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Abstract
This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic mo-
tion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the
challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of
the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal
changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body
is used to achieve robustness against shape variations caused by all common types of small carrying conditions with
folded hands, at the subject’s back and in upright position.In phase 2, a full-body shape and motion analysis is
performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with
Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is
used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a
gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes
and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level
fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Exper-
imental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait
recognition methods.
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Gait, silhouette, Fourier descriptor, histogram matching, dynamic time warping, Krawtchouk moments.

1. Introduction

Numerous markerless gait recognition methods have demonstrated that gait has sufficient discriminatory power for
identifying a human subject from a distance using low resolution video sequences without interfering with the subject’s
activity when physiological biometrics, e.g., face, fingerprint and iris are not clearly visible [1, 2, 3]. However,
variations of the subject’s clothes, footwear and hair style add complexity to gait recognition, and the subject’s physical
and mental conditions, e.g., leg injury, drunkenness and pregnancy, distort the walking pattern [2, 4]. Gait recognition
is also affected by occlusions in the scene, variations in viewpoint and walking speed, shape distortions due to carrying
conditions, shadows under feet and change in ground surface. Furthermore, gait characteristics change with ageing.
Thus, a robust gait recognition method needs to analyse bio-mechanical gait characteristics via static and dynamic
pose changes of gait as in [5, 6, 7].

Gait recognition methods can be classified into model-basedand model-free. Model-based methods (e.g., [7, 8,
9, 10, 11, 12]) characterise a subject by a structural model and a motion model to mainly analyse dynamics of gait
[2]. The structural model represents the subject by a stick figure, ellipsoidal fits or a volumetric model based on the
proportions of the human body parts, and measures time-varying gait parameters, e.g., gait period, stance width and
stride length for gait signatures. The motion model is used to analyse kinematical and dynamical motion parameters of
the subject, e.g., rotation patterns of hip and thigh, jointangle trajectories and orientation change of limbs [2]. These
methods can reliably deal with occlusions, and are invariant to scale changes, rotational effects and slight variations
in viewpoint. However, they are characterised by complex search and mapping processes. The model-free methods
(e.g., [4, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]) analyse the spatio-temporal shape and motion characteristics
of a subject’s silhouettes without assuming any explicit model of the subject’s body. Although the inter-subject
discriminability of these methods are high, they are susceptible to variations in viewpoints and the subject’s attire.

A gait period, i.e., the time interval between successive heel strikes of the same limb, provides strong gait charac-
teristics in terms of deformation of the subject’s silhouette shape and motion pattern. The popular shape descriptors
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used to analyse static shape characteristics are Procrustes shape analysis (e.g., [17, 18, 23]) and Fourier descriptors
(FDs) (e.g., [24, 25]). Although spatio-temporal deformation of the subject’s shape in a gait sequence provides better
discriminative power than its kinematics, inclusion of dynamical motion characteristics improves the identification
rate. Thus, we introduce a gait recognition method STS-DM that combines the spatio-temporal shape (STS) fea-
tures of a subject’s silhouettes with the subject’s dynamicmotion (DM) characteristics over a gait period using both
model-free and model-based approaches to achieve robustness against the maximum number of challenging factors of
gait recognition when compared to state-of-the-art gait recognition methods, namely robustness against small carried
items, walking speed variations, shadows under feet, limited variations in clothing, segmentation noise, changes in
ground surface, missing body parts, self-occlusions and distorted or missing frames due to presence of occluding
objects in the scene. STS-DM operates on the lateral (i.e., profile) view of a subject since this view contains most of
the significant gait characteristics.

Most gait recognition methods do not consider the subject’sarm-swing and the self-occlusion caused by it. Thus,
STS-DM introduces a novel analysis of angular rotation pattern of leading knee (ARPoLK) of silhouette contours for
subject identification in the presence of across-day variations, e.g., clothing, footwear, hair style and ground surface,
with a consideration of the subject’s arm-swing. STS-DM analyses the shape of the silhouette contours at ten phases
of a gait period via their low-pass filtered FDs to only retaintheir global shape information. STS-DM uses ellipses
fitted to body segments at ten phases of a gait period for full-body shape and motion analysis which is invariant to
boundary shape distortions due to segmentation errors and missing or distorted body parts. Contour shape analysis
at the ten phases that reveal most of the distinguishable shape characteristics also enables STS-DM to benefit from
speed-invariant shape sequence processing with reduced processing time and achieve robustness against missing or
distorted frames due to occlusions. Since the dynamic motion characteristics of gait manifest over a gait period more
than in discrete phases, ARPoLK analysis is performed over agait period.

The proposed STS-DM is thus motivated by the need for a gait recognition method that addresses a wide varieties
of challenging factors that limit the success of gait as a behavioural biometrics to reliably identify a subject in practical
situations. The novelties of STS-DM are: (a) it effectively combines static shape characteristics with the local and
global dynamic gait characteristics to achieve robustnessagainst the maximum number of challenging factors; (b)
it analyses the subject’s shape by FDs, and uses phase-weighted magnitude spectra (PWMS) to generate a match
score; (c) it introduces an experimentally supported procedure for detecting carried items and a component-based FD
analysis based on anatomical studies to achieve invarianceto all common types of small carrying conditions, and
this level of invariance has not been addressed before; (d) it introduces ARPoLK analysis which is invariant to self-
occlusions of the limbs of a walking subject, and hence captures the local dynamic gait signature very efficiently; (e)
the use of ARPoLK analysis enables STS-DM to implicitly address subject’s arm-swing, and the use of dynamic time
warping (DTW) to obtain a match score which is invariant to walking speed; (f) it analyses the full-body shape and
motion characteristics based on ellipse-fitting to body segments and uses Bhattacharyya distance histogram matching
(BDHM) to obtain a match score; (g) the match scores obtainedby PWMS, DTW and BDHM are combined using
weighted sum rule of score level fusion for robust identification; (h) the robustness of STS-DM against missing frames
is demonstrated; and (i) STS-DM provides competitive identification rates with reduced computational complexity.

The rest of the paper is organized as follows. Section 2 discusses related work and Section 3 presents STS-DM.
Experimental results are analysed in Section 4 and Section 5concludes the paper.

2. Related Work

Various gait recognition methods analyse static shape and dynamic motion characteristics of gait sequences to
address variations in viewpoint, walking speed, carrying condition and clothing, as well as other covariate factors,
e.g., segmentation noise, occlusions, low resolution, changes in ground surface and shadows under feet. The gait
recognition methods that address variations in viewpoint either depend on a) extraction of gait features which are
invariant to change in view [26, 27, 28]; b) learning mappingor projection relationship between the gait characteristics
of one view to another based on view transformation [29, 30, 31]; and c) construction of a 3D model of a subject from
2D images captured from different views using multiple calibrated cameras [32].

The method in [26] which employs a probabilistic sub-gait interpersonal model to analyse sub-gaits, i.e., different
parts of a silhouette, uses Bayesian networks. In addition to variations in view, it is also robust to missing body
parts. The method in [27] determines the motion of a subject’s lower limb based on anatomical positions of hip,
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shin and ankle for view-invariant gait recognition using a viewpoint rectification approach. However, the ankle of a
subject is most likely to be occluded by the presence of shadows under feet. Since it is impossible to estimate the
positions of hip and shin in the case of a subject either wearing a skirt or a long coat, and carrying an item in upright
position, the method is also not robust against variations in clothing and carrying conditions. The method in [30]
uses joint subspace learning technique to learn a subject’sprototype of different views, and represents the subject as
a linear combination of these prototypes for view-invariant gait feature extraction. The method in [32] represents the
3D pose of a subject by using a tree structure of human skeleton, where the joints are denoted as the nodes of the
tree. The gait of a subject is simulated by a stick model. The method combines static gait characteristics obtained
by anthropometric measurements of different body parts with the dynamic gait characteristics obtained by analysing
the joint angle trajectories of lower limbs for identifyinga subject based on linear time normalisation technique. In
addition to variation in view, the method is also robust to self-occlusions and change in ground surface.

A few methods address variations in walking speed effectively. The method in [33] computes shape variation-
based frieze pattern (SVB frieze) of the difference frames obtained by subtracting the key frames, e.g.,double support
stance frames from the series of subsequent frames of a gait period. The method in [34] replaces the centroid-
based shape configuration of traditional Procrustes shape analysis with high-order shape configuration to take into
account of dynamic gait characteristics. The method introduces a differential composition model for increased inter
subject discriminability and uses Procrustes distance foridentifying a subject. The dynamics normalisation based gait
recognition (DNGR) method in [13] normalises gait dynamicsusing population hidden Markov model whose states
represent specific gait stances over a gait period, and gait recognition is achieved by estimating the distances between
two normalised gait signatures in linear discriminant analysis space so as to maximise intra-class discrimination of
subjects. DNGR uses an eigenstance reconstruction model tosmooth silhouettes and achieves invariance to walking
speed and changes in ground surface. The speed-invariant gait recognition method based on Procrustes shape analysis
(SI-PSA) [35] uses Procrustes shape analysis based on high-order derivative shape configuration. The method using
silhouette transformation based on walking speed (ST-WS) [36] separates static and dynamic features by fitting a
human model and uses a factorization-based transformationmodel to transform the dynamic features from a reference
speed to a target speed. The speed-invariant method in [37] uses the features extracted by Fisher discriminant analysis
based cubic high-order local auto-correlation of the gait sequences to train a hidden Markov model.

Different approaches have been used to address variations in carrying condition. The method based on spatio-
temporal motion characteristics, statistical and physical parameters (STM-SPP) [23] analyses the shape of a silhouette
contour using Procrustes shape analysis at the double support phase and elliptic Fourier descriptors (EFDs) at ten
phases of a gait period. A part-based EFD analysis is used to address shape distortion due to carrying conditions.
The method in [9] uses models to obtain skeleton parameters by wavelet decomposition of a gait energy image (GEI)
and invariant moments for combining anatomical and behavioural characteristics of gait. Thermal imaging is used to
extract silhouettes that are invariant to carrying conditions and lighting variations. An iterative local curve embedding
algorithm is used in [38] to extract double helical signatures.

A significant drop in recognition performance on the well-known public datasets, i.e., HumanID gait challenge
dataset, MIT dataset, is reported in methods such as [15] when time covariate is encountered. However, there was
no restriction on the subjects’ clothing in any of these experiments. Therefore, the method in [39] analysed the effect
of elapsed time on gait recognition in the absence of other covariates including clothing variations and concluded
that gait successfully meets the criterion of a biometrics for reliably identifying a human subject at a distance over
a considerable time interval. Based on experimental analysis, the method concluded that variation in clothing is the
most challenging factor for model-free gait recognition methods.

The discriminability of a subject decreases due to shape distortions caused by clothing variations over different
days. Therefore, the method in [40] uses an adaptive mechanism for combining part-based features to achieve robust-
ness against clothing variations. The method in [19] uses radial integration transform, circular integration transform
and weighted Krawtchouk with genetic algorithm (RCK-G). Itassigns depth information captured by a calibrated
stereo camera to binary silhouettes using 3-dimensional (3D) radial silhouette distribution transform and 3D geodesic
silhouette distribution transform. Genetic algorithm fuses the 2-dimensional (2D) and 3D features extracted by radial
integration transform, circular integration transform and weighted Krawtchouk moments. RCK-G is robust to very
limited clothing variations, but not insensitive to carrying conditions.

The methods in [4, 10, 11, 16, 20, 21, 22, 41, 42] achieve limited invariance to a few covariate factors for improved
identification rate. The method in [10] uses appearance and dynamic traits of gait by analysing parameters of ellipses
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fitted to seven regions of a subject’s silhouette, i.e., centroid, aspect ratio and elongation along with the subject’s height
for identification which is invariant to limited clothing variations and segmentation imperfections. The method in [11]
uses a full-body layered deformable model to analyse the widths, lengths, positions and orientations of ten parts of
the subject for manually labelled and automatically extracted silhouettes. The method addresses self-occlusions, and
the incorporation of upper body dynamics in addition to limbs enables the method to achieve robust identification in
the presence of variations in footwear, clothing, ground surface and time.

The performance of a gait recognition method deteriorates if: a) the captured gait sequences are of very low
resolution either due to the low resolution of the camera or large distance between the subject and the camera; and
b) the inter-subject discriminative information is reduced due to the projection of gait sequences onto nonoptimal
low-dimensional subspace in order to reduce the dimensionsof the feature space. The method in [43] thus uses
superresolution with manifold sampling and backprojection to transform low resolution gait sequences into high
resolution, and incorporates nonparametric multilinear tensor-based dimensionality reduction technique for improved
identification rate.

The method in [4] captures spatio-temporal motion information of a gait period in a single GEI and the method in
[41] captures temporal information of a gait sequence in a single multichannel chrono gait image (CGI). The methods
GEI [4] and CGI [41] manually compute synthetic gait templates by employing a cutting and fitting scheme based
on anthropometry to take into account distortions of lower body part due to carrying a briefcase, and variations in
ground surface, clothes and footwear, but not distortions of upper body-part due to variations in clothing and carrying
condition. A GEI is noise-resilient, and its use enables a method to be computationally less expensive in terms of
time and space. The method CGI uses a gait period detection technique that is robust to shadows under feet and
carrying a briefcase. The method in [20] uses a set of local augmented Gabor features extracted from different scales
and orientations to characterise a GEI, and uses a new patch distribution feature for subject identification. A locality-
constrained group sparse representation is introduced to address the presence of different covariate factors, e.g., change
in ground surface and carrying a briefcase. The method in [42] enhances the dynamic information content of GEI by
computing gait entropy image for identifying a subject in unconstrained environment with limited variations in the
covariates over different days, but performs poorly in the presence of changes inviewpoint.

The method in [22] computes gait flow image (GFI) from binary silhouettes using optical flow field for identifying
a subject. The method based on general tensor discriminant analysis and Gabor features (GTDA-GF) [21] uses the
following image representations for feature extraction: sum of Gabor filter responses over directions; sum of Gabor
filter responses over scales; and sum of Gabor filter responses over scales and directions. The methods GFI [22] and
GTDA-GF [21] outperform the method GEI for the cases of carrying a briefcase, variations in viewpoint and footwear
of the HumanID gait challenge data set. The method in [44] considers gait sequences as a third-order tensor to
introduce a gait representation called EigenTensorGait followed by application of linear discriminant analysis for gait
recognition using multilinear principal component analysis based tensor object recognition framework. The method
is robust against limited variations in viewpoint and footwear of the subjects. The method in [6] uses prediction-based
hierarchical active shape model (ASM) and Kalman filtering to achieve invariance to illumination variations, shadows
and considerable occlusions.

While the trend of the state-of-the-art gait recognition methods is to address only one or a few covariate factors,
STS-DM first attempts to identify a subject in presence of a wide range of challenging factors with low computa-
tional complexity for practical deployment. It fuses the local and global gait characteristics obtained by analysing
static shape and dynamic motion of silhouette contours to address the maximum number of covariate factors so as to
achieve combined invariance to carrying conditions, walking speed, shadows under feet, limited variations in clothing,
segmentation noise, changes in ground surface, missing body parts and occlusions. Like the method in [24], STS-
DM also characterises a subject’s shape using FDs but introduces a novel component-based FD analysis to achieve
invariance to all common types of small carrying conditions. STM-SPP [23] and the method in [18] only analyse
the static shape characteristics of a subject, but STS-DM analyses the local and global dynamic motion characteris-
tics with a consideration of arm-swing in addition to staticshape characteristics to achieve robustness against more
across-day gait variations. Since the upper body dynamics also play a significant role in gait recognition [11], similar
to the method in [10] STS-DM uses the orientation angle, aspect ratio, area and eccentricity of the ellipses fitted to
five segments of a subject’s silhouette contour to analyse the shape and motion characteristics of the entire body in
addition to local dynamic gait analysis by ARPoLK. The advantage of contour-based ellipse-fitting over region-based
ellipse-fitting as in [10] is low computational complexity.Following the attempt in [5] which combines static and dy-
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Table 1: Acronyms used in the paper.

Acronym Description
ARPoLK angular rotation pattern of leading knee
ASM active shape model based gait recognition in [6]
BDHM Bhattacharyya Distance Histogram Matching
CCR Correct Classification Rate
CASIA Silhouette analysis-based gait recognition in [18]
CMU silhouette-based human identification from body shape and gait in [55]
CMU1 gait recognition based on shape estimation in [57]
CGI chrono gait image based gait recognition in [41]
DNGR dynamics normalisation based gait recognition method in [13]
DTW Dynamic Time Warping
EFD, FD Elliptic Fourier Descriptor, Fourier Descriptor
GTDA-GF general tensor discriminant analysis and Gabor features based gait recognition in [21]
GEI gait energy image based gait recognition in [4]
GFI gait flow image based gait recognition in [22]
MMFA gait recognition using matrix-based marginal Fisher analysis in [14]
PWMS Phase Weighted Magnitude Spectra
Rf-ROI reference Region-of-Interest
RCK-G radial integration transform, circular integration transform and weighted Krawtchouk

moments with genetic algorithm based gait recognition in [19]
STM-SPP spatio-temporal motion characteristics, statistical andphysical parameters based method in [23]
SI-PSA speed-invariant gait recognition method based on Procrustes shape analysis in [35]
ST-WS silhouette transformation based walking speed invariant gait recognition in [36]
SSM shape sequence matching based method in [17]
SVB frieze gait recognition using shape variation-based frieze pattern in [33]
SSP image self-similarity plot based gait recognition in [16]
Tr-ROI target Region-of-Interest

namic gait signatures, STS-DM uses weight-based sum rule ofscore-level fusion to fuse the match scores obtained by
different classifiers for subject identification. To demonstrate the efficacy of STS-DM in terms of robustness against
most of the challenging factors that affect existing gait recognition systems, it is compared with several related state-
of-the-art gait recognition methods which are referred to by their acronym for brevity. Table 1 lists the acronyms of
these methods as well as the other acronyms used in the paper.

3. STS-DM

STS-DM comprises three modules as shown in Fig. 1. Module 1 extracts and postprocesses silhouette contours.
Module 2 extracts gait features in three phases. Phase 1 analyses spatio-temporal changes of a subject’s shape based
on PWMS of FDs of the silhouette contours to generate a match score. Phase 2 performs full-body shape and motion
analysis, and compares probe and gallery gait signatures byBDHM. Phase 3 uses DTW to measure similarity between
ARPoLKs of the probe and gallery subjects. The match scores generated in three phases are fused using weight-based
score-level fusion in module 3 for subject identification.

3.1. Module 1: Extract and postprocess silhouette contours

The performance of a contour-based method can be substantially enhanced if the contours are extracted from
high quality silhouettes, i.e., silhouettes without shadows, missing body parts and parts of the background [45].
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Figure 1: Overview of STS-DM.

Figure 2: Ten phases of a gait period (a)-(k) of a subject fromCMU MoBo data set: stance phase (a)-(f); and swing
phase (g)-(j).

Thus, the silhouettes from the data sets used to evaluate theperformance of STS-DM are improved using eigenstance
reconstruction model [13, 45]. The silhouette is then subjected to vertices traversal algorithm based on connectivity
[46] to extract its extreme outer boundary, i.e., contour. To remove camera depth variations, the image is cropped
according to the perimeter of the bounding rectangle enclosing the contour and resized to a fixed height while retaining
the aspect ratio (i.e., ratio of silhouette width to its height) using bilinear interpolation. The retainment of aspectratio
ensures the maintenance of the proportional relationship between the width and height of a silhouette to preserve
actual silhouette shape characteristics, which is a very important factor in shape based subject classification. The
resized contour is then copied to a destination image of fixedsize by coinciding its centre-of-mass with the centre of
the destination image to make it translation invariant.

3.2. Phase 1 of Module 2: Analyse shape using FDs

A gait period begins with the heel strike of either foot and ends with the subsequent heel strike of the same foot.
It consists of two steps, where a step is the time period between successive heel strikes of opposite feet. In a gait
period, each foot transits between two phases: a stance phase and a swing phase, where when one foot is in stance
phase (i.e., in contact with the ground) the other foot is in swing phase, as illustrated in Fig. 2. The stance phase
begins with initial contact of heel of the foot making a forward movement (i.e., the forward foot) with the ground and
ends with the toe lifting of the same foot from the ground. It consists of: initial contact when heel of the forward foot
touches the ground; double support stance when both feet arealmost flat on the ground and farthest from each other;
mid-stance when the forward foot is initially positioned flat on the ground, carrying the body weight; and propulsion
which begins with the heel lifting of the foot until prior to its toe off the ground indicating the termination of stance
phase and start of swing phase.

During the swing phase, the foot does not remain in contact with the ground and the phase comprises: pre-swing
which begins with heel of the forward foot off the ground and continues until maximum knee flexion; mid-swing,
i.e., from maximum knee flexion to when the tibia is vertical to the ground; and ending swing, i.e., from vertical
position of the tibia to just prior the forward foot makes initial contact with the ground. Similar to the method in [15],
a gait period is determined by the number of frames between two frames of a gait sequence with the most foreground
pixels enclosed in the region bounded by bottom of the bounding rectangle and the anatomical position of just before
the subject’s hand measured from the bottom (i.e., 0.377H whereH is height of the bounding rectangle) because
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Figure 3: Anatomical positions of shoulder, hip, wrist and hand as a fraction of the subject’s height are denoted by
horizontal lines on a lateral-view of a walking subject’s contour.

this foreground region, i.e., the bottom segment of the bounding rectangle is not distorted by self-occlusions due to
arm-swing (see Fig. 3). The anatomical positions are determined when the subject is standing erect and at rest, with
feet together and arms at the side, and the head and the palms of the hands facing forward. In Fig. 3, horizontal lines
are used to denote the anatomical positions of shoulder, hip, wrist and hand as the fractions of a subject’s height,
i.e., 0.818H, 0.530H, 0.485H and 0.337H, respectively, measured from the bottom of the bounding rectangle [47].
Note that these positions, which are based on anthropometry, might slightly deviate from the actual positions of the
shoulder, hip, wrist and hand of a subject especially when the subject is performing an activity, e.g., walking as
illustrated in Fig. 3.

The Krawtchouk moments of order (n + m) of a N × M silhouette with intensity functionf (x, y) are computed
using the sets of weighted Krawtchouk polynomialsKn(x; p,N) andKm(x; p,M) as [19, 48]

Qnm =

N−1
∑

x=0

M−1
∑

y=0

Kn(x; p1,N − 1).Km(y; p2,M − 1). f (x, y), (1)

wheren = 0, 1, ...,N andm = 0, 1, 2, ...,M. The set of weighted Krawtchouk polynomials, i.e.,Kn(x; p,N) is defined
as

K̄n(x; p,N) = Kn(x; p,N)

√

w(x; p,N)
ρ(n; p,N)

,where p ∈ (0, 1), (2)

and

ρ(n; p,N) = (−1)n
(

1− p
p

)n n!
(−N)n

. (3)

Krawtchouk moments have better image reconstruction capability than the Zernike and Hu moments in both noisy and
noise-free conditions, and the orthogonal property of weighted Krawtchouk moments ensures the minimal information
redundancy [19, 48]. The scale and rotation dependency of Krawtchouk transform do not affect the extracted features
as STS-DM considers only lateral views of silhouettes to achieve rotation invariance, and the silhouettes are pre-scaled
and centre-aligned to achieve scale invariance. The Krawtchouk moments are also useful when dealing with partially
distorted frames of a gait period, as they have the ability toextract local features from any Region-of-Interest (ROI)
of an image by varying the parametersN andM.

The silhouettes of the ten phases in Fig. 2(a)-(j) are manually extracted. The bottom segment of the bounding
rectangle is set as the reference Region-of-Interest (Rf-ROI) and the same silhouette segments of all frames of a
subject’s gait period are each referred to as a target Region-of-Interest (Tr-ROI). Unlike STM-SPP [23] which uses
contour matching based on Hu moments for the detection of tenphases, STS-DM computes weighted Krawtchouk
moments of each of the Rf-ROIs and Tr-ROIs using Eq.(1) by suitably choosing the values ofN (say,c) andM (say
d) (such that they respectively denote the width and height ofthe bottom segment of the bounding rectangle) of order
(c+d) usingp = 0.5.

To obtain the ten phases of a gait period of any gait sequence automatically, the Rf-ROIs are compared with the
target Region-of-Interest (Tr-ROI)) using silhouette comparison based on weighted Krawtchouk moments to obtain
similarity scores [46]

S score =
[

(Rf-ROIknm − Tr-ROIknm)2
]

1
2
, (4)
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q) (r)

Figure 4: Reconstruction of contours using different number of FDs for subject 1(row 1) and subject 2 (row 2) from
CMU MoBo data set: (a) and (j) Original contours with 28 points. Reconstructed contours using: (b) and (k) 24 FDs;
(c) and (l) 25 FDs; (d) and (m) 26 FDs; (e) and (n) 27 FDs. Magnitude spectra of the contours with: (f) and (o) 24 FDs;
(g) and (p) 25 FDs; (h) and (q) 26 FDs; (i) and (r) 27 FDs.

where Rf-ROIknm and Tr-ROIknm respectively denote the (c+d) order weighted Krawtchouk moments of the Rf-ROI
and Tr-ROI. The frame whose Tr-ROI results in the lowestS score with the corresponding Rf-ROI is extracted as one
of the ten phases, and the process continues by comparing thenext Rf-ROI with the remaining Tr-ROIs until all ten
phases are obtained.

The discrete Fourier transform of a contour results in a set of complex numbers, i.e., FDs which represent the
shape of the contour in the frequency domain. FDs can be used to reconstruct the shape of the contour and are thus
useful boundary shape descriptors for object recognition.Since the low-frequency (i.e., low-order) FDs contain global
shape characteristics and the higher frequency (i.e., higher order) FDs increasingly contain finer shape details, a subset
of FDs substantiates the discrimination between different shapes. Hence, we characterise a subject’s contour using
FDs to take into account of spatio-temporal change in the subject’s shape over a gait period.

The silhouette contour points are traversed anticlockwiseand each point with coordinates (x, y) is represented by
a complex numberc(t) = x(t) + jy(t), wheret = 0,1,2,...,T − 1 andT is the number of contour points. The FDs are

a(u) =
1
T

T−1
∑

t=0

c(t)e−i2πux/T , for u = 0, 1, 2, ..., T − 1, (5)

whereu is frequency variable. The original contour is restored by its inverse discrete Fourier transform, i.e.,

c(t) =
T−1
∑

u=0

a(u)ei2πux/T , for t = 0, 1, 2, ..., T − 1. (6)

To ensure that all ten contours of a gait period are represented by a similar set of equal number of points, each contour
is approximated byT = 28, i.e., 256 points using interpolation based on point correspondence analysis [24].

The magnitude and phase of FDs are respectively

|a| = [R2
a(u) + I2

a(u)]2 and φ(a) = tan−1

[

Ia(u)
Ra(u)

]

, (7)

whereRa(u) andIa(u) are the real and imaginary components ofa(u), respectively. The dynamic range of the magni-
tude spectrum is compressed using log operation and the resulting spectrum is translated to the centre of the Fourier
plane to enhance its display in Fig. 4(e)-(g).

Fig. 4(b)-(e) respectively show the reconstruction of contours using 24, 25, 26 and 27 FDs of subject 1’s original
contour in Fig. 4(a), and Fig. 4(k)-(n) respectively show the reconstruction of contours using 24, 25, 26 and 27 FDs
of subject 2’s original contour in Fig. 4(j). Note that the use of just a few low-frequency FDs, e.g., 24 FDs results
in very similar contours without any inter-subject discriminatory shape characteristics. However, as the number of
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 5: Row 1: (a)-(d) upper segments, and (e)-(h) lower segments of four subjects from CMU MoBo data set to
exclude the ball. Row 2: (i)-(l) upper segments, and (m)-(p)lower segments of four subjects from CASIA gait data
set B to exclude the backpack.

FDs increases, the contour gradually regains its original shape characteristics, and hence discriminability between
different subjects also increases. Since global shape information is preserved in the low-frequency FDs, the use of the
first half of the FDs for reconstruction results in the reconstructed contour which is almost the same as the original.
We thus use an ideal lowpass filter to retain the firstT/2, i.e., 27 FDs as they contain adequate subject-specific shape
characteristics, while removing the higher-frequency FDswhich contain the finer shape details. Their removal reduces
flickering noise at the contour and smoothes contours from clothing curvatures. It also reduces the number of contour
points to process.

The magnitude spectrum is multiplied by the corresponding phase to generate PWMS, the first gait signature.
With initial contact (Fig. 2(a)) as the first phase of a gait period, PWMS provides the greatest variability between
subjects, as it conveys additional information about temporal deformation of the sequence of shapes together with its
frequency contents [49]. PWMS are represented as ao × k matrix, whereo represent the ten phases andk = T/2, i.e.,
128. LetA andB be two such matrices for a gallery and a probe gait sequences,respectively. The dissimilarity score
between them is

dPWMS =

∑o
i=1

∑k
j=1(Ai, j − Bi, j)2

∑k
j=1(

∑o
i=1(Ai, j −mean(A j))2)

, (8)

whereA j is jth column vector ofA, and mean(.) computes the average of the column vectors ofA. The range of dPWMS

is [0,1], the smaller the value the more similar are the two shapes. We obtain dissimilarity scores by comparing the
sequence of a probe subject with each sequence of the gallerysubjects for a gait period, and the average dissimilarity
score is used for classification.

When either a gallery or a probe subject carries an item, certain parts of the silhouette are altered and the discrim-
inability of the gait recognition algorithm decreases withrespect to the affected parts of the silhouette. Therefore, we
introduce a component-based FD analysis based on anatomical studies of human body to make STS-DM robust to
carrying conditions. If a subject carries a small item with folded arms or a backpack, the shape of the silhouette above
the anatomical position of shoulder, i.e., 0.182H, and below the anatomical position of wrist, i.e., 0.515H, measured
from top of the bounding rectangle are not affected. The validity of this assumption is experimentally verified on
the CMU MoBo data set for the subjects carrying a ball with folded arms and on CASIA gait data set B [50] for the
subjects carrying a backpack. Thus, carrying a backpack or asmall item with folded arms by a subject can be detected
by analysing the difference in the number of contour points enclosed in the regionbounded by the top of bounding
rectangle and the anatomical position of wrist. It is experimentally shown that the upper segment of the silhouette
enclosed between 0.225H from top of the bounding rectangle, and the lower segment enclosed between 0.500H and
bottom of the bounding rectangle are not affected by the presence of a ball for all twenty four subjects walking with
ball in the CMU MoBo data set (Fig. 5(a)-(h)). Thus for component-based FD analysis, the shape of a silhouette is
segmented into an upper segment spanning from top of the bounding rectangle up to the shoulder, and a lower segment
spanning from the anatomical position of wrist to bottom of the bounding rectangle. The average of the dissimilarity
scores of these components is used for subject classification.

The shape of a silhouette above the wrist is not altered when the subject’s hand carries a small bag. According
to anthropometry, the position of the wrist is estimated to be 0.485H [47] measured from bottom of the bounding
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rectangle. Thus, an analysis of silhouettes enclosed in theregion (1-0.485H), i.e., 0.515H, measured from the top
of the bounding rectangle using FDs, remove the shape variations due to carrying briefcase among the gallery and
probe sequences. Analysing the leg region, i.e., betweenaH andbH (wherea = 0.750 andb =0.9375 [51]), removes
the effect of shape distortion due to the presence of a briefcase andshadows under feet. Thus, STS-DM detects the
presence of a small bag by examining the difference in the number of contour points enclosed in the regionbetween
0.515H and 0.750H. A substantial increase in the number of contour points (e.g., for USF data set an increase of at
least twenty points of non approximated contour and for the same phase of a gait period between gallery and probe
sequences) confirms the presence of a briefcase.

It is to be noted that the method in [38] analyses symmetry changes in double helical signatures at the limb region
to take into account of shape distortion due to a specific carrying condition, e.g., a briefcase by an upright subject. The
use of synthetic gait templates in GEI and CGI, manually computed by simulating distortions in the lower body part
of the silhouettes, enables these methods to achieve invariance to the distortions in the lower part of the body, but not
in the upper part, e.g., due to carrying conditions with folded arms. The component-based FD analysis in STS-DM
and part-based EFD analysis in STM-SPP [23] both rely on anatomical studies of human body to achieve invariance
to carrying conditions. However, STM-SPP takes into account of carrying conditions either with folded arms or in
upright position, but does not consider subjects carrying abackpack. Hence, STS-DM provides the most in-depth
analysis of invariance to carrying condition by taking intoaccount of all common types of small items carried by a
subject on the back, with folded ams and also in upright position.

3.3. Phase 2 of Module 2: Analyse full-body shape and motion

Undoubtedly, lower body dynamics capture the most distinguishable gait characteristics, but consideration of
shape and motion characteristics of upper body enhances it.Therefore, the shape and motion characteristics of the
full-body contour is analysed by parts at ten phases of a gaitperiod for extracting global gait signatures. To take
into account of change in appearance of different parts of a contour due to walking, the contour is divided into four
regions with each region fitted with an ellipse. An ellipse ispreferred to a circle and a rectangle as it has more useful
parameters to describe shape characteristics (i.e., aspect ratio, area and eccentricity) and motion characteristics(i.e.,
orientation angle, the angle of the semi-major axis of the ellipse measured anti-clockwise from the positive horizontal
axis). Also, ellipse fitting approach is robust to limited distortions at the contour due to poor segmentation, and enables
STS-DM to take into account of subject-specific characteristics, i.e, fat vs slim and long hair vs bald.

The heightH of the bounding rectangle enclosing a silhouette contour isused as the subject’s height. Following
anatomical studies of the human body [47], the vertical positions of shoulder, hip and knee measured from the bottom
of the bounding rectangle are estimated respectively to be 0.818H, 0.530H and 0.285H. The bounding rectangle is
then subdivided into the following four regions (as shown inFig. 6(a)) by drawing horizontal lines at the anatomical
positions of shoulder, hip and knee joints: uppermost region enclosing head and neck; region enclosed between shoul-
der and hip; region enclosed between hip and knee; and bottommost region enclosing the legs. The bottommost region
is subdivided by a vertical line into two regions, each enclosing one leg. The vertical line if extended, passes through
the centre-of-mass of the contour. The process is illustrated in Fig. 6(a)-(b), where centre-of-mass is abbreviated as
COM. The 2D Cartesian moment of orderu andv of a contourI(x, y) is

mu,v =

T
∑

i=1

I(x, y)xuyv. (9)

The centre-of-mass of the silhouette contour, (xc, yc), is given byxc =
m10
m00

andyc =
m01
m00

[52].
The contour points enclosing each of the five regions representing a body part are best fitted by an ellipse using

a non-linear least squares technique as illustrated in Fig.6(c)-(d). The following four parameters of each of the fifty
ellipses for the ten phases form the gait signature: aspect ratio; area; eccentricity; and orientation angle.

We compute twenty 1D histograms, each representing the distribution of one parameter of one ellipse (i.e., one
segmented region) for ten phases of a gait period. The histograms are normalised to [0,1] as shown in Fig. 7. The nor-
malised histograms of the probe gait sequences (Hist-pn, n=1,..., 20) are compared with the corresponding histograms
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(a) (b) (c) (d)

Figure 6: (a)-(b) Partitioning a subject’s contour into fivesegments (COM denotes centre-of-mass); (c)-(d) ellipses
fitted to each of the five segments.
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Figure 7: The histogram matrix with each column representing histograms of ellipse parameters (orientation angle,
area, eccentricity and aspect ratio), each for ten phases, corresponding respectively from top to bottom to the following
regions: head-shoulder, shoulder-hip, hip-knee, right leg and left leg.

of the gallery sequences (Hist-gn) using Bhattacharyya distance metric to obtain the dissimilarity score [46]

dn(Hist-pn,Hist-gn) =















1−
B

∑

i

√

Hist-pn(i).Hist-gn(i)
√
∑

i Hist-pn(i).
∑

i Hist-gn(i)















1
2

, (10)

whereB is the number of bins in each histogram. The second gait signature is the average dissimilarity score

dBDHM =
1
20

20
∑

n=1

dn. (11)

The range of dBDHM is [0,1], and the low values of dBDHM indicate good matches. Hence, ideally a probe subject
would result in the lowest dBDHM for its correct match in the gallery.

3.4. Phase 3 of Module 2: Analyse ARPoLK

We analyse ARPoLK to take into account of a subject’s lower body dynamics which is robust to the problems
associated with self-occlusions. Pointsh andk in Fig. 8 respectively correspond to where horizontal linesdrawn
across the bounding rectangle at heights of 0.530H (denoting hip position) and 0.285H (denoting knee position),
measured from bottom of the bounding rectangle, meet with the contour facing the direction of walking. The angle
of the leading kneeθLK (i.e., q in Fig. 8) is subtended by the horizontal line throughh and the line joiningh and
k. Measuring this angle over a gait period gives ARPoLK. The main motivation in using ARPoLK analysis is its
ability to capture lower body gait dynamics which remain unaffected by self-occlusion, i.e., occlusion of one knee
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(a) (b) (c) (d) (e) (f)

Figure 8: Illustration of ARPoLK: (a)-(b) subject 1 at two different phases of a gait period of two different sequences
with different hair style and shoe type on different days; (c)-(d) subject 2 with and without shadows underfeet in two
different gait sequences; and (e)-(f) subject 3 with higher arm-swing.

by another. ARPoLK analysis always takes into account of only the leading knee, i.e., the knee which is at the front
in the direction of walking, and does not consider the other knee which might be occluded by the leading knee at
times during walking. Fig. 8(b) and (e) demonstrate the successful ARPoLK analysis in the case of an occluded knee
by the leading knee. ARPoLK analysis is also invariant to across-day gait variations that affect the subject’s shape
above the hip and below the knee, e.g., change of hair style and shadows under feet, and takes into account of limited
changes in clothing style, such as pant vs skirt or shorts across different days, but not subtle style change like tight vs
loose clothing. Fig. 8(a)-(b) illustrate that ARPoLK analysis remains unaffected by change of hair style and footwear
including the use of high heels, while Fig. 8(c)-(d) illustrate similar values ofθLK for the same subject’s silhouette
with and without shadows under feet. ARPoLK analysis is alsoinvariant to carrying of small items with folded arms
as long as the subject’s hip is not occluded.

Most but not all gait recognition methods that consider dynamic gait characteristics only focus on the motion of
lower limb region, but ignore arm-swing although it is an unavoidable and integral part of gait. In normal walking, the
contralateral arm is automatically swung forward with the swinging lower limb at a rate proportional to the walking
speed, and different subjects have varying arm swings. Therefore, arm-swing is integrally related to the motion
of lower limbs, and contributes to inter-subject discrimination. The method in [7] uses linear Hough transform to
model arm-swing as a pendulum motion. But arm-swing can be arguably modelled as a pendulum motion because
it is considerably influenced by neuromuscular forces. Although the method uses hip and shin angles to constrain
the Hough space, it models the limb motion and arm-swing separately, and therefore, does not consider the integral
relationship between them. The method in [19] indirectly addresses the integral relationship between arm-swing and
motion of lower limb in gait by holistic image analysis. STS-DM also considers this integral relationship by analysing
the lower limb motion in conjunction with the arm-swing using ARPoLK analysis. ARPoLK analysis implicitly
addresses the effects of arm-swing as evident from Fig. 8(e)-(f). However, the effect of arm-swing is not considered in
ARPoLK analysis if the hands of a subject are engaged due to carrying conditions either with folded arms or in upright
position. Hence, the subject identification performance ofARPoLK analysis is significantly affected if a subject has a
higher arm-swing as in Fig. 8(f) in a gallery sequence but his/her hands are engaged by carrying conditions in a probe
sequence, and vice versa.

Fig. 9 shows the discrete signals obtained by ARPoLK analysis of two different gait sequences corresponding
to subject 1 (Fig. 8(a)-(b)) and subject 2 (Fig. 8(c)-(d)). The discrete signals are formed by plotting the different
values ofθLK for a gait period againstN equally spaced monotonically increasing values, whereN is the number of
frames in a gait period. The signals are normalised in the range [0,1] by dividing eachθLK with the maximum value
of θLK to remove spatial scale variations for different subjects for uniform comparison. It is evident from Fig. 9 that
discrete signals representing ARPoLK of two different gait sequences of the same subject resemble each other, while
different subjects have quite dissimilar signals. Thus it is verified that ARPoLK analysis has a very good inter-subject
discriminability in the presence of across-day gait variations and shadows under feet.

Different subjects have different walking speeds which result in varying number of frames in their gait period.
Depending on the subject’s state of mind, the number of frames in a gait period of the same subject also varies due
to the walking speed variations in different situations. Therefore, we use DTW to account for such variations in
classifying a probe subject based on its similarity of ARPoLK with that of a gallery subject over a gait period. DTW
uses dynamic programming to compute a warping function thatoptimally aligns two time-dependent sequences of
varying lengths for measuring similarity. Letag = θLKg1, θLKg2, ...., θLKgm and ap = θLKp1, θLKp2, ...., θLKpn be the
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Figure 9: The discrete signals representing the ARPoLK for agait period of each subject: subject 1 and subject 2.

discrete signals representing ARPoLK for gait periods of lengths (i.e., number of frames of the gait period)m ∈ N
andn ∈ N, respectively of a gallery and a probe subject, whereθLKgi andθLKp j are angles of the leading knee. DTW
constructs anm×n matrix whose each element corresponds to the Euclidean distanced(θLKgi, θLKp j) = (θLKgi−θLKp j)2.

An m × n warping path is a sequencep = (p1, p2, ..., pL) with pl = (θLKgml , θLKpnl ) ∈ [1 : m] × [1 : n] for
l ∈ [1 : L] and max(m, n) ≤ L < (m + n), for mapping two sequencesag andap which satisfies the followings: (a)
boundary condition:p1 = (1, 1) andpL = (m, n); (b) monotonicity condition:θLKgm1 ≤ θLKgm2 ≤ .... ≤ θLKgmL and
θLKpn1 ≤ θLKpn2 ≤ .... ≤ θLKpnL ; and (c) step size condition:pl+1 − pl ∈ (1, 0), (0, 1), (1, 1) for l ∈ [1 : L − 1]. DTW
minimises the cost of warpingag andap together to form the third gait signature,

dDTW = min















(
∑L

l=1 pl)
1
2

L















. (12)

3.5. Module 3: Identify subject

Each of the gallery and probe gait sequences respectively with Ng andNp frames is partitioned into consecutive
subsequences with gallery gait period (Gg) and probe gait period (Gp). The distance metric between thekth probe gait
period and a gallery sequence for match scoreS , whereS is either dPWMS, dBDHM or dDTW, is

DistS (k) = min
i

(S ), (13)

wherei = 1,2,...,ng andng = Ng/Gg is the number of gallery gait periods in a gallery sequence. The median of the
distances

DS = median(DistS (1),DistS (2), .....,DistS (mp)), (14)

is considered as the match score between the probe sequence and gallery sequence to be used in the score-level fusion
for subject identification, wheremp = Np/Gp is the number of probe gait periods in a probe sequence.

Unlike STM-SPP, which uses a rank-based classifier combination rule to combine the classification results by
Procrustes shape analysis and EFDs for identifying a subject, STS-DM uses score-level fusion to fuse the match
scores obtained by the PWMS, BDHM and DTW. Since score-levelfusion combines the match scores obtained by
different classifiers, it is more informative than rank-level fusion. Rank-level fusion is also computationally more
expensive and suffers from the drawback of a tie in ranking, which requires further processing to get resolved, e.g.,
STM-SPP uses Hu moments to resolve a tie in ranking. However,score-level fusion requires the inhomogenous
scores obtained by different classifiers to be transformed into a common numerical range before being compared
using score normalisation technique. The linear score normalisation techniques, e.g., min-max normalisation and z-
score normalisation have similar computational complexities, but z-score normalisation is preferred in STS-DM as it
is less sensitive to outliers than min-max normalisation. Although non-linear score normalisation techniques based on
double sigmoid function and hyperbolic tangent are more robust to outliers, they introduce complexity due to the use
of many parameters, and the performance of these techniquesare highly dependent on the chosen parameter values.
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Hence, to make a trade-off between the performance and computation complexity, STS-DM obtains z-scores of each
of the three match score sets using

Zclassi f ier =
dclassi f ier − µclassi f ier

σclassi f ier
, (15)

whereµ is mean of the set of scores, d is the individual score,σ is standard deviation, andclassi f ier is either PWMS,
BDHM or DTW. The threeclassi f iers do not perform equally well as evident from Fig. 11 (see Section 4.1 for CMC
curve) which shows that PWMS is the best feature, while BDHM is the worst. A weight-based sum rule of score-level
fusion [53] is thus used in STS-DM for improved identification rate where the weights are determined based on the
contribution of each componentclassi f ier to the final subject identification. The fused score is thus obtained using

S f =
IPWMS× ZPWMS+ IBDHM × ZBDHM + IDTW × ZDTW

IPWMS+ IBDHM + IDTW
, (16)

where IPWMS, IBDHM and IDTW are the weights that respectively correspond to the CCR (seeSection 4.1 for CCR)
obtained using the match scores dPWMS, dBDHM and dDTW for a particular testing condition. The probe subject is
identified based on the lowestS f it measures with the member of a gallery class.

4. Experiments

Since the aim of STS-DM is to demonstrate its combined robustness against most of the challenging factors of gait
recognition, it is extensively compared with several related methods that individually address one or more covariate
factors. Therefore, to make uniform comparison with several related methods, STS-DM is evaluated using different
experimental setup based on the reported available resultsof those methods on two public data sets: CMU Motion of
Body (MoBo) data set and USF HumanID gait challenge data set.

4.1. Experiments on CMU MoBo data set

CMU Motion of Body (MoBo) data set [54] comprises gait sequences of 25 subjects performing four types of
walk: slow walk (walking speed: 2.06 mph); fast walk (walking speed: 2.82 mph); walk holding a ball (walking
speed: 2.04 mph); and walk on an inclined plane of a treadmill(walking speed: 1.96 mph). Each sequence is of
approximately 11 seconds duration and is recorded at 30 frames per second from six different views. The sequences
were captured on a same day using six high resolution calibrated cameras evenly distributed around the treadmill.

A closed-set identification guarantees the existence of thesubject in the database. We analyse the closed set
identification performance of STS-DM on the profile view silhouettes of MoBo data set by taking one subject as the
probe sample and train it on all the subjects of the data set including the probe sample. The percentage of correct
classification rate is

CCR(%)= sc/st ∗ 100, (17)

wheresc and st are respectively the number of correctly identified subjects and the total number of subjects in the
data set. The identification is best interpreted by a cumulative match characteristic (CMC) curve which shows CCR
at different ranks. Since the smaller the values of the match scoresthe more similar are the two subjects, the CCR at
rankr implies that the probability of correct match is among the lowestr match scores.

We use 3D scatter plots as shown in Fig. 10 to show the distribution of match scores (plotted along the vertical
axis) obtained by PWMS, DTW, BDHM and the fused classifier as aresult of comparing each of the fast walking probe
subjects (plotted along the horizontal right axis) with all25 slow walking gallery subjects (plotted along the horizontal
left axis) of CMU MoBo data set. Note that theith probe subject along the horizontal right axis corresponds to its
matching gallery subjecti along the horizontal left axis, wherei=1,2,3,...,25. The match scores obtained by comparing
one probe with all the gallery subjects are represented by circles of the same sizes in the plots, while different circle
sizes are used for different probe subjects. Since ideally a probe subject will result in the lowest match score for its
matching gallery subject, very few circles are present in the bottom horizontal planes. A probe subject will generate
higher match scores for all the non-matching gallery subjects, which explains why the circles of different sizes are
cluttered around the higher horizontal planes of the plots.

14



0
5

10
15

20
25

0
5

10
15

20
25

0

0.5

1

 Fast walking
probe subjects

 Slow walking
gallery subjects

M
at

ch
 s

co
re

s 
us

in
g 

P
W

M
S

(a)

0
5

10
15

20
25

0
5

10
15

20
25

0

0.5

1

 Fast walking
probe subjects

Slow walking
gallery subjects

M
at

ch
 s

co
re

s 
us

in
g 

D
T

W

(b)

0
5

10
15

20
25

0
5

10
15

20
25

0

0.5

1

 Fast walking
probe subjects

Slow walking
gallery subjects

M
at

ch
 s

co
re

s 
us

in
g 

B
D

H
M

(c)

0
5

10
15

20
25

0
5

10
15

20
25

0

0.5

1

 Fast walking
probe subjects

Slow walking 
gallery subjects

F
us

ed
 m

at
ch

 s
co

re
s

(d)

Figure 10: Distribution of match scores obtained by (a) PWMS, (b) DTW, (c) BDHM and (d) fused classifier for fast
walk vs slow walk of lateral-view silhouettes of CMU MoBo data set.

Note that the number of probe subjects that results in the lowest match scores for their matching gallery subjects
using PWMS, DTW, BDHM and fused classifier are respectively 23, 22, 21 and 24 for fast walk vs slow walk. Hence,
the rank-1 CCR for PWMS, DTW, BDHM and fused classifier are respectively 23/25*100, i.e., 92%, 22/25*100,
i.e., 88%, 21/25*100, i.e., 84% and 24/25*100, i.e., 96% which are verified in Fig. 11(a), where Fig.11 shows the
CMC curves of CCR obtained using PWMS, DTW and BDHM for three different walking conditions of CMU MoBo
data set, namely fast walk vs slow walk, slow walk vs fast walk, and fast walk vs walking with ball. It is clear that
the performance of STS-DM is the best for fast walk vs slow walk using individual classifiers as well as the fused
classifier. The rank 1 CCR of PWMS, DTW and BDHM are respectively 92%, 88% and 84% for fast walk vs slow
walk; 88%, 84% and 84% for slow walk vs fast walk; and 87%, 83% and 79% for fast walk vs walking with ball.
Since PWMS outperforms DTW and BDHM, it is shown that the shape of a subject provides better inter-subject
discriminative characteristics than its kinematics in thecase of very limited across-day gait variations. Fig. 11(d)
shows that CCR is significantly improved, i.e., 96%, 96% and 92% respectively for fast walk vs slow walk, slow walk
vs fast walk and fast walk vs walking with ball by fusing the results of individual classifiers using weight-based sum
rule of score-level fusion.

4.1.1. Comparisons
The performance of STS-DM on the lateral view of silhouettesof the CMU MoBo data set is compared with

shape sequence matching (SSM) based method in [17], SSP [16], STM-SPP [23] and SVB frieze [33]. Table 2 shows
that the shape based approach in SSM using stance correlation for the subjects walking parallel to the image plane
is robust to variations in walking speed, but its performance degrades significantly when the shape of the silhouettes
change due to different activities (e.g., fast walk vs walking with ball). Since part-based shape analysis using EFDs
and component-based shape analysis using FDs respectivelyaid STM-SPP and STS-DM to achieve invariance to
carrying small items, they significantly outperform SSM andSVB frieze. The superiority of STS-DM over STM-SPP
is attributed to the analyses of dynamic motion characteristics of silhouettes using ellipses fitted to various body parts
and ARPoLK that enable it to achieve robustness against limited variations in clothing.
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Figure 11: CMC curves of classification rates obtained usingPWMS, BDHM and DTW of the lateral-view silhouettes
from CMU MoBo data set for (a) fast walk vs slow walk; (b) slow walk vs fast walk; and (c) fast walk vs walking with
ball. (d): CMC curves of combined classification rates of (a)-(c) using weight-based sum rule of score-level fusion.

Table 2: Top-rank identification rates (in percentage) on CMU MoBo data set with the rates of SSM from [17],
Baseline from [15], CMU from [55], SSP from [16], STM-SPP from [23] and SVB frieze from [33] for the lateral
view. Keys: ‘G’ - Gallery sequence; ‘P’ - Probe sequence; ‘S’- Slow walk; ‘F’ - Fast walk; ‘B’ - Walk with ball.

G/P SSM Baseline CMU SSP STM-SPP SVB frieze STS-DM
[17] [15] [55] [16] [23] [33]

S/S 100 92 100 100 100 100
F/F 100 - 100 100 100 100
B/B 92 - - 100 100 100
S/F 80 72 76 54 94 82 96
F/S 84 - 32 91 80 96
S/B 48 88 92 - 93 77 92
B/S 68 - - 82 89 92
F/B 48 - - 84 61 92
B/F 48 - - 82 73 87
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Figure 12: Comparison with related works. Baseline [15], CMU, DNGR [13] and STS-DM are evaluated on CMU
MoBo gait data set (experiment 2 of CMU) with walking speed variation of 3.3 km/h and 4.5 km/h, while ST-WS [36]
and SI-PSA [35] are evaluated on OU-ISIR treadmill gait dataset A [56] with walking speed variation of 3 km/h and
4 km/h between gallery and probe gait sequences.

The method in [16] computes image self-similarity plot (SSP), i.e., correlation of corresponding pairs of images in
two gait sequences of a subject. To make uniform comparison with SSP which is robust to segmentation noise, STS-
DM also uses split-sample cross validation technique like SSP, where gallery and probe sets correspond to different
combination of walking types for each of the twenty-five subjects. Since STS-DM is defined only on profile view
of the silhouettes, we consider profile view of two sequencesper subject (total 50 sequences) walking at slow pace
(2.06 miles/h) and fast pace (2.82 miles/h). Table 2 shows that the performance of SSP for profile view degrades
significantly when the probe and gallery samples differ in walking speed. STS-DM outperforms SSP by analysing
shape and motion characteristics of ten phases of a gait period and using DTW for ARPoLK analysis so as to overcome
the effects of walking speed variations.

To demonstrate robustness against speed variations by comparative experimental analysis with the related speed-
invariant methods, STS-DM is evaluated using the experiment 2 defined by the method silhouette-based human identi-
fication from body shape and gait (CMU) in [55] as it enables evaluation of a gait recognition method across different
speeds. The rank 1 identification rates of STS-DM, speed-invariant method DNGR, CMU [55] and Baseline [15] are
respectively 96%, 84%, 76% and 72% (see Fig. 12) for the slow (3.3km/h) vs fast (4.5km/h) walking gait sequences
of the profile view silhouettes of CMU MoBo data set, where therates of DNGR, CMU and Baseline are based on
experiment 2 of CMU entitled “Across gaits condition”. Since speed variation in this experiment is almost 1km/h, we
compare STS-DM with speed-invariant methods ST-WS [36] andSI-PSA [35], that are evaluated on OU-ISIR tread-
mill gait data set A [56] with walking speed variation of 3 km/h and 4 km/h between gallery and probe gait sequences.
It is clear from Fig. 12 that STS-DM outperforms all other methods, and provides equal rank 1 identification rate as
SI-PSA.

4.2. Experiments on USF HumanID gait challenge data set

STS-DM is evaluated on both the small version (452 sequencesfrom 74 subjects, data acquired in May only)
and the full version (1870 sequences from 122 subjects, dataacquired in May and November) of USF HumanID gait
challenge data set [15]. The data set comprises sequences ofsubjects walking along elliptical paths in an outdoor
environment in front of two cameras with the following five covariates: walking surface (grass (G) or concrete (C));
shoe type (A or B); viewpoint (right (R) or left (L)); carrying conditions (carrying a briefcase (BF) or not carrying
a briefcase (NB)); and elapsed time between the acquisitionof the sequences (May (M) or November (N)). Twelve
experiments of increasing difficulty are designed as shown in Table 3 and Table 4 to investigate the robustness of a gait
recognition method against the five covariates. The gait sequences are captured at 30 fps, and the spatial resolution
of each silhouette is 128× 88. The thirty three subjects that are common in the May and November data sets account
for time covariate. There are no common sequences between the gallery and the probe sets, and all subjects did not
participate in all experiments [4, 15].

4.2.1. Comparisons
Table 3 shows the results on the full version of USF data set interms of identification rate (PI) at ranks 1 and

5, to enable a comparison with the state-of-the-art methods, i.e., GTDA-GF [21], GEI [4], RCK-G [19], GFI [22],
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Table 3: Identification rates (in percentage) on full version of USF HumanID gait challenge data set using the gallery
set (G, A, R, NB, M/N) of 122 subjects. The rates for GTDA-GF, GEI, RCK-G, GFI, CGI, STM-SPP, DNGR and
MMFA are from [21], [4], [19], [22], [41], [23], [13] and [14], respectively. Keys for covariates: V - view; H - shoe;
S - surface; B - briefcase; T - time; and C - clothes.

Exp[Covariate] Identification Rate (PI)%
GTDA-GF(GEI) RCK-G(GFI) CGI(STM-SPP) DNGR(MMFA) STS-DM
Rank1 Rank5 Rank1 Rank5 Rank1 Rank5 Rank1 Rank5 Rank1 Rank5

A [ V] 91(90) 98(94) 83(89) 96(98) 91(92) 97(96) 85(89) 96(98) 93 97
B [H] 93(91) 99(94) 86(93) 94(94) 93(95) 96(98) 89(94) 94(98) 96 98
C [V, H] 86(81) 97(93) 78(70) 88(93) 78(84) 94(95) 72(80) 89(94) 86 96
D [S] 32(56) 68(78) 39(19) 66(40) 51(72) 77(80) 57(44) 85(76) 70 82
E [S, H] 47(64) 68(81) 34(23) 63(47) 53(68) 77(84) 66(47) 81(76) 69 83
F [S, V] 21(25) 50(56) 20(7) 51(26) 35(29) 56(59) 46(25) 68(57) 39 61
G [S, H, V] 32(36) 56(53) 21(8) 46 (25) 38(40) 58(61) 41(33) 69(60) 37 60
H [B] 95(64) 95(90) 43(78) 66(94) 84(69) 98(92) 83(85) 96(95) 78 95
I [B, H] 90(60) 99(83) 40(67) 68(85) 78(60) 97(84) 79(83) 95(93) 71 89
J [B, V] 68(60) 84(82) 40(48) 65(74) 64(64) 86(85) 52(60) 79(84) 66 83
K [T, H, C] 16(6) 40(27) 16(3) 44(24) 3(20) 27(30) 15(27) 46(48) 27 39
L [S, T, H, C] 19(15) 40(21) 5(9) 22(24) 9(18) 24(27) 24(21) 39(39) 22 28
XI 61(58) 78(76) 44(46) 67(64) 62(63) 79(79) 63(60) 82(80) 67 80

CGI [41], STM-SPP [23], DNGR [13] and MMFA [14]. The method using matrix-based marginal Fisher analysis
(MMFA) in [14] applies marginal Fisher analysis on GEIs for gait representation to reduce the dimensionality of
the feature space and extends marginal Fisher analysis to marginal based analysis for content-based image retrieval.
Table 4 shows the results on the full version of USF data set interms of verification rate (the probability that the
method successfully detects the correct match between the probe and gallery sequences, i.e.,PV ) at false alarm rates
(the probability that the method incorrectly classifies a probe sequence to a nonmatching gallery sequence) 1% and
10% for Baseline, DNGR and STS-DM. Since the number of probe subjects in the gait challenge experiments varies,
we compute the weighted average identification rate (XI) and the weighted average verification rate (XV) [20], i.e.,

XI =

∑g
i=1 wixi

∑g
i=1 wi

, XV =

∑g
i=1 wixv

∑g
i=1 wi

, (18)

whereg denotes the number of challenge experiments whose values are respectively 12 (i.e., Exp. A-L) and 7 (i.e.,
Exp. A-G) for the full and small versions of HumanID gait challenge data set.xi andxv are respectively the identifi-
cation and verification rates (in percentage) for theith challenge experiment, andwi is the number of probe subjects
participating in that experiment.

The identification rates achieved by GEI for the twelve challenge experiments after combining the real and syn-
thetic gait features are presented in Table 3. GTDA-GF reports the identification rates obtained by applying GTDA as
a preprocessing step of linear discriminant analysis on themagnitude of the result of convolving a GEI with sum of
Gabor functions over scales with direction fixed. The rates of GFI in Table 3 are based on direct matching of gallery
and probe sequences using an exemplar GFI for reducing computational complexity. Table 3 shows that STS-DM out-
performs all other methods for experiment A with a variationin view, and performs reasonably better than GTDA-GF,
GEI, RCK-G, GFI, CGI and STM-SPP for experiments K and L with avariation in clothing. However, STS-DM is
outperformed by GTDA-GF, CGI, DNGR and MMFA for the gait challenge experiments H and I. This is because AR-
PoLK analysis with a consideration of subject’s arm-swing is particularly affected by the briefcase carrying condition
as it prevents normal arm-swing and distorts the shape of a silhouette between hip and knee. Since the gait challenge
experiments H and I take into account of briefcase covariate, the performance of STS-DM is degraded in these exper-
iments. The aim of STS-DM is to achieve combined invariance to most of the challenging factors of gait recognition
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Table 4: Verification rates at a false alarm rate (PF) of 1% and 10% for Baseline from [15], DNGR from [13], STM-
SPP from [23] and STS-DM on full version of USF HumanID gait challenge data set using the gallery set (G, A, R,
NB, M/N) of 122 subjects. Keys for covariates: V - view; H - shoe; S - surface; B - briefcase; T - time; and C -
clothes.

Exp. Covariate Verification Rate (PV )% at
Baseline DNGR STM-SPP STS-DM
PF :1(10)% PF :1(10)% PF :1(10)% PF :1(10)%

A V 82(94) 93(98) 88(100) 94(100)
B H 87(94) 94(98) 94(100) 97(100)
C V, H 65(94) 80(94) 86(98) 88(98)
D S 44(80) 68(96) 80(94) 79(94)
E S, H 35(76) 62(90) 74(84) 76(84)
F S, V 20(60) 53(86) 50(82) 66(82)
G S, H, V 28(55) 43(79) 52(76) 62(76)
H B 72(91) 91(99) 83(95) 85(95)
I B, H 67(85) 86(97) 76(93) 76(93)
J B, V 48(76) 58(92) 65(92) 68(92)
K T, H, C 6(24) 27(61) 21(58) 29(58)
L S, T, H, C 6(24) 24(46) 19(52) 25(52)
Weighted average verification rate (XV ) 51(76) 70(91) 70(89) 75(90)

with low computational complexity, and not to achieve the best identification rates for every gait challenge experiment
among the state-of-the-art gait recognition methods. The superiority of STS-DM to other methods in terms ofXI and
XV is demonstrated in Table 3 and Table 4. Table 3 shows that STS-DM achieves the highestXI at rank 1, followed
by DNGR, STM-SPP and CGI, and is only second to DNGR in terms ofXI at rank 5. It is clear from Table 4 that in
terms ofXV STS-DM outperforms other methods at the false alarm rate of 1%.

Table 5 shows the results on the small version of the data set (No-Briefcase data) to enable a comparison with
Baseline, silhouette analysis-based gait recognition (CASIA) in [18], gait recognition based on shape estimation
(CMU1) in [57], CMU [55], RCK-G [19], GEI [4], ASM [6] and STM-SPP [23]. We present the identification rates at
rank 1 of CMU1 obtained by weighted correlation similarity measure, and the identification rates of GEI obtained by
fusing real and synthetic gait templates. Table 5 shows thatSTS-DM achieves the second highestXI following ASM.
All methods listed in Table 5 except ASM use the silhouettes provided by the USF HumanID gait challenge data set
for uniform comparison. Since these silhouettes are significantly affected by strong shadows under feet (mainly due to
the subjects walking on a concrete surface as in the gait challenge experiments D, E, F and G) the methods that directly
use the silhouettes provided by the USF HumanID gait challenge data set do not provide satisfactory recognition rates
for these experiments. ASM employs hierarchical prediction-based ASM framework with Kalman filter to extract
the foreground which is unaffected by shadows, and analyses its model parameters for gaitrecognition. Hence, the
superiority of ASM for the gait challenge experiments D, E, Fand G is attributed to the use of shadow-free good
quality silhouettes for feature extraction. Also, the feature extraction and classification processes involved in ASM
are much more computationally expensive compared to STS-DM. Disregarding the performance of ASM, Table 5
shows that STS-DM outperforms all the methods for all the gait challenge experiments.

The performance of STS-DM for the twelve challenge experiments of the full version of USF HumanID gait
challenge data set is measured by identification mode and verification mode, using CMC and Receiver Operating
Characteristic (ROC) curves respectively, following [58]. Fig. 13(a) shows that the identification rates of STS-DM
range from 22% to 96% at rank 1, and 28% to 98% at rank 5. Fig. 13(b) shows that the verification rates of STS-DM
range from 25% to 97% at a false alarm rate of 1%, and 52% to 100%at a false alarm rate of 10%. Table 3 and Fig. 13
show that STS-DM is least affected by variation in shoe types, followed by about 30 degrees change in viewpoint.
However, time (i.e., when the data set was generated) has themost impact on the performance of STS-DM, as it

19



Table 5: Top-rank identification rates (in percentage) on the small version of USF HumanID gait challenge data set
(data acquired in May only) using the Gallery Set (G, A, R) of 71 subjects. The rates for Baseline, CASIA, CMU1,
CMU, RCK-G, GEI, ASM and STM-SPP are from [15], [18], [57], [57], [19], [4], [6] and [23], respectively. Keys for
covariates: V - view; H - shoe; S - surface; B - briefcase; T - time; and C - clothes. Unlike others, identification rates
with ‘∗’ are not based on silhouettes provided by USF HumanID gait challenge data set.

Probe Set A B C D E F G
Probe Size 71 41 41 66 42 66 42
Probe G,A,L G,B,R G,B,L C,A,R C,B,R C,A,L C,B,L
Covariate difference V H VH S SH SV SHV

Rank-1 Identification Rate (PI) % XI

Baseline [15] 87 81 54 39 33 29 26 50.62
CASIA [18] 70.42 58.54 51.22 34.33 21.43 27.27 14.29 40.83
CMU1 [57] 85 81 60 23 17 25 21 44.93
CMU [55] 87 81 66 21 19 27 23 46.44
RCK-G [19] 97 89 83 41 34 30 28 57.53
GEI [4] 100 90 85 47 57 32 31 62.83
ASM [6] 97* 95* 91* 92* 86* 85* 78* 89.66
STM-SPP [23] 100 94 89 73 69 40 36 71.74
STS-DM 100 98 91 76 70 47 42 74.99

implies variations in clothing and footwear of the same subject.

4.3. Effect of missing frames

Occlusions in the scene, large shadows under feet and extreme lighting variations can severely distort the extracted
contours. If these distorted contours are not part of any of the ten phases of a gait period, they do not affect the
classifications using FDs and ellipsoidal fits. If the distortion causes any frame of the ten phases to be missing, its
immediate adjacent frame is considered. ARPoLK analysis isnot affected if the portion of the contour enclosed in
the region between hip and knee remain undistorted. It is also not affected by any missing or discarded frame due
to excessive distortions resulting in different lengths of gait sequences. This is because the use of DTW in ARPoLK
analysis enables detection of similarity between two sequences of varying lengths. Hence, STS-DM is robust to
severely distorted and missing frames.

To support the claim that STS-DM is robust to missing frames by experimental results, we create probe gait
sequences of shorter lengths from CMU MoBo data set by discarding frames at a specified interval in order to stimulate
a situation where probe frames are missing. In Fig. 14, the rank-1 CCR is plotted along vertical axis, while the
horizontal axis shows the intervals of missing frames in terms of number of frames, i.e., 6 at the horizontal axis
denotes that every 7th frame is missing from the entire probesequence. Fig. 14(a)-(c) respectively show the effect
of missing frames on rank 1 CCR of STS-DM using fused classifier, PWMS, DTW and BDHM for three testing
conditions of CMU MoBo data set, namely fast walk vs slow walk, slow walk vs fast walk and fast walk vs walking
with ball. It is evident from the three plots that the rank 1 CCR of STS-DM is not affected for at least every 8th
frame is missing from the probe sequence for any of the component classifiers and the fused classifier for three testing
conditions. Note that DTW is less robust against missing frames than PWMS and BDHM.

4.4. Computational complexity

The computational time of STS-DM is measured using the computer system clock and OpenCV 2.1 in Microsoft
Visual Studio 2008 Express Edition environment on an Intel (R) Core (TM) i7 processor working at 2.93 GHz with 4
GB RAM running Windows 7 operating system. For the silhouettes of the full version of USF HumanID gait challenge
data set, the processing time for comparing all ten Rf-ROIs one at a time with the tr-ROIs for extracting ten phases of a
gait period based on the lowestS score using weighted Krawtchouk moments is 5 sec. The processing time to compute
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Figure 13: Performance on twelve challenge experiments of USF data set. (a) Identification mode (CMC) and (b)
Verification mode (ROC). Keys: ’⊲’- Exp. A (Probe: G, A, L, NB, M/N); ’^’- Exp. B (Probe: G, B, R, NB, M/N);
’×’- Exp. C (Probe: G, B, L, NB, M/N); ’�’- Exp. D (Probe: C, A, R, NB, M/N); ’⋆’- Exp. E (Probe: C, B, R, NB,
M/N); ’•’- Exp. F (Probe: C, A, L, NB, M/N); ’△’- Exp. G (Probe: C, B, L, NB, M/N); ’∗’- Exp. H (Probe: G, A,
R, BF, M/N); ’◦’- Exp. I (Probe: G, B, R, BF, M/N); ’_’- Exp. J (Probe: G, A, L, BF, M/N); ’�’- Exp. K (Probe: G,
A/B, R, NB, N); and ’▽’- Exp. L (Probe: C, A/B, R, NB, N).
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Figure 14: Effects of missing frames on performance using PWMS, DTW, BDHM and fused classifier on CMU MoBo
data set: (a) fast walk vs slow walk; (b) slow walk vs fast walk; and (c) fast walk vs walking with ball. Keys: ’_’-
PWMS; ’�’- DTW; ’ ⊲’- BDHM; ’ •’- Fused Classifier.
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dPWMS, dBDHM and dDTW between a probe and a gallery subject is approximately 0.77 fps. Since the Baseline method
is characterised by unlimited spatio-temporal correlation of silhouettes, it has very high computational complexity.
The hierarchical prediction-based ASM framework with Kalman filter used in ASM to analyse static and dynamic gait
characteristics is also computationally very expensive. Unlike most gait recognition methods which process sequences
of silhouettes, the real-time method in [59] analyses the set of the largest rectangles fitted onto silhouettes over a gait
period spanning up to 25 frames to reduce the computational complexity. STS-DM further reduces this by analysing
the shape of contour instead of silhouette at the ten phases of a gait period in computing dPWMS and dBDHM. Since
ARPoLK analysis over a gait period uses a1D signal, it does not significantly increase computational complexity. It
takes about 5 sec/gait-period to obtain the ten phases by comparing small subregions of an image, i.e., Rf-ROIs with
Tr-ROIs, thus reducing time and space complexity.

The use of Cooley-Tukey Fast Fourier transform algorithm [60, 46] reduces the quadratic time complexity of
discrete Fourier transform and its inverse to O(T log T). dPWMS is obtained by analysing the low-frequency FDs of
the contour points to reduce the computational complexity.DTW has a quadratic time and space complexity, i.e.,
O(mn), wherem andn denote the length of the sequences being compared. However,it is used to compare short
sequences, as the number of constituent frames of a gait period usually range between 18-35. Since STS-DM uses a
simplified feature space, it does not require any dimensionality reduction technique like principal component analysis
and multiple discriminant analysis as in [4, 18]. Since sum rule of score-level fusion and z-score normalisation
only require subtraction by mean, division by standard deviation and summation of normalised scores, it has less
computational complexity, i.e., O(N), than the rank-basedclassifier combination rule which requires sorting score
of computational complexity O(N log N), where N is the gallery size, followed by post processing to resolve tie in
ranking.

5. Conclusion

Unlike existing systems which only address one or more challenging factors of gait recognition, STS-DM com-
bines spatio-temporal shape and dynamic motion characteristics of silhouette contours to identify a human subject in
the presence of most challenging factors of gait recognition with low computational complexity. It analyses the shape
of a subject by FDs at ten phases of a gait period and introduces a component-based FD analysis to achieve robustness
against shape distortion due to all common types of small carrying conditions with folded hands, at the subject’s back
and in upright position. ARPoLK analysis with consideration of the integral relationship between the motion of limbs
and arm-swing enables STS-DM to achieve robustness againstgait variations over different days, e.g., limited clothing
variations, hair style, shadows under feet and missing bodyparts. The similarity between the ARPoLK of two subjects
is measured using DTW to achieve invariance to walking speed. STS-DM uses BDHM to analyse the full-body shape
and motion characteristics by fitting ellipses to five different parts of the human body which is invariant to boundary
shape distortions due to segmentation imperfections and missing body parts. The match scores obtained by analysing
the local and global gait characteristics using the three feature extractors are combined using weight-based sum rule
of score-level fusion for subject identification.

STS-DM analyses the shape of contours, hence it is insensitive to colour and texture of subject’s clothing. The
feature space of STS-DM does not require any dimensionalityreduction. The excellent identification rates in the
presence of various challenging factors demonstrate the efficacy of STS-DM. Being a contour based method, STS-
DM has a low computational complexity, but it is sensitive tosegmentation imperfections, and its performance largely
depends on preprocessing. Also, STS-DM is designed for lateral views of gait sequences, thus future developments
are required to enable STS-DM to address unconstrained human movements especially in cluttered scenes.
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