20,515 research outputs found

    Automation and robotics technology for intelligent mining systems

    Get PDF
    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets

    Systems Integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    Get PDF
    Robotics technology is a rapidly advancing field moving from applications on repetitive manufacturing processes toward applications of more variable and complex tasks. Current directions of NASA designs for the Space Station and other future spacecraft is moving toward the use of robotics for operational, maintenance and repair functions while the spacecraft is in orbit. These spacecraft systems will eventually require processing through KSC for launch and refurbishment. In the future, KSC will be called on to design ground processing facilities for new generation launch vehicles such as the Heavy Lift Launch Vehicle and the Second Generation Shuttle. The design of these facilities should take advantage of stateof- the-art robotics technology to provide the most efficient and effective vehicle processing. In addition to these future needs for robotics technology expertise, it is readily apparent that robotics technology could also have near-term applications to some of the existing hazardous and repetitive Shuttle and payload processing activities at KSC

    Unmanned Robotic Systems and Applications

    Get PDF
    This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control

    Multimodal Aerial Locomotion:An Approach to Active Tool Handling

    Get PDF
    The research focus in aerial robotics is shifting from contactless inspection toward interaction and manipulation, with the number of potential applications rapidly increasing [1]. Eventually, aerial manipulators, i.e., unmanned aerial vehicles (UAVs) equipped with manipulators, will likely take on hazardous maintenance tasks now performed by humans. For this to happen, aerial manipulators must be able to perform all the different operations required in these maintenance routines

    Computer hardware and software for robotic control

    Get PDF
    The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems

    The CLAWAR project

    Get PDF
    In Europe, there are two main thematic groups focusing on robotics, the Climbing and Walking Robots (CLAWAR) project (http://www.clawar.net) and the European Robotics Network (EURON) project (http://www.euron.org). The two networks are complementary: CLAWAR is industrially focused on the immediate needs, and EURON is focused more on blue skies research. This article presents the activities of the CLAWAR project

    Efficient Autonomous Navigation for Planetary Rovers with Limited Resources

    Get PDF
    Rovers operating on Mars are in need of more and more autonomous features to ful ll their challenging mission requirements. However, the inherent constraints of space systems make the implementation of complex algorithms an expensive and difficult task. In this paper we propose a control architecture for autonomous navigation. Efficient implementations of autonomous features are built on top of the current ExoMars navigation method, enhancing the safety and traversing capabilities of the rover. These features allow the rover to detect and avoid hazards and perform long traverses by following a roughly safe path planned by operators on ground. The control architecture implementing the proposed navigation mode has been tested during a field test campaign on a planetary analogue terrain. The experiments evaluated the proposed approach, autonomously completing two long traverses while avoiding hazards. The approach only relies on the optical Localization Cameras stereobench, a sensor that is found in all rovers launched so far, and potentially allows for computationally inexpensive long-range autonomous navigation in terrains of medium difficulty
    • …
    corecore