6,372 research outputs found

    3D ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography

    Get PDF
    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology

    Linear chemically sensitive electron tomography using DualEELS and dictionary-based compressed sensing

    Get PDF
    We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, followed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on the projected density of the element in each pixel. This method is compared with one that does not include deconvolution (although normalisation by the zero loss peak intensity is still performed). Additionaly, we compare the 3D reconstruction using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss EELS

    Biological application of Compressed Sensing Tomography in the Scanning Electron Microscope

    Get PDF
    The three-dimensional tomographic reconstruction of a biological sample, namely collagen fibrils in human dermal tissue, was obtained from a set of projection-images acquired in the Scanning Electron Microscope. A tailored strategy for the transmission imaging mode was implemented in the microscope and proved effective in acquiring the projections needed for the tomographic reconstruction. Suitable projection alignment and Compressed Sensing formulation were used to overcome the limitations arising from the experimental acquisition strategy and to improve the reconstruction of the sample. The undetermined problem of structure reconstruction from a set of projections, limited in number and angular range, was indeed supported by exploiting the sparsity of the object projected in the electron microscopy images. In particular, the proposed system was able to preserve the reconstruction accuracy even in presence of a significant reduction of experimental projections

    Approche problème inverse pour l’alignement de séries en tomographie électronique

    Get PDF
    International audienceIn the refining industry, morphological measurements of particles have become an essential part in the characterization catalyst supports. Through these parameters, one can infer the specific physicochemical properties of the studied materials. One of the main acquisition techniques is electron tomography (or nanotomography). 3D volumes are reconstructed from sets of projections from different angles made by a Transmission Electron Microscope (TEM). This technique provides a real three-dimensional information at the nanometric scale. A major issue in this method is the misalignment of the projections that contributes to the reconstruction. The current alignment techniques usually employ fiducial markers such as gold particles for a correct alignment of the images. When the use of markers is not possible, the correlation between adjacent projections is used to align them. However, this method sometimes fails. In this paper, we propose a new method based on the inverse problem approach where a certain criterion is minimized using a variant of the Nelder and Mead simplex algorithm. The proposed approach is composed of two steps. The first step consists of an initial alignment process, which relies on the minimization of a cost function based on robust statistics measuring the similarity of a projection to its previous projections in the series. It reduces strong shifts resulting from the acquisition between successive projections. In the second step, the pre-registered projections are used to initialize an iterative alignment-refinement process which alternates between (i) volume reconstructions and (ii) registrations of measured projections onto simulated projections computed from the volume reconstructed in (i). At the end of this process, we have a correct reconstruction of the volume, the projections being correctly aligned. Our method is tested on simulated data and shown to estimate accurately the translation, rotation and scale of arbitrary transforms. We have successfully tested our method with real projections of different catalyst supports.Dans le domaine du raffinage, les mesures morphologiques de particules sont devenues indispensables pour caractériser les supports de catalyseurs. A travers ces paramètres, on peut remonter aux spécificités physico-chimiques des matériaux étudiés. Une des techniques d’acquisition utilisées est la tomographie électronique (ou nanotomographie). Des volumes 3D sont reconstruits à partir de séries de projections sous différents angles obtenues par Microscopie Électronique en Transmission (MET). Cette technique permet d’obtenir une réelle information tridimensionnelle à l’échelle du nanomètre. Un problème majeur dans ce contexte est le mauvais alignement des projections qui contribuent à la reconstruction. Les techniques d’alignement actuelles emploient habituellement des marqueurs de réference tels que des nanoparticules d’or pour un alignement correct des images. Lorsque l’utilisation de marqueurs n’est pas possible, l’alignement de projections adjacentes est obtenu par corrélation entre ces projections. Cependant, cette méthode échoue parfois. Dans cet article, nous proposons une nouvelle méthode basée sur une approche de type problème inverse où un certain critère est minimisé en utilisant une variante de l’algorithme de Nelder et Mead, qui exploite le concept de simplexe. Elle est composéé de deux étapes. La première étape consiste en un processus d’alignement initial s’appuyant sur la minimisation d’une fonction de coût basée sur des statistiques robustes, mesurant la similarité entre une projection et les projections précédentes de la série. Elle vise à réduire les forts déplacements, résultant de l’acquisition entre les projections successives. Dans la seconde étape, les projections pré-recalées sont employées pour initialiser un processus itératif et alterné d’alignement et reconstruction, minimisant alternativement une fonction de coût basée sur la reconstruction du volume et une fonction basée sur l’alignement d’une projection avec sa version simulée obtenue à partir du volume reconstruit. A la fin de ce processus, nous obtenons une reconstruction correcte du volume, les projections étant correctement alignées. Notre méthode a été testée sur des données simulées et prouve qu’elle récupère d’une manière précise les changements dans les paramètres de translation, rotation et mise à l’échelle. Nous avons testé avec succès notre méthode pour les projections réelles de différents supports de catalyseur

    GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging

    Get PDF
    Tomography has made a radical impact on diverse fields ranging from the study of 3D atomic arrangements in matter to the study of human health in medicine. Despite its very diverse applications, the core of tomography remains the same, that is, a mathematical method must be implemented to reconstruct the 3D structure of an object from a number of 2D projections. In many scientific applications, however, the number of projections that can be measured is limited due to geometric constraints, tolerable radiation dose and/or acquisition speed. Thus it becomes an important problem to obtain the best-possible reconstruction from a limited number of projections. Here, we present the mathematical implementation of a tomographic algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE). By iterating between real and reciprocal space, GENFIRE searches for a global solution that is concurrently consistent with the measured data and general physical constraints. The algorithm requires minimal human intervention and also incorporates angular refinement to reduce the tilt angle error. We demonstrate that GENFIRE can produce superior results relative to several other popular tomographic reconstruction techniques by numerical simulations, and by experimentally by reconstructing the 3D structure of a porous material and a frozen-hydrated marine cyanobacterium. Equipped with a graphical user interface, GENFIRE is freely available from our website and is expected to find broad applications across different disciplines.Comment: 18 pages, 6 figure
    • …
    corecore