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ABSTRACT A novel 3-dimensional (3D) human semantic folding is introduced to provide a robust and 

efficient gait recognition method which is invariant to camera view and clothing style. The proposed gait 

recognition method comprises three modules: (1) 3D body pose, shape and viewing data estimation network 

(3D-BPSVeNet); (2) gait semantic parameter folding model; and (3) gait semantic feature refining network. 

First, 3D-BPSVeNet is constructed based on a convolution gated recurrent unit (ConvGRU) to extract 2-

dimensional (2D) to 3D body pose and shape semantic descriptors (2D-3D-BPSDs) from a sequence of gait 

parsed RGB images. A 3D gait model with virtual dressing is then constructed by morphing the template of 

3D body model using the estimated 2D-3D-BPSDs and the recognized clothing styles. The more accurate 

2D-3D-BPSDs without clothes are then obtained by using the silhouette similarity function when updating 

the 3D body model to fit the 2D gait. Second, the intrinsic 2D-3D-BPSDs without interference from clothes 

are encoded by sparse distributed representation (SDR) to gain the binary gait semantic image (SD-BGSI) in 

a topographical semantic space. By averaging the SD-BGSIs in a gait cycle, a gait semantic folding image 

(GSFI) is obtained to give a high-level representation of gait. Third, a gait semantic feature refining network 

is trained to refine the semantic feature extracted directly from GSFI using three types of prior knowledge, 

i.e., viewing angles, clothing styles and carrying condition. Experimental analyses on CMU MoBo, CASIA 

B, KY4D, OU-MVLP and OU-ISIR datasets show a significant performance gain in gait recognition in terms 

of accuracy and robustness. 

INDEX TERMS Gait recognition, Human identification, Three-dimensional gait, Virtual Gait 

I. INTRODUCTION 

Gait recognition and understanding (GRU) has a wide range 

of applications in the field of anti-terrorism, intelligent 

monitoring, access control, criminal investigation, 

pedestrian behaviour analysis, medical studies and reality 

mining (e.g., [1]). The advantages of GRU, e.g., without 

requiring subjects’ cooperation, difficult to disguise gait, and 

gait is easily observed in low-resolution video, make it 

particularly attractive for subject identification and 

behaviour analysis (e.g., [2]). However, to successfully 

implement a GRU method for practical applications, several 

important issues must be overcome. One of these is the 

change in camera view when the human subject walks at 

different data capture sessions. It is also challenging for GRU 

to realize view-invariant or cross-view gait recognition from 

different cameras with changes in both camera azimuth and 

elevation angles. In most cases, only changes in azimuth 

view changes are considered. If only a few views of gait 

sequences are available for training, and a single camera is 

used in testing in the presence of changes in both azimuth 

and elevation angles, then it is expected that the recognition 

rate will be significantly reduced. 

There are many other covariate factors that affect the 

accuracy of GRU, e.g., occlusion, the integrity of the gait 

image segmentation, and variations in clothing styles, 

carrying items, scene illumination, and walking speed [3-4]. 

Clothing variation is one of the most significant. Experiment 

results in [5] show that the gait recognition rate when 
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wearing a coat is much lower than when carrying a bag due 

to the large area of the subject’s silhouette affected. This 

influence affects many appearance-based gait recognition 

methods. Thus, some gait recognition methods incorporate 

gait data of subjects with various clothing styles, or eliminate 

their influence by extracting dynamic joint features or body 

parts that are less affected. However, it is difficult to collect 

sufficient training data with various clothing styles under 

different views for every subject, and thus clothing variation 

remains an important issue in gait recognition. Compared 

with algorithms for 2-dimensional (2D) gait recognition, the 

3-dimensional (3D) approach provides more flexibility to 

deal with clothing variations, i.e., by using virtual dressing 

and 3D clothes. But there are only few related studies due to 

the complexity of 3D modelling and virtual dressing. 

It is still a challenge to explore a GRU system involving 

a large population as most publicly available gait databases 

are limited to hundreds of subjects. However, it is worth 

noting that gait datasets involving large populations under 

different walking conditions have been published recently by 

Osaka University, i.e., OU-MVLP [6] with 14 views and 

10,307 subjects, and OU-LP-Bag [7] with various carrying 

conditions and 62,528 subjects of all age ranges. As gait 

datasets involve larger populations, an emerging challenge is 

that the number of gait frames to be processed is typically 

enormous, requiring much processing time and storage space. 

The much larger gait datasets also mean more subjects are 

involved, and it becomes difficult to publish them due to 

privacy issues. The datasets are more likely to be published 

in the form of binary silhouette or gait energy image (GEI), 

limiting the development of gait feature extraction from 

RGB images. Without the RGB sequences, it is difficult to 

detect the detailed clothing styles and carried items. Thus, 

how to convert the high-dimensional gait sequences into 

high-level feature representation of structured data while 

retaining their semantic meaning has important research 

significance. Most gait feature representation methods, e.g., 

GEI [4], and data dimensionality reduction methods, e.g., 

principal component analysis (PCA), address the above 

problems, but the effect of dimensionality reduction often 

depends on the number of specific samples. The data after 

dimensionality reduction is difficult to describe by semantics, 

i.e., they are usually considered a ‘black box’. 

Based on the above, a View and Clothing Invariant Gait 

Recognition via 3D Human Semantic Folding (VCIGR-

3DHSF) is proposed in this paper. The method converts raw 

gait images into high-level semantic description based on 3D 

parametric body model. The 3D human body semantic 

folding is introduced to represent the feature in high-level 

pattern space. By converting image signals into semantic 

descriptors, gait visual features are both effectively 

represented in a new semantic space as structured data, and 

the dimensionality of the gait features reduced under 

instance and semantic level.  

The novelties of VCIGR-3DHSF are as follows. First, 

by incorporating convolution gated recurrent units 

(ConvGRU), an instance-level body parsing network, a 

clothing recognition network and virtual dressing method, 

the 2D to 3D body pose and shape semantic descriptors (2D-

3D-BPSDs), and an estimation and optimizing framework 

are proposed. Second, by making full use of the extracted 3D 

gait semantic parameters and semantic folding, 2D gait 

images are transformed to a description in a new semantic 

pattern space. It converts the unstructured raw gait data into 

structured data called gait semantic images. Third a SoftMax 

classifier with top-down refining mechanism is proposed to 

deal with gait recognition under various view and clothing 

conditions. The refining mechanism using a priori 

knowledge adjusts the gait semantic patterns to achieve even 

better performances under various scenarios. 

The rest of this paper is organized as follows. Section II 

presents the related work. Section III presents the 

implementation of VCIGR-3DHSF. Section IV presents the 

experimental results and Section V concludes the paper. 

II. RELATED WORK 

GRU is divided into model-free and model-based methods 

according to whether a relevant body model is constructed. 

A model-free GRU method extracts the statistical data of gait 

contours in a gait cycle and matches known gait contours 

with similar shape and motion characteristics. GEI [4,8], as 

a classical gait feature representation, has led to many energy 

images of related features, such as frame difference energy 

image [9], gait entropy image [10] and pose energy image 

(PEI) [11]. Gait energy maps have low computational 

complexity, and due to contour averaging have better 

suppression of image distribution noise. 

A model based GRU method has more advantages for 

addressing covariate factors such as changes in camera view 

and clothing, occlusion and carried item due to its 

incorporation of body model parameters. However, it is 

necessary to estimate the parameters from the gait contour. 

The required image resolution is also higher than that of a 

model-free method. Most current gait models are based on 

2D descriptions, ranging from skeleton to shape, e.g., 2D rod 

skeleton, hinged skeleton and ellipse shape descriptions [12-

14]. Since the gait model is a 3D structure, it is important to 

study gait with a 3D modelling method [15-16]. However, in 

most cases multiple cameras or 3D camera are needed to 

construct 3D voxel or volume models. These generate 

unstructured with redundant point cloud data, and without 

embedded skeleton the data cannot be used to morph pose or 

deform the body shape. 

Gait recognition methods with variable views or 

multiple-views can be classified into two categories, i.e., 

model-free or model-based. In model-free approach, view 

transformation model (VTM) as cross-view gait recognition 

is widely used by transforming gait features from one 

viewing perspective to another [17-18]. View-invariant gait 
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features are extracted for multi-view gait recognition, i.e., 

based on uncorrelated multilinear sparse local discriminant 

canonical correlation analysis [19], deterministic learning 

[20], complete canonical correlation analysis [21], and view-

invariant feature selectors [22]. In recent years, the deep 

learning network-based methods, i.e., convolution neural 

networks (CNNs), have been proposed to directly extract 

multi-view gait features from GEIs for gait recognition [1, 

23], or transform the multi-view gait feature to one specific 

view using one uniform deep model [24]. For model-based 

methods, the view-invariant gait recognition is achieved by 

3D, 2.5-dimensional (2.5D) or 2D modelling of the human 

body, extracting the relevant features of the model, such as 

joint angles based on skeleton model [14], walking posture 

parameters [25-26], etc. 3D gait entropy volume (3D-GEnV) 

[15] requires multiple views of a subject in order to construct 

the 3D volume model. 

To address clothing variations, more attentions are 

given to certain body parts that are less sensitive to clothing 

styles [27], i.e., legs, using adaptive weight control strategy. 

In [13], lower limb joint angles are chosen as gait dynamic 

feature which is robust to clothing styles, and deterministic 

learning is used for recognition. A statistical shape analysis 

approach addresses various dressing by parsing GEI into 

three shape sections for feature extraction, i.e., horizontal, 

vertical and grid resolution [3]. The drawback of this 

approach is its dependency on the viewing angles. In [28], 

the combination of RGB, depth and audio features, are used 

to improve the robustness against dressing conditions 

including shoes changes. In [19], a fusion strategy combines 

the spatial-temporal and kinematic features for gait 

recognition, using deterministic learning to address dressing 

conditions. In [29] a time-based long short-term memory 

(LSTM) graph model is discussed for gait recognition, and a 

gait skeleton graph which is less sensitive to dressing is used 

for feature representation. 

Most successful GRU methods have good results in 

fixed scenarios with limited conditions. Since human 

walking and body movement posture are affected by various 

factors as already mentioned, the generalization and 

recognition rate of a gait behaviour recognition algorithm 

still need to be greatly improved [30]. Especially in 3D gait 

recognition, little research has exploited 3D parametric body 

model and virtual dressing, which resulted in a lack of an 

effective way to describe gait using semantic descriptors. In 

order to facilitate 3D gait research and overcome the above-

mentioned problems, VCIGR-3DHSF is proposed to extract 

semantic parameters of gait using ConvGRU-based 2D to 3D 

body parameters estimation network and a clothing 

recognition network. The semantic gait features are 

represented in 3D semantic pattern space by semantic 

folding. To improve the gait recognition accuracy the feature 

refining mechanism uses a priori knowledge of walking 

conditions to adjust the gait semantic folding image (GSFI) 

features before input to a SoftMax classifier. 

III. PROPOSED METHOD: VCIGR-3DHSF 

A. OVERVIEW 

Fig.1 shows the overview of the proposed VCIGR-3DHSF. 

VCIGR-3DHSF is composed of three schemes. The first 

scheme extracts 2-dimensional (2D) to 3D body pose and 

shape semantic descriptors without clothes (2D-3D-BPSDs) 

from 2D gait images. It is based on our end to end 3D body 

pose, shape and viewing data estimation network (3D-

BPSVeNet), and an optimizing process based on virtual 

dressing. The second is the 3D human semantic folding 

which encodes a sequence of scalar 2D-3D-BPSDs into 

visible GSFI based on sparse distributed representations 

(SDRs). The third is the view and clothing style invariant 

GSFI feature refinement based on GSFI refining network 

(GSFI-RNet) for better performance using a priori 

knowledge. This involves body parsing and clothing 

recognition network. 

 
FIGURE 1. Overview of VCIGR-3DHSF. 
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TABLE 1. Semantic parameters of human body shape and pose. 

Category Parameters Category Parameters Category Parameters  

Shape-Global Gender Shape-Head Head fat Pose-Head-joints neck 

Age H-horizontal scale Pose-Arms-joints Left-shoulder 

Muscle H-vertical scale Right-shoulder 

Weight Shape-Neck Neck fat Left-elbow 

Height N-vertical scale Right-elbow 

Proportions Shape-Torso Torso depth scale Left-wrist 

Shape-Arms Arm length T-horizontal scale Right-wrist 

Arm thickness T-vertical scale Pose-Legs-joints Left-hip 

Hand scale Breast scale Right-hip 

Shape-Legs Leg length Stomach scale Left-knee 

Leg thickness Hip depth scale Right-knee 

Foot scale Buttocks volume Left-ankle 

Pose-Torso-joints root Pose-Torso-joints chest Right-ankle 

 

B. 3D PARAMETRIC BODY MODEL WITH VIRTUAL 
CLOTHING 

We refer the parameterized body model as the structured 

body mesh described by semantic body parameters. The 

deformation relationships between semantic body 

parameters and 3D mesh vertices are based on the statistical 

learning algorithms provided in the 3D body dataset. Table 

1 shows the semantic body shape and pose parameters used 

in the proposed method. The shape descriptors are manually 

selected from around a hundred body shape parameters 

according to their sensitivity in gait recognition. Their values 

are normalized to the range [0 1], i.e., 0.5 is the average value. 

The pose joints are based on the skeleton of CMU mocap, 

and each joint has three degrees of freedom (DOF). The 

skeleton is embedded, and the 3D parametric model can be 

deformed both in shape and pose according to the given body 

parameters as shown in Fig. 1. To effectively extract the 

semantic gait features, the proposed method uses the 3D 

instances from the makehuman system [31], and the body 

parametric modelling method of our previous work [32]. 

We proposed a 2D-3D-BPSDs estimation method via a 

measuring function based on their silhouette difference as in 

[32], where binary 2D gait silhouettes are used for 3D body 

estimation. However due to the absence of RGB information, 

the estimation accuracy still needs to be improved, e.g., in 

2D binary images it is not possible to distinguish a right foot 

from a left foot. If the two feet or hands overlap or self-

occlusion occurs, then the precise position of them cannot be 

located. Furthermore, the speed of the required iterative 

computing is influenced by the initial 3D pose, i.e., the closer 

it is to the 2D gait, the smaller is the computational cost.  

In order to improve the efficiency and the accuracy of 

the 2D-3D-BPSDs estimation, a sequence of gait silhouettes 

is utilized to estimate the semantic parameters of the 3D body 

model. We introduce the instance-level body parsing to 

obtain colour gait silhouettes for the estimation. The body 

parsing simultaneously segments the body from 2D images 

and parses each instance into finer grained body parts (i.e., 

hair, head, neck, left/right-hand, left/right-leg, foot, etc.). 

With more detailed 2D body parsed gait images, different 

body parts can be located more easily. By introducing a 

clothing recognition network, the clothing style is 

determined and used in the 3D body modelling by virtual 

dressing as shown in Fig. 1. The network eliminates the 

clothing influences and helps to improve the accuracy of the 

shape parameters estimation.  

3D parametric body model, as a structured and 

parameters-controlled model, can morph to various 3D body 

using different body shape and pose parameters. The 

clothing is separated from the body model and virtual 

dressing is used to dress the body. Unlike modelling 3D 

parametric body, we introduced several 3D clothing models 

and slightly modified by 3D CAD software according to the 

key clothing styles in public gait datasets. Table 2 shows the 

list of clothing models for virtual dressing, where S-skirt, M-

skirt and L-dress respectively denote short-skirt, medium 

skirt and long-dress. Fig. 2 illustrates some of them in details, 

i.e., shirt, coat, pants and skirt. The clothing models are 

constructed from the clothing categories introduced in [27] 

and DeepFashion [33] except for cap, bag and shoes. 

TABLE 2. List of parametric clothing models for virtual dressing. 

Category Sub Category Sub class Category Sub 

Tops Tank Pants Leggings Coat Regular 

coat 

T-shirt Regular 

pants 

Medium 

coat 

Full shirt Baggy 

pants 

Long coat 

Sweater Short 

pants 

 Raincoat 

Hoodie Skirt/Dress S-skirt Others Robe 

Blazer M- skirt Handbag 

Hat cap L- dress Backpack 
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FIGURE 2. 3D parametric clothing models and virtual dressing: (a) Regular coat; (b) medium coat; (c) long coat; (d) regular pants; (e) short pants; (f) 
short skirt; (g) long dress; and (h) cap on kid. 

C. 3D BODY POSE AND SHAPE DATA ESTIMATION 
NETWORK AGAINST VARIOUS CLOTHING CONDITIONS 

In our proposed method, gait silhouette segmentation is 

achieved using a state-of-art joint body parsing and pose 

estimation network SS-JPPNet [34]. SS-JPPNet is trained on 

a dataset comprising over 50,000 annotated images with 19 

semantic part labels, captured from a broad range of 

viewpoints, occlusions and scenarios. Its outputs are of three 

image formats, i.e., RGB body contour, body parsed image 

and binary silhouette. 

Following the gait silhouette segmentation, an estimate of 

the initial 2D-3D-BPSDs including 3D joints data, shape 

parameter values and viewing data is made. In order to 

achieve view-invariant gait recognition, both azimuth and 

elevation angles must be considered. When a subject is 

walking from a far distance to the camera, the view between 

the body and camera changes continuously. In most gait 

recognition methods, these changes are ignored, especially 

in model free algorithms. However, camera views can 

influence the gait recognition accuracy especially if the 

subject walks in a big curve path. In order to obtain a better 

3D initial gait model, an end to end 3D body pose, shape and 

viewing data estimation network (3D-BPSVeNet) is 

proposed. It is built upon three sub networks, i.e., the state-

of-art DeeplabV3+ model [35] (a feature extractor using 

encoding), ConvGRU (a temporal feature encoder) and body 

parsing. The body parsing sub-network estimates the 3D 

joints and viewing angles in accordance with the extracted 

2D features. The schematic diagram of the proposed network 

is shown in Fig. 3. 

Fig. 3 shows several frames of body semantic parsing 

of RGB silhouettes with clothes ID embedded (SC-RGB) 

used as the inputs of 3D-BPSVeNet. SC-RGB, and 2D Gait 

RGB silhouettes with clothes ID embedded (GC-RGB) are 

directly used for training. Let the input gait sequence frames 

be denoted by 𝐼𝑛 , 𝑛 = 1,2,3 … , 𝑁 . First, deepLabV3+ is 

applied to the input gait silhouette I, i.e., SC-RGB or GC-

RGB, to extract 2D gait feature 𝐹 = 𝒩𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝐼). Then 𝑀 

consecutive frames of gait features are fed to ConvGRU to 

encode their spatial-temporal information, i.e., �̃� =
𝑐𝑜𝑛𝑣𝐺𝑅𝑈(𝐹𝑘−𝑚, … , 𝐹𝑘−1, 𝐹𝑘), 𝑚 ∈ [1, 𝑀] . ConvGRU 

exploits both CNNs and GRU. As a recurrent neural network, 

there are two important gates in a GRU unit [36], the updated 

gate 𝑧𝑡 and the reset gate 𝑟𝑡. Compared with LSTM the state 

of the cell is removed, and the hidden state is used for 

information exchange which makes it efficient. The 3D-

BPSVeNet outputs the joints and shape data of 3D body 

together with viewing data, i.e., the joints are encoded as 

delta values to the standard I pose. They are based on the 

skeleton structure of CMU mocap [37] and encoded in 

biovision hierarchical (BVH) format. Each joint has three 

DOF with its local coordinate. 

 
FIGURE 3. The schematic of 3D-BPSVeNet. 
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FIGURE 4. Extraction of 3D pose ground truth data. 

In the F-subNet and T-subNet, the data have the same 

shape (stride of 16, 256 channels). In the subsequent parsing 

sub-network, a 3 × 3  convolutional layer and 1 × 1 

convolutional layer with stride of 2 are designed to reduce 

the feature channels to the size of ℓ = (3𝑁𝑗 + 𝑁𝑠 + 3) , 

where 𝑁𝑗 denotes the number of 3D joints, and each joint has 

3 elements, i.e., 𝒿 = ∆(𝑥, 𝑦, 𝑧). 𝑁𝑠 defines the number of 3D 

body shape parameters. After an average pooling, the ℓ size 

data is mapped to 3D body pose and shape parameters with 

the additional data on viewing data, i.e., azimuth and 

elevation angels.  

To train the 3D-BPSVeNet, the 𝐿2 based loss function 

is defined as 

ℒ =   ∑ ‖𝑣𝑛 ∙ (𝒥𝑛
𝑔𝑡

− 𝒥𝑛)‖
2

2𝑁
𝑛=1 +

           ∑ ‖(𝒮𝑛
𝑔𝑡

− 𝒮𝑛)‖
2

2𝑁
𝑛=1 + ∑ ‖(𝛾𝑛

𝑔𝑡
− 𝛾𝑛)‖

2

2𝑁
𝑛=1   , 

(1) 

where 𝑁  denotes the number of training samples. 𝒥𝑛
𝑔𝑡

∈
ℝ3𝑁𝑗  is the normalized vector comprising all the ground 

truth 3D body joints data with three DOF, and 𝒥𝑛 comprises 

the estimated joints data. 𝑣𝑛 ∈ ℝ3𝑁𝑗 is the indicator vector 

denoting the status for each joint, i.e., visible or not (caused 

by self-occlusion). 𝒮𝑛
𝑔𝑡

∈ ℝ𝑁𝑠  is the normalized vector 

comprising ground truth body shape values, and 𝒮𝑛 

comprises the estimated shape values. 𝛾𝑛
𝑔𝑡

∈ ℝ3  𝑖𝑠  the 

normalized vector comprising the ground truth data of 

viewing, and 𝛾𝑛 corresponds to the estimated data vector. To 

train the 3D-BPSVeNet, sufficient ground truth 2D to 3D 

estimated data is essential. To the best of our knowledge, 

there are no labelled 2D to 3D body parameters estimation 

data, especially for gait. To undertake the training, a semi-

automatic method is introduced to construct the virtual 

ground truth data of 2D-3D-BPSDs.  

The semi-automatic method was developed in our 

previous work in [16] and [32]. In [32] 3D gait pose data are 

estimated by observing the silhouette difference between 2D 

gait contour and 3D projected body under the same view 

using a silhouette similarity degree function for binary 

images. Using a binary image to estimate 2D-3D-BPSDs has 

its disadvantages. For example, the left and right hands (or 

legs) are often difficult to distinguish due to the lack of RGB 

information. To overcome this problem, the RGB body 

parsed images are introduced instead of binary images. The 

process is illustrated in Fig. 4. First, a 3D body model similar 

to the current gait posture is initialized. Then, the selected 

3D body model is rotated to the view consistent with the 2D 

gait and projected onto the 2D space to form a reference 

template. Finally, the residual error between the 2D and 3D-

2D projected body parsed silhouettes is determined. If the 

residual error is large than the set threshold or the maximum 

number of iterations has not been reached, thus the 3D body 

model will undergo further pose deformation by updating the 

pose parameters. The synthesized 3D body model will fit the 

2D gait better, and the residual error is updated until the 

residual error is less than or equal to the set threshold.  

In this paper, the residual error measuring function 

defined in Eq. (2)-(4) is a real-valued function of a fixed 

number of 2D-3D-BPSDs as inputs. However, the function 

is a continuous but complex function without an underlying 

mathematical definition. To simplify the problem and 

facilitate the realization, Powell's conjugate direction 

method is introduced as the basic optimization method to 

extract the 2D-3D-BPSDs truth data as illustrated in Fig. 4. 

By using the Powell's method, the function need not be 

differentiable, and no derivatives are taken. It is useful to 

calculate the local minimum of such a function. In the real 

application, the values of shape parameters are first fixed and 

minimized using Eq. (2) to obtain the optimal values of pose 

parameters. When the pose parameters are refined, they are 

then fixed to gain the optimal values for shape. The 

experimental results show that the accuracy of the estimated 

data of 2D-3D-BPSDs are greatly improved by the clothes 

recognition, virtual dressing process and multi-view data. 

The silhouette similarity degree function for measuring 

the residual error at a given view 𝛼 is 

ℒ𝛼 =
1

2𝑚×𝑛
∑ 𝑤𝑏‖(𝑔𝑖

2𝐷,𝛼 − 𝑔𝑖
3𝐷,𝛼)‖

2

2𝑚×𝑛
𝑖=1 +

1

2𝑚×𝑛
∑ ∑ 𝑤𝑑‖(𝑐𝑑,𝑖

2𝐷,𝛼 − 𝑐𝑑,𝑖
3𝐷,𝛼)‖

2

2𝑚×𝑛
𝑖=1

𝐷
𝑑=1 , 

(2) 

where 𝑚 and 𝑛 are respectively the height and width of the 

normalized gait images, and 𝑖 is the index of pixels in gait 

images. Let 𝑔𝑖
2𝐷,𝛼

 be the pixel value in 2D body parsed 

image 

𝑃𝑔
2𝐷,𝛼 = 𝐽𝑃𝑃𝑁𝐸𝑇(ℬ𝛼) = {𝑔𝑖

2𝐷,𝛼 , 𝑖 = 1 … 𝑚 × 𝑛}, (3) 

obtained from 2D RGB gait ℬ𝛼  using SS-JPPNET. 𝑔𝑖
3𝐷,𝛼

 

defines the pixel value corresponding to body parsed image 

of 3D projected image. The 3D projected gait image is 
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denoted by 𝒫𝛼(𝒥, 𝒮, 𝐶𝑝) . Its corresponding 3D model 

comprises 𝑆  as the body shape parameters, 𝒥  as the 

parameters of joints and 𝐶𝑝 as the clothing parameter of 𝑝 

type. The body parsed image of 𝒫𝛼(𝒥, 𝒮, 𝐶𝑝) is 

𝑃𝑔
3𝐷,𝛼 = 𝐽𝑃𝑃𝑁𝐸𝑇(𝒫𝛼(𝒥, 𝒮, 𝐶𝑝)) 

              = {𝑔𝑖
3𝐷,𝛼 , 𝑖 = 1 … 𝑚 × 𝑛}. 

(4) 

Let 𝐷 be the number of parsed body parts of interest, i.e., 

head, leg and hand (displayed in different colour in Fig. 5), 

𝑐𝑑,𝑖
2𝐷,𝛼

 is the pixel value of body part 𝑑 in 𝑃𝑔
2𝐷,𝛼

, and 𝑐𝑑,𝑖
3𝐷,𝛼

 is 

the pixel value of body part 𝑑  in 𝑃𝑔
3𝐷,𝛼

. 𝑤𝑏  is the weight 

which determines the global fitness of two different gait 

silhouettes, and 𝑤𝑑 are the weights that overcome the sub-

optimal decisions when significant part of the body is lost. 

      
(a) (b) (c) (d) (e) (f) 

FIGURE 5. (a) & (c) RGB gait images; (e) 3D projected image after texture 
mapping; and (b), (d) and (f): the corresponding body parsed images. 

By minimizing the silhouette similarity degree function 

of Eq. (2) the 2D-3D-BPSDs are estimated and denoted by 

𝒥𝑜𝑝𝑡 = {∆(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑖 ∈ [1. . . 𝑁𝑗]}  and 𝒮𝑜𝑝𝑡 = {𝑠𝑗 , 𝑗 ∈

[1. . . 𝑁𝑠]}. 𝑁𝑗 and 𝑁𝑠 respectively denote the number of joint 

and shape parameters as listed in Table 1. If multi-view data 

are considered for more accurate estimation, the total 

residual error can be redefined by ℒ = ∑ ℒ𝛼𝛼∈𝛷 , where 𝛷 is 

a view set. Before iterating, the initial viewing data 𝛾, i.e., 

elevation angle, is manually assigned according to the 

dataset. The gait images from CASIA B dataset with 

different views are used to construct the virtual ground truth 

dataset of 2D-3D-BPSDs. We manually check the final 

optional results and adjust the pose and shape to get the best 

ground truth data for each subject. Using the semi-automatic 

method, 2D-3D-BPSDs are estimated from the input 2D 

images, and the additional check with manual modification 

ensures the data to be more accurate.  

The data from CASIA B is insufficient to train the 3D-

BPSVeNet. To enlarge the training data, we morph the 3D 

body models with virtual random body shape parameters 

𝒮𝑣𝑖𝑟 and clothing parameter 𝒞𝑝𝑣𝑖𝑟
. They are projected onto 

2D space to obtain the 2D virtual gait image with pose data 

�̂� , i.e., ℬ𝑣𝑖𝑟,�̂�
𝛼 = 𝒫𝛼(�̂�, 𝒮𝑣𝑖𝑟 , 𝒞𝑝𝑣𝑖𝑟

) . Let ℬ𝑖,𝛼 =

{ℬ1
𝑖,𝛼 , . . . ℬ𝑚

𝑖,𝛼 , . . . , ℬ𝑀
𝑖,𝛼}  be a given gait set where ℬ𝑚

𝑖,𝛼
 

denotes the 𝑚𝑡ℎ 2D RGB gait frame of 𝑖th sample at view 

𝛼. 𝑀 is the maximum number of frames in a gait cycle. For 

ℬ𝑖,𝛼 , the 𝑀  corresponding 3D pose data are denoted as 

𝒥𝑠𝑒𝑡 = {𝒥1, . . . , 𝒥𝑀}  and the shape data set as 𝒮𝑠𝑒𝑡 =
{𝒮1, . . . , 𝒮𝑀} . Virtual generated samples are based on the 

extension of 𝒥𝑠𝑒𝑡  and 𝒮𝑠𝑒𝑡 . The 𝒮𝑠𝑒𝑡  can be enlarged by 

uniformly synthesizing 𝑁𝑠
𝑣𝑖𝑟, new virtual shape data set, i.e., 

𝒮𝑠𝑒𝑡
𝑣𝑖𝑟 = {𝒮1

𝑣𝑖𝑟 , . . . , 𝒮
𝑁𝑠

𝑣𝑖𝑟
𝑣𝑖𝑟 }, and the mixed data set is 𝒮𝑠𝑒𝑡

𝑚𝑖𝑥𝑒𝑑 =

𝒮𝑠𝑒𝑡 ∪ 𝒮𝑠𝑒𝑡
𝑣𝑖𝑟 . The 𝒥𝑠𝑒𝑡  is enlarged by 𝑇  times linear 

interpolation based on joints data in a cycle, and  𝒥𝑠𝑒𝑡
𝑣𝑖𝑟 =

{𝒥1
𝑣𝑖𝑟 , . . . , 𝒥𝑇×𝑀

𝑣𝑖𝑟 }. The corresponding virtual generated gait 

set is ℬ𝑣𝑖𝑟
𝑖,𝛼 = {ℬ𝑣𝑖𝑟,1

𝑖,𝛼 , . . . ℬ𝑣𝑖𝑟,𝑚
𝑖,𝛼 , . . . , ℬ𝑣𝑖𝑟,𝑇×𝑀

𝑖,𝛼 },  which is 𝑇 ×

𝑁𝑠
𝑣𝑖𝑟 × 𝑀 times larger than the original ℬ𝑖,𝛼 . By using the 

estimated 2D-3D-BPSDs from ℬ𝑖,𝛼 , and the virtual 

generated data, the sequence training dataset is constructed. 

Let 𝐼𝑛𝑖 = (𝐼𝑛𝑚+1
𝑖 , 𝐼𝑛𝑚+2

𝑖 , . . . , 𝐼𝑛𝑚+𝑡
𝑖 )

𝑇
 be the 𝑖 th sequence 

based input gait comprising 𝑡 consecutive frames in a gait 

cycle where 𝑚 + 𝑡 ≤ 𝑀 and 𝑚 ∈ [1 𝑀]. The output is 

𝑂𝑢𝑡𝑖 = (𝑂𝑢𝑡1
𝑖 , 𝑂𝑢𝑡2

𝑖 , . . . , 𝑂𝑢𝑡𝐾
𝑖 , . . . , 𝑂𝑢𝑡𝐾+3

𝑖 )
𝑇
 

                  = (𝒥𝑜𝑝𝑡
𝑖 , 𝒮𝑜𝑝𝑡

𝑖 , 𝛾𝑖)
𝑇
, 

(5) 

where 𝐾 = 3𝑁𝑗 + 𝑁𝑠 and 𝛾𝑖 ∈ ℝ3. 𝛾𝑖 denote the views, i.e., 

azimuth and elevation angels. 𝒥𝑜𝑝𝑡
𝑖  are the 3D pose 

parameters corresponding to last gait frame 𝐼𝑛𝑚+𝑡
𝑖 , and 𝑆𝑜𝑝𝑡

𝑖  

are the average shape values of t input gait frames. The 3D-

BPSVeNet can be adequately trained using batches of the 

input 𝐼𝑛𝑖  and output 𝑂𝑢𝑡𝑖. 

D. 3D GAIT SEMANTIC DATA OPTIMIZATION 

Using the 3D-BPSVeNet, the 3D pose parameters 𝒥𝑜𝑝𝑡,0 , 

shape parameters 𝒮𝑜𝑝𝑡,0 and views are estimated. However, 

due to the limited availability of ground truth data for real 

2D-3D-BPSDs, the training samples are still less than 

satisfactory. Thus, the estimated 3D body data, especially 

from 2D gait images under various conditions, need to be 

optimized. The optimization of 2D-3D-BPSDs comprises the 

following three steps. First, recognize the 2D clothing styles 

and virtual dress the 3D body with clothing. Second, adjust 

the shape parameters to optimize the pose parameters using 

semantic parsed gait image. Finally, adjust the pose and 

update the body shape parameters. 

FashionNet [33] is introduced to recognize clothes. It is 

based on the clothes dataset DeepFashion which consists of 

800K clothing items with comprehensive annotations. It can 

predict clothing category, attribute and landmarks, that help 

to determine the length of clothes. According to the basic 

category of clothing, the prior designed virtual clothes are 

selected to dress (using virtual dressing [38]) the 3D body 

before shape deformation.  

After virtual dressing, the initialized 3D model is 

refined using an algorithm similar to that shown in Fig. 4 by 

minimizing Eq. (2). The data corresponding to moving parts, 

i.e., hands and legs, are assigned larger weights, i.e., set to 

0.6, due to their importance in motion. If there is a significant 

loss of this data, the larger weights ensure that moving parts 

do not lose their total energy quickly so as not to be trapped 

in local optimum. The other static body parts, i.e., head and 

trunk, are assigned smaller weights, thus ensuring the lost 
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data have less effects on the global optimum. Since body 

pose and shape parameters have different physical meanings, 

we first fix the values of shape parameters and minimize Eq. 

(2) to obtain the optimal pose parameter �̂�𝑜𝑝𝑡 . This is 

followed by determining the optimal shape parameter �̂�𝑜𝑝𝑡. 

The final optimal body semantic parameters for input sample 

𝑖 are denoted by 𝒫𝑏 = {�̂�𝑜𝑝𝑡
𝑖 , �̂�𝑜𝑝𝑡

𝑖 , 𝛾𝑖}. 

E. GAIT SEMANTIC FOLDING 

Gait semantic folding comprises two steps as illustrated in 

Fig. 6: gait semantic sparse distributed representation (GS-

SDR); and folding. GS-SDR is the process of encoding an 

unstructured gait images to a Sparse Distributed Binary Gait 

Semantic Image (SD-BGSI) using a topographical semantic 

space based on 3D body semantic parameters. By averaging 

a sequence of SD-BGSIs, a GSFI is obtained. The GSFI is 

used as the basic gait semantic feature for further gait 

recognition against various walking conditions.  

By using 3D-BPSVeNet and the refining process, the 

body semantic parameters as listed in Table 1 are estimated 

as 𝒫𝑏 = {𝒥𝑜𝑝𝑡 , 𝒮𝑜𝑝𝑡 , 𝛾}. Motivated by the efficiency of GEI 

and to exploit sparse distributed representations (SDRs), 

which is the fundamental form of pattern representation in 

our brain [39], we encode the scalar body semantic data to 

binary GS-SDR. SDRs are robust to noise and usually in the 

form of a binary sequence. According to the brain-like HTM 

theory [39], the bits correspond to neurons in the brain, 

where a one denotes a relatively active neuron and a zero a 

relatively inactive neuron. Our GS-SDR shares the same 

conceptual foundation with the HTM theory.  

 
FIGURE 6. Generation of SD-BGSI and SD-GSFI. 

The gait semantic folding is based on the 2D-3D-

BPSDs estimated by 3D-BPSVeNet with a refining process. 

As in Section III.C, let 𝒥𝑜𝑝𝑡
𝑘 = {𝒿𝑖

𝑘 = ∆(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)|𝑖 ∈

[1, 𝑁𝑗]} , 𝒮𝑜𝑝𝑡
𝑘 = {𝑠𝑗

𝑘|𝑗 ∈ [1, 𝑁𝑠]}  and 𝛾𝑘 ∈ ℝ3  respectively 

denote the refined 3D semantic body joints, shape and 

viewing parameters. 𝑁𝑗  and 𝑁𝑠 respectively denote the 

maximum number of joint and shape parameters. 𝒿𝑖
𝑘 denotes 

the 𝑖𝑡ℎ 3D joint data of 𝑘 frames in a gait cycle, and 𝛾𝑘 is 

viewing data. 𝑠𝑗
𝑘 denotes the 𝑗𝑡ℎ shape parameters of the 𝑘 

frames in a gait cycle. The length of 2D-3D-BPSDs is ℓ =

(3𝑁𝑗 + 𝑁𝑠 + 2). Additional clothing and carrying conditions 

with six parameters are added to 2D-3D-BPSDs. 

The generation of SD-BGSI is illustrated in Fig. 6, 

where each column represents a single gait semantic 

parameter. The numeric value of the semantic parameter is 

encoded as a spare binary column vector using the sparse 

distributed scalar encoder (SDSE) introduced in [39]. In 

SDSE encoding, w is defined as the number of ON-bits that 

are set to encode a single value, and n is the number of bits 

in the output which must be greater than w. A radius and a 

resolution are also defined, i.e., two values separated by 

greater than the radius have non-overlap, and two values 

separated by greater than the resolution have different 

representations. According to the SDSE, 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑟𝑎𝑑𝑖𝑢𝑠/𝑤  and 𝑛 = 𝑤 ∗  𝑟𝑎𝑛𝑔𝑒/𝑟𝑎𝑑𝑖𝑢𝑠 . The input data 

range is normalized to [0 1] in this paper and the 𝑤 is set to 

11, which should be an odd number. The resolution is set to 

0.01 and the number of bits in the output 𝑛 is determined to 

be 100. The SDSE maps a scalar value into an array of bits, 

i.e., ON-bits are significantly less than the zero-bits. The 

similarity of two SDSE vectors is given by the overlap score. 

If 𝑥 and 𝑦 are two SDSE vectors with length 𝑛, the overlap 

between them is defined as their dot product, i.e., 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥, 𝑦) ≡ 𝑥 ∙ 𝑦 .                            (6) 

It simply computes the number of ON (i.e., 1) bits between 

the two SDSE vectors at the same locations. Several columns 

of SDSE vectors are constructed to form an SDR matrix, 

which is the SD-BGSI after visualization.   

A match between two SD-BGSIs is then defined by 

𝑚𝑎𝑡𝑐ℎ(𝑥, 𝑦|𝜃) ≡ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥, 𝑦) ≥ 𝜃. The match is inexact 

as in fuzzy theory if 𝜃 < 𝑤, where 𝑤 is defined to assume 

that the two SD-BGSIs have the same cardinality 𝑤. If 𝜃 =
𝑤, an exact match is determined. The inexact representation 

is one of the significant properties of SD-BGSIs, which 

makes the processing of SD-BGSIs more robust to noise and 

changes the input. Thus, the match of two SD-BGSIs is 

determined by checking if they overlap sufficiently [39], 

which can be directly undertaken with the semantic meaning 

using the logical “AND” or “OR” operation. 

In a gait cycle, there are several SD-BGSIs, i.e., each 

gait frame corresponds to a SD-BGSI. To obtain a more 

efficient gait feature representation, GSFI is calculated based 

on the principle of GEI, i.e., averaging the SD-BGSIs in a 

gait cycle. As aforementioned, the 3D body parameters are 

normalized to [0 1] range. The average value of each 

semantic pixel in GSFI denotes the probability of ON-bit. 

For the purpose of visible display, they are re-normalized to 

[0 255] for each pixel. Unlike averaging the scalar values, 

the GSFI is more similar to the statistical representation of 

GEI. But it is essentially not the same as GEI is derived from 

raw binary gait images, and GSFI is based on 3D body 

semantic pattern space, i.e., pose and shape. It is the 

structural gait feature descriptor and is less sensitive to 

various walking conditions. 
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FIGURE 7. Refining structure of GSFI for view and clothing invariant gait recognition. 

F. GSFI REFINEMENT FOR VIEW AND CLOTHING 
INVARIANT GAIT RECOGNITION 

Fig. 7 illustrates the proposed refining method using GSFI as 

input and SoftMax as the classifier. The method comprises 

two phases, i.e., refining and recognition. The feature 

refining is motivated by the fact that the a priori knowledge 

about walking conditions can be used to construct a feature 

adjustor. In fact, our GSFI is view-invariant gait feature 

descriptor, i.e., the shape parameter is less sensitive to views. 

The 3D dynamic joint data are also view-invariant, i.e., the 

motion information of joints is encoded by values relative to 

the data of standard template using BVH (Biovision 

hierarchical data) format which makes it also robust to views. 

However, the estimation of 2D-3D-BPSDs for the same 

subject may sometimes be slightly different under different 

walking conditions. The refining mechanism uses the 

statistics of different views, clothing and carrying items to 

adjust GSFI features before classification. For example, 

carrying a ball influences the dynamic data of two hands, and 

the refining mechanism assigns small weight to the hand 

joint data using the knowledge learned from normal walking.  

Let 𝑋 = {𝑥𝑖 = 𝐼𝐺𝑆𝐹𝐼
𝑖 ∈ ℝℓ×ℓ, 𝑖 = 1, . . . , 𝐼} denotes the set 

of GSFIs with 𝐼 samples. Three types of walking conditions., 

i.e., viewing, clothing and carrying, are introduced for 

refinement as shown in Fig. 7. The refining 3 × 3 × 𝑁 

convolutional kernels (RC-Kernels) are generated according 

to the walking conditions. The refining process is achieved 

via the convolution of GSFI and the RC-Kernels. 

As shown in Fig. 7, the connection networks FC1 to FC3 

are used to directly connect the input data of three walking 

conditions that are represented in the form of SDRs vector as 

discussed in Section III.E. The input viewing data is denoted 

as 𝑣𝑖 = {(𝑣𝑎𝑧𝑖𝑚𝑢𝑡ℎ , 𝑣𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) ∈ ℝ2}. The clothing style is 

composed of upper, down and additional dressing, and 

denoted by 𝑐𝑙𝑖 = {(𝑐𝑙𝑢𝑝𝑝𝑒𝑟 , 𝑐𝑙𝑙𝑜𝑤𝑒𝑟 , 𝑐𝑙𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛) ∈ ℝ3} . The 

carrying condition is described by three variables, i.e., object 

carrying style and the (x,y) location of the corresponding body 

part. It is defined as 𝑐𝑎𝑖 = {(𝑐𝑎𝑠𝑡𝑦𝑙𝑒 , 𝑐𝑎𝑥 , 𝑐𝑎𝑦) ∈ ℝ3}. The 

sigmoid activate function is introduced to normalize the 

outputs of FC1 to FC3 within the range [0 1]. They are then 

reshaped to form the RC-Kernels for convolution on GSFI. 

The three outputs of the convolution are 𝑂𝑢𝑡1 =

𝐶𝑜𝑛𝑣(𝐺𝐹𝑆𝐼, 𝑅𝐶𝑣_𝐾𝑒𝑟𝑛𝑎𝑙𝑠), 𝑂𝑢𝑡2 = 𝐶𝑜𝑛𝑣(𝐺𝐹𝑆𝐼, 𝑅𝐶𝐶𝑙_𝐾𝑒𝑟𝑛𝑎𝑙𝑠) 

and 𝑂𝑢𝑡3 = 𝐶𝑜𝑛𝑣(𝐺𝐹𝑆𝐼, 𝑅𝐶𝐶𝑎_𝐾𝑒𝑟𝑛𝑎𝑙𝑠) . These have a 

dimension of  100 × 78 × 𝑁 and are concatenated for fusion. 

A 1 × 1  convolution operation and followed by a sigmoid 

activate function are then applied. The final output, i.e., the 

refined GSFI, is 𝑢𝑖 = 𝐺𝑆𝐹𝐼_𝑀𝑁𝑒𝑡(𝑥𝑖) which has the same 

size as the input GSFI. 

The refining network and the SoftMax classification 

network are trained separately. The refining network adjusts 

the higher-level features extracted directly from GSFIs and 

makes the features more invariant to viewing angles, 

clothing styles and carrying items. Its loss function is 

ℒ𝑜𝑠𝑠
𝑢 = ∑ ∑ ‖𝑢𝑖 − �̃�𝑝‖

2

2

𝑢𝑝∈𝑈𝑝𝑜𝑠
𝑖  𝐼

𝑖=1  ,                    (7) 

where 𝑈𝑝𝑜𝑠
𝑖  denotes 𝑁𝑝𝑜𝑠  positive outputs set based on the 

anchor sample 𝑥𝑖 , i.e., the positive output �̃�𝑝  is from the 

same subject anchor but under different view, clothing and 

carrying conditions. After feature refinement for gallery 

GSFIs, the gallery feature set are denoted by 𝐼𝑛𝑔𝑎𝑙𝑙𝑒𝑟𝑦 =

{𝑢𝑖
𝑔𝑎𝑙

, 𝑖 ∈ [1 𝑁𝑔]}  and is used as input data to train the 

SoftMax classifier for recognition. The SoftMax classifier 

has two important functions, i.e., a score function and the 

cross-entropy loss function. The score function, i.e., 

𝑆(𝑥𝑖 ; 𝑊; 𝑏) = 𝑊𝑥𝑖 + 𝑏，maps each input 𝑥𝑖 = 𝑢𝑖
𝑔𝑎𝑙

 to the 

scores of each category. The cross-entropy loss function then 

converts the classification scores into its probability 

distribution by using one-hot encoding vector as final output. 

The cross-entropy loss function for all the samples in the 

training dataset is defined as 

ℒ𝑜𝑠𝑠
𝑐𝑒 = −

1

𝑁𝑔
∑ log (

𝑒
𝑆𝑦𝑖

∑ 𝑒
𝑆𝑗

𝑗

)𝑖∈[1 𝑁𝑔] ,                   (8) 

where 𝑆𝑗  represents the score value of the 𝑗𝑡ℎ class in the 

score function vector 𝑆, 𝑦𝑖  is the correct classification label 
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information of the input 𝑥𝑖, 𝑆𝑦𝑖
 denotes the target class score 

of 𝑥𝑖, and 𝑁𝑔 denotes the total number of samples used in the 

training. After training using the gallery data, the samples in 

probe dataset are applied for testing. The 𝑘𝑡ℎ input of the test 

samples is denoted as 𝑥𝑘
𝑝𝑟𝑜𝑏𝑒

 and its output is the probability 

distribution of all categories, i.e., ID labels. The 

classification result is determined by the category with the 

highest probability value.  

IV. EXPERIMENT 

To evaluate our VCIGR-3DHSF, the datasets CMU MoBo, 

CASIA B and KY4D with clothing variation, object carrying, 

occlusion, etc., were selected for experiments. The clothing 

related OU-ISIR dataset B, and the multi-view gait dataset 

OU-MVLP with binary gait silhouettes from large 

population were also used.  

To train our 3D-BPSVeNet and GSFI-RNet, we chose 

24 subjects in CASIA B, i.e., ID-001 to ID-024, and 

estimated their ground truth 2D-3D-BPSDs using the semi-

automatic approach involving the loss function in Section 

III.C. Three walking conditions, i.e., normal, carrying a bag, 

and wearing a coat, and 11 views were included. We also 

used the virtual sample generation method in Section III.C to 

increase the number of samples as follows. The number was 

first doubled by morphing to the virtually generated 100 sets 

of typical shape parameters. It was further increased by twice 

using linear interpolation of poses derived from subjects of 

ID-001 to ID-024, and doubled by random dressing with 3D 

virtual clothes from the clothing dataset. In addition, two 

elevation angle changes were added by rotating the 3D gait 

models, i.e., 8°. 20% of the total samples were duplicated 

and randomly added with horizontal or vertical bar located 

at 5% to 30% height of a gait image. The total number of 2D-

3D-BPSDs gait sequence patterns used was 22,800, 

sufficient to train the networks. 

A. EXPERIMENTS ON CMU MOTION OF BODY DATASET 

The CMU MoBo [40] consists of six image sequences for 

each of the twenty-five subjects walking on a treadmill 

captured by a number of cameras. Each subject undertook 

four different walking conditions: slow, fast walking, 

inclined walking and walking with a ball. In order to 

demonstrate the robustness of our method against 

incomplete gait silhouettes, missing data was simulated by 

adding horizontal or vertical bar to the gallery silhouettes. 

Using the settings in [9], a horizontal or vertical bar was 

introduced as interference to gait silhouettes with the 

probability varying from 10% to 100%. The width of a 

vertical bar varies from 20 to 50 pixels with 10 pixels as 

step size, and the horizontal bar varies from 40 to 100 pixels. 

Unlike the situation in [9], RGB images with equally 

distributed bars that simulate potential occlusions were 

used in our experiments.  

TABLE 3. Rank-1 recognition rates (%) with horizontal and vertical 

bar occlusions. 

Method 
Horizontal bar width Vertical bar width 

40 60 80 100 20 30 40 50 

IDTW[41] 64.0 60.2 62.4 63.2 66.2 67.3 65.8 66.4 

GEI[4] 79.6 80.6 81.0 79.6 81.0 82.0 82.0 80.6 

GHI[42] 54.4 54.4 57.8 53.4 52.8 54.6 56.0 56.2 

GMI[43] 46.0 46.4 46.4 39.6 48.8 50.8 46.4 48.4 

FD-GEI[9] 79.5 81.4 80.3 80.3 83.4 83.2 82.2 81.4 

V-3DHSF 92.2 91.2 90.4 86.8 90.2 90.8 90.0 88.4 

V-3DHSF-V 95.2 94.2 94.6 92.8 94.8 94.2 93.6 92.2 

For the CMU MoBo dataset, the gait data of fast walk 

were used as gallery while the slow walk data as probe. The 

comparison with other data-driven or model-based methods 

of the lateral-view gait recognition results is shown in Table 

3. The results for our VCIGR-3DHSF-V (denoted by V-

3DHSF-V, i.e., where virtual samples with added bars were 

used to train the 3D-BPSVeNet), show good performance. 

By using the virtual sample generation process, 2D-3D-

BPSDs were estimated to mitigate the effect of imperfect 

silhouettes. The results for VCIGR-3DHSF (denoted by V-

3DHSF, i.e., gait recognition without using virtual noise 

samples) shows the recognition rate is slightly reduced. 

Nevertheless, they both represent performances significantly 

better than the other methods. This is because instead of 

using a static binary image, sequences of 2D RGB gait 

images were used in our framework to estimate 2D-3D-

BPSDs. The influence of incomplete gait semantic data 

caused by occlusion or missing data are mitigated by 

neighbouring frames. In order to illustrate the performance 

of VCIGR-3DHSF under other walking variations, further 

experiments as shown in Table 4 were conducted. Unlike 

some methods, e.g., FSVB [44] STM-SPP [45], WBP [46], 

SGRVDL [47] and PEI [11], in our experiments the SC-RGB 

gait images were used instead of binary gait images to give 

more information of gait. 

TABLE 4. Twelve experiments on CMU MoBo gait dataset (in lateral 

view). 

Exp. Gallery set Probe set Gallery/Probe 

size A Slow walk Fast walk 25×3×4 

B Slow walk Ball-carrying walk 25×3×4 

C Slow walk inclined walk 25×3×4 

D Fast walk Slow walk 25×3×4 

E Fast walk Ball-carrying walk 25×3×4 

F Fast walk Inclined walk 25×3×4 

G Inclined walk  Slow walk 25×3×4 

H Inclined walk Fast walk 25×3×4 

I Inclined walk  Ball-carrying walk 25×3×4 

J Ball-carrying walk Slow walk 25×3×4 

K Ball-carrying walk Fast walk 25×3×4 

L Ball-carrying walk  Inclined walk 25×3×4 
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TABLE 5. Recognition results (%) on Mobo data set. 

Exp. FSVB WBP STM-SPP SGRVDL Method [8] PEI VCIGR-3DHSF 

A 82 92 94 96 92 100 100 

B 77 73 93 87 - 92 96 

C - - - - - 60 94 

D 80 92 91 92 92 88 96 

E 61 61 84 88 - 60 95 

F - - - - - 72 96 

G - - - - - 76 93 

H - - - - - 80 95 

I - - - - - 48 94 

J 89 75 82 87 - 92 96 

K 73 63 82 88 - 84 94 

L - - - - - 76 94 

 

Table 5 shows VCIGR-3DHSF outperforms the 

other methods especially for ball-carrying condition (Exp. 

B, E and I) and inclined walk (Exp. C, F and L). Other 

experimental results that are not presented in the original 

papers have been left blank. The table shows that when 

the gait data are under normal conditions (e.g., Exp. A and 

D), the existing methods show high recognition results as 

well. However, most methods are not robust to abnormal 

changes (e.g., carrying a ball and inclined walk). This is 

because the 2D binary gait silhouettes are more easily 

degraded by various walking conditions especially by 

heavy coat and carrying items. In contrast, the VCIGR-

3DHSF shows satisfactory recognition results across all 

types of conditions. When faced with the carrying 

conditions, the body parsing network removes the ball, 

and the carrying refining matrix for GSFI assigns small 

weight to the joints of hands. In most cases, the carrying 

condition makes the hand joints unchanged. When 

training the GSFI-RNet, virtual samples with the hand 

joints data unchanged are generated to make GSFI-RNet 

robust against carrying conditions. 

In our framework, the body parsing SS-JPPNET [34] is 

introduced to parse the human body, and the clothing 

recognition network FashionNet [33] helps the recognition 

of clothing styles. The gait semantically parsed images 

without background, e.g., Fig. 8(b), are used to estimate the 

initial 2D-3D-BPSDs by our 3D-BPSVeNet. The 2D-3D-

BPSDs is then optimized by virtual dressing, e.g., Fig8(d)-

(f), for better performance. 

       

(a)  (b)  (c)  (d) (e) (f) (g)  

FIGURE 8. Refining 2D-3D-BPSDs by virtual dressing: (a) walk with a ball; 
(b) body parsing image of (a); (c) estimated 3D gait model; (d) 3D clothes; 
(e) dressing on model; (f) after refining; and (f) silhouette difference 
between (b) and (f). 

B. GAIT RECOGNITION UNDER NORMAL CONDITION 
ON CASIA B DATASET 

CASIA Database B is a multi-view gait dataset with two 

variations, i.e., clothing changes and object carrying. The 

dataset contains video sequences of 124 subjects captured 

from 11 views in the range [0° 180°] with an interval of 18°. 

Each view of a subject comprises 10 video sequences: 6 

sequences for normal walking, and 4 sequences under two 

variations, e.g., wearing a coat, and carrying a bag, a 

knapsack, or a handbag [6].  

The view-invariant performance of VCIGR-3DHSF 

was evaluated using the CASIA Dataset B. We excluded 24 

subjects for 3D-BPSVeNet training, and the rest of the 

hundred normal walking subjects, i.e., ID025-ID124, were 

chosen for evaluation. Similar to the settings in [24], they 

were assigned to two groups. Two normal sequences, i.e., 

nm05 and nm06, out of six were selected on each view for 

probe data and the rest for gallery. At each time, only one 

probe view was used for testing, and the gallery views ranged 

from 18° to 162° except for the probe view. Fig. 9 compares 

the rank-1 recognition rate of different methods, i.e., GEI-

SVD [48], GFI-CCA [49], Gabor-CMMF [50], C3A [21], 

ViFS-LDA [22], SPAE-NN [24], and ours with gallery 

views from 18° to 162°. Gabor-CMMF extracts Gabor 

features from GEIs and uses coupled multi-linear marginal 

fisher criterion for feature encoding. For GaborSD-CMMF, 

only the cross-view recognition result under the 54° probe is 

reported and for C3A [21], 108° probe is not reported.  

The results show that VCIGR-3DHSF performs well 

especially when large view change occurs. There are several 

reasons for this. The first is due to our GSFI which is derived 

from two types of view invariant body semantic data, i.e., 

body shape data and dynamic joint data. The second is that 

the GSFI refining network helps to overcome the value 

deviation issue in 2D to 3D semantic parameter estimation. 

In our framework, a single view gait data supplemented with 

a few of other views in the refining process are used to 

extract 2D-3D-BPSDs. Due to the occurrences of different 

self-occlusions, the 2D-3D-BPSDs from two different views 

might differ even for the same pose of the same subject. Thus, 

semantic feature refining is introduced to address this. 
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                     (a)                          (b) 

  

                     (c)                          (d) 

Fig. 9. Rank-1 recognition rates of different methods. 

By using the data of gait views and the knowledge learned 

by GSFI refining network, both the azimuth and elevation 

angle refining matrices help to improve the GSFI for better 

performance. In fact, the elevation angle refining matrices 

greatly help in cross elevation view gait recognition. 

C. GAIT RECOGNITION UNDER VARIOUS CONDITIONS 
ON CASIA B DATASET 

To further evaluate the performance of our VCIGR-3DHSF 

against various walking conditions, CASIA Dataset B was 

used. First, normal sequences of 100 subjects were selected 

on each view for gallery data. The coat wearing and bag 

carrying data were for probe. At each time, one gallery view 

was used for training and testing the probe data under the 

same view. The rank-1 recognition results of our VCIGR-

3DHSF outperforms GEI-GaitSet [2], GFI-CCA [49], 

GPSM [16] as shown in Fig. 10 under views from 18° to 162°. 

The GFI-CCA method which takes GFI as a gait feature only 

reported results under 36° to 144° views.  

In the second experiment, we set the probe views to 

54°, 90° and 126° with two walking conditions. The gallery 

data were chosen from normal walking sequences under 

views of 36°, 72°, 108°, 126° and 144°. Tables 6 to 8 show 

the performances of our method, GEI-NN [6], MGANs [52], 

SPAE-NN [24], GFI-CCA [49], RLTDA [53], and Deep-

CNNs [1]. Theses tables show our VCIGR-3DHSF 

performs best, especially with bag and clothing conditions 

with large view changes. It is robust and less sensitive to 

various dressing conditions and object carrying. 

 

(a) 

 

(b) 

FIGURE 10. Recognition results of VCIGR-3DHSF, AVGR-BPRS, VI-
MGR and GFI-CCA under various variations
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Table 6. Rank-1 cross-view gait recognition (%) with probe under 54°. 

Gallery 
Methods 

GEI-NN RLTDA SPAE-NN GFI-CCA MGANs Deep-CNNs Our 

36° 
Bag 24 81 62 70 78 93 92 

Coat 17 69 42 50 50 50 85 

72° 
Bag 9 72 66 60 90 90 90 

Coat 8 58 37 22 56 62 82 

126° 
Bag 17 - 47 32 68 - 66 

Coat 4 - 29 28 35 - 63 

Table 7. Rank-1 cross-view gait recognition (%) with probe under 90°. 

Gallery 
Methods 

GEI-NN RLTDA SPAE-NN GFI-CCA MGANs Deep-CNNs Our 

72° 
Bag 31 75 64 60 89 93 92 

Coat 22 63 38 35 55 78 84 

108° 
Bag 44 76 61 58 83 89 88 

Coat 28 72 40 42 50 76 80 

144° 
Bag 2 - 24 26 43 - 52 

Coat 2 - 18 28 38 - 50 

Table 8. Rank-1 cross-view gait recognition (%) with probe under 126°. 

Gallery 
Methods 

GEI-NN RLTDA SPAE-NN GFI-CCA MGANs Deep-CNNs Our 

72° 
Bag 11 - 24 25 80 - 72 

Coat 9 - 25 22 43 - 62 

108° 
Bag 23 66 56 45 83 93 91 

Coat 9 65 42 35 50 58 78 

144° 
Bag 32 72 57 50 78 86 85 

Coat 18 64 35 29 55 51 76 

 

There are several reasons why VCIGR-3DHSF 

performs well. Using the clothing recognition network, a 

priori knowledge of dressing and object carrying conditions 

are determined first. Different clothing styles are chosen and 

the initial 3D human model is virtually dressed before the 

2D-3D-BPSDs refining process. The virtual dressing ensures 

the predicted parameters of body shape with clothing are 

more accurate for heavy garments and skirt, or with bag 

carrying. For carrying conditions, to make the estimation 

more tolerant and robust, virtual data on different object 

carrying are used or manually synthesized when training the 

3D-BPSVeNet as illustrated in Fig 11. 

Fig. 10(a) shows that most methods achieve good 

performance when the views are close to 18° or 162°, and 

achieve poor performance near 90°. The latter is due to the 

large bag contours that influence the gait silhouettes 

segmentation at this view. The bag silhouettes merge with 
the gait contours when the gait silhouettes are extracted using 

traditional segmentation methods. We introduced JPPNET to 

accurately parse the body with output S-RGB, thus aiding to 

locate the hand position in carrying condition. This is not 

possible with 2D binary images due to the overlap of the 

carried item with other body parts or objects. By using the 

robust 2D-3D-BPSDs extraction method, the influence of the 

carrying condition is greatly reduced. 

       

(a)  (b)  (c)  (d) (e) (f)  (g)  

FIGURE 11. Generation of virtual bag carrying models: (a) 2D gait image with 

a bag; (b) semantic gait image of (a); (c) synthesized 3D mesh model with 

similar carrying condition of (a); (d) 3D body mesh of (c) without a bag; (e) 

silhouette difference between (b) and (c); (f) silhouette difference between (b) 

and (d); and (g) 3D virtual body mesh with a backpack. 

D. EXPERIMENTS ON KY4D DATABASES WITH 
CURVED TRAJECTORIES 

Kyushu University 4-dimensional (4D) Gait Database 

(KY4D) [54] is characterized by its 4D gait data comprising 
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a set of 3D visual hull models with 2D image sequences. The 

forty-two subjects involved in the dataset walked along four 

straight paths {𝑡1, 𝑡2, 𝑡3, 𝑡4}  and two curved trajectories 

{𝑡5, 𝑡6} . The 2D gait images were captured by 16 high-

definition cameras, suitable for identifying subjects walking 

along curved trajectories. Since KY4D is a multi-view gait 

database, we exploited it in 2D-3D-BPSDs optimization 

using Eq. (2). The silhouette similarity measuring function 

based on multi-view is defined as 

ℒ =
1

2𝑚×𝑛
∑ ∑ 𝑤𝑏‖(𝑔𝑖

2𝐷,𝛼 − 𝑔𝑖
3𝐷,𝛼)‖

2

2𝑚×𝑛
𝑖=1𝜃∈Φ +

        
1

2𝑚×𝑛
∑ ∑ ∑ 𝑤𝑑‖(𝑐𝑑,𝑖

2𝐷,𝛼 − 𝑐𝑑,𝑖
3𝐷,𝛼)‖

2

2𝑚×𝑛
𝑖=1

𝐷
𝑑=1𝜃∈Φ  , 

(9) 

where Φ is a multi-view set determined by the number of 

cameras. The redefined cost function illustrates the union of 

the residual error from all gait views. By minimizing the 

multi-view silhouette similarity measuring function, 

accurate 3D human body pose and shape parameters are 

estimated.  

In our experiment, only the straight path walking 

sequences were used as gallery for training and the curved 

trajectories for testing. Fig. 12 shows that our method 

outperforms the approaches by López [26], Iwashita [54], 

Castro [55] and Seely [56] for curved gait trajectories. The 

VCIGR-3DHSF works best in curved walking condition due 

to two reasons. First, our 3D-BPSVeNet estimates camera 

views by a sequence of 2D gait images, i.e., four frames in 

our experiment. The difference in walking directions 

correspond to camera view changes. Since the walking 

direction within four frames are similar to straight walk, it 

makes our body feature extraction of 2D-3D-BPSDs less 

influenced by the curved trajectories. Second, the 

information on changing walking views is embedded in our 

GSFI when averaging the different viewing data in SD-

BGSIs. It takes into account the GSFI refining process, thus 

making our 2D-3D-BPSDs more robust to view changes 

regardless of self-occlusions. 

 
FIGURE 12. Gait recognition rates comparison on KY4D gait dataset. 

E. EXPERIMENTS ON OU-MVLP DATASET 

OU-MVLP [6] is multi-view gait dataset incorporating a 

large population (i.e., 10307 subjects), captured with 14 view 

angles ranging from 0°-90°, 180°-270° with 15° interval. 

Each view of a subject contains two video sequences with a 

resolution of 1280x980 pixels. It is helpful for evaluating 

algorithms for cross-view gait recognition under large 

population condition. We used the same criteria settings in 

[6] to evaluate our method under four typical view angles 

ranging from 0°-90°. In the baseline of 1in-GEINet, 10,307 

subjects were divided into two disjoint groups, i.e., 5153 for 

training and 5154 for testing. The methods compared in our 

experiment are 1in-GEINet baseline [6], VTM [57], CNNs-

LB [1] and CNNs-Siamese [58].  

Since only binary gait images are published due to 

privacy reasons, body parsed S-RGB images cannot be used. 

Instead, we transformed all the S-RGB images to binary 

format when training the 3D-BPSVeNet. It makes our 

method less accurate in extracting the 2D-3D-BPSDs, and 

the clothing recognition network based on RGB images 

cannot be used. To address this problem, a clothing 

combination classification based on GEIs, as illustrated in 

Fig. 13, is introduced for coarse clothing recognition.  

Twelve clothing combinations were used in the 

experiment as listed in Table 9. The ResNet-50 convolutional 

network [59] with SoftMax classifier was used for 

recognition and about 10,00 subjects in OU-MVLP were 

manually selected for training. The keys for different types 

of clothing in Table 9 are: FS - Full shirt; Hd - Hoodie; Br - 

Blazer; RC - Regular coat; MC - Medium coat; LC - Long 

coat; RC - Rain coat; Lg -  Leggings; RP - regular pants; Ht 

- hat; SS - Short skirt; MS - Medium skirt; LD - Long dress; 

and Rb - Robe. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

FIGURE 13. GEIs in OU-MVLP under different clothing conditions: (a) 
short skirt; (b) medium skirt; (c) long dress; (d) medium coat; (e) hat and 
blazer; (f) raincoat; (g) hoodie; and (h) robe. 

Besides clothing recognition, the multi-view gait data 

were also used. According to Eq. (9), large multi-view gait 
data, i.e., 5153 subjects, help to obtain more accurate 2D-3D-

BPSDs in the optimization as illustrated in Fig. 14. These 

data were added to train our 3D-BPSVeNet, which made it 

adapt to the new data in OU-MVLP. 
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TABLE 9. Different clothing combinations used in the OU-ISIR B dataset. 

Index Upper Lower Addition Index Upper Lower Addition 

1 FS RP - 8 LD LD - 

2 FS Lg - 9 Hd RP - 

3 RC RP - 10 Br RP - 

4 MC RP - 11 RC RP - 

5 LC RP - 12 Rb RP - 

6 FS SS - 13 Br RP Ht 

7 FS MS - 14 FS RP Ht 

 

         

(a) (b) (c) (d) (e) (f) (g) (h) (i) 

FIGURE 14. Refining 3D gait model using multi-view data: (a) 15° gait of ID-10 subject from OU-MVLP; (b)-(c) respectively 45° and 90° gait data for 
refining; (d) refined 3D model using (b) & (c); (e)-(f): the corresponding 3D gait of (b) & (c); and (g)-(i) silhouette difference between 2D gait silhouettes 
and their corresponding 3D gait. 

   
                                               (a)                                       (b) 

   
                                            (c)                                       (d) 

FIGURE 15. Recognition rates of different methods with probe view from 0° to 90°: (a) gallery view is 0°; (b) gallery view is 30°; (a) gallery view is 60°; and 

(a) gallery view is 90°. 

The large population data when training our GSFI-

RNet also greatly helped to overcome the value deviation 

problem in 2D to 3D semantic parameter estimation for 

adjusting the intrinsic semantic features for recognition. The 

comparisons results are shown in Fig. 15. 

Fig. 15 shows that our VCIGR-3DHSF has advantages 

in cross-view recognition even when the population of the 

subjects is larger. Unlike VTM-based methods and most 

deep learning approaches that transform the feature of probe 

gait data to gallery viewing angle, or extract the view-

invariant features that are unexplained and less semantic 

relevance, our method extracts the view-invariant body 

features directly by an end to end 3D-BPSVeNet with full 

semantic meaning. Also, the mismatched feature that often 

occurs in view transformation or extraction is avoided, 

especially with large view changes. The framework of VTM-

based or data-driven based method, e.g., deep learning [60], 

requires large training samples to gain a more generic model, 

and better performance is achieved by learning from more 

gait samples. However, RGB gait images under various 

walking conditions from a large population are not easy to 

obtain. Also, the camera settings fixed in one scenario might 
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be different to real-world application scenarios due to the 

change of their elevation angle. Our parametric 3D body 

model with virtual dressing is greatly helped by virtual 

sample generation process. The 3D body knowledge with 

viewing angles are fully utilized which make our method 

performs well under large view changes. 

F. EXPERIMENTS ON OU-ISIR DATASET B 

The OU-ISIR dataset B [27] is focused on different clothing 

combinations and is useful for evaluating the robustness of 

gait recognition algorithm against clothing variations. It is 

composed of 68 subjects from side view with up to 32 

combinations of different types of clothing. Since the OU-

ISIR dataset only provides binary gait silhouettes we cannot 

use our clothing recognition network. However, all the 

clothing combinations are given in [27] and used as our a 

priori knowledge in our experiments. Table 10 shows the 

different clothing combinations used in the OU-ISIR B 

dataset, i.e., RP - Regular pants (Regular jeans); BP - Baggy 

pants (Chinos); SP - Short pants; Sk - Skirt (Medium skirt); 

CP - Casual pants (Chinos); HS - Half shirt; FS - Full shirt; 

LC - Long coat; Pk - Parker (Hoodie); DJ - Down jacket 

(Parka); CW - Casual wear (Full shirt); RC - Rain coat; Cs - 

Casquette cap (Hat); and Mf - Muffler. 

TABLE 10. Different clothing combinations used in the OU-ISIR B 

dataset. 

Exp. S1 S2 S3 Exp. S1 S2 Exp. S1 S2 

3 RP HS Ht 0 CP CW F CP FS 

4 RP HS Cs 2 RP HS G CP Pk 

6 RP LC Mf 5 RP LC H CP Dj 

7 RP LC Ht 9 RP FS I BP HS 

8 RP LC Cs A RP Pk J BP LC 

C RP DJ Mf B RP Dj K BP FS 

X RP FS Ht D CP HS L BP Pk 

Y RP FS Cs E CP LC M BP DJ 

N SP HS - P SP Pk R RC - 

S Sk HS - T Sk FS U Sk PK 

V Sk DJ - Z SP FS - - - 

We used the experiment settings in [51] to evaluate our 

VCIGR-3DHSF. The dataset was divided into three groups: 

(1) a training set comprising 446 sequences of 20 subjects 

with all types of clothing, used to train the GSFI-RNet; (2) a 

gallery set comprising sequences of the remaining 48 

subjects with standard clothing; and (3) a probe set 

comprising 856 sequences for these 48 subjects with other 

types of clothing excluding the standard clothing. Fig. 16 

shows the performances of our method and GEI, CI-SSA [3] 

and VI-MGR [51]. N.B. CI-SSA only reported recognition 

results in several clothing combination, i.e., Exp. 3, 5, 6, 7, 

8, B, C, E and R.  

Fig. 16 shows that our method significantly 

outperforms GEI, VI-MGR and CI-SSA, especially when the 

subjects wore heavy coat or skirt, i.e., clothing conditions C, 

J, M, U and V. Our VCIGR-3DHSF exploited 3D virtual 

dressing as illustrated in Fig. 17 and feature refining network, 

i.e., GSFI-RNet, using a priori knowledge of clothing for 

feature refinement. 

 
FIGURE 16. Recognition accuracy of various methods on OU-
ISIR dataset B with different clothing combinations. 

      

(a) (b) (c) (d) (e)  

      

(f) (g) (h) (i) (j)  

FIGURE 17. Refining 3D gait model using virtual dressing: (a) J 
combination of ID-3 subject from OU-ISIR; (b) refined 3D gait model with 
long coat; (c) difference between (a) and (b); (d) normal dressing of (b); 
(e) difference between (a) and (d); (f) R combination of ID-3 subject; (g) 
refined 3D gait model with raincoat; (h) difference between (f) and (g); (i) 
normal dressing of (g); and (j) difference between (f) and (i). 

G. COMPUTATIONAL COMPLEXITY 

In our proposed VCIGR-3DHSF method, the extraction of 

2D-3D-BPSDs from 2D gait images is the time-consuming 

part of the gait recognition. Thus, we discuss the 

computational complexity of the 2D-3D-BPSDs extraction, 

and the minimum silhouette residual error search involved in 

optimizing the 2D-3D-BPSDs using Eq. (2). In the Powell's 

conjugate direction method, the number of iterations in Eq. 

(2) is greatly influenced by the initial data. To speed up the 

process, an end to end 3D-BPSVeNet is proposed to gain a 

better 3D initial gait model. A good set of global data values 

of 2D-3D-BPSDs greatly reduces the time in using Eq. (2). 

Another strategy is also introduced to speed up the 

computation. An extra penalty item is added to Eq. (2) to 

make the pose estimation results more reasonable by using 

body shape and motion knowledge, i.e., 

ℒ𝑛𝑒𝑤 = ℒ𝛼 + ∑ 𝑟𝑢𝑙𝑒𝑚(𝒥)𝑚∈[1 𝑀] + ∑ �̂�𝑢𝑙𝑒𝑛(𝒮)𝑛∈[1 𝑁] , (10) 
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where {𝑟𝑢𝑙𝑒𝑚
|𝑗 ∈ [1 𝑀]} denotes a set of rules on joints with 

𝑀  items, and {�̂�𝑢𝑙𝑒𝑛
|𝑛 ∈ [1 𝑁]}  denotes a set of rules on 

body shape with 𝑁  items. The rule item function 𝑟𝑢𝑙𝑒(∙) 

inputs the current joints data 𝒥 or shape data 𝒮 to check for 

any violation of the rules. It returns a large positive value 

when it violates the rule and zero otherwise. Since the 

physical variables of body shape are related to each other, 

i.e., the weight is highly related to height and can be 

estimated using Body Mass Index. As for pose data, the 

constraints for the maximum ranges of joints and the 

conditions for normal walking movement also aid to speed 

up the process. Table 11 shows the typical running time in 

optimizing 2D-3D-BPSDs using Powell's estimation method 

on a PC with an Intel Core i7(3.6GHz) CPU and 8GB RAM.  

The optimized strategy method has been discussed earlier 

and the original method is initialized with template I-pose 

without using the 3D-BPSVeNet, and no extra penalty item 

is added to Eq. (2). The computational complexity can be 

improved further by using Graphical Processing Units. 

TABLE 11 Typical running time in optimizing 2D-3D-BPSDs. 

Methods Average time(seconds) 

Optimized strategy method 6.8 

Original method 82.5 

V.  CONCLUSION 

In this paper, a view and clothing invariant gait recognition 

system based on semantic folding is presented. A novel gait 

feature descriptor, i.e., GSFI, and a semantic feature refining 

network are introduced. VCIGR-3DHSF converts 

unstructured gait image data to structured gait semantic 

image via 2D-3D body parameter estimation and semantic 

folding. By using the a priori knowledge of viewing angles, 

clothing styles and carried items, the proposed system is 

robust to various walking conditions that commonly occur in 

real application scenarios.  

The method is based on the accurate extraction of the 

2D-3D-BPSDs for semantic folding representation. In order 

to speed up the process, an end to end 3D-BPSVeNet is 

trained using mixed training samples, i.e., real data and 

virtual generated data. The process for accurate body 

parameters estimation is then conducted based on virtual 

dressing which greatly helps to overcome the effects of 

clothing variations. To make the semantic folding descriptor 

GSFI more effective for recognition, a semantic feature 

refining network is proposed. In addition, the method also 

exploits deep learning network, i.e., CNN, RCNN and GRU. 

Since a large dataset is normally required for adequate 

training, and this is a problem for 3D gait recognition, we 

exploited full use of the a priori knowledge to generate 

virtual samples, i.e., utilizing parametric body model and 3D 

clothing models. By introducing the clothing recognition 

network and body parsing network trained on a large dataset, 

we achieved accurate gait recognition against changing 

viewing angles and clothing. The other most important 

improvement is that RGB images are used for gait 

recognition. Compared with the traditional gait recognition 

methods based on binary gait images, more information is 

exploited in our method. The experimental results show that 

VCIGR-3DHSF is effective in view-invariant gait 

recognition against most walking conditions. 
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