
A numerically stable fragile watermarking scheme for

authenticating 3D models

Wei-Bo Wang, Guo-Qin Zheng, Jun-Hai Yong, He-Jin Gu

To cite this version:

Wei-Bo Wang, Guo-Qin Zheng, Jun-Hai Yong, He-Jin Gu. A numerically stable fragile wa-
termarking scheme for authenticating 3D models. Computer-Aided Design, Elsevier, 2008.
<inria-00517327>

HAL Id: inria-00517327

https://hal.inria.fr/inria-00517327

Submitted on 14 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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models into the spherical coordinate systems for robustness [26,
31,42]. Compared with the spatial domain algorithms, the spectral
domain algorithms are more robust and preserve the visual effect
of the models better. It is because the inserted watermark bits
are diluted in all the spatial parts of the models. Some commonly
used spectral analysis tools include Laplacian basis functions
[22,25,28,38], radial basis functions [33] and multi-resolutions
such as wavelet [9,26,32]. The drawbacks of the spectral domain
algorithms are that they are complicated and computationally
expensive compared to the spatial domain algorithms.

In 3D fragile watermarking, Yeung and Yeo [10] slightly perturb
the vertices such that a certain hash function of each vertex’s
coordinatesmatches another hash function applied to the centroid
of its neighboring vertices. Lin et al. [29] apply two different hash
functions on the coordinates of vertices and perturb the vertices
until the two functions are matched. In [27], Wu and Cheung
quantize the distance between the centroid of the mesh models
and each surface to embed the watermarks. Chou and Tseng [34]
apply multi-function and adjusting-vertex method to embed the
watermarks. Despite their reasonable success, these schemes
suffer from several drawbacks. Among them the numerically
instable problem, to our best knowledge, has not been mentioned
in any reported literature.

The remaining sections are organized as follows. Section 2
analyzes the problems encountered in these schemes, primarily
the numerically instable problem. In Section 3 we propose
our scheme, which is numerically stable and can handle the
problems mentioned. The discussion of the performance and the
experimental results are provided in Section 4. Finally, conclusions
are given in Section 5.

2. Problems in previous work

In this section,we analyze theproblems in the existing schemes,
particularly the numerically instable problem, and give possible
solutions to them. A watermarking algorithm, combined the
solutions together, is proposed in Section 3.
Numerically Instable Problem: The numerically instable problem
is accounting for the majority of computational errors in CAD
systems [30]. Currently this problem also arises in some fragile 3D
watermarking schemes. However, as we known no literature has
reported this.

The fragile watermarking schemesmust compare the extracted
bits with the original ones in order to determine if the integrity
of the model has been destroyed. If the two bits are not
equal, the schemes can demonstrate unauthorized changes.
Watermarking calculations are primarily based on the floating-
point arithmetic [34] or on the integral arithmetic [10,27,29,37].
If the operations are based on the floating-point arithmetic, the
schemes need to find a proper tolerance to equal for comparing.
If the tolerance is too small, the bits to be compared will be
determined as not equal, even if no attack has happened. However,
if the tolerance is too large, the attacks will not be found since the
bits are determined as equal. Unfortunately, the tolerances differ
fromone embedding operation to another,whichmeans that every
time the schemes embed a watermark bit, they have to calculate
a new tolerance. This means that the number of calculating the
tolerance equals the number of the embedding operations. It is
expensive. Furthermore, these tolerances have to be attached to
themodel and transferred together. This increases the transferring
cost remarkably since the number of tolerances equals the number
of embedded vertices. It is unreasonable only using the maximum
tolerance as a criterion. It will enlarge the tolerance at most cases
in which some unauthorized changes may not be detected.

The method in [34] does not consider selecting proper
tolerances to equal.When no tolerance to equal is given, in practice
three methods are commonly used to compare two floating-point
numbers. The first one is using a very small tolerance, such as 1e-
10. The second one is splitting the decimal fracture of the two
floating-point numbers and comparing them as integers. The third
one is rounding-off the two floating-point numbers and comparing
the rounded integers. However, even when no attack happens, the
method in [34] fails to determine whether the original bits and
the extracted bits are equal using these methods because of the
numerically instable problem.

Two formulae and several parameters are used in [34] for
embedding and extracting the watermarks. The formulae are

x′ =


x− (|x− xc| mod kq)+

kq

kd
w if x > xc,

x+ (|x− xc| mod kq)−
kq

kd
w otherwise,

and

w′ = (|xc − x′| mod kq)
kd

kq
.

In the formulae, x indicates one of the three coordinates of a
vertex, xc indicates the centroid of the neighboring vertices of x,
kq and kd are the embedded parameters, w is the watermark bit
before embedding and w′ is the extracted bit. The two formulae
could guarantee w = w′ based on the fact that (a − b − (a −
b) mod c) mod c = 0, where a ≥ b and a, b, c ∈ P. The
method in [34] applies the first formula twice to embed w and h
into x2 and x3 of a vertex respectively. x2 and x3 are the second
and the third parts of the coordinates of a vertex. The relationship
between w and h is that h = hash function(w). The relationship
h′ = hash function(w′) should still be kept because the formulae
can guarantee that the extracted bits are equal to the original bits.
However, this guarantee may not be held when x, w and other
parameters are floating-point numbers because of the numerically
instable problem. Table 1 gives the data of an example that violates
this guarantee. In Table 1, x2 and x3 are the second and the third
parts of the coordinates of the vertex. As the two embedded bits
keep the relationship h = h(w), the two extracted bits, w′ and h′

should still be equal. In Table 1, however, the two extracted bits
are 2.7847 and 1.9359 when no attacks happen. Neither one of
the three common used methods can be used to determine the
two extracted bits equal. The method in [34] fails here since it
does not give the tolerances to equal, and the further reason is the
numerically instable problem.

The best way to deal with errors is to prevent them from
happening [30]. Thus, selecting watermarking schemes based on
the integral arithmetic is a cheap and easy way to settle the
numerically instable problem. But, even if the schemes are based
on the integral arithmetic, the floating-point numbers have to
be converted into integers first because 3D models are mostly
represented in the floating-point numbers. A common converting
method is splitting the decimal fracture part of a floating-point
number and the schemes in [10,27,29,37] apply this method.
However, this method has drawbacks in practice. Several attacks,
such as adding noise, may also only change the decimal fracture
part of the coordinates of vertices. These attacks may not be
detected since the modified parts have been discarded during
the converting operation before detecting. Therefore, designing a
proper converting method is important for improving the stability
of 3D fragile watermarking algorithms. A possible solution is to
view themantissa part of the floating-point number as an unsigned
integer since it does not lose any original information.
Causality Problem: This problem first arises in Yeo’s scheme [10].
The method in [10] orderly perturbs the vertices until they match
the predefined relationship with the centroid of their neighboring
vertices. However, the latter perturbed vertices, which are the
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Table 1
An example of the numerical instabilities make the algorithm in [34] disabled

Label Original value(x) Centroid of the neighboring vertices (xc) Modified value (x′) Bits before embedding (w) Extracted bits (w′)

x2 1226.6700 1233.5875 1226.6772 2 2.7847
x3 157.97501 171.07650 157.97630 2 1.9359

Data structure: IEEE-754 float32. Parameters: kq2 = k
q
3 = 0.01, kd2 = kd3 = 0.01, hi = h(wi).
neighboring vertices of the former perturbed ones, may influence
the relationship the former vertices already satisfied.

To settle this problem, in [10] they define an ordered traversal.
The perturbing of vertices could only involve the processed ones.
For example, if the traversal order is v1, v2, v3, . . . , vn, when
perturbing v3, only v1 and v2 could be involved in the relationship
calculation. A drawback of this constraint is that the capability for
detecting modifications will be ruined if the predefined traverse
order has been changed or becomes untraceable. A vertex re-
numbering operation may totally disable the capability of the
scheme [34]. In [29], it does not take the neighboring relationship
into accountwhen embedding thewatermarks. Thus their solution
eliminates the causality problem. However, this method can not
detect the attacks on the topological relation, such as deleting a
vertex from the model. This reduces the detecting ability of their
scheme. In [34], it applies a method called adjusting method to
handle this problem. It introduces the concept of adjusting vertex
into the embedding stage. Each mark vertex is assigned with an
adjusting vertex. An adjusting vertex is no longer eligible as a
mark vertex. As mentioned above, a mark vertex suffers from
the perturbation of its neighboring vertices and fails to keep the
predefined relationship. In [34] they first store the unwanted
amount of the perturbation of amark vertex on its adjusting vertex.
After all themark vertices have been perturbed, themethod in [34]
perturbs the adjusting vertices to balance the unwanted amount of
the perturbation on the mark vertices. However, this method still
fails to thoroughly settle the causality problem.

Fig. 1 is a case that themethod in [34] fails to settle the causality
problem. In this part of a mesh model, the vertices A, B and E
are selected as the mark vertices. The vertices C, D and F are
their adjusting vertices respectively. The method in [34] perturbs
the positions of A, B and E to meet the predefined relationship.
However, when B is perturbed, it influences the relationship
betweenA and its neighboring vertices,which are B, C andD. This is
the causality problem. The method in [34] stores the error caused
by B and latterly adjusts C, the adjusting vertex of A, to balance
this error. Similarly, it performs the same operations on D and F to
balance the errors caused by the causality problem. However, D is
also the neighboring vertice of A. And the adjusting operation on
D also interferes the relationship on A. The method in [34] fails to
take this case into account.

So far, we found that the root of the causality problem is that the
vertices to be perturbed, either the mark vertices or the adjusting
vertices, are allowed to be adjacent. Consequently they could
interfere with their neighboring vertices. One possible solution to
this problem is forbidding the perturbed vertices to be adjacent.

There still remain some other problems in the existing schemes.
The scheme in [27] is not a public one, the schemes in [15,27] could
not locate the tampering regions, and the schemes in [10,29] lack
the ability to control the distortion ratio caused by watermarks
embedding. In Section 3, we propose a numerically stable fragile
watermarking scheme intending to overcome these mentioned
problems.

3. The proposed watermarking scheme

In this section, we first describe in detail the procedure of em-
bedding and extracting the watermarks. The mesh models we op-
erate on are stored in the binary format files. Thus the precision loss
Fig. 1. A failure case of the scheme in [34]. C balances the error caused by B.
However, D is also perturbed in order to balance error caused by E. This induces
a problem because perturbing D also influences the relationship between A and its
neighboring vertices.

caused by converting the data from the ASCII format to the binary
format or vise versa is not considered in the following discussion.
After describing the embedding and the extracting procedure, we
select a proper portion of vertices from the model for embedding
the watermarks. We offer a locating procedure to locate the tam-
pering regions. An overview of our watermarking scheme is then
given. At the end of this section, the flowchart of this scheme is
presented and the computational complexity is analyzed.

3.1. Watermarks embedding and extracting method

Denoted the 3D model as M(V, C), where V is the vertex set
and C is the topological relation. A watermark sequence W =

(w1,w2, . . . ,wn) is embedded into M by displacing a subset of V
a small amount. In the following part we call the vertices to be
watermarked as mark vertices and the other vertices as non-mark
vertices. A vertex v has three coordinates, denoted as (f x1, f x2, f x3),
whichmean that the three numbers are stored in the floating-point
format. The following approach shows how to embed awatermark
bit wi into a vertex v.

First we define two operations, which are the mantissa picking
up operation and themask operation(see Fig. 2). The floating-point
format defined in IEEE-754 consists of three parts: a sign part, an
exponent part and a mantissa part [43]. The mantissa picking up
operation is used to pick up the mantissa part from a coordinate in
the floating-point format. After picking it up, the mask operation
is used to select several bits from themantissa part. These selected
bits, arranged sequentially, will be modified to embed wi. Both the
mantissa picking up operation and the mask operation have their
reversal operations(see Fig. 3). We use the two reversal operations
to write the watermarked data back into the original coordinates.

Fig. 2 illustrates the procedure of the mantissa picking up
operation and the mask operation. Here f xi in Fig. 2 is a coordinate
in the IEEE-754 floating-point format. The picked mantissa, called
mxi, operates bitwise AND with the given maski. In the following
discussion, we will call the bits equaling ‘1’ as the 1s bits. The 1s
bits inmaski are called valid bits and their positions are called valid
positions. Our scheme could detect the attacks which modify the
bits in the valid positions. nxi is composed of the result bits of the
bit operation in the valid positions. MAXi in Fig. 2 indicates the
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Fig. 2. The example illustrates how themantissa picking upoperation and themask
operationwork. Data are in the IEEE-754 float32 format.We ignore displaying some
bits in the invalid positions in this figure.

Fig. 3. The example shows how the reverse mantissa picking up operation and the
reverse mask operation work. Data are in the IEEE-754 float32 format. We ignore
displaying some bits in the invalid positions in this figure.

upper bound of nxi. Fig. 3 illustrates the reversal operations of the
picking up operation and the mask operation. The reverse picking
up operation writes the modified nx′i back to the corresponding
positions in mx′i . And the reverse mask operation writes the mx′i
back to f xi to form the watermarked data f x′i .
Watermarks embedding method: The watermarks embedding
method is used to embed a watermark bit wi into a vertex v.
Before the embedding operation, it must identify v as a mark
vertex or a non-mark vertex. The identity information is from the
mark vertex selecting principle, which is illustrated later. In the
watermarks embedding method, like [34], f x1 is for embedding the
identity information while f x2 and f x3 are modified to embed the
watermarks. The difference between our scheme and the scheme
in [34] is that we modify the mantissa part of the floating-point
number. It is numerically stable and does not lose the detection
ability. We first apply the mantissa picking up operation and the
mask operation to convert f xi into mxi and nxi. The embedding
method is composed of the following five steps, S1–S5.
S1 This step is to embed the identity information. If v is a mark

vertex, then nx1 of v is modified to be equal to key, which is
given by the user. If v is a non-mark vertex and nx1 is equal to
key, it will be changed to key/2. That is,

nx′1 =


key, if nx1! = key and v is a mark vertex,
key/2, if nx1 = key and v is a non-mark vertex,
nxi, otherwise.

(1)

The restriction on key is that 0 ≤ key ≤ MAX1, key ∈ N. Here
we could find that the value of MAX determines the maximum
possible distortion induced by the watermarking embedding.
At the end of this step, we apply the reversal mask operation
to calculate the modified mx′1 and apply the reversal mantissa
picking up operation to write mx′1 back to f x′1.

S2 This step modifies mx2 and mx3 of the coordinates of non-mark
vertices. For j = 2, 3, we have

mx′j =
{
mxj, if v is a mark vertex,
mxj|mx′1, if v is a non-mark vertex. (2)
After calculating mx′2 and mx′3, we apply the mask operation to
get nx′2 and nx′3.

S3 If v is a mark vertex, this step generates the centroid of v’s
neighboring vertices. For j = 2, 3, we have

nxcj =
∑
N(v)

nx′j%(|N(v)| × keyj), (3)

where N(v) is the set of v’s neighborhood, |N(v)| is the size of
N(v), and keyj is the diffusion factor for changing the value space
of the mod operation. The method generating the centroid
here differs from what is used in the previous algorithms. This
method can generate an integral centroid.

S4 If v is a mark vertex, this step continues modifying nx′2 and nx′3
of v to embed the watermark bit wi through the XOR operator

nx′j =

{
nxcj

⊕
wi, j = 2,

nxcj
⊕

h(wi), j = 3,
(4)

where 0 < wi < MAX2 and 0 < h(wi) < MAX3, wi, h(wi) ∈ N.
Here h is a given hash function, such as h(wi) = wi.

S5 Finally, we apply the reversal mask operation and the reversal
mantissa picking up operation to write nx′2 and nx′3 to f x′2 and f x′3.

For a mark vertex v, through S1–S4 we successfully embed the
watermark bit wi into v. Otherwise, if v is a non-mark vertex,
we modify its content via S1–S2 to indicate its identity. In short,
after applying the watermarks embedding method, we successfully
generate the watermarked data (f x′1,f x′2,f x′3) for a vertex in the
model.
Watermarks extracting method: We now show how to extract
thewatermarks from themodel. Thewatermarks extractingmethod
also needs the identity information. The identity information can
be generated directly from the watermarked model. The original
model is not needed here. Thus our scheme is a public scheme.

When processing a vertex v in the watermarked model, we
convert the watermarked data f x′1 of v into nx′1. If nx′1 equals key,
it will be labeled as a mark vertex and otherwise it will be labeled
as a non-mark vertex. The identity information is gathered after
labeling every vertex in the watermarked model. After gathering
the identity information, we generate nx2 and nx3 for every mark
vertex using the mantissa picking up operation and the mask
operation. In addition, Eqs. (2) and (3) are used to calculate the
centroid of the neighborhood of the mark vertices, which are nxc2
and nxc3. Now we apply the formula{
w′i = nxc2

⊕
nx′2,

h′i = nxc3
⊕

nx′3,
(5)

to extract the watermark bits w′i and h′i from the mark vertex v. If
the relationship from v, which is h′i = h(w′i), does not hold, it can
demonstrate that attacks may happen on v or on its neighboring
vertices.

3.2. Mark vertex selecting principle

In this step we describe how to select the mark vertices. We
have analyzed in Section 2 that the causality problem could be
eliminated by forbidding the mark vertices to be adjacent. Our
principle applies this solution.
Mark vertex selecting principle: Traverse every vertex of the
model and chose mark vertices following the discipline below.

The vertex chosen as a mark vertex must have no mark vertex
among its neighboring vertices. Once a vertex has been chosen as
a mark vertex, its neighboring vertices are no longer eligible.

Any traversal algorithm visiting each vertex exactly once could
work in our principle. After selecting the mark vertices, the union
of the mark vertices and their 1-ring neighborhood covers all
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Fig. 4. Amesh with one mark vertex changed to a non-mark vertex. (a) The mark vertices have been chosen. (b) w8 has been attacked and changed from a mark vertex to a
non-mark vertex. (c) Several vertices have been labeled as suspicious. (d) The innocent mark vertices release the suspicion of some non-mark vertices. Finally w8 and w4 are
the suspicious vertices. In these figures, the mark vertices are denoted in black, the non-mark vertices are denoted in white and the suspicious vertices are denoted in gray.
Table 2
Lists of five triangulated meshes used in our experiments and their detail
information

Model names Vertices/faces Mark vertices Model precision

Airplane 1335/2452 406 10−3

Apple 867/1704 223 10−7

Beethoven 2521/5030 694 10−6

Cow 2903/5804 731 10−6

Indy_car 4970/7119 1485 10−2

the vertices of the model, leaving no embedding holes. It can be
guaranteed that the mark vertices are uniformly distributed in the
models.

This principle is quite simple, and it can thoroughly eliminate
the causality problem.However, experimental data in Table 2 show
that this principle chooses around 20%–31% of vertices as mark
vertices. This rate is relatively low compared to 38%–45% in the
method in [34] and 100% in the method in [10]. It increases the
number of non-mark vertices attached to one mark vertex. And it
may result in low locating accuracy: if a mark vertex is attacked,
all its neighboring vertices and itself will be labeled as suspicious
attacked vertices. The more non-mark vertices attached to a mark
vertex, the larger the suspicious regions will be. More seriously,
if a non-mark vertex is attacked, its adjacent mark vertices and
all the non-mark vertices attached to these mark vertices will
form the tampering regions. The tampering region has much more
vertices than the attacked vertices. Thus it heavily reduces the
locating accuracy. In order to achieve a good locating accuracy, we
propose a locating procedure later, which could accurately locate
the tampering regions.

3.3. Locating procedure

This procedure is used to accurately locate the tampering
regions. Before the locating procedure, the identity information
must be gathered. The locating procedure is composed of four parts,
from P1 to P4.
P1 Check if there exist mark vertices in the neighborhood of every
non-mark vertex. If not, set the non-mark vertices without
neighboring mark vertices and the neighboring vertices of
these non-mark vertices as suspicious vertices.

P2 Check if there exist mark vertices in the neighborhood of every
mark vertices. If so, set the mark vertices with neighboring
mark vertices and the neighboring mark vertices as suspicious
vertices.

P3 Set the mark vertices which do not keep the pre-defined
relationship, and the neighboring vertices of these mark
vertices as suspicious vertices.

P4 Release the suspicion of the non-mark vertices adjoining the
unsuspicious mark vertices.

Fig. 4 is an example of how this procedure works. In this
example, the first coordinate of a vertex is modified and the vertex
is changed from a mark vertex to a non-mark vertex. Fig. 4 (a) is a
part of a mesh model where the mark vertices have been chosen.
There are in all 14 vertices in this model, and among which 4 have
been chosen asmark vertices, in black. Around 28.5% of the vertices
have been chosen in this example as mark vertices, which is close
to the experimental data. In Fig. 4 (b), w8, the vertex in gray, has
been changed to a non-mark vertex. There is no mark vertex in the
region of w8 and its neighboring vertices. Thus, they are labeled
as suspicious. In Fig. 4 (c) they are shown in gray. In the end, in
Fig. 4 (d), our scheme releases the suspicion of w3, w6, w7, w10 and
w12. Finally, the suspicious vertices arew8 andw4. After the locating
procedure, the vertices labeled as suspicious form the suspicious
regions. These regions are displayed in different colors in order to
visually showwhere the tampering operations happen. The reason
why the locating procedure is effective is discussed in Section 4.2.

3.4. Overview of the scheme and the flowchart of the scheme

Fig. 5 is the overview of the scheme. In general the scheme is
composed of two parts, which are the watermark embedding part
and the watermark extracting part. In the watermark embedding
part, the scheme first selects the mark vertices from the mesh
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Fig. 5. Overview of this fragile watermarking scheme.

Fig. 6. The flowchart of Algorithm 1.
model following the mark vertex selecting principle. After that,
the watermark embedding part modifies the coordinates of the
vertices according to the watermarks embedding method. Finally it
generates the watermarked models. In the watermark extracting
part, the scheme first uses the watermarks extracting method to
label the identity of every vertex. The next step is extracting
the embedded bits from the mark vertices. In the end, the
watermark extracting part applies the locating procedure to locate
the tampering regions and reports them visually. The flowcharts of
the two parts are shown in Figs. 6 and 7.
Fig. 6 is the flowchart of Algorithm1. Algorithm1 canbe roughly
divided into five steps. In Step 1, themarkeligible flag of each vertex
will be set as TRUE, indicating at the beginning every vertex is
eligible as a mark vertex. In Steps 2 and 3, the algorithm traverses
the model and selects the mark vertices according to the mark
vertex selecting principle. In Steps 4 and 5, the algorithm uses the
watermarks embedding method to embed the watermarks into the
mark vertices. Eq. (1) is used to modify the first coordinate of each
vertex in order to embed the corresponding identity information.
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Fig. 7. The flowchart of Algorithm 2.
Eqs. (2)–(4) are to modify the other two coordinates to embed the
watermark bits satisfying the predefined relationship.

Fig. 7 is the flowchart of Algorithm 2. Algorithm 2 can
be roughly divided into nine steps. In Step 1, the suspicious
flag of each vertex will be set as FALSE. In Steps 2 and 3,
the algorithm traverses the model to find the mark vertices
using the watermarks extracting method. The mark flag of the
mark vertices will be set as TRUE. In Steps 4–7, the algorithm
traverses the model twice and runs several auxiliary functions
to detect the attacks following the locating procedure. And finally
in Steps 8 and 9, the algorithm displays the suspicious attacked
vertices in a different color to report the modified regions.
Five auxiliary functions appear in the flowchart of Algorithm 2,
which are LocatingProcedureP1 (v), LocatingProcedureP2 (v),
LocatingProcedureP3 (v), LocatingProcedureP4 (v) and HASH
(w). The functions LocatingProcedureP 1–4 will locate the
tampering regions following the instructions from P1 to P4,
mentioned in Section 3.3. The function HASH (w) will calculate the
hash value of w according to the predefined hash function.

In Algorithms 1 and 2, the scheme needs to gather the
information from the 1-ring vertices, such as checking if there is
any mark vertex in the neighborhood or computing the centroid
of the neighboring vertices. In the mesh model, the neighboring
vertices of a vertex is much less than the vertices in the model.
Thus, the time consumed on visiting the neighboring vertices could
be viewed as a constant factor comparing with visiting the whole
model. Thenwe can conclude that the computation complexities of
Algorithms 1 and 2 are bothO(N), whereN is the number of vertices
in the mesh model.

Amore detailed version of the two algorithms is provided in the
Appendix A.

4. Performance discussion and experimental results

4.1. Optimization of the parameters

The fragile watermarking should be both perceptual invisible
and able to detect the slightest attacks [10,11]. In this scheme,
the embedding parameter mask determines the performance of
the scheme on these two properties. The scheme sets the binary
form of mask to determine the number of bits to be modified in
the mantissa part and their positions. The proposed scheme could
detect the attacks which change the bits in the valid positions.
Thus, more 1s bits in mask increase the probability of the attacks
being found. On the other hand, watermarks change the bits in
the valid positions. Therefore, the more 1s bits in mask, the more
distortions on the appearance of the model. The positions of the
1s bits could also affect both the safety and the distortion ratio
issues. It is less likely for attacks to modify the low order of the
mantissa part. Otherwise this will result in a small amount of
modification and makes no sense. So arranging the 1s bits on the
high order of the binary format of mask is suitable for detecting
attacks. However, thiswill distort the original value a lot. Therefore
it is recommended to apply more 1s bits in mask and put them in
the middle of the binary format ofmask.

Another purpose of mask is applied as a secret key in the
extracting stage. Even if the attackers become aware of our scheme,
their attacks still have a low probability of not destroying the
embedded watermarks without the accurate information about
the positions and the number of the watermarks. Therefore, a
proper number of the 1s bits in mask could increase the difficulty
for the attackers.

There also exist some other parameters in the scheme, such
as keyi and a hash function. The hash function is a kind of
the predefined relationships and is not directly related with the
distortion ratio. The parameter key is an auxiliary parameter for
mask. Thus selecting a proper mask is the key to balance the
perceptual invisibility and the detecting ability. For the ease of
discussion, we set mask1 = mask2 = mask3 = mask, and a simple
function h(w) = w is applied.

We use the formula in [34] to measure the distortion induced
by watermarking,

d(M,M′) =
1
|M|

|M|∑
i=1

|vi − v′i|

|vi|
,
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Fig. 8. Distortion curves of different embedding parameters.

where vi and v′i are the corresponding vertices in the original
model(M) and watermarked model(M′). |vi − v′i| is the Euclidean
distance between these two vertices.

Fig. 8 gives the experimental curves between mask and the
distortion ratio. The pattern in Fig. 8 means that mask have some
consequent 1s bits in its binary form. The horizontal axis indicates
shifting the pattern left to form mask. For instance, the curve
labeled 111111 with 2 in the horizontal axis means that the
parametermask is equal to 252(‘11111100’ in the binary form). The
vertical axis represents the value of distortion ratio(d), which has
been pre-processed by the log function. This figure could be used
as the parameter selection guideline for the users. The data from
Fig. 8 are gathered from the average distortion ratio of embedding
on several different models with different precisions. The detailed
information about these models and their precisions are provided
in Table 2.

If users intend to control the distortion ratio under 0.01%, which
is 3 in axis Y, they could choose 4080, 4032 or 3840(111111110000,
111111000000 or 111100000000 in the binary form respectively)
asmask via looking up Fig. 8. There are eight valid bits in the binary
form of 4080. It has a higher probability to detect the attacks.
Thus it is the recommended parameter among the three given
parameters. From the discussion above, our scheme can control the
watermark intensity through selecting the parameters. It is very
important, especially for CAD applications.

4.2. Discussion on detecting attacks

In this section we discuss the performance of this scheme on
detecting the modifications on the model. The modifications men-
tioned in this section include adding noise, adding/deleting faces,
inserting/removing vertices, remeshing the model, renumbering
vertices, and translating/rotating/scaling the model. These mod-
ifications are common in practical use and widely used in the
former literature to test the performance of the watermarking
schemes [10,27,29,34,37]. As discussed later, the proposed scheme
in this paper can detect these kinds of modifications on the mod-
els. We need to point out that this scheme is immune to certain
incidental data operations. These operations do not destroy the
integrity of the model, such as re-numbering vertices. Translat-
ing/rotating/scaling the model are also not breaking the integrity
of the model. The users may still use the model if it is transformed.
Ideally the fragile watermarking scheme could provide the conve-
nience to filter these operations. However, our scheme can only
view them as kinds of attacks. It needs further work to improve
the scheme.
Adding noise: The attack adding noise only modifies the
coordinates of vertices and does not modify the topological
relation. The coordinates in the model are represented as
(f x1, f x2, f x3). f x1 is used to embed the identity information and
the other two are used to embed the watermark bits. If f x2 and f x3
aremodified, the extracted bits will not hold the hash relationship.
In P3 of the Locating procedure the attacks can be detected. Three
different situations may happen when f x1 is modified. One is that
a vertex v is changed from a mark vertex to a non-mark vertex.
This can be detected in P1 of the locating procedure since v is a
non-mark vertex and there is no mark vertex in v’s neighboring
vertices. The second situation is that a vertex v is changed from
a non-mark vertex to a mark vertex and this will result in two
adjacent mark vertices. P2 of the locating procedure can detect this
situation. The third situation is that the vertices keep their identity.
It is hard for a mark vertex to keep its identity when it is attacked
since the modified f x1 can hardly keep equal to key. If there are
many 1s bits in the binary form ofmask, as discussed in Section 4.1,
the probability that the modified f x1 of a mark vertex remains
equal to key can be reduced. If a non-mark vertex v is modified but
remains its identity, the attacks still could be found in P3 of the
locating procedure. It is because f x1 of non-mark vertices are used
to calculate the centroid of the neighboring of the mark vertices in
S2 of the watermarks embedding method. Modifying f x1 will result
in that the extracted bits do not hold the hash function.
Adding/deleting faces and inserting/removing vertices: These
attacks modify the topological relation of the model. Since
adding or deleting the faces is implemented through inserting
or removing vertices and modifying the topological relation
accordingly, we only discuss inserting/removing vertices. There
exist two situations when inserting a vertex. If a mark vertices v
is inserted, which means that the mantissa part of f x1 of vmatches
Eq. (1) coincidentally, it will be adjacent to several vertices. Two
situations arise here. One is that there are mark vertices among
these adjacent vertices and then v could be detected in P2 of
the locating procedure. The other is that no mark vertex exists
among these vertices. In this situation the extracted bits from v
do not keep the hash function. And it could be detected in P3
of the locating procedure. When inserting a non-mark vertex, two
different situations also arise. If there is no mark vertex in the
neighborhood of v, it could be detected in the P1 of the locating
procedure. If there exists a mark vertex in the neighboring vertices
of v, denoted as v′, inserting v will change the centroid of the
neighborhood of v′. Therefore inserting v is found. The situation of
removing a vertex is similar to that of inserting a vertex. Removing
a mark vertex will form a region without any mark vertex and it
could be found in P1 of the locating procedure. And removing a non-
mark vertex v will change the centroid of the neighborhood of the
mark vertex v adjacent and v is found in P3 of the locating procedure.
Remeshing the model: Remeshing or retriangulating the model
heavily changes the connectivity information. This kind of
attacks alters the neighboring vertices set of the mark vertices.
Subsequently it changes the centroid of the neighborhood of
mark vertices. When extracting the watermarks, the extracted
bits w and h from the mark vertices could not satisfy the
predefined relationship. Thus the topology modifications around
themark vertices can be detected. Themark vertices are uniformly
distributed in the 3D models in our scheme. As a result, either
remeshing or re-triangulating part or even thewholewatermarked
models could be detected.
Re-numbering vertices: It depends on whether the topological
relation is modified when viewing re-numbering the vertices
as an attack or an incidental operation. If the re-numbering
operation does not change the neighboring vertices of a vertex
v, the operation is harmless. Our scheme does not detect this
kind of operation since it does not change any centroid of the
neighborhood of mark vertices. If the topological relation is
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(a) Airplane precision: 10−3

(b) Apple precision: 10−7

Fig. 9. The parameters selection in [34] depends on the precisions of the models.
The parameters for the twomodels are: kq2 = k

q
3 = 0.01, kd2 = kd3 = 100, h(wi) = wi .

modified, it changes the adjacent non-mark vertices of mark
vertices. Consequently it changes the centroid of the neighborhood
of mark vertices. Re-numbering the vertices can be found then.
Translating/rotating/scaling: These three operations transform
themodels. These transforming operationsmodify the coordinates
of the vertex. Thus this situation is somewhat the same as adding
noise. As discussed in the adding noise paragraph, our scheme
could detect this kind of attacks.

Now that we have discussed the performance of our scheme,
we want to emphasize that the key to achieve the declared
performance is to select an appropriate embedding parameter. As
discussed in Section 4.1, a good embedding parametermask should
have many 1s bits in the middle of the binary format of mask. The
scheme may fail to detect the attacks if there are few 1s bits in the
binary format of mask or the 1s bits are arranged in the low order
ofmask.

4.3. Discussion of the convenience of implementation and usage

The schemes in [10,29] both need to perturb the mark vertices
until they match the predefined relationship. However, in [10],
the perturbing procedure is through a trial and error method. It
is not convenient to implement and the induced distortion could
not be controlled. In [29], they first calculate a region around the
original position. Moving the vertex to the positions in this region
does not lead to an unacceptable distortion. Then it tests every
place in this region until it finds a position where the relationship
can be satisfied. It has two drawbacks. The first is that it is still
embedding through a trial and error method. And the second is
that if no position in this region could satisfy the relationship,
it has to abandon embedding on this vertex, which leaves an
embedding hole. Attacks on these holes could not be detected by
the scheme in [29]. In our scheme, the perturbed position could
be generated from Eq. (4) directly. It is easy to implement and
leaves no embedding hole. Also, it could control the distortion ratio
through selecting a propermask.

As for using the scheme, the scheme in [34] has to select differ-
ent embedding parameters according to the different precisions of
the models. Fig. 9 (a) and (b) are two models with different preci-
sions. The left part of the graphs is the originalmodels and the right
part of the graphs is the watermarked models. The parameters are
Fig. 10. The distortion curves of the models with different precisions.

(a) Airplane precision: 10−3

(b) Apple precision: 10−7

Fig. 11. The parameters for the two models are: mask1 = mask2 = mask3 =
65280, h(wi) = wi .

the same, but the visual effects of the watermarked models are re-
markably different. Because the two models have different preci-
sions, users have to select parameters according to the precisions
of the models. It is not convenient in practical use. In our scheme,
the watermarks are embedded into the mantissa part. Modifying
the same position of the mantissa part will result in different dis-
tortion ratios because of the different exponent part. The amount
of distortions on the models with low precision is larger than that
on the high precision models. Thus the parameters in our scheme
are adaptive to the precisions of the models.

Fig. 10 illustrates the distortion ratios of several models with
different precisions. The embedding parameters are the same.
From Fig. 10 we can find that the curves are close to the average
line while there is a significant difference of the magnitude in
the precisions of models. We embed watermarks into two models,
whose curves in Fig. 10 varymost, airplane and apple, with the same
parameters. Fig. 11 shows that the same embedding parameters
results in the same visual effects for the two watermarkedmodels.
Thus we can conclude that in our scheme the same parameters
results in a close distortion ratio regardless of the precisions. The
advantage of this property is that users only need to look up the
average distortion curve in Fig. 8 to select a suitable mask once.
The adaptive property eases the use of our scheme.
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Fig. 12. One example of attacks detection for 3D models using our scheme.
(a) The original Beethoven model. (b) The watermarked model, embedding
parameter=4080. (c) Several attacks on the model. Label A denotes the region with
0.01% noise added. Label B denotes the region with an extra vertex inserted, and
label C denotes the region with a vertex deleted. (d) Our scheme accurately locates
these attacks visually.

4.4. Experimental results

We conduct some experiments on several mesh models,
which have different precisions, to test the performance of the
proposed fragile watermarking scheme. Table 2 gives the detailed
information about the mesh models used in our experiment. The
data structure of the coordinates is IEEE-754 float32 [43].

From Table 2 we can find that our scheme selects around
20%–31% of the vertices as mark vertices. Some existing schemes
use the correlation value between the embedded watermarks and
extracted watermarks to demonstrate the authentication results
[10,27]. However, Lin [29] suggests that different attacksmay have
different intensity and it is hard to find a unique threshold to
figure outwhether themodel is attacked. For example,modifying a
vertex of a largemodel changes the correlation value little. Besides,
visually locating the tampering region is a useful property [10,29,
34]. Thus, our scheme shows the tampering regions visually.

Fig. 12 illustrates that our scheme accurately detects and locates
several kinds of attacks simultaneously. Fig. 12 (a) shows the
original Beethoven model. The model has 2521 vertices and 5042
faces; 694 vertices are selected as the mark vertices. Fig. 12 (b)
is the same view of the watermarked model, which is visually
identical with the original model. The watermarked model in
Fig. 12 (c) has been attacked by various operations illegally:
invisible noise added, extra vertex added and one vertex being
deleted. These regions are labeled as ‘A’, ‘B’ and ‘C’ respectively.
Fig. 12 (d) illustrates the located suspicious regions in red. From
Fig. 12 (d) we can find that the regions in red are exactly where the
tampering operations happen. The experimental results verify the
accuracy of our locating procedure.

5. Conclusions and future work

The main contributions of this paper are listed below.
• This paper is the first paper, to the best of our knowledge, to
report and analyze the numerically instable problem in the 3D
fragile watermarking field.
• This paper provides a numerically stable fragile watermarking

scheme. The scheme represents the mantissa part of the
floating-point number as an unsigned integer. After that, the
scheme operates the integer by the bit XOR operator to embed
thewatermarks. It is numerically stable since it only applies the
integral and the bit arithmetics.
• Furthermore, this scheme eliminates the causality problem

through forbidding the mark vertices to be adjacent. Mean-
while, this method does not lose the detecting ability.
• Compared with other algorithms, this scheme is easy to

implement and use, as discussed in Section 4.3. This scheme can
control thewatermarking intensity, which is important for CAD
applications.
• This paper discusses the performance of this scheme on

detecting several possible modifications. It can detect several
attacks which happen simultaneously, such as adding noise,
adding/deleting faces and remeshing the model, as discussed
in Section 4.2. Moreover, the scheme is immune to some
incidental operations, such as re-numbering the vertices. The
experimental results agree with our discussion.

There are two main drawbacks in our scheme. First, it may fail
to detect the attacks if the embedding parameters are not well
selected, as discussed in Section 4.1. Second, it can not filter some
harmless operations, such as transforming the model. Our future
research will focus on increasing the convenience of the scheme to
be immune to these harmless operations.
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Appendix. The pseudo codes of Algorithms 1 and 2

Each vertex v in Algorithm 1 has one flag, markeligible,
indicating whether this vertex is eligible to be selected as a mark
vertex.M indicates the 3Dmodel.N(v) is the set of the neighboring
vertices of v.

Each vertex v in Algorithm 2 has two flags,mark and suspicious.
The flag mark shows if the vertex is a mark vertex and suspicous
denotes if the vertex is a suspicious attacked vertex. M and N(v)
are for the 3D model and the neighborhood of v respectively. The
variable HasMarkVertexNeighborswill be set to FALSE if there is no
mark vertex in the neighboring set of v.

ALGORITHM 1:Mark vertex selection and watermarks-embedding
1 for each vertex v ∈ M
2 do v.markeligible← TRUE
3 End for
4 for each vertex v ∈ M
5 do if v.markeligible = TRUE
6 then for each vertex vn ∈ N(v)
7 do vn.markeligible← FALSE
8 End for
9 End if

10 End for
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8 for each vertex v ∈ M
9 do if v.markeligible = TRUE

10 then Set v as a mark vertex using Eq. (1)
11 Embed w into v using Eqs. (2)–(4)
12 else Set v as a non-mark vertex using

Eq. (1)
13 End if
14 End for

ALGORITHM 2:Watermarks-extracting and tampering locating
1 for each vertex v ∈ M
2 do v.suspicious← FALSE
3 if v is a mark vertex
4 then v.mark← TRUE
5 else v.mark← FALSE
6 End if-else
7 End for
8 for each vertex v ∈ M
9 do if v.mark = FALSE

10 then HasMarkVertexNeighbors← FALSE
11 for each vertex vn ∈ N(v)
12 do if vn.mark = TRUE
13 then HasMarkVertexNeighbors

← TRUE
14 End if
15 End for
16 if HasMarkVertexNeighbors = FALSE
17 then v.suspicious← TRUE
18 for each vertex vn ∈ N(v)
19 do vn.suspicious← TRUE
20 End for
21 End if
22 else HasMarkVertexNeighbors← FALSE
23 S← ∅
24 for each vertex vn ∈ N(v)
25 do if vn.mark = TRUE
26 then HasMarkVertexNeighbors

← TRUE
27 put vn in S
28 End if
29 End for
30 if HasMarkVertexNeighbors = TRUE
31 then v.suspicious← TRUE
32 for each vertex vs ∈ S
33 do vs.suspicious← TRUE
34 End for
35 End if
36 if v.suspicious 6= TRUE
37 then Extract the watermarks w and h

using Equation (5)
38 if h 6= hash(w)
39 then v.suspicious← TRUE
40 for each vertex vn ∈ N(v)
41 do vn.suspicious

← TRUE
42 End for
43 End if
44 End if
45 End if-else
46 End for
47 for each vertex v ∈ M
48 do if v.mark = TRUE && v.suspicious = FALSE
49 then for each vertex vn ∈ N(v)
50 do vn.suspicious← FALSE
51 End for
23 End if
24 End for
25 for each vertex v ∈ M
26 do if v.suspicious = TRUE
27 then display v in a different color
28 End if
29 End for
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