1,359 research outputs found

    View and clothing invariant gait recognition via 3D human semantic folding

    Get PDF
    A novel 3-dimensional (3D) human semantic folding is introduced to provide a robust and efficient gait recognition method which is invariant to camera view and clothing style. The proposed gait recognition method comprises three modules: (1) 3D body pose, shape and viewing data estimation network (3D-BPSVeNet); (2) gait semantic parameter folding model; and (3) gait semantic feature refining network. First, 3D-BPSVeNet is constructed based on a convolution gated recurrent unit (ConvGRU) to extract 2-dimensional (2D) to 3D body pose and shape semantic descriptors (2D-3D-BPSDs) from a sequence of gait parsed RGB images. A 3D gait model with virtual dressing is then constructed by morphing the template of 3D body model using the estimated 2D-3D-BPSDs and the recognized clothing styles. The more accurate 2D-3D-BPSDs without clothes are then obtained by using the silhouette similarity function when updating the 3D body model to fit the 2D gait. Second, the intrinsic 2D-3D-BPSDs without interference from clothes are encoded by sparse distributed representation (SDR) to gain the binary gait semantic image (SD-BGSI) in a topographical semantic space. By averaging the SD-BGSIs in a gait cycle, a gait semantic folding image (GSFI) is obtained to give a high-level representation of gait. Third, a gait semantic feature refining network is trained to refine the semantic feature extracted directly from GSFI using three types of prior knowledge, i.e., viewing angles, clothing styles and carrying condition. Experimental analyses on CMU MoBo, CASIA B, KY4D, OU-MVLP and OU-ISIR datasets show a significant performance gain in gait recognition in terms of accuracy and robustness

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    Uniscale and multiscale gait recognition in realistic scenario

    Get PDF
    The performance of a gait recognition method is affected by numerous challenging factors that degrade its reliability as a behavioural biometrics for subject identification in realistic scenario. Thus for effective visual surveillance, this thesis presents five gait recog- nition methods that address various challenging factors to reliably identify a subject in realistic scenario with low computational complexity. It presents a gait recognition method that analyses spatio-temporal motion of a subject with statistical and physical parameters using Procrustes shape analysis and elliptic Fourier descriptors (EFD). It introduces a part- based EFD analysis to achieve invariance to carrying conditions, and the use of physical parameters enables it to achieve invariance to across-day gait variation. Although spatio- temporal deformation of a subject’s shape in gait sequences provides better discriminative power than its kinematics, inclusion of dynamical motion characteristics improves the iden- tification rate. Therefore, the thesis presents a gait recognition method which combines spatio-temporal shape and dynamic motion characteristics of a subject to achieve robust- ness against the maximum number of challenging factors compared to related state-of-the- art methods. A region-based gait recognition method that analyses a subject’s shape in image and feature spaces is presented to achieve invariance to clothing variation and carry- ing conditions. To take into account of arbitrary moving directions of a subject in realistic scenario, a gait recognition method must be robust against variation in view. Hence, the the- sis presents a robust view-invariant multiscale gait recognition method. Finally, the thesis proposes a gait recognition method based on low spatial and low temporal resolution video sequences captured by a CCTV. The computational complexity of each method is analysed. Experimental analyses on public datasets demonstrate the efficacy of the proposed methods

    The effect of time on gait recognition performance

    No full text
    Many studies have shown that it is possible to recognize people by the way they walk. However, there are a number of covariate factors that affect recognition performance. The time between capturing the gallery and the probe has been reported to affect recognition the most. To date, no study has shown the isolated effect of time, irrespective of other covariates. Here we present the first principled study that examines the effect of elapsed time on gait recognition. Using empirical evidence we show for the first time that elapsed time does not affect recognition significantly in the short to medium term. By controlling the clothing worn by the subjects and the environment, a Correct Classification Rate (CCR) of 95% has been achieved over 9 months, on a dataset of 2280 gait samples. Our results show that gait can be used as a reliable biometric over time and at a distance. We have created a new multimodal temporal database to enable the research community to investigate various gait and face covariates. We have also investigated the effect of different type of clothes, variations in speed and footwear on the recognition performance. We have demonstrated that clothing drastically affects performance regardless of elapsed time and significantly more than any of the other covariates that we have considered here. The research then suggests a move towards developing appearance invariant recognition algorithms. Thi

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods
    corecore