152 research outputs found

    A numerically stable fragile watermarking scheme for authenticating 3D models

    Get PDF
    International audienceThis paper analyzes the numerically instable problem in the current 3D fragile watermarking schemes. Some existing fragile watermarking schemes apply the floating-point arithmetic to embed the watermarks. However, these schemes fail to work properly due to the numerically instable problem, which is common in the floating-point arithmetic. This paper proposes a numerically stable fragile watermarking scheme. The scheme views the mantissa part of the floating-point number as an unsigned integer and operates on it by the bit XOR operator. Since there is no numerical problem in the bit operation, this scheme is numerically stable. The scheme can control the watermark strength through changing the embedding parameters. This paper further discusses selecting appropriate embedding parameters to achieve good performance in terms of the perceptual invisibility and the ability to detect unauthorized attacks on the 3D models. The experimental results show that the proposed public scheme could detect attacks such as adding noise, adding/deleting faces, inserting/removing vertices, etc. The comparisons with the existing fragile schemes show that this scheme is easier to implement and use

    Image Hiding on Audio Subband Based On Centroid in Frequency Domain

    Get PDF
    ABSTRAK Audio watermarking adalah mekanisme penyembunyian data pada audio. Metode penyembunyian data yang digunakan dalam penulisan ini adalah Lifting Wavelet Transform (LWT), Fast Fourier Transform (FFT), Centroid dan Quantization Index Modulation (QIM). Langkah pertama adalah host audio tersegmentasi menjadi beberapa frame. Kemudian sub-band terpilih diubah oleh FFT dengan mengubah domain sub-band dari waktu ke frekuensi. Proses centroid digunakan untuk menemukan titik pusat frekuensi untuk lokasi penyisipan untuk mendapatkan output yang lebih stabil. Proses penyematan dilakukan dengan QIM. Kinerja watermarking oleh parameter yang disesuaikan memperoleh nilai imperceptibility dengan Signal to Noise Ratio (SNR) > 21 dB, Mean Opinion Score (MOS)> 3.8 dengan kapasitas = 86.13 bps. Selain itu, untuk sebagian besar file audio terwatermark yang diserang, metode ini tahan terhadap beberapa serangan seperti Low Pass Filter (LPF) dengan fco> 6 kHz, Band Pass Filter (BPF) dengan fco 50 Hz - 6 kHz, Linear Speed Change (LSC) dan MP4 Compression dengan Bit Error Rate (BER) kurang dari 20%. Kata kunci: FFT, subband, LWT, Centroid, Audio Watermarking, QIM   ABSTRACT Audio watermarking is a mechanism for hiding data on audio. Data hiding methods used in this paper are Lifting Wavelet Transform (LWT), Fast Fourier Transform (FFT), Centroid and Quantization Index Modulation (QIM). The first step is to segment host audio into several frames, then the selected sub-band is changed by the FFT by changing the sub-band domain from time to frequency. The centroid process is used to find the center of frequency for the insertion location to get a more stable output. The embedding process is done by QIM. The watermarking performance by adjusted parameters obtains the imperceptibility value with Signal to Noise Ratio (SNR)> 21 dB, Mean Opinion Score (MOS)> 3.8 with a capacity = 86.13 bps. In addition, for most of attacked watermarked audio files, this method is resistant to several attacks such as Low Pass Filter (LPF) with fco> 6 kHz, Band Pass Filter (BPF) with fco 50 Hz - 6 kHz, Linear Speed Change (LSC) and MP4 Compression with Bit Error Rate (BER) less than 20%. Keywords: FFT, subband, LWT, Centroid, Audio Watermarking, QI

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Secured Mechanism Towards Integrity of Digital Images Using DWT, DCT, LSB and Watermarking Integrations

    Get PDF
    "Watermarking" is one method in which digital information is buried in a carrier signal; the hidden information should be related to the carrier signal. There are many different types of digital watermarking, including traditional watermarking that uses visible media (such as snaps, images, or video), and a signal may be carrying many watermarks. Any signal that can tolerate noise, such as audio, video, or picture data, can have a digital watermark implanted in it. A digital watermark must be able to withstand changes that can be made to the carrier signal in order to protect copyright information in media files. The goal of digital watermarking is to ensure the integrity of data, whereas steganography focuses on making information undetectable to humans. Watermarking doesn't alter the original digital image, unlike public-key encryption, but rather creates a new one with embedded secured aspects for integrity. There are no residual effects of encryption on decrypted documents. This work focuses on strong digital image watermarking algorithms for copyright protection purposes. Watermarks of various sorts and uses were discussed, as well as a review of current watermarking techniques and assaults. The project shows how to watermark an image in the frequency domain using DCT and DWT, as well as in the spatial domain using the LSB approach. When it comes to noise and compression, frequency-domain approaches are far more resilient than LSB. All of these scenarios necessitate the use of the original picture to remove the watermark. Out of the three, the DWT approach has provided the best results. We can improve the resilience of our watermark while having little to no extra influence on image quality by embedding watermarks in these places.

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений

    Digital watermarking and novel security devices

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Digital watermarking methods for data security and authentication

    Get PDF
    Philosophiae Doctor - PhDCryptology is the study of systems that typically originate from a consideration of the ideal circumstances under which secure information exchange is to take place. It involves the study of cryptographic and other processes that might be introduced for breaking the output of such systems - cryptanalysis. This includes the introduction of formal mathematical methods for the design of a cryptosystem and for estimating its theoretical level of securit

    New Digital Audio Watermarking Algorithms for Copyright Protection

    Get PDF
    This thesis investigates the development of digital audio watermarking in addressing issues such as copyright protection. Over the past two decades, many digital watermarking algorithms have been developed, each with its own advantages and disadvantages. The main aim of this thesis was to develop a new watermarking algorithm within an existing Fast Fourier Transform framework. This resulted in the development of a Complex Spectrum Phase Evolution based watermarking algorithm. In this new implementation, the embedding positions were generated dynamically thereby rendering it more difficult for an attacker to remove, and watermark information was embedded by manipulation of the spectral components in the time domain thereby reducing any audible distortion. Further improvements were attained when the embedding criteria was based on bin location comparison instead of magnitude, thereby rendering it more robust against those attacks that interfere with the spectral magnitudes. However, it was discovered that this new audio watermarking algorithm has some disadvantages such as a relatively low capacity and a non-consistent robustness for different audio files. Therefore, a further aim of this thesis was to improve the algorithm from a different perspective. Improvements were investigated using an Singular Value Decomposition framework wherein a novel observation was discovered. Furthermore, a psychoacoustic model was incorporated to suppress any audible distortion. This resulted in a watermarking algorithm which achieved a higher capacity and a more consistent robustness. The overall result was that two new digital audio watermarking algorithms were developed which were complementary in their performance thereby opening more opportunities for further research

    Robust digital image watermarking algorithms for copyright protection

    Get PDF
    Digital watermarking has been proposed as a solution to the problem of resolving copyright ownership of multimedia data (image, audio, video). The work presented in this thesis is concerned with the design of robust digital image watermarking algorithms for copyright protection. Firstly, an overview of the watermarking system, applications of watermarks as well as the survey of current watermarking algorithms and attacks, are given. Further, the implementation of feature point detectors in the field of watermarking is introduced. A new class of scale invariant feature point detectors is investigated and it is showed that they have excellent performances required for watermarking. The robustness of the watermark on geometrical distortions is very important issue in watermarking. In order to detect the parameters of undergone affine transformation, we propose an image registration technique which is based on use of the scale invariant feature point detector. Another proposed technique for watermark synchronization is also based on use of scale invariant feature point detector. This technique does not use the original image to determine the parameters of affine transformation which include rotation and scaling. It is experimentally confirmed that this technique gives excellent results under tested geometrical distortions. In the thesis, two different watermarking algorithms are proposed in the wavelet domain. The first algorithm belongs to the class of additive watermarking algorithms which requires the presence of original image for watermark detection. Using this algorithm the influence of different error correction codes on the watermark robustness is investigated. The second algorithm does not require the original image for watermark detection. The robustness of this algorithm is tested on various filtering and compression attacks. This algorithm is successfully combined with the aforementioned synchronization technique in order to achieve the robustness on geometrical attacks. The last watermarking algorithm presented in the thesis is developed in complex wavelet domain. The complex wavelet transform is described and its advantages over the conventional discrete wavelet transform are highlighted. The robustness of the proposed algorithm was tested on different class of attacks. Finally, in the thesis the conclusion is given and the main future research directions are suggested
    corecore