2,764 research outputs found

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    Comparing Kalman Filters and Observers for Power System Dynamic State Estimation with Model Uncertainty and Malicious Cyber Attacks

    Full text link
    Kalman filters and observers are two main classes of dynamic state estimation (DSE) routines. Power system DSE has been implemented by various Kalman filters, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). In this paper, we discuss two challenges for an effective power system DSE: (a) model uncertainty and (b) potential cyber attacks. To address this, the cubature Kalman filter (CKF) and a nonlinear observer are introduced and implemented. Various Kalman filters and the observer are then tested on the 16-machine, 68-bus system given realistic scenarios under model uncertainty and different types of cyber attacks against synchrophasor measurements. It is shown that CKF and the observer are more robust to model uncertainty and cyber attacks than their counterparts. Based on the tests, a thorough qualitative comparison is also performed for Kalman filter routines and observers.Comment: arXiv admin note: text overlap with arXiv:1508.0725

    PHACT: parallel HOG and correlation tracking

    Get PDF
    Histogram of Oriented Gradients (HOG) based methods for the detection of humans have become one of the most reliable methods of detecting pedestrians with a single passive imaging camera. However, they are not 100 percent reliable. This paper presents an improved tracker for the monitoring of pedestrians within images. The Parallel HOG and Correlation Tracking (PHACT) algorithm utilises self learning to overcome the drifting problem. A detection algorithm that utilises HOG features runs in parallel to an adaptive and stateful correlator. The combination of both acting in a cascade provides a much more robust tracker than the two components separately could produce. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    3D angle-of-arrival positioning using von Mises-Fisher distribution

    Get PDF
    We propose modeling an angle-of-arrival (AOA) positioning measurement as a von Mises-Fisher (VMF) distributed unit vector instead of the conventional normally distributed azimuth and elevation measurements. Describing the 2-dimensional AOA measurement with three numbers removes discontinuities and reduces nonlinearity at the poles of the azimuth-elevation coordinate system. Our computer simulations show that the proposed VMF measurement noise model based filters outperform the normal distribution based algorithms in accuracy in a scenario where close-to-pole measurements occur frequently.Comment: 5 page

    Nonlinear Attitude Filtering: A Comparison Study

    Get PDF
    This paper contains a concise comparison of a number of nonlinear attitude filtering methods that have attracted attention in the robotics and aviation literature. With the help of previously published surveys and comparison studies, the vast literature on the subject is narrowed down to a small pool of competitive attitude filters. Amongst these filters is a second-order optimal minimum-energy filter recently proposed by the authors. Easily comparable discretized unit quaternion implementations of the selected filters are provided. We conduct a simulation study and compare the transient behaviour and asymptotic convergence of these filters in two scenarios with different initialization and measurement errors inspired by applications in unmanned aerial robotics and space flight. The second-order optimal minimum-energy filter is shown to have the best performance of all filters, including the industry standard multiplicative extended Kalman filter (MEKF)
    corecore