆ n = 

−y ±
√ 

y 2 − 8 x 

4 x 
(A.11) 

where x = αδ2 + β(1 − δ) 2 + γ δ(1 − δ) and y = εδ + θ (1 − δ) . A similar analysis could also be performed with the passen-

ger MFD of Fig. 1 (c). 

Appendix B. Polytopic uncertainty 

Consider a Linear Parameter-Varying (LPV) system 

x (k + 1) = A (δ) x (k ) + B (δ) u (k ) , k = 0 , 1 , . . . (B.1)

where x ∈ R 

n is the state vector, u ∈ R 

m is the control vector, the matrices A ( ·) and B ( ·) are known functions of the param-

eter δ ∈ �, and � ∈ R 

n δ is a compact set. Polytopic uncertainty may be described by the time-varying system 

x (k + 1) = A (k ) x (k ) + B (k ) u (k ) , k = 0 , 1 , . . . (B.2)

where 

[ A (k ) B (k ) ] ∈ � = Conv { [ A 1 B 1 ] , [ A 2 B 2 ] , . . . , [ A V B V ] } (B.3) 

with Conv{ · } denoting the convex hull of a number of “extreme” known system vertices [ A i B i ], i = 1 , . . . , V , given by 

[ A (k ) B (k ) ] = 

V ∑ 

i =1 

λi [ A i B i ] , with 

V ∑ 

i =1 

λi = 1 , λi ≥ 0 . (B.4) 
4 Since 0 < δ < 1 the accumulation of buses n b is not a linear function of the accumulation of cars n c , i.e. n b � = n c p, p ≥ 1. 
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Now if the set � is polytopic, and if A ( ·) and B ( ·) in (B.1) are affine functions of δ given by 

A (δ) = A δ, 0 + 

n δ∑ 

i =1 

δi A δ,i and B (δ) = B δ, 0 + 

n δ∑ 

i =1 

δi B δ,i (B.5)

then the vertex pairs [ A i B i ] in (B.3) are the mappings [ A ( δ1 ) B ( δ1 )], 
[
A (δ2 ) B (δ2 ) 

]
, . . . , 

[
A (δV ) B (δV ) 

]
, with δi being an

enumeration of the V vertices of � ( Ziegler, 1995 ). 

Appendix C. Linear matrix inequalities 

The set of real matrices of dimension m × n are denoted by R 

m ×n . A real matrix X is symmetric if, and only if, X = X 

T .

We denote S 

n the set of real symmetric matrices in R 

n ×n , S 

n = 

{
M | M = M 

T , M ∈ R 

n ×n 
}

. A symmetric matrix X is called

positive definite, positive semi-definite, negative definite, or negative semi-definite if x T Xx > 0 , ≥ 0, < 0 or ≤ 0 for all

nonzero vectors x ∈ R 

n . For symmetric matrices, X 
 0 , � 0 , ≺ 0 , � 0 indicates that X is positive definite, positive semi-

definite, negative definite, negative semi-definite, respectively. For square matrices trace (X ) denotes the trace of X . 

Definition 1 (Linear Matrix Inequality) . A Linear Matrix Inequality (LMI) is a constraint of the form 

F (x ) � F 0 + x 1 F 1 + · · · + x m 

F m 

� 0 , (C.1)

where F i ∈ S 

n , i = 0 , 1 , . . . , m, are given real symmetric matrices and where x ∈ R 

m is a vector of unknown real scalar

decision variables . 

A very important aspect of the LMI is that it defines a convex set . The inequality F ( x ) � 0 (or 
 0 ) means that x should

render the symmetric matrix F ( x ) positive semi-definite (respectively, positive definite), that is, the maximum eigenvalue

of F ( x ) should be nonnegative (respectively, positive). An LMI optimisation problem amounts to minimising a linear cost

function over all x 1 , . . . , x m 

that satisfy constraints of the form (C.1) . In other words, LMI optimisation problems are natural

generalisations of linear programming problems in which inequalities are defined by the cone of positive definite matrices. 

In control applications, LMIs arise with matrix variables rather than vector variables as for instance in problems (10) and

(11) in Section 4 . That is we consider inequalities of the general form F ( X ) � 0 , in which X is a matrix that belongs to an ar-

bitrary finite-dimensional vector space X of matrices and where F : X → S 

n is an affine function. Affine functions assume the

form F (x ) = F 0 + F x (x ) , where F 0 is fixed and where F x is a linear map. Optimisation problems over symmetric semi-definite

matrix constraints belong to the realm of Semi-definite Programming (SDP) and can be solved efficiently in polynomial time

by interior-point algorithms ( Nesterov and Nemirovskii, 1994 ). 

In the sequel, we provide few important results needed in relaxing nonlinear matrix inequalities into LMIs. The interested

reader is referred to Boyd et al. (1994) for details. 

Definition 2 (Congruence Transformation) . Two matrices X , Y ∈ S 

n are said to be congruent if there exists a nonsingular

matrix M ∈ R 

n ×n such that Y = M 

T XM . 

Proposition 1. If X and Y are congruent then Y 
0 if, and only if, X 
0 . 

Proof. If X 
0 then x T Xx > 0 , for all x ∈ R 

n , x � = 0 . Since X and Y are congruent there exists M nonsingular such that

Y = M 

T XM . Hence, using the fact that M is nonsingular, for all x � = 0 , the vector y � M 

−1 x � = 0 and X 
0 yield 

x 

T Xx = y T M 

T XMy = y T Yy > 0 

that is Y 
0 . �

The Schur complement lemma plays a fundamental role in converting nonlinear matrix inequalities into linear matrix

inequalities. 

Lemma 1 (Schur Complement) . For all X ∈ S 

n , Y ∈ R 

m ×n , Z ∈ S 

m , the following statements are equivalent: 

(a) Z 
 0 , X − Y T Z −1 Y 
 0 (a) Z 
 0 , X − Y T Z −1 Y � 0 

(b) 

[
X Y T 

Y Z 

]

 0 (b) Z 
 0 , 

[
X Y T 

Y Z 

]
� 0 

Proof. Assume Z 
 0 . The nonsingular matrix 

M = 

[
I 0 

−Z 

−1 Y I 

]
establishes the congruence transformation 

M 

T 

[
X Y 

T 

Y Z 

]
M = 

[
X − Y 

T Z 

−1 Y 0 

0 Z 

]

 0 (� 0 ) . 
�
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