88 research outputs found

    Perceptual Quality Evaluation of 3D Triangle Mesh: A Technical Review

    Full text link
    © 2018 IEEE. During mesh processing operations (e.g. simplifications, compression, and watermarking), a 3D triangle mesh is subject to various visible distortions on mesh surface which result in a need to estimate visual quality. The necessity of perceptual quality evaluation is already established, as in most cases, human beings are the end users of 3D meshes. To measure such kinds of distortions, the metrics that consider geometric measures integrating human visual system (HVS) is called perceptual quality metrics. In this paper, we direct an expansive study on 3D mesh quality evaluation mostly focusing on recently proposed perceptual based metrics. We limit our study on greyscale static mesh evaluation and attempt to figure out the most workable method for real-Time evaluation by making a quantitative comparison. This paper also discusses in detail how to evaluate objective metric's performance with existing subjective databases. In this work, we likewise research the utilization of the psychometric function to expel non-linearity between subjective and objective values. Finally, we draw a comparison among some selected quality metrics and it shows that curvature tensor based quality metrics predicts consistent result in terms of correlation

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    An interactive analysis of harmonic and diffusion equations on discrete 3D shapes

    Get PDF
    AbstractRecent results in geometry processing have shown that shape segmentation, comparison, and analysis can be successfully addressed through the spectral properties of the Laplace–Beltrami operator, which is involved in the harmonic equation, the Laplacian eigenproblem, the heat diffusion equation, and the definition of spectral distances, such as the bi-harmonic, commute time, and diffusion distances. In this paper, we study the discretization and the main properties of the solutions to these equations on 3D surfaces and their applications to shape analysis. Among the main factors that influence their computation, as well as the corresponding distances, we focus our attention on the choice of different Laplacian matrices, initial boundary conditions, and input shapes. These degrees of freedom motivate our choice to address this study through the executable paper, which allows the user to perform a large set of experiments and select his/her own parameters. Finally, we represent these distances in a unified way and provide a simple procedure to generate new distances on 3D shapes

    Selection of robust features for the Cover Source Mismatch problem in 3D steganalysis

    Get PDF
    This paper introduces a novel method for extracting sets of feature from 3D objects characterising a robust stegan- alyzer. Specifically, the proposed steganalyzer should mitigate the Cover Source Mismatch (CSM) paradigm. A steganalyzer is considered as a classifier aiming to identify separately cover and stego objects. A steganalyzer behaves as a classifier by considering a set of features extracted from cover stego pairs of 3D objects as inputs during the training stage. However, during the testing stage, the steganalyzer would have to identify whether specific information was hidden in a set of 3D objects which can be different from those used during the training. Addressing the CSM paradigm corresponds to testing the generalization ability of the steganalyzer when introducing distortions in the cover objects before hiding information through steganography. Our method aims to select those 3D features that model best the changes introduced in objects by steganography or information hiding and moreover they are able to generalize for different objects, not present in the training set. The proposed robust steganalysis approach is tested when considering changes in 3D objects such as those produced by mesh simplification and additive noise. The results obtained from this study show that the steganalyzers trained with the selected set of robust features achieve better detection accuracy of the changes embedded in the objects, when compared to other sets of features

    Polymeco : uma ferramenta de análise e comparação de malhas poligonais

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesOs modelos definidos usando malhas poligonais são usados em diversas áreas de aplicação para representar diferentes objectos e estruturas. Dependendo da aplicação, pode ser necessário processar esses modelos, por exemplo, para diminuir a sua complexidade (simplificação). Este processamento introduz diferenças, em relação ao modelo original, cuja avaliação é um passo fundamental para permitir escolher a sequência de operações e os métodos de processamento que permitam a obtenção de melhores resultados. Apesar de algumas ferramentas de análise e comparação das características de malhas poligonais serem descritas na literatura, pouca atenção tem sido prestada à forma como os dados provenientes dessa análise e comparação podem ser visualizados. Para além disso, devem ser disponibilizadas várias funcionalidades de forma a permitir uma utilização sistemática destas ferramentas, assim como uma adequada análise e exploração dos dados fornecidos. O PolyMeCo — uma ferramenta de análise e comparação das características de malhas poligonais — foi projectado e desenvolvido tendo em conta os objectivos acima referidos. Através de um ambiente integrado onde diferentes opções de visualização estão disponíveis e podem ser usadas de forma coordenada, o PolyMeCo permite aos utilizadores uma melhor compreensão dos dados resultantes da aplicação dos números de mérito disponibilizados. Esta nova ferramenta foi usada com sucesso em dois trabalhos de investigação: (1) para comparar as características das malhas resultantes de dois algoritmos de simplificação de malhas poligonais, e (2) para testar a aplicabilidade dos números de mérito que disponibiliza como estimadores da qualidade de modelos poligonais, tal como percebida pelos utilizadores. ABSTRACT: Polygonal meshes are used in several application areas to model different objects and structures. Depending on the application, such models sometimes have to be processed to, for instance, reduce their complexity (mesh simplification). Such processing introduces error, whose evaluation is of paramount importance when choosing the sequence of operations that is to be applied for a particular purpose. Although some mesh analysis and comparison tools are described in the literature, little attention has been given to the way mesh features (analysis) and mesh comparison results can be visualized. Moreover, particular functionalities have to be made available by such tools, to enable systematic use and proper data analysis and exploration. PolyMeCo — a tool for polygonal mesh analysis and comparison — was designed and developed taking the above objectives into account. It enhances the way users perform mesh analysis and comparison, by providing an integrated environment where various mesh quality measures and several visualization options are available and can be used in a coordinated way, thus leading to greater insight into the visualized data. This new tool has been successfully applied in two research works: (1) to compare between mesh simplification algorithms, and (2) to study the applicability of the provided computational measures as estimators of user perceived quality as obtained through an observer study

    Robust feature-based 3D mesh segmentation and visual mask with application to QIM 3D watermarking

    Get PDF
    The last decade has seen the emergence of 3D meshes in industrial, medical and entertainment applications. Many researches, from both the academic and the industrial sectors, have become aware of their intellectual property protection arising with their increasing use. The context of this master thesis is related to the digital rights management (DRM) issues and more particularly to 3D digital watermarking which is a technical tool that by means of hiding secret information can offer copyright protection, content authentication, content tracking (fingerprinting), steganography (secret communication inside another media), content enrichment etc. Up to now, 3D watermarking non-blind schemes have reached good levels in terms of robustness against a large set of attacks which 3D models can undergo (such as noise addition, decimation, reordering, remeshing, etc.). Unfortunately, so far blind 3D watermarking schemes do not present a good resistance to de-synchronization attacks (such as cropping or resampling). This work focuses on improving the Spread Transform Dither Modulation (STDM) application on 3D watermarking, which is an extension of the Quantization Index Modulation (QIM), through both the use of the perceptual model presented, which presents good robustness against noising and smoothing attacks, and the the application of an algorithm which provides robustness noising and smoothing attacks, and the the application of an algorithm which provides robustness against reordering and cropping attacks based on robust feature detection. Similar to other watermarking techniques, imperceptibility constraint is very important for 3D objects watermarking. For this reason, this thesis also explores the perception of the distortions related to the watermark embed process as well as to the alterations produced by the attacks that a mesh can undergo

    An Oblivious Watermarking for 3-D Polygonal Meshes Using Distribution of Vertex Norms

    Full text link

    Robust digital watermarking techniques for multimedia protection

    Get PDF
    The growing problem of the unauthorized reproduction of digital multimedia data such as movies, television broadcasts, and similar digital products has triggered worldwide efforts to identify and protect multimedia contents. Digital watermarking technology provides law enforcement officials with a forensic tool for tracing and catching pirates. Watermarking refers to the process of adding a structure called a watermark to an original data object, which includes digital images, video, audio, maps, text messages, and 3D graphics. Such a watermark can be used for several purposes including copyright protection, fingerprinting, copy protection, broadcast monitoring, data authentication, indexing, and medical safety. The proposed thesis addresses the problem of multimedia protection and consists of three parts. In the first part, we propose new image watermarking algorithms that are robust against a wide range of intentional and geometric attacks, flexible in data embedding, and computationally fast. The core idea behind our proposed watermarking schemes is to use transforms that have different properties which can effectively match various aspects of the signal's frequencies. We embed the watermark many times in all the frequencies to provide better robustness against attacks and increase the difficulty of destroying the watermark. The second part of the thesis is devoted to a joint exploitation of the geometry and topology of 3D objects and its subsequent application to 3D watermarking. The key idea consists of capturing the geometric structure of a 3D mesh in the spectral domain by computing the eigen-decomposition of the mesh Laplacian matrix. We also use the fact that the global shape features of a 3D model may be reconstructed using small low-frequency spectral coefficients. The eigen-analysis of the mesh Laplacian matrix is, however, prohibitively expensive. To lift this limitation, we first partition the 3D mesh into smaller 3D sub-meshes, and then we repeat the watermark embedding process as much as possible in the spectral coefficients of the compressed 3D sub-meshes. The visual error of the watermarked 3D model is evaluated by computing a nonlinear visual error metric between the original 3D model and the watermarked model obtained by our proposed algorithm. The third part of the thesis is devoted to video watermarking. We propose robust, hybrid scene-based MPEG video watermarking techniques based on a high-order tensor singular value decomposition of the video image sequences. The key idea behind our approaches is to use the scene change analysis to embed the watermark repeatedly in a fixed number of the intra-frames. These intra-frames are represented as 3D tensors with two dimensions in space and one dimension in time. We embed the watermark information in the singular values of these high-order tensors, which have good stability and represent the video properties. Illustration of numerical experiments with synthetic and real data are provided to demonstrate the potential and the much improved performance of the proposed algorithms in multimedia watermarking

    Steganalysis of meshes based on 3D wavelet multiresolution analysis

    Get PDF
    3D steganalysis aims to find the information hidden in 3D models and graphical objects. It is assumed that the information was hidden by 3D steganography or watermarking algorithms. A new set of 3D steganalysis features, derived by using multiresolution 3D wavelet analysis, is proposed in this research study. 3D wavelets relate a given mesh representation with its lower and higher graph resolutions by means of a set of Wavelet Coefficient Vectors (WCVs). The 3D steganalysis features are derived from transformations between a given mesh and its corresponding higher and lower resolutions. They correspond to geometric measures such as ratios and angles between various geometric measures. These features are shown to significantly increase the steganalysis accuracy when detecting watermarks which have been embedded by 3D wavelet-based watermarking algorithms. The proposed features, when used in combination with a previously proposed feature set, is shown to provide the best results in detecting the hidden information embedded by other information hiding algorithms
    • …
    corecore