6 research outputs found

    Model Scaling in Smartphone GNSS-Aided Photogrammetry for Fragmentation Size Distribution Estimation

    Get PDF
    Fragmentation size distribution estimation is a critical process in mining operations that employ blasting. In this study, we aim to create a low-cost, efficient system for producing a scaled 3D model without the use of ground truth data, such as GCPs (Ground Control Points), for the purpose of improving fragmentation size distribution measurement using GNSS (Global Navigation Satellite System)-aided photogrammetry. However, the inherent error of GNSS data inhibits a straight-forward application in Structure-from-Motion (SfM). To overcome this, the study proposes that, by increasing the number of photos used in the SfM process, the scale error brought about by the GNSS error will proportionally decrease. Experiments indicated that constraining camera positions to locations, relative or otherwise, improved the accuracy of the generated 3D model. In further experiments, the results showed that the scale error decreased when more images from the same dataset were used. The proposed method is practical and easy to transport as it only requires a smartphone and, optionally, a separate camera. In conclusion, with some modifications to the workflow, technique, and equipment, a muckpile can be accurately recreated in scale in the digital world with the use of positional data

    Quantifying spatial uncertainties in structure from motion snow depth mapping with drones in an alpine environment

    Get PDF
    Due to the heterogeneous nature of alpine snow distribution, advances in hydrological monitoring and forecasting for water resource management require an increase in the frequency, spatial resolution and coverage of field observations. Such detailed snow information is also needed to foster advances in our understanding of how snowpack affects local ecology and geomorphology. Although recent use of structure-from-motion multi-view stereo (SFM-MVS) 3D reconstruction techniques combined with aerial image collection using drones has shown promising potential to provide higher spatial and temporal resolution snow depth data for snowpack monitoring, there still remain challenges to produce high-quality data with this approach. These challenges, which include differentiating observations from noise and overcoming biases in the elevation data, are inherent in digital elevation model (DEM) differencing. A key issue to address these challenges is our ability to quantify measurement uncertainties in the SFM-MVS snow depths which can vary in space and time. The purpose of this thesis was to develop data-driven approaches for spatially quantifying, characterizing and reducing uncertainties in SFM-MVS snow depth mapping in alpine areas. Overall, this thesis provides a general framework for performing a detailed analysis of the spatial pattern of SFM-MVS snow depth uncertainties, as well as provides an approach for correction of snow depth errors due to changes in the sub-snow topography occurring between survey acquisition dates. It also contributes to the growing support of SFM-MVS combined with imagery acquired from drones as a suitable surveying technique for local scale snow distribution monitoring in alpine areas

    Advances in Computational Intelligence Applications in the Mining Industry

    Get PDF
    This book captures advancements in the applications of computational intelligence (artificial intelligence, machine learning, etc.) to problems in the mineral and mining industries. The papers present the state of the art in four broad categories: mine operations, mine planning, mine safety, and advances in the sciences, primarily in image processing applications. Authors in the book include both researchers and industry practitioners

    Error Detection, Factorization and Correction for Multi-View Scene Reconstruction from Aerial Imagery

    Get PDF
    Scene reconstruction from video sequences has become a prominent computer vision research area in recent years, due to its large number of applications in fields such as security, robotics and virtual reality. Despite recent progress in this field, there are still a number of issues that manifest as incomplete, incorrect or computationally-expensive reconstructions. The engine behind achieving reconstruction is the matching of features between images, where common conditions such as occlusions, lighting changes and texture-less regions can all affect matching accuracy. Subsequent processes that rely on matching accuracy, such as camera parameter estimation, structure computation and non-linear parameter optimization, are also vulnerable to additional sources of error, such as degeneracies and mathematical instability. Detection and correction of errors, along with robustness in parameter solvers, are a must in order to achieve a very accurate final scene reconstruction. However, error detection is in general difficult due to the lack of ground-truth information about the given scene, such as the absolute position of scene points or GPS/IMU coordinates for the camera(s) viewing the scene. In this dissertation, methods are presented for the detection, factorization and correction of error sources present in all stages of a scene reconstruction pipeline from video, in the absence of ground-truth knowledge. Two main applications are discussed. The first set of algorithms derive total structural error measurements after an initial scene structure computation and factorize errors into those related to the underlying feature matching process and those related to camera parameter estimation. A brute-force local correction of inaccurate feature matches is presented, as well as an improved conditioning scheme for non-linear parameter optimization which applies weights on input parameters in proportion to estimated camera parameter errors. Another application is in reconstruction pre-processing, where an algorithm detects and discards frames that would lead to inaccurate feature matching, camera pose estimation degeneracies or mathematical instability in structure computation based on a residual error comparison between two different match motion models. The presented algorithms were designed for aerial video but have been proven to work across different scene types and camera motions, and for both real and synthetic scenes

    Robust Bundle Adjustment for Structure from Motion

    No full text
    Structure from motion (SFM) is the problem of reconstructing the geometry of a scene from a stream of images. In this problem, the geometry of the scene must be inferred from images, along with the camera pose parameters. Bundle Adjustment (BA) is a refinement method used to improve SFM solutions. It consists in simultaneously improving a set of initial estimates for all parameters (structure and camera pose) by minimizing a global cost function. It is generally considered to be highly accurate, and so is typically used as a last refinement step in most current SFM methods. Unfortunately, estimating the pose of the camera from a stream of images is an ill-conditioned problem. We thus propose a BA adjustment formulation which does not involve solving for the camera orientations. We tested this approach on several real world models. The numerical results obtained show that this approach is much less affected by noise than traditional BA. 1
    corecore