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Abstract

This paper presents a three-phase gait recognition melladambalyses the spatio-temporal shape and dynamic mo-
tion (STS-DM) characteristics of a human subject’s sillitegeto identify the subject in the presence of most of the
challenging factors thatfect existing gait recognition systems. In phase 1, phasghter]l magnitude spectra of
the Fourier descriptor of the silhouette contours at tersphaf a gait period are used to analyse the spatio-temporal
changes of the subject’'s shape. A component-based Fowseridtor based on anatomical studies of human body
is used to achieve robustness against shape variationsdchysll common types of small carrying conditions with
folded hands, at the subject’s back and in upright positibonphase 2, a full-body shape and motion analysis is
performed by fitting ellipses to contour segments of ten phad a gait period and using a histogram matching with
Bhattacharyya distance of parameters of the ellipses agrdiarity scores. In phase 3, dynamic time warping is
used to analyse the angular rotation pattern of the subjiatding knee with a consideration of arm-swing over a
gait period to achieve identification that is invariant tdkig speed, limited clothing variations, hair style chaag
and shadows under feet. The match scores generated in deepghases are fused using weight-based score-level
fusion for robust identification in the presence of missing distorted frames, and occlusion in the scene. Exper-
imental analyses on various publicly available data setsvdhat STS-DM outperforms several state-of-the-art gait
recognition methods.

Keywords:
Gait, silhouette, Fourier descriptor, histogram matchéygpamic time warping, Krawtchouk moments.

1. Introduction

Numerous markerless gait recognition methods have demadv@dthat gait has flicient discriminatory power for
identifying a human subject from a distance using low retmhwideo sequences without interfering with the subgect’
activity when physiological biometrics, e.g., face, fing#mt and iris are not clearly visible [1, 2, 3]. However,
variations of the subject’s clothes, footwear and hairestigld complexity to gait recognition, and the subject’s ptals
and mental conditions, e.g., leg injury, drunkenness aagrancy, distort the walking pattern [2, 4]. Gait recogmiti
is also d@fected by occlusions in the scene, variations in viewpoidtaalking speed, shape distortions due to carrying
conditions, shadows under feet and change in ground surfagthermore, gait characteristics change with ageing.
Thus, a robust gait recognition method needs to analysenkeithanical gait characteristics via static and dynamic
pose changes of gaitas in [5, 6, 7].

Gait recognition methods can be classified into model-baseldnodel-free. Model-based methods (e.g., [7, 8,
9, 10, 11, 12]) characterise a subject by a structural mattleamotion model to mainly analyse dynamics of gait
[2]. The structural model represents the subject by a stipkd, ellipsoidal fits or a volumetric model based on the
proportions of the human body parts, and measures timengaggit parameters, e.g., gait period, stance width and
stride length for gait signatures. The motion model is usethiilyse kinematical and dynamical motion parameters of
the subject, e.g., rotation patterns of hip and thigh, jairgle trajectories and orientation change of limbs [2]. SEhe
methods can reliably deal with occlusions, and are invat@mscale changes, rotationdfects and slight variations
in viewpoint. However, they are characterised by complexa®and mapping processes. The model-free methods
(e.q., [4, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]) analiisespatio-temporal shape and motion characteristics
of a subject’s silhouettes without assuming any explicitdeioof the subject’s body. Although the inter-subject
discriminability of these methods are high, they are suiiolepto variations in viewpoints and the subject’s attire.

A gait period, i.e., the time interval between successiva beikes of the same limb, provides strong gait charac-
teristics in terms of deformation of the subject’s silhdaeethape and motion pattern. The popular shape descriptors
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used to analyse static shape characteristics are Prcesisipe analysis (e.g., [17, 18, 23]) and Fourier descsiptor
(FDs) (e.g., [24, 25]). Although spatio-temporal deforimatbof the subject’s shape in a gait sequence provides better
discriminative power than its kinematics, inclusion of dymical motion characteristics improves the identification
rate. Thus, we introduce a gait recognition method STS-DM ttombines the spatio-temporal shape (STS) fea-
tures of a subject’s silhouettes with the subject’s dynamition (DM) characteristics over a gait period using both
model-free and model-based approaches to achieve robastgainst the maximum number of challenging factors of
gait recognition when compared to state-of-the-art gaibgaition methods, namely robustness against small darrie
items, walking speed variations, shadows under feet,denitariations in clothing, segmentation noise, changes in
ground surface, missing body parts, self-occlusions astbded or missing frames due to presence of occluding
objects in the scene. STS-DM operates on the lateral (refilg) view of a subject since this view contains most of
the significant gait characteristics.

Most gait recognition methods do not consider the subjectis-swing and the self-occlusion caused by it. Thus,
STS-DM introduces a novel analysis of angular rotationgatof leading knee (ARPoLK) of silhouette contours for
subject identification in the presence of across-day variat e.g., clothing, footwear, hair style and ground sefa
with a consideration of the subject’'s arm-swing. STS-DMIgses the shape of the silhouette contours at ten phases
of a gait period via their low-pass filtered FDs to only rettirir global shape information. STS-DM uses ellipses
fitted to body segments at ten phases of a gait period fobfully shape and motion analysis which is invariant to
boundary shape distortions due to segmentation errors d@ging or distorted body parts. Contour shape analysis
at the ten phases that reveal most of the distinguishabfgesttzaracteristics also enables STS-DM to benefit from
speed-invariant shape sequence processing with reduoedssing time and achieve robustness against missing or
distorted frames due to occlusions. Since the dynamic matiaracteristics of gait manifest over a gait period more
than in discrete phases, ARPoLK analysis is performed ogaitgeriod.

The proposed STS-DM is thus motivated by the need for a gadigrEtion method that addresses a wide varieties
of challenging factors that limit the success of gait as abural biometrics to reliably identify a subject in priaed
situations. The novelties of STS-DM are: (a) ffextively combines static shape characteristics with tiealland
global dynamic gait characteristics to achieve robustagsinst the maximum number of challenging factors; (b)
it analyses the subject’'s shape by FDs, and uses phasetaeigiagnitude spectra (PWMS) to generate a match
score; (c) it introduces an experimentally supported ptaoefor detecting carried items and a component-based FD
analysis based on anatomical studies to achieve invari@nak common types of small carrying conditions, and
this level of invariance has not been addressed beforet ffydduces ARPoLK analysis which is invariant to self-
occlusions of the limbs of a walking subject, and hence aaptthe local dynamic gait signature vefligently; (e)
the use of ARPoLK analysis enables STS-DM to implicitly agdrsubject’s arm-swing, and the use of dynamic time
warping (DTW) to obtain a match score which is invariant tdkiveg speed; (f) it analyses the full-body shape and
motion characteristics based on ellipse-fitting to bodyrsegts and uses Bhattacharyya distance histogram matching
(BDHM) to obtain a match score; (g) the match scores obtainyeBWMS, DTW and BDHM are combined using
weighted sum rule of score level fusion for robust identtfma (h) the robustness of STS-DM against missing frames
is demonstrated; and (i) STS-DM provides competitive idieation rates with reduced computational complexity.

The rest of the paper is organized as follows. Section 2 dszsurelated work and Section 3 presents STS-DM.
Experimental results are analysed in Section 4 and Sectimm&8udes the paper.

2. Related Work

Various gait recognition methods analyse static shape gndrdic motion characteristics of gait sequences to
address variations in viewpoint, walking speed, carryiagdition and clothing, as well as other covariate factors,
e.g., segmentation noise, occlusions, low resolutionpngéa in ground surface and shadows under feet. The gait
recognition methods that address variations in viewpdthiee depend on a) extraction of gait features which are
invariantto change in view [26, 27, 28]; b) learning mapping@rojection relationship between the gait charactessti
of one view to another based on view transformation [29, 3]),&hd c) construction of a 3D model of a subject from
2D images captured fromfiiérent views using multiple calibrated cameras [32].

The method in [26] which employs a probabilistic sub-gatiéipersonal model to analyse sub-gaits, i.@fedent
parts of a silhouette, uses Bayesian networks. In additovatiations in view, it is also robust to missing body
parts. The method in [27] determines the motion of a sulgdotver limb based on anatomical positions of hip,
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shin and ankle for view-invariant gait recognition usingiepoint rectification approach. However, the ankle of a
subject is most likely to be occluded by the presence of shadmder feet. Since it is impossible to estimate the
positions of hip and shin in the case of a subject either wgaaiskirt or a long coat, and carrying an item in upright
position, the method is also not robust against variationdathing and carrying conditions. The method in [30]
uses joint subspace learning technique to learn a subjactetype of diferent views, and represents the subject as
a linear combination of these prototypes for view-invatrigait feature extraction. The method in [32] represents the
3D pose of a subject by using a tree structure of human skeletbere the joints are denoted as the nodes of the
tree. The gait of a subject is simulated by a stick model. Tl¢hod combines static gait characteristics obtained
by anthropometric measurements dfelient body parts with the dynamic gait characteristicsinbthby analysing
the joint angle trajectories of lower limbs for identifyimgsubject based on linear time normalisation technique. In
addition to variation in view, the method is also robust tih-eeclusions and change in ground surface.

A few methods address variations in walking speffdatively. The method in [33] computes shape variation-
based frieze pattern (SVB frieze) of théfdrence frames obtained by subtracting the key framesdeighble support
stance frames from the series of subsequent frames of a gg@didp The method in [34] replaces the centroid-
based shape configuration of traditional Procrustes shaglgsis with high-order shape configuration to take into
account of dynamic gait characteristics. The method iniced a dierential composition model for increased inter
subject discriminability and uses Procrustes distanciléontifying a subject. The dynamics normalisation based ga
recognition (DNGR) method in [13] normalises gait dynamising population hidden Markov model whose states
represent specific gait stances over a gait period, andegaignition is achieved by estimating the distances between
two normalised gait signatures in linear discriminant gsial space so as to maximise intra-class discrimination of
subjects. DNGR uses an eigenstance reconstruction modeidoth silhouettes and achieves invariance to walking
speed and changes in ground surface. The speed-invariareéganition method based on Procrustes shape analysis
(SI-PSA) [35] uses Procrustes shape analysis based orohigin-derivative shape configuration. The method using
silhouette transformation based on walking speed (ST-VB6) $eparates static and dynamic features by fitting a
human model and uses a factorization-based transfornratiolel to transform the dynamic features from a reference
speed to a target speed. The speed-invariant method in $8g]the features extracted by Fisher discriminant analysis
based cubic high-order local auto-correlation of the gagignces to train a hidden Markov model.

Different approaches have been used to address variationgyingarondition. The method based on spatio-
temporal motion characteristics, statistical and phygsiaeameters (STM-SPP) [23] analyses the shape of a silteouet
contour using Procrustes shape analysis at the double gygmese and elliptic Fourier descriptors (EFDs) at ten
phases of a gait period. A part-based EFD analysis is useddiess shape distortion due to carrying conditions.
The method in [9] uses models to obtain skeleton parameyarsbelet decomposition of a gait energy image (GEI)
and invariant moments for combining anatomical and behmaiacharacteristics of gait. Thermal imaging is used to
extract silhouettes that are invariant to carrying condgiand lighting variations. An iterative local curve emthied
algorithm is used in [38] to extract double helical signetur

A significant drop in recognition performance on the welblum public datasets, i.e., HumanID gait challenge
dataset, MIT dataset, is reported in methods such as [15hwihe covariate is encountered. However, there was
no restriction on the subjects’ clothing in any of these expents. Therefore, the method in [39] analysed tfiect
of elapsed time on gait recognition in the absence of otheartates including clothing variations and concluded
that gait successfully meets the criterion of a biometrarsréliably identifying a human subject at a distance over
a considerable time interval. Based on experimental aisalifee method concluded that variation in clothing is the
most challenging factor for model-free gait recognitiortioels.

The discriminability of a subject decreases due to shagertians caused by clothing variations oveftdient
days. Therefore, the method in [40] uses an adaptive mesindor combining part-based features to achieve robust-
ness against clothing variations. The method in [19] useéigkategration transform, circular integration transfo
and weighted Krawtchouk with genetic algorithm (RCK-G)a#signs depth information captured by a calibrated
stereo camera to binary silhouettes using 3-dimensiojlr@dial silhouette distribution transform and 3D geodesi
silhouette distribution transform. Genetic algorithmdsshe 2-dimensional (2D) and 3D features extracted bylradia
integration transform, circular integration transfornrdameighted Krawtchouk moments. RCK-G is robust to very
limited clothing variations, but not insensitive to carrgiconditions.

The methodsin [4, 10, 11, 16, 20, 21, 22, 41, 42] achievedichitvariance to a few covariate factors for improved
identification rate. The method in [10] uses appearance gndrdic traits of gait by analysing parameters of ellipses
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fitted to seven regions of a subject’s silhouette, i.e.,rcéhtaspect ratio and elongation along with the subjeetiglht

for identification which is invariant to limited clothing riations and segmentation imperfections. The method ih [11

uses a full-body layered deformable model to analyse théhajdengths, positions and orientations of ten parts of
the subject for manually labelled and automatically extrdsilhouettes. The method addresses self-occlusiods, an
the incorporation of upper body dynamics in addition to ls@mables the method to achieve robust identification in
the presence of variations in footwear, clothing, grountbse and time.

The performance of a gait recognition method deteriordtea)i the captured gait sequences are of very low
resolution either due to the low resolution of the cameraagyd distance between the subject and the camera; and
b) the inter-subject discriminative information is reddahue to the projection of gait sequences onto nonoptimal
low-dimensional subspace in order to reduce the dimensibrise feature space. The method in [43] thus uses
superresolution with manifold sampling and backprojectio transform low resolution gait sequences into high
resolution, and incorporates nonparametric multilineasor-based dimensionality reduction technique for imgdo
identification rate.

The method in [4] captures spatio-temporal motion infoiorabf a gait period in a single GEI and the method in
[41] captures temporal information of a gait sequence imglsimultichannel chrono gait image (CGl). The methods
GEI [4] and CGI [41] manually compute synthetic gait temesaby employing a cutting and fitting scheme based
on anthropometry to take into account distortions of lowedyopart due to carrying a briefcase, and variations in
ground surface, clothes and footwear, but not distortidngpper body-part due to variations in clothing and carrying
condition. A GEIl is noise-resilient, and its use enables ¢hotkto be computationally less expensive in terms of
time and space. The method CGI uses a gait period detectbnitpie that is robust to shadows under feet and
carrying a briefcase. The method in [20] uses a set of loagremted Gabor features extracted frorfiedent scales
and orientations to characterise a GEI, and uses a new piatdbution feature for subject identification. A locakty
constrained group sparse representation is introducettiress the presence ofi@irent covariate factors, e.g., change
in ground surface and carrying a briefcase. The method ihgdRances the dynamic information content of GEI by
computing gait entropy image for identifying a subject ircanstrained environment with limited variations in the
covariates over @lierent days, but performs poorly in the presence of changéswpoint.

The method in [22] computes gait flow image (GFI) from bindalyauettes using optical flow field for identifying
a subject. The method based on general tensor discriminahtsis and Gabor features (GTDA-GF) [21] uses the
following image representations for feature extractiaoimf Gabor filter responses over directions; sum of Gabor
filter responses over scales; and sum of Gabor filter respaez scales and directions. The methods GFI [22] and
GTDA-GF [21] outperform the method GEI for the cases of daigya briefcase, variations in viewpoint and footwear
of the HumanID gait challenge data set. The method in [44f@rs gait sequences as a third-order tensor to
introduce a gait representation called EigenTensorGlatfed by application of linear discriminant analysis faiig
recognition using multilinear principal component an&\sased tensor object recognition framework. The method
is robust against limited variations in viewpoint and foetw of the subjects. The method in [6] uses prediction-based
hierarchical active shape model (ASM) and Kalman filtermgc¢hieve invariance to illumination variations, shadows
and considerable occlusions.

While the trend of the state-of-the-art gait recognitiortmogls is to address only one or a few covariate factors,
STS-DM first attempts to identify a subject in presence of dewiange of challenging factors with low computa-
tional complexity for practical deployment. It fuses thedband global gait characteristics obtained by analysing
static shape and dynamic motion of silhouette contours dvesd the maximum number of covariate factors so as to
achieve combined invariance to carrying conditions, wajlspeed, shadows under feet, limited variations in clgthin
segmentation noise, changes in ground surface, missing ftis and occlusions. Like the method in [24], STS-
DM also characterises a subject’s shape using FDs but intesda novel component-based FD analysis to achieve
invariance to all common types of small carrying conditio®M-SPP [23] and the method in [18] only analyse
the static shape characteristics of a subject, but STS-Délses the local and global dynamic motion characteris-
tics with a consideration of arm-swing in addition to staiape characteristics to achieve robustness against more
across-day gait variations. Since the upper body dynartsogday a significant role in gait recognition [11], similar
to the method in [10] STS-DM uses the orientation angle, @sgdio, area and eccentricity of the ellipses fitted to
five segments of a subject’s silhouette contour to analyseliape and motion characteristics of the entire body in
addition to local dynamic gait analysis by ARPoLK. The adege of contour-based ellipse-fitting over region-based
ellipse-fitting as in [10] is low computational complexifollowing the attempt in [5] which combines static and dy-
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Table 1: Acronyms used in the paper.

Acronym | Description
ARPoOLK angular rotation pattern of leading knee

ASM active shape model based gait recognition in [6]

BDHM Bhattacharyya Distance Histogram Matching

CCR Correct Classification Rate

CASIA Silhouette analysis-based gait recognition in [18]

CmMuU silhouette-based human identification from body shape aitdrg[55]
CMU1 gait recognition based on shape estimation in [57]

CGl chrono gaitimage based gait recognition in [41]

DNGR dynamics normalisation based gait recognition method3j [1
DTW Dynamic Time Warping

EFD, FD Elliptic Fourier Descriptor, Fourier Descriptor
GTDA-GF | general tensor discriminant analysis and Gabor featurssdhgait recognition in [21]

GEl gait energy image based gait recognition in [4]

GFI gait flow image based gait recognition in [22]

MMFA gait recognition using matrix-based marginal Fisher asialin [14]

PWMS Phase Weighted Magnitude Spectra

Rf-ROI reference Region-of-Interest

RCK-G radial integration transform, circular integration trioren and weighted Krawtchouk

moments with genetic algorithm based gait recognition 8 [1
STM-SPP | spatio-temporal motion characteristics, statistical pimgsical parameters based method in [23]

SI-PSA speed-invariant gait recognition method based on Pragsisttape analysis in [35]
ST-WS silhouette transformation based walking speed invariaittrgcognition in [36]
SSM shape sequence matching based method in [17]

SVB frieze | gait recognition using shape variation-based frieze patte[33]

SSP image self-similarity plot based gait recognition in [16]

Tr-ROI target Region-of-Interest

namic gait signatures, STS-DM uses weight-based sum rdeasé-level fusion to fuse the match scores obtained by
different classifiers for subject identification. To demonstthé dficacy of STS-DM in terms of robustness against
most of the challenging factors thdfect existing gait recognition systems, it is compared wéthesal related state-
of-the-art gait recognition methods which are referredytdheir acronym for brevity. Table 1 lists the acronyms of
these methods as well as the other acronyms used in the paper.

3. STSDM

STS-DM comprises three modules as shown in Fig. 1. Modulerhets and postprocesses silhouette contours.
Module 2 extracts gait features in three phases. Phase Ysasalpatio-temporal changes of a subject’s shape based
on PWMS of FDs of the silhouette contours to generate a matmte sPhase 2 performs full-body shape and motion
analysis, and compares probe and gallery gait signaturB®biM. Phase 3 uses DTW to measure similarity between
ARPoLKs of the probe and gallery subjects. The match scarsmted in three phases are fused using weight-based
score-level fusion in module 3 for subject identification.

3.1. Module 1: Extract and postprocess silhouette contours

The performance of a contour-based method can be subéiiaetitnanced if the contours are extracted from
high quality silhouettes, i.e., silhouettes without shasiomissing body parts and parts of the background [45].
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Figure 1: Overview of STS-DM.
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Figure 2: Ten phases of a gait period (a)-(k) of a subject f@ivilJ MoBo data set: stance phase (a)-(f); and swing
phase (9)-()-

Thus, the silhouettes from the data sets used to evaluapetfamance of STS-DM are improved using eigenstance
reconstruction model [13, 45]. The silhouette is then sttbpbto vertices traversal algorithm based on connectivity
[46] to extract its extreme outer boundary, i.e., contow.rdmove camera depth variations, the image is cropped
according to the perimeter of the bounding rectangle eimgjdbe contour and resized to a fixed height while retaining
the aspect ratio (i.e., ratio of silhouette width to its n¢jgising bilinear interpolation. The retainment of aspatib
ensures the maintenance of the proportional relationstiywden the width and height of a silhouette to preserve
actual silhouette shape characteristics, which is a vepontant factor in shape based subject classification. The
resized contour is then copied to a destination image of fskegl by coinciding its centre-of-mass with the centre of
the destination image to make it translation invariant.

3.2. Phase 1 of Module 2: Analyse shape using FDs

A gait period begins with the heel strike of either foot and&with the subsequent heel strike of the same foot.
It consists of two steps, where a step is the time period lestveeiccessive heel strikes of opposite feet. In a gait
period, each foot transits between two phases: a stance phdsa swing phase, where when one foot is in stance
phase (i.e., in contact with the ground) the other foot isvimg phase, as illustrated in Fig. 2. The stance phase
begins with initial contact of heel of the foot making a fordanovement (i.e., the forward foot) with the ground and
ends with the toe lifting of the same foot from the ground.dsists of: initial contact when heel of the forward foot
touches the ground; double support stance when both featrawst flat on the ground and farthest from each other;
mid-stance when the forward foot is initially positioned fia the ground, carrying the body weight; and propulsion
which begins with the heel lifting of the foot until prior ttsitoe df the ground indicating the termination of stance
phase and start of swing phase.

During the swing phase, the foot does not remain in contatt thie ground and the phase comprises: pre-swing
which begins with heel of the forward footfahe ground and continues until maximum knee flexion; midagwi
i.e., from maximum knee flexion to when the tibia is vertiaalthe ground; and ending swing, i.e., from vertical
position of the tibia to just prior the forward foot makedtiali contact with the ground. Similar to the method in [15],
a gait period is determined by the number of frames betweerrames of a gait sequence with the most foreground
pixels enclosed in the region bounded by bottom of the baowgdictangle and the anatomical position of just before
the subject’s hand measured from the bottom (i.e., GBWhereH is height of the bounding rectangle) because
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this foreground region, i.e., the bottom segment of the bdwgrectangle is not distorted by self-occlusions due to
arm-swing (see Fig. 3). The anatomical positions are déteuinwvhen the subject is standing erect and at rest, with
feet together and arms at the side, and the head and the pitihestands facing forward. In Fig. 3, horizontal lines
are used to denote the anatomical positions of shoulderwhipt and hand as the fractions of a subject’s height,
i.e., 0.81&, 0.53H, 0.48H and 0.33H, respectively, measured from the bottom of the boundintarege [47].
Note that these positions, which are based on anthroponmeigit slightly deviate from the actual positions of the
shoulder, hip, wrist and hand of a subject especially whenstibject is performing an activity, e.g., walking as
illustrated in Fig. 3.

The Krawtchouk moments of orden ¢ m) of a N x M silhouette with intensity functiori(x, y) are computed
using the sets of weighted Krawtchouk polynomiglgx; p, N) andK(x; p, M) as [19, 48]

N-1M-1

Qun= > > Ka(x p1,N = 1)Kun(y; p2. M = 1).F(x,y), 1)

x=0 y=0

wheren =0,1,..,Nandm=0,1,2, ..., M. The set of weighted Krawtchouk polynomials, i}x(x; p, N) is defined
as

=0 _ . w(x; p,N)
Kn(X; p, N) = Kn(X; p, N) m,where p € (0,1), (2)
and L N |
. _ n -p n:
o0 p.N) = (1) (T) — )

Krawtchouk moments have better image reconstruction ¢ifgaban the Zernike and Hu moments in both noisy and
noise-free conditions, and the orthogonal property of Wieid Krawtchouk moments ensures the minimal information
redundancy [19, 48]. The scale and rotation dependencyafit¢houk transform do nofti@ct the extracted features
as STS-DM considers only lateral views of silhouettes tagearotation invariance, and the silhouettes are presdcal
and centre-aligned to achieve scale invariance. The Kirawlc moments are also useful when dealing with partially
distorted frames of a gait period, as they have the abilitgxtoact local features from any Region-of-Interest (ROI)
of an image by varying the paramet&sandM.

The silhouettes of the ten phases in Fig. 2(a)-(j) are m&neatracted. The bottom segment of the bounding
rectangle is set as the reference Region-of-Interest (R}-RAnd the same silhouette segments of all frames of a
subject’s gait period are each referred to as a target Regfidmterest (Tr-ROI). Unlike STM-SPP [23] which uses
contour matching based on Hu moments for the detection opl@ses, STS-DM computes weighted Krawtchouk
moments of each of the Rf-ROIs and Tr-ROIs using Eq.(1) biably choosing the values &f (say,c) andM (say
d) (such that they respectively denote the width and heigtit@bottom segment of the bounding rectangle) of order
(c+d) usingp = 0.5.

To obtain the ten phases of a gait period of any gait sequartoenatically, the Rf-ROIs are compared with the
target Region-of-Interest (Tr-ROI)) using silhouette garison based on weighted Krawtchouk moments to obtain
similarity scores [46]

Ssore = | (Rf-ROl,, — Tr-RO,.)?|* , (4)
7
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Figure 4: Reconstruction of contours usingfelient number of FDs for subject 1(row 1) and subject 2 (row@nf
CMU MoBo data set: (a) and (j) Original contours with @ints. Reconstructed contours using: (b) and (kfRs;
(c) and () 2 FDs; (d) and (m) 2FDs; (e) and (n) 2FDs. Magnitude spectra of the contours with: (f) and (bfFRs;
(9) and (p) 2 FDs; (h) and (q) 2FDs; (i) and (r) 2 FDs.

(0) P (@ ®

where Rf-RO\,, and Tr-ROL_, respectively denote the{d) order weighted Krawtchouk moments of the Rf-ROI
and Tr-ROI. The frame whose Tr-ROI results in the low®gt, with the corresponding Rf-ROI is extracted as one
of the ten phases, and the process continues by comparimgxtt&f-ROI with the remaining Tr-ROls until all ten
phases are obtained.

The discrete Fourier transform of a contour results in a sebmplex numbers, i.e., FDs which represent the
shape of the contour in the frequency domain. FDs can be oseatonstruct the shape of the contour and are thus
useful boundary shape descriptors for object recognitamce the low-frequency (i.e., low-order) FDs contain gliob
shape characteristics and the higher frequency (i.e.ehigtider) FDs increasingly contain finer shape details, aetub
of FDs substantiates the discrimination betwedfedént shapes. Hence, we characterise a subject’s contogr us
FDs to take into account of spatio-temporal change in thgestib shape over a gait period.

The silhouette contour points are traversed anticlockaigkeach point with coordinates, §) is represented by
a complex numbee(t) = x(t) + jy(t), wheret = 0,1,2,...T — 1 andT is the number of contour points. The FDs are

T-1
1 .
a(u) = = Z c(t)e>W™T  for u=0,1,2,..,T-1, (5)
t=0

whereu is frequency variable. The original contour is restoredtbyriverse discrete Fourier transform, i.e.,

T-1
c(t) = Z auwe™T  for t=0,1,2,..T-1 (6)
u=0

To ensure that all ten contours of a gait period are repreddat a similar set of equal number of points, each contour
is approximated by = 28, i.e., 256 points using interpolation based on point cpwesence analysis [24].
The magnitude and phase of FDs are respectively

jal = [R(u) + 13(W)]? and ¢(a) = tarr™

)

la(u) ]
Ra(u) |°

whereR,(u) andl,(u) are the real and imaginary componentsgf), respectively. The dynamic range of the magni-
tude spectrum is compressed using log operation and thiingsspectrum is translated to the centre of the Fourier
plane to enhance its display in Fig. 4(e)-(g).

Fig. 4(b)-(e) respectively show the reconstruction of oans using 2, 2°, 2% and 2 FDs of subject 1's original
contour in Fig. 4(a), and Fig. 4(k)-(n) respectively show teconstruction of contours using, 2°, 2° and 2 FDs
of subject 2's original contour in Fig. 4(j). Note that thesusf just a few low-frequency FDs, e.g} EDs results
in very similar contours without any inter-subject disciriatory shape characteristics. However, as the number of
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Figure 5: Row 1: (a)-(d) upper segments, and (e)-(h) lowgmemnts of four subjects from CMU MoBo data set to
exclude the ball. Row 2: (i)-(I) upper segments, and (m)igpler segments of four subjects from CASIA gait data
set B to exclude the backpack.

FDs increases, the contour gradually regains its origihaps characteristics, and hence discriminability between
different subjects also increases. Since global shape infiomiafpreserved in the low-frequency FDs, the use of the
first half of the FDs for reconstruction results in the red¢amged contour which is almost the same as the original.
We thus use an ideal lowpass filter to retain the fir&, i.e., 2 FDs as they contain adequate subject-specific shape
characteristics, while removing the higher-frequency RIbgh contain the finer shape details. Their removal reduces
flickering noise at the contour and smoothes contours fratiitig curvatures. It also reduces the number of contour
points to process.

The magnitude spectrum is multiplied by the correspondimgsp to generate PWMS, the first gait signature.
With initial contact (Fig. 2(a)) as the first phase of a gaitipe, PWMS provides the greatest variability between
subjects, as it conveys additional information about terapdeformation of the sequence of shapes together with its
frequency contents [49]. PWMS are represented@s & matrix, whereo represent the ten phases &nd T/2, i.e.,
128. LetA andB be two such matrices for a gallery and a probe gait sequeragmctively. The dissimilarity score
between them is

L1 Tia(AL - Bij)?

Y¥ (22 (AL) - meanf))2)’

whereA | is jth column vector oA, and mean(.) computes the average of the column vectérs e range of flyms

is [0,1], the smaller the value the more similar are the twapsgls. We obtain dissimilarity scores by comparing the
sequence of a probe subject with each sequence of the gsilibjgcts for a gait period, and the average dissimilarity
score is used for classification.

When either a gallery or a probe subject carries an itemaicepirts of the silhouette are altered and the discrim-
inability of the gait recognition algorithm decreases witkpect to theféected parts of the silhouette. Therefore, we
introduce a component-based FD analysis based on anat@nidées of human body to make STS-DM robust to
carrying conditions. If a subject carries a small item wilded arms or a backpack, the shape of the silhouette above
the anatomical position of shoulder, i.e., 0.H82Znd below the anatomical position of wrist, i.e., 0.B15neasured
from top of the bounding rectangle are ndffegted. The validity of this assumption is experimentallyified on
the CMU MoBo data set for the subjects carrying a ball witldéal arms and on CASIA gait data set B [50] for the
subjects carrying a backpack. Thus, carrying a backpaclksorad item with folded arms by a subject can be detected
by analysing the diierence in the number of contour points enclosed in the regiamded by the top of bounding
rectangle and the anatomical position of wrist. It is expemtally shown that the upper segment of the silhouette
enclosed between 0.2B5rom top of the bounding rectangle, and the lower segmerbead between 0.5¢0and
bottom of the bounding rectangle are nfeated by the presence of a ball for all twenty four subjectikiwg with
ball in the CMU MoBo data set (Fig. 5(a)-(h)). Thus for compotibased FD analysis, the shape of a silhouette is
segmented into an upper segment spanning from top of thedirayirectangle up to the shoulder, and a lower segment
spanning from the anatomical position of wrist to bottomhaf bounding rectangle. The average of the dissimilarity
scores of these components is used for subject classificatio

The shape of a silhouette above the wrist is not altered wihesubject’s hand carries a small bag. According
to anthropometry, the position of the wrist is estimated ¢o0b483H [47] measured from bottom of the bounding

dpwims =

(8)
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rectangle. Thus, an analysis of silhouettes enclosed imetffien (1-0.485l), i.e., 0.51%, measured from the top

of the bounding rectangle using FDs, remove the shape iargatlue to carrying briefcase among the gallery and
probe sequences. Analysing the leg region, i.e., betaeeandbH (wherea = 0.750 and =0.9375 [51]), removes
the efect of shape distortion due to the presence of a briefcasslzdbws under feet. Thus, STS-DM detects the
presence of a small bag by examining theatence in the number of contour points enclosed in the reggbmeen
0.51%H and 0.75@. A substantial increase in the number of contour points (&g USF data set an increase of at
least twenty points of non approximated contour and for #reesphase of a gait period between gallery and probe
sequences) confirms the presence of a briefcase.

Itis to be noted that the method in [38] analyses symmetrpgblain double helical signatures at the limb region
to take into account of shape distortion due to a specifiggagicondition, e.g., a briefcase by an upright subject. The
use of synthetic gait templates in GEI and CGI, manually cateh by simulating distortions in the lower body part
of the silhouettes, enables these methods to achieveameario the distortions in the lower part of the body, but not
in the upper part, e.g., due to carrying conditions with éolédirms. The component-based FD analysis in STS-DM
and part-based EFD analysis in STM-SPP [23] both rely oncamiatl studies of human body to achieve invariance
to carrying conditions. However, STM-SPP takes into actoficarrying conditions either with folded arms or in
upright position, but does not consider subjects carryitgekpack. Hence, STS-DM provides the most in-depth
analysis of invariance to carrying condition by taking immcount of all common types of small items carried by a
subject on the back, with folded ams and also in upright osit

3.3. Phase 2 of Module 2: Analyse full-body shape and motion

Undoubtedly, lower body dynamics capture the most disisttable gait characteristics, but consideration of
shape and motion characteristics of upper body enhancé&sdrefore, the shape and motion characteristics of the
full-body contour is analysed by parts at ten phases of apgaiod for extracting global gait signatures. To take
into account of change in appearance dfedent parts of a contour due to walking, the contour is didiohto four
regions with each region fitted with an ellipse. An ellipsetisferred to a circle and a rectangle as it has more useful
parameters to describe shape characteristics (i.e., tagec area and eccentricity) and motion characterigties,
orientation angle, the angle of the semi-major axis of thpsd measured anti-clockwise from the positive horizbnta
axis). Also, ellipse fitting approach is robust to limitedtdirtions at the contour due to poor segmentation, and esabl
STS-DM to take into account of subject-specific charadiesisi.e, fat vs slim and long hair vs bald.

The heightH of the bounding rectangle enclosing a silhouette contousésl as the subject’s height. Following
anatomical studies of the human body [47], the verticaltpm®s of shoulder, hip and knee measured from the bottom
of the bounding rectangle are estimated respectively to.&&88, 0.53H and 0.28%. The bounding rectangle is
then subdivided into the following four regions (as showirig. 6(a)) by drawing horizontal lines at the anatomical
positions of shoulder, hip and knee joints: uppermost regimclosing head and neck; region enclosed between shoul-
der and hip; region enclosed between hip and knee; and bitstregion enclosing the legs. The bottommaost region
is subdivided by a vertical line into two regions, each esiclg one leg. The vertical line if extended, passes through
the centre-of-mass of the contour. The process is illedrat Fig. 6(a)-(b), where centre-of-mass is abbreviated as
COM. The 2D Cartesian moment of ordeandv of a contour (x,y) is

.
= Z (%, y)XUyY. (9)

i=1

The centre-of-mass of the silhouette contoxy, c), is given byx. = ?é" andy, = T [52]

The contour points enclosing each of the five regions reptegga body part are best fitted by an ellipse using
a non-linear least squares technique as illustrated in6f@)-(d). The following four parameters of each of the fifty
ellipses for the ten phases form the gait signature: aspéot area; eccentricity; and orientation angle.

We compute twenty 1D histograms, each representing thehdisbn of one parameter of one ellipse (i.e., one
segmented region) for ten phases of a gait period. The hatgare normalised to [0,1] as shown in Fig. 7. The nor-
malised histograms of the probe gait sequences (Hist=fl, ..., 20) are compared with the corresponding histograms
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Figure 6: (a)-(b) Partitioning a subject’s contour into faggments (COM denotes centre-of-mass); (c)-(d) ellipses
fitted to each of the five segments.
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Figure 7: The histogram matrix with each column represegrhiistograms of ellipse parameters (orientation angle,
area, eccentricity and aspect ratio), each for ten phagegsponding respectively from top to bottom to the follogyi
regions: head-shoulder, shoulder-hip, hip-knee, rigitied left leg.

of the gallery sequences (Hist)gising Bhattacharyya distance metric to obtain the didarity score [46]

(10)

5 4
I G Hist-p,(i).Hist-g,(i)
On(Histy Hist-g) = 1 Z VI Histp, (). 2 Hist () )

whereB is the number of bins in each histogram. The second gait gign& the average dissimilarity score

1
deprm = == Z dn. (11)

The range of goym is [0,1], and the low values ofggdyym indicate good matches. Hence, ideally a probe subject
would result in the lowestghym for its correct match in the gallery.

3.4. Phase 3 of Module 2: Analyse ARPoLK

We analyse ARPoLK to take into account of a subject’s lowadtybdynamics which is robust to the problems
associated with self-occlusions. Poifit@ndk in Fig. 8 respectively correspond to where horizontal lideswvn
across the bounding rectangle at heights of OEb@enoting hip position) and 0.28b(denoting knee position),
measured from bottom of the bounding rectangle, meet wihctintour facing the direction of walking. The angle
of the leading kne®,k (i.e., q in Fig. 8) is subtended by the horizontal line througlnd the line joiningh and
k. Measuring this angle over a gait period gives ARPoLK. Thénnmaotivation in using ARPoLK analysis is its
ability to capture lower body gait dynamics which remain flieeted by self-occlusion, i.e., occlusion of one knee

11
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Figure 8: lllustration of ARPoLK: (a)-(b) subject 1 at twdiirent phases of a gait period of twdfdrent sequences
with different hair style and shoe type ortfdrent days; (c)-(d) subject 2 with and without shadows ufekrin two
different gait sequences; and (e)-(f) subject 3 with higher awing.

by another. ARPoLK analysis always takes into account of the leading knee, i.e., the knee which is at the front
in the direction of walking, and does not consider the otheekwhich might be occluded by the leading knee at
times during walking. Fig. 8(b) and (e) demonstrate the assitil ARPOLK analysis in the case of an occluded knee
by the leading knee. ARPoLK analysis is also invariant taastday gait variations thaffact the subject’s shape
above the hip and below the knee, e.g., change of hair stgslaadows under feet, and takes into account of limited
changes in clothing style, such as pant vs skirt or shortssaaliferent days, but not subtle style change like tight vs
loose clothing. Fig. 8(a)-(b) illustrate that ARPoLK ansiy/remains urféected by change of hair style and footwear
including the use of high heels, while Fig. 8(c)-(d) il similar values of, x for the same subject’s silhouette
with and without shadows under feet. ARPoLK analysis is algariant to carrying of small items with folded arms
as long as the subject’s hip is not occluded.

Most but not all gait recognition methods that consider dayitagait characteristics only focus on the motion of
lower limb region, but ignore arm-swing although it is anwwidable and integral part of gait. In normal walking, the
contralateral arm is automatically swung forward with ténging lower limb at a rate proportional to the walking
speed, and dlierent subjects have varying arm swings. Therefore, armesvd integrally related to the motion
of lower limbs, and contributes to inter-subject discriation. The method in [7] uses linear Hough transform to
model arm-swing as a pendulum motion. But arm-swing can geadnly modelled as a pendulum motion because
it is considerably influenced by neuromuscular forces. dutgh the method uses hip and shin angles to constrain
the Hough space, it models the limb motion and arm-swingrséglg, and therefore, does not consider the integral
relationship between them. The method in [19] indirectlgr@adses the integral relationship between arm-swing and
motion of lower limb in gait by holistic image analysis. STBA also considers this integral relationship by analysing
the lower limb motion in conjunction with the arm-swing ugiARPoLK analysis. ARPoLK analysis implicitly
addresses thdfects of arm-swing as evident from Fig. 8(e)-(f). Howevee, ¢fiect of arm-swing is not considered in
ARPoLK analysis if the hands of a subject are engaged duettgicg conditions either with folded arms or in upright
position. Hence, the subject identification performancRRPoLK analysis is significantlyfBected if a subject has a
higher arm-swing as in Fig. 8(f) in a gallery sequence byhkishands are engaged by carrying conditions in a probe
sequence, and vice versa.

Fig. 9 shows the discrete signals obtained by ARPoLK anslgbitwo diferent gait sequences corresponding
to subject 1 (Fig. 8(a)-(b)) and subject 2 (Fig. 8(c)-(d)heTdiscrete signals are formed by plotting th&eatent
values off « for a gait period again$¥l equally spaced monotonically increasing values, wineie the number of
frames in a gait period. The signals are normalised in thged®,1] by dividing eacld ¢ with the maximum value
of 6.k to remove spatial scale variations foffdrent subjects for uniform comparison. It is evident frorg. B that
discrete signals representing ARPoLK of twéfdient gait sequences of the same subject resemble eachvdtiier
different subjects have quite dissimilar signals. Thus it ifiedrthat ARPoLK analysis has a very good inter-subject
discriminability in the presence of across-day gait véoiag and shadows under feet.

Different subjects have féitrent walking speeds which result in varying number of franmetheir gait period.
Depending on the subject’s state of mind, the number of feaime gait period of the same subject also varies due
to the walking speed variations inftérent situations. Therefore, we use DTW to account for sw@ehations in
classifying a probe subject based on its similarity of ARRalith that of a gallery subject over a gait period. DTW
uses dynamic programming to compute a warping functiondpétmally aligns two time-dependent sequences of
varying lengths for measuring similarity. La§ = 6ikg1, kg2, ..., Okgm anday = Oikp1, OLkp2, ..., Ok pn b€ the
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Figure 9: The discrete signals representing the ARPoLK fpaiperiod of each subject: subject 1 and subject 2.

discrete signals representing ARPoLK for gait periods afjtes (i.e., number of frames of the gait period) N
andn € N, respectively of a gallery and a probe subject, witekg andf kp; are angles of the leading knee. DTW
constructs amxn matrix whose each element corresponds to the Euclideamdist(6, ki, Ok pj) = (OLkgi —HLKp,-)Z.
An m x n warping path is a sequenge= (P, P2, ..., pL) With pi = (BLkgm, Okpn) € [1 : m] x [1 : n] for
I € [1:L]and max(nn) < L < (m+ n), for mapping two sequenceg anda, which satisfies the followings: (a)
boundary conditionp; = (1,1) andp. = (m,n); (b) monotonicity conditionf kgm, < Oikgm, < .... < Okgm and
Okpn, < Oikpn, < ... < Bkpn.; and (c) step size conditiom,1 — pr € (1,0),(0,1),(1,1)forl e [1 : L - 1]. DTW
minimises the cost of warpingy anda,, together to form the third gait signature,

(Zis p.)%]_

L (12)

dDTW = mln(

3.5. Module 3: Identify subject

Each of the gallery and probe gait sequences respectivélyNyiandN, frames is partitioned into consecutive
subsequences with gallery gait peri@}) and probe gait periody;,). The distance metric between tki probe gait
period and a gallery sequence for match s&rehereS is either ¢wwms, dsprm OF dotwy, IS

Dists(k) = min(S), (13)

wherei = 1,2,...ng andng = Ng/Gq is the number of gallery gait periods in a gallery sequendee fedian of the
distances
Ds = median(Dists(1), Dists(2), ....., Dists(mp)), (14)

is considered as the match score between the probe sequrehgalkery sequence to be used in the score-level fusion
for subject identification, whenma, = N,/G,, is the number of probe gait periods in a probe sequence.

Unlike STM-SPP, which uses a rank-based classifier combimatile to combine the classification results by
Procrustes shape analysis and EFDs for identifying a syt§acS-DM uses score-level fusion to fuse the match
scores obtained by the PWMS, BDHM and DTW. Since score-laigbn combines the match scores obtained by
different classifiers, it is more informative than rank-levedidm. Rank-level fusion is also computationally more
expensive and sters from the drawback of a tie in ranking, which requiresHartprocessing to get resolved, e.g.,
STM-SPP uses Hu moments to resolve a tie in ranking. Howeeere-level fusion requires the inhomogenous
scores obtained by fierent classifiers to be transformed into a common numeré&ale before being compared
using score normalisation technique. The linear score alisation techniques, e.g., min-max normalisation and z-
score normalisation have similar computational compiesjtout z-score normalisation is preferred in STS-DM as it
is less sensitive to outliers than min-max normalisatiolth@ugh non-linear score normalisation techniques based o
double sigmoid function and hyperbolic tangent are moresbto outliers, they introduce complexity due to the use
of many parameters, and the performance of these techrégedsghly dependent on the chosen parameter values.
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Hence, to make a tradefdetween the performance and computation complexity, SWSsbtains z-scores of each
of the three match score sets using
Qolassifier — Mclassi fier

Zyassitier = , (15)

Oclassi fier

whereu is mean of the set of scores, d is the individual scoris, standard deviation, aratlassi fier is either PWMS,
BDHM or DTW. The threeclassi fiersdo not perform equally well as evident from Fig. 11 (see $&cfi.1 for CMC
curve) which shows that PWMS is the best feature, while BDIHKhe worst. A weight-based sum rule of score-level
fusion [53] is thus used in STS-DM for improved identificaticate where the weights are determined based on the
contribution of each componedissi fier to the final subject identification. The fused score is thusiokd using

Ipwms X Zpwims + IBbHM X ZepHM + lpTw X ZpTw
St = (16)

E

Ipwms + IepHM + IDTW

where bwwms, Ispuv and brw are the weights that respectively correspond to the CCR$setion 4.1 for CCR)
obtained using the match scores\ghs, dspym and arw for a particular testing condition. The probe subject is
identified based on the loweSt it measures with the member of a gallery class.

4. Experiments

Since the aim of STS-DM is to demonstrate its combined rotasstagainst most of the challenging factors of gait
recognition, it is extensively compared with several edamethods that individually address one or more covariate
factors. Therefore, to make uniform comparison with sduwelated methods, STS-DM is evaluated usinfjedient
experimental setup based on the reported available redutsse methods on two public data sets: CMU Motion of
Body (MoBo) data set and USF HumanlID gait challenge data set.

4.1. Experimentson CMU MoBo data set

CMU Motion of Body (MoBo) data set [54] comprises gait sequesnhof 25 subjects performing four types of
walk: slow walk (walking speed: 2.06 mph); fast walk (walkispeed: 2.82 mph); walk holding a ball (walking
speed: 2.04 mph); and walk on an inclined plane of a treadmélking speed: 1.96 mph). Each sequence is of
approximately 11 seconds duration and is recorded at 30ekgrar second from six fiiérent views. The sequences
were captured on a same day using six high resolution csdithizcameras evenly distributed around the treadmill.

A closed-set identification guarantees the existence oftiigect in the database. We analyse the closed set
identification performance of STS-DM on the profile view siliettes of MoBo data set by taking one subject as the
probe sample and train it on all the subjects of the data shiding the probe sample. The percentage of correct
classification rate is

CCR(%)= s/s * 100, a7)

wheres; ands are respectively the number of correctly identified sulsjeetd the total number of subjects in the
data set. The identification is best interpreted by a curivelatatch characteristic (CMC) curve which shows CCR
at different ranks. Since the smaller the values of the match stweenore similar are the two subjects, the CCR at
rankr implies that the probability of correct match is among thedetr match scores.

We use 3D scatter plots as shown in Fig. 10 to show the disimibof match scores (plotted along the vertical
axis) obtained by PWMS, DTW, BDHM and the fused classifier@salt of comparing each of the fast walking probe
subjects (plotted along the horizontal right axis) with28llslow walking gallery subjects (plotted along the horizdn
left axis) of CMU MoBo data set. Note that tlidn probe subject along the horizontal right axis correspdndts
matching gallery subjectalong the horizontal left axis, wherel,2,3,...,25. The match scores obtained by comparing
one probe with all the gallery subjects are representedrisiesiof the same sizes in the plots, whil&elient circle
sizes are used for flierent probe subjects. Since ideally a probe subject willltés the lowest match score for its
matching gallery subject, very few circles are present éltbttom horizontal planes. A probe subject will generate
higher match scores for all the non-matching gallery subjeghich explains why the circles offtiérent sizes are
cluttered around the higher horizontal planes of the plots.
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Figure 10: Distribution of match scores obtained by (a) PWh$DTW, (c) BDHM and (d) fused classifier for fast
walk vs slow walk of lateral-view silhouettes of CMU MoBo daget.

Note that the number of probe subjects that results in thedbowatch scores for their matching gallery subjects
using PWMS, DTW, BDHM and fused classifier are respectiv8ly22, 21 and 24 for fast walk vs slow walk. Hence,
the rank-1 CCR for PWMS, DTW, BDHM and fused classifier argpeesively 2325*100, i.e., 92%, 225*100,
i.e., 88%, 2125*100, i.e., 84% and 225*100, i.e., 96% which are verified in Fig. 11(a), where Hif.shows the
CMC curves of CCR obtained using PWMS, DTW and BDHM for thré&@edent walking conditions of CMU MoBo
data set, namely fast walk vs slow walk, slow walk vs fast walkd fast walk vs walking with ball. It is clear that
the performance of STS-DM is the best for fast walk vs slowkwading individual classifiers as well as the fused
classifier. The rank 1 CCR of PWMS, DTW and BDHM are respebti92%, 88% and 84% for fast walk vs slow
walk; 88%, 84% and 84% for slow walk vs fast walk; and 87%, 83% @9% for fast walk vs walking with ball.
Since PWMS outperforms DTW and BDHM, it is shown that the ghapa subject provides better inter-subject
discriminative characteristics than its kinematics in tlage of very limited across-day gait variations. Fig. 11(d)
shows that CCR is significantly improved, i.e., 96%, 96% a2¥h9espectively for fast walk vs slow walk, slow walk
vs fast walk and fast walk vs walking with ball by fusing theu#s of individual classifiers using weight-based sum
rule of score-level fusion.

4.1.1. Comparisons

The performance of STS-DM on the lateral view of silhouetitthe CMU MoBo data set is compared with
shape sequence matching (SSM) based method in [17], SSPS[E}SPP [23] and SVB frieze [33]. Table 2 shows
that the shape based approach in SSM using stance comeflatithe subjects walking parallel to the image plane
is robust to variations in walking speed, but its performeadegrades significantly when the shape of the silhouettes
change due to flierent activities (e.g., fast walk vs walking with ball). 8&part-based shape analysis using EFDs
and component-based shape analysis using FDs respedaide§TM-SPP and STS-DM to achieve invariance to
carrying small items, they significantly outperform SSM &\ frieze. The superiority of STS-DM over STM-SPP
is attributed to the analyses of dynamic motion charadtesisf silhouettes using ellipses fitted to various bodygpar
and ARPoLK that enable it to achieve robustness againgdinariations in clothing.
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Figure 11: CMC curves of classification rates obtained uBMMS, BDHM and DTW of the lateral-view silhouettes
from CMU MoBo data set for (a) fast walk vs slow walk; (b) slowaiwvs fast walk; and (c) fast walk vs walking with
ball. (d): CMC curves of combined classification rates of(@)using weight-based sum rule of score-level fusion.

Table 2: Top-rank identification rates (in percentage) onUCMoBo data set with the rates of SSM from [17],
Baseline from [15], CMU from [55], SSP from [16], STM-SPPind23] and SVB frieze from [33] for the lateral
view. Keys: ‘G’ - Gallery sequence; ‘P’ - Probe sequence;-‘Slow walk; ‘F’ - Fast walk; ‘B’ - Walk with ball.

G/P | SSM [ Baseline] CMU | SSP| STM-SPP[ SVB frieze | STS-DM
[17] | [19] [55] | [16] | [23] [33]
S'S [ 100 |92 100 | 100 100 100
FF 100 |- 100 | 100 100 100
BB |92 |- - 100 100 100
SF [80 |72 76 [54 |94 82 96
FS |84 |- 32 |91 80 96
SB |48 |88 92 |- 93 77 92
B/S|68 |- - 82 89 92
FB |48 |- - 84 61 92
BF [48 |- - 82 73 87
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Figure 12: Comparison with related works. Baseline [15],\GNDNGR [13] and STS-DM are evaluated on CMU
MoBo gait data set (experiment 2 of CMU) with walking speedat#on of 3.3 knih and 4.5 krfh, while ST-WS [36]
and SI-PSA [35] are evaluated on OU-ISIR treadmill gait d&tleA [56] with walking speed variation of 3 kimand

4 krmyh between gallery and probe gait sequences.

The method in [16] computes image self-similarity plot (33., correlation of corresponding pairs of images in
two gait sequences of a subject. To make uniform comparistnS®P which is robust to segmentation noise, STS-
DM also uses split-sample cross validation technique li8®,Svhere gallery and probe sets correspondfteraint
combination of walking types for each of the twenty-five &dt§. Since STS-DM is defined only on profile view
of the silhouettes, we consider profile view of two sequemegssubject (total 50 sequences) walking at slow pace
(2.06 milegh) and fast pace (2.82 milgg. Table 2 shows that the performance of SSP for profile viegrades
significantly when the probe and gallery sample$ediin walking speed. STS-DM outperforms SSP by analysing
shape and motion characteristics of ten phases of a gaiigpenid using DTW for ARPoLK analysis so as to overcome
the dfects of walking speed variations.

To demonstrate robustness against speed variations byaratiye experimental analysis with the related speed-
invariant methods, STS-DM is evaluated using the experid€eefined by the method silhouette-based human identi-
fication from body shape and gait (CMU) in [55] as it enablesl@ation of a gait recognition method acrosS§eatient
speeds. The rank 1 identification rates of STS-DM, speedaFiant method DNGR, CMU [55] and Baseline [15] are
respectively 96%, 84%, 76% and 72% (see Fig. 12) for the sBb@kfyh) vs fast (4.5knh) walking gait sequences
of the profile view silhouettes of CMU MoBo data set, whererifiies of DNGR, CMU and Baseline are based on
experiment 2 of CMU entitled “Across gaits condition”. Sengpeed variation in this experiment is almost Itkmnve
compare STS-DM with speed-invariant methods ST-WS [36]SIRESA [35], that are evaluated on OU-ISIR tread-
mill gait data set A [56] with walking speed variation of 3 fmand 4 knh between gallery and probe gait sequences.
Itis clear from Fig. 12 that STS-DM outperforms all other hreds, and provides equal rank 1 identification rate as
SI-PSA.

4.2. Experimentson USF HumanlID gait challenge data set

STS-DM is evaluated on both the small version (452 sequeinoes 74 subjects, data acquired in May only)
and the full version (1870 sequences from 122 subjects,atapaired in May and November) of USF HumanID gait
challenge data set [15]. The data set comprises sequencebjetts walking along elliptical paths in an outdoor
environment in front of two cameras with the following fiveveoiates: walking surface (grass (G) or concrete (C));
shoe type (A or B); viewpoint (right (R) or left (L)); carryinconditions (carrying a briefcase (BF) or not carrying
a briefcase (NB)); and elapsed time between the acquigifitine sequences (May (M) or November (N)). Twelve
experiments of increasingfticulty are designed as shown in Table 3 and Table 4 to invéstilya robustness of a gait
recognition method against the five covariates. The gaileseces are captured at 30 fps, and the spatial resolution
of each silhouette is 128 88. The thirty three subjects that are common in the May andehibber data sets account
for time covariate. There are no common sequences betweagatlery and the probe sets, and all subjects did not
participate in all experiments [4, 15].

4.2.1. Comparisons
Table 3 shows the results on the full version of USF data setrims of identification rateR;) at ranks 1 and
5, to enable a comparison with the state-of-the-art methicels GTDA-GF [21], GEI [4], RCK-G [19], GFI [22],
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Table 3: Identification rates (in percentage) on full vemsid USF HumanlID gait challenge data set using the gallery
set (G, A, R, NB, MN) of 122 subjects. The rates for GTDA-GF, GEI, RCK-G, GFI,IC&TM-SPP, DNGR and
MMPFA are from [21], [4], [19], [22], [41], [23], [13] and [14]respectively. Keys for covariates: V - view; H - shoe;
S - surface; B - briefcase; T - time; and C - clothes.

Exp[Covariate] Identification RateR,)%

GTDA-GF(GEI) RCK-G(GFI) CGI(STM-SPP)| DNGR(MMFA) STS-DM

Rank1 | Rank5 | Rankl | Rank5 | Rankl| Rank5 | Rankl | Rank5| Rankl| Rank5
A[V] 91(90) | 98(94) | 83(89) | 96(98) | 91(92) | 97(96) | 85(89) | 96(98) | 93 97
B [H] 93(91) | 99(94) | 86(93) | 94(94) | 93(95)| 96(98) | 89(94) | 94(98) | 96 98
C [V, H] 86(81) | 97(93) | 78(70) | 88(93) | 78(84)| 94(95) | 72(80) | 89(94) | 86 96
D [S] 32(56) | 68(78) | 39(19) | 66(40) | 51(72)| 77(80) | 57(44) | 85(76) | 70 82
E[S, H] 47(64) | 68(81) | 34(23) | 63(47) | 53(68)| 77(84)| 66(47) | 81(76) | 69 83
F[S, V] 21(25) | 50(56) | 20(7) | 51(26) | 35(29)| 56(59) | 46(25) | 68(57) | 39 61
G[S, H,V] 32(36) | 56(53) | 21(8) | 46 (25) | 38(40)| 58(61) | 41(33)| 69(60) | 37 60
H [B] 95(64) | 95(90) | 43(78) | 66(94) | 84(69)| 98(92) | 83(85)| 96(95) | 78 95
I [B, H] 90(60) | 99(83) | 40(67) | 68(85) | 78(60)| 97(84) | 79(83) | 95(93) | 71 89
J[B, V] 68(60) | 84(82) | 40(48) | 65(74) | 64(64)| 86(85) | 52(60) | 79(84) | 66 83
KT, H, C] 16(6) | 40(27) | 16(3) | 44(24) | 3(20) | 27(30) | 15(27) | 46(48) | 27 39
L[S, T, H,C] 19(15) | 40(21) | 5(9) 22(24) | 9(18) | 24(27)| 24(21) | 39(39) | 22 28
X; 61(58) | 78(76) | 44(46) | 67(64) | 62(63)| 79(79) | 63(60) | 82(80) | 67 80

CGl [41], STM-SPP [23], DNGR [13] and MMFA [14]. The methoding matrix-based marginal Fisher analysis
(MMFA) in [14] applies marginal Fisher analysis on GEls faitgrepresentation to reduce the dimensionality of
the feature space and extends marginal Fisher analysisrigimabbased analysis for content-based image retrieval.
Table 4 shows the results on the full version of USF data s&trims of verification rate (the probability that the
method successfully detects the correct match betweerrdhe gnd gallery sequences, iley) at false alarm rates
(the probability that the method incorrectly classifies alggr sequence to a nonmatching gallery sequence) 1% and
10% for Baseline, DNGR and STS-DM. Since the number of proibgests in the gait challenge experiments varies,
we compute the weighted average identification rxt¢ &nd the weighted average verification raX@)[20], i.e.,

< SEwWx — 2 wix
| = —g — > = —g
Z?::L\Ni Zig:]_Wi

whereg denotes the number of challenge experiments whose valaesspectively 12 (i.e., Exp. A-L) and 7 (i.e.,
Exp. A-G) for the full and small versions of HumanlID gait dealge data sets; andx, are respectively the identifi-
cation and verification rates (in percentage) forithechallenge experiment, ang is the number of probe subjects
participating in that experiment.

The identification rates achieved by GEI for the twelve a@radle experiments after combining the real and syn-
thetic gait features are presented in Table 3. GTDA-GF ttspibe identification rates obtained by applying GTDA as
a preprocessing step of linear discriminant analysis omtagnitude of the result of convolving a GEI with sum of
Gabor functions over scales with direction fixed. The rafeéSkl in Table 3 are based on direct matching of gallery
and probe sequences using an exemplar GFI for reducing datignal complexity. Table 3 shows that STS-DM out-
performs all other methods for experiment A with a variafiomiew, and performs reasonably better than GTDA-GF,
GEI, RCK-G, GFI, CGI and STM-SPP for experiments K and L wittagiation in clothing. However, STS-DM is
outperformed by GTDA-GF, CGIl, DNGR and MMFA for the gait dealge experiments H and |. This is because AR-
PoLK analysis with a consideration of subject’'s arm-swmparticularly &ected by the briefcase carrying condition
as it prevents normal arm-swing and distorts the shape dfi@stte between hip and knee. Since the gait challenge
experiments H and | take into account of briefcase covaltlageperformance of STS-DM is degraded in these exper-
iments. The aim of STS-DM is to achieve combined invarianacmost of the challenging factors of gait recognition
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Table 4: Verification rates at a false alarm rag) of 1% and 10% for Baseline from [15], DNGR from [13], STM-
SPP from [23] and STS-DM on full version of USF HumanlID gaialbbnge data set using the gallery set (G, A, R,
NB, M/N) of 122 subjects. Keys for covariates: V - view; H - shoe; Siface; B - briefcase; T - time; and C -

clothes.

Exp. | Covariate Verification Rate Py/)% at
Baseline DNGR STM-SPP | STS-DM
Pr:1(10)% | Pr:1(10)% | Pe:1(10)% | Pg:1(10)%
A Y 82(94) 93(98) 88(100) 94(100)
B H 87(94) 94(98) 94(100) 97(100)
C V, H 65(94) 80(94) 86(98) 88(98)
D S 44(80) 68(96) 80(94) 79(94)
E S,H 35(76) 62(90) 74(84) 76(84)
F S,V 20(60) 53(86) 50(82) 66(82)
G S, H,V 28(55) 43(79) 52(76) 62(76)
H B 72(91) 91(99) 83(95) 85(95)
I B, H 67(85) 86(97) 76(93) 76(93)
J B,V 48(76) 58(92) 65(92) 68(92)
K T,H,C 6(24) 27(61) 21(58) 29(58)
L S, T,H,C 6(24) 24(46) 19(52) 25(52)
Weighted average verification raté/) | 51(76) 70(91) 70(89) 75(90)

with low computational complexity, and not to achieve thstl@entification rates for every gait challenge experiment
among the state-of-the-art gait recognition methods. Tipesority of STS-DM to other methods in termsXfand

Xy is demonstrated in Table 3 and Table 4. Table 3 shows that®W%chieves the higheé? at rank 1, followed

by DNGR, STM-SPP and CGl, and is only second to DNGR in term% @it rank 5. It is clear from Table 4 that in
terms of%, STS-DM outperforms other methods at the false alarm raté&of 1

Table 5 shows the results on the small version of the datad\seBtiefcase data) to enable a comparison with
Baseline, silhouette analysis-based gait recognitionS[@4 in [18], gait recognition based on shape estimation
(CMU1) in [57], CMU [55], RCK-G [19], GEI [4], ASM [6] and STMSPP [23]. We present the identification rates at
rank 1 of CMU1 obtained by weighted correlation similaritgasure, and the identification rates of GEI obtained by
fusing real and synthetic gait templates. Table 5 shows3fi&-DM achieves the second high¥sfollowing ASM.

All methods listed in Table 5 except ASM use the silhouetresided by the USF HumanID gait challenge data set
for uniform comparison. Since these silhouettes are sianifly dfected by strong shadows under feet (mainly due to
the subjects walking on a concrete surface as in the gaiecty experiments D, E, F and G) the methods that directly
use the silhouettes provided by the USF HumanlID gait chgdletata set do not provide satisfactory recognition rates
for these experiments. ASM employs hierarchical predicbased ASM framework with Kalman filter to extract
the foreground which is utiizcted by shadows, and analyses its model parameters faegadgnition. Hence, the
superiority of ASM for the gait challenge experiments D, Eartid G is attributed to the use of shadow-free good
quality silhouettes for feature extraction. Also, the teatextraction and classification processes involved in ASM
are much more computationally expensive compared to STS{Distegarding the performance of ASM, Table 5
shows that STS-DM outperforms all the methods for all thé dzallenge experiments.

The performance of STS-DM for the twelve challenge expenim®f the full version of USF HumanID gait
challenge data set is measured by identification mode anficaéibn mode, using CMC and Receiver Operating
Characteristic (ROC) curves respectively, following [58]Jg. 13(a) shows that the identification rates of STS-DM
range from 22% to 96% at rank 1, and 28% to 98% at rank 5. Fidn)EB(ows that the verification rates of STS-DM
range from 25% to 97% at a false alarm rate of 1%, and 52% to 1H@false alarm rate of 10%. Table 3 and Fig. 13
show that STS-DM is leastffected by variation in shoe types, followed by about 30 degyobange in viewpoint.
However, time (i.e., when the data set was generated) hasmdiseimpact on the performance of STS-DM, as it
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Table 5: Top-rank identification rates (in percentage) @ndimall version of USF HumanID gait challenge data set
(data acquired in May only) using the Gallery Set (G, A, R) dfsiibjects. The rates for Baseline, CASIA, CMU1,
CMU, RCK-G, GEI, ASM and STM-SPP are from [15], [18], [57],45[19], [4], [6] and [23], respectively. Keys for
covariates: V - view; H - shoe; S - surface; B - briefcase; Thaj and C - clothes. Unlike others, identification rates
with ‘«’ are not based on silhouettes provided by USF HumanID gailiehge data set.

Probe Set A B C D E F G
Probe Size 71 41 41 66 42 66 42
Probe GAL|GBR|GBL|CAR|CBR|CAL|CBL
Covariate diference| V H VH S SH YY) SHV

Rank-1 Identification Rate”() % X
Baseline [15] 87 81 54 39 33 29 26 50.62
CASIA [18] 70.42 | 58.54 | 51.22 | 34.33 | 21.43 | 27.27 | 14.29 | 40.83
CMU1 [57] 85 81 60 23 17 25 21 44.93
CMU [55] 87 81 66 21 19 27 23 46.44
RCK-G [19] 97 89 83 41 34 30 28 57.53
GEI [4] 100 90 85 47 57 32 31 62.83
ASM [6] 97* 95* 91* 92* 86* 85* 78* 89.66
STM-SPP [23] 100 94 89 73 69 40 36 71.74
STS-DM 100 98 91 76 70 47 42 74.99

implies variations in clothing and footwear of the same eab)

4.3. Effect of missing frames

Occlusions in the scene, large shadows under feet and extigdmting variations can severely distort the extracted
contours. If these distorted contours are not part of anyheften phases of a gait period, they do nidéet the
classifications using FDs and ellipsoidal fits. If the digtor causes any frame of the ten phases to be missing, its
immediate adjacent frame is considered. ARPoLK analysimisatected if the portion of the contour enclosed in
the region between hip and knee remain undistorted. It ¢ dfected by any missing or discarded frame due
to excessive distortions resulting infiirent lengths of gait sequences. This is because the useWfiD ARPoLK
analysis enables detection of similarity between two sege® of varying lengths. Hence, STS-DM is robust to
severely distorted and missing frames.

To support the claim that STS-DM is robust to missing framgskperimental results, we create probe gait
sequences of shorter lengths from CMU MoBo data set by disogframes at a specified interval in order to stimulate
a situation where probe frames are missing. In Fig. 14, th&-1aCCR is plotted along vertical axis, while the
horizontal axis shows the intervals of missing frames imgeof number of frames, i.e., 6 at the horizontal axis
denotes that every 7th frame is missing from the entire psalgeience. Fig. 14(a)-(c) respectively show tifect
of missing frames on rank 1 CCR of STS-DM using fused classiffi®VMS, DTW and BDHM for three testing
conditions of CMU MoBo data set, namely fast walk vs slow walkw walk vs fast walk and fast walk vs walking
with ball. It is evident from the three plots that the rank 1RCGf STS-DM is not &ected for at least every 8th
frame is missing from the probe sequence for any of the comptariassifiers and the fused classifier for three testing
conditions. Note that DTW is less robust against missingpésithan PWMS and BDHM.

4.4. Computational complexity

The computational time of STS-DM is measured using the cdergystem clock and OpenCV 2.1 in Microsoft
Visual Studio 2008 Express Edition environment on an Ifi@lCore (TM) i7 processor working at 2.93 GHz with 4
GB RAM running Windows 7 operating system. For the silhcesettf the full version of USF HumanlID gait challenge
data set, the processing time for comparing all ten Rf-R@ésat a time with the tr-ROIs for extracting ten phases of a
gait period based on the loweSre Using weighted Krawtchouk moments is 5 sec. The processigto compute
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drwwms: dspum @nd @y between a probe and a gallery subject is approximately @§.7Since the Baseline method
is characterised by unlimited spatio-temporal corretatid silhouettes, it has very high computational complexity
The hierarchical prediction-based ASM framework with Kahnfilter used in ASM to analyse static and dynamic gait
characteristics is also computationally very expensivdikd most gait recognition methods which process sequgence
of silhouettes, the real-time method in [59] analyses thef&the largest rectangles fitted onto silhouettes over & gai
period spanning up to 25 frames to reduce the computati@maptexity. STS-DM further reduces this by analysing
the shape of contour instead of silhouette at the ten phdsegait period in computingmyms and Gpum- Since
ARPoLK analysis over a gait period uses alD signal, it doesigaificantly increase computational complexity. It
takes about 5 sggait-period to obtain the ten phases by comparing smallegjitans of an image, i.e., Rf-ROIs with
Tr-ROls, thus reducing time and space complexity.

The use of Cooley-Tukey Fast Fourier transform algorithi®, 6] reduces the quadratic time complexity of
discrete Fourier transform and its inverse to O(T log s is obtained by analysing the low-frequency FDs of
the contour points to reduce the computational compleXtyW has a quadratic time and space complexity, i.e.,
O(mn), wherem and n denote the length of the sequences being compared. Howeigrpsed to compare short
sequences, as the number of constituent frames of a gaiidpesually range between 18-35. Since STS-DM uses a
simplified feature space, it does not require any dimensitgmaduction technique like principal component anadysi
and multiple discriminant analysis as in [4, 18]. Since swie of score-level fusion and z-score normalisation
only require subtraction by mean, division by standard atéwin and summation of normalised scores, it has less
computational complexity, i.e., O(N), than the rank-baskdsifier combination rule which requires sorting score
of computational complexity O(N log N), where N is the gafleize, followed by post processing to resolve tie in
ranking.

5. Conclusion

Unlike existing systems which only address one or more ehglhg factors of gait recognition, STS-DM com-
bines spatio-temporal shape and dynamic motion charattsrdf silhouette contours to identify a human subject in
the presence of most challenging factors of gait recogmititth low computational complexity. It analyses the shape
of a subject by FDs at ten phases of a gait period and intradaicemponent-based FD analysis to achieve robustness
against shape distortion due to all common types of smatyirey conditions with folded hands, at the subject’s back
and in upright position. ARPoLK analysis with considerataf the integral relationship between the motion of limbs
and arm-swing enables STS-DM to achieve robustness agaihsariations over dierent days, e.g., limited clothing
variations, hair style, shadows under feet and missing padg. The similarity between the ARPoLK of two subjects
is measured using DTW to achieve invariance to walking sp8&&-DM uses BDHM to analyse the full-body shape
and motion characteristics by fitting ellipses to fiv&elient parts of the human body which is invariant to boundary
shape distortions due to segmentation imperfections assimg body parts. The match scores obtained by analysing
the local and global gait characteristics using the thraaufe extractors are combined using weight-based sum rule
of score-level fusion for subject identification.

STS-DM analyses the shape of contours, hence it is insemsdicolour and texture of subject’s clothing. The
feature space of STS-DM does not require any dimensionaddyction. The excellent identification rates in the
presence of various challenging factors demonstrateftreaey of STS-DM. Being a contour based method, STS-
DM has a low computational complexity, but it is sensitiveségmentation imperfections, and its performance largely
depends on preprocessing. Also, STS-DM is designed faralat@ews of gait sequences, thus future developments
are required to enable STS-DM to address unconstrainedmomgements especially in cluttered scenes.
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