127 research outputs found

    A new fiber braided soft bending actuator for singer exoskeleton

    Get PDF
    This thesis presents a design, development and analysis of a novel bending-type pneumatic soft actuator as a drive source for a finger exoskeleton. Soft actuators are gaining momentum in robotic applications due to their simple structure, high compliance, high power-to-weight ratio and low production cost. Smaller and lighter soft actuator that can provide higher power transmission at lower operating air pressure will benefit finger actuation mechanism compared to motorized cable and pulley-driven finger rehabilitation devices. In this study, a soft actuator with new bending method is proposed. It is based on fibre reinforcement of two fibre braided angles of contraction and extension characteristics combined in a single-chamber cylindrical actuator. Another four design parameters identified that affect the bending motion and the actuating force were the air chamber diameter, position of fibre layer reinforcement, fibre reinforcement coverage angle, and silicone rubber materials. Geometrical and material parameters were varied in Finite Element Method (FEM) simulation for design optimization and some parameters were tested experimentally to validate the FEM models. The effects of fibre angles (contraction and extension) on the bending motion and force were analyzed. The optimized actuator can generate bending motion up to 131° bending angle and the end tip of the actuator can make contact with the other base tip at only 240 kPa given input pressure. Both displacement simulation and experimental testing results matched closely. Maximum bending force of 5.42 N was generated at 350 kPa. A wearable finger soft exoskeleton prototype with five optimized bending actuators was tested to drive finger flexion motion of eight healthy subjects with simulated paralysis conditions. The finger soft exoskeleton demonstrated the ability to provide gripping force of 3.61 ± 0.22 N, gained at 200 kPa given air pressure. The device can successfully provide assistance to weak fingers in gripping at least 240 g object. It shows potential in helping people with weakened finger muscle to be more independent in their finger rehabilitation exercise

    A virtual hand assessment system for efficient outcome measures of hand rehabilitation

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control

    Development of a hybrid assist-as-need hand exoskeleton for stroke rehabilitation.

    Get PDF
    Stroke is one of the leading causes of disability globally and can significantly impair a patient’s ability to function on a daily basis. Through physical rehabilitative measures a patient may regain a level of functional independence. However, required therapy dosages are often not met. Rehabilitation is typically implemented through manual one-to-one assistance with a physiotherapist, which quickly becomes labour intensive and costly. Hybrid application of functional electrical stimulation (FES) and robotic support can access the physiological benefits of direct muscle activation while providing controlled and repeatable motion assistance. Furthermore, patient engagement can be heightened through the integration of a volitional intent measure, such as electromyography (EMG). Current hybrid hand-exoskeletons have demonstrated that a balanced hybrid support profile can alleviate FES intensity and motor torque requirements, whilst improving reference tracking errors. However, these support profiles remain fixed and patient fatigue is not addressed. The aim of this thesis was to develop a proof-of-concept assist-as-need hybrid exoskeleton for post-stroke hand rehabilitation, with fatigue monitoring to guide the balance of support modalities. The device required the development and integration of a constant current (CC) stimulator, stimulus-resistant EMG device, and hand-exoskeleton. The hand exoskeleton in this work was formed from a parametric Watt I linkage model that adapts to different finger sizes. Each linkage was optimised with respect to angular precision and compactness using Differential Evolution (DE). The exoskeleton’s output trajectory was shown to be sensitive to parameter variation, potentially caused by finger measurement error and shifts in coupler placement. However, in a set of cylindrical grasping trials it was observed that a range of movement strategies could be employed towards a successful grasp. As there are many possible trajectories that result in a successful grasp, it was deduced that the exoskeleton can still provide functional assistance despite its sensitivity to parameter variation. The CC stimulator developed in this work has a part cost of USD 145andallowsflexibleadjustmentofwaveformparametersthroughanonboardmicrocontroller.Thedeviceisdesignedtooutputcurrentupto±30mAgivenavoltagecomplianceof±50V.Whenappliedacrossa2kload,thedeviceexhibitedalinearoutputtransferfunction,withamaximumramptrackingerrorof5ThestimulusresistantEMGdevicebuildsoncurrentdesignsbyusinganovelSchmitttriggerbasedartefactdetectionchanneltoadaptivelyblankstimulationartefactswithoutstimulatorsynchronisation.ThedesignhasapartcostofUSD145 and allows flexible adjustment of waveform parameters through an on-board micro-controller. The device is designed to output current up to ±30mA given a voltage compliance of ±50V. When applied across a 2kΩ load, the device exhibited a linear output transfer function, with a maximum ramp tracking error of 5%. The stimulus-resistant EMG device builds on current designs by using a novel Schmitt trigger based artefact detection channel to adaptively blank stimulation artefacts without stimulator synchronisation. The design has a part cost of USD 150 and has been made open-source. The device demonstrated its ability to record EMG over its predominant energy spectrum during stimulation, through the stimulation electrodes or through separate electrodes. Pearson’s correlation coefficients greater than 0.84 were identified be- tween the normalised spectra of volitional EMG (vEMG) estimates during stimulation and of stimulation-free EMG recordings. This spectral similarity permits future research into applications such as spectral-based monitoring of fatigue and muscle coherence, posing an advantage over current same-electrode stimulation and recording systems, which can- not sample the lower end of the EMG spectrum due to elevated high-pass filter cut-off frequencies. The stimulus-resistant EMG device was used to investigate elicited EMG (eEMG)-based fatigue metrics during vEMG-controlled stimulation and hybrid support profiles. During intermittent vEMG-controlled stimulation, the eEMG peak-to-peak amplitude (PTP) index was the median frequency (MDF) had a negative correlation for all subjects with R > 0:62 during stimulation-induced wrist flexion and R > 0:55 during stimulation-induced finger flexion. During hybrid FES-robotic support trials, a 40% reduction in stimulus intensity resulted in an average 21% reduction in MDF gradient magnitudes. This reflects lower levels of fatigue during the hybrid support profile and indicates that the MDF gradient can provide useful information on the progression of muscle fatigue. A hybrid exoskeleton system was formed through the integration of the CC stimulator, stimulus-resistant EMG device, and the hand exoskeleton developed in this work. The system provided assist-as-need functional grasp assistance through stimulation and robotic components, governed by the user’s vEMG. The hybrid support profile demonstrated consistent motion assistance with lowered stimulation intensities, which in-turn lowered the subjects’ perceived levels of fatigue

    Development of the huggable social robot Probo: on the conceptual design and software architecture

    Get PDF
    This dissertation presents the development of a huggable social robot named Probo. Probo embodies a stuffed imaginary animal, providing a soft touch and a huggable appearance. Probo's purpose is to serve as a multidisciplinary research platform for human-robot interaction focused on children. In terms of a social robot, Probo is classified as a social interface supporting non-verbal communication. Probo's social skills are thereby limited to a reactive level. To close the gap with higher levels of interaction, an innovative system for shared control with a human operator is introduced. The software architecture de nes a modular structure to incorporate all systems into a single control center. This control center is accompanied with a 3D virtual model of Probo, simulating all motions of the robot and providing a visual feedback to the operator. Additionally, the model allows us to advance on user-testing and evaluation of newly designed systems. The robot reacts on basic input stimuli that it perceives during interaction. The input stimuli, that can be referred to as low-level perceptions, are derived from vision analysis, audio analysis, touch analysis and object identification. The stimuli will influence the attention and homeostatic system, used to de ne the robot's point of attention, current emotional state and corresponding facial expression. The recognition of these facial expressions has been evaluated in various user-studies. To evaluate the collaboration of the software components, a social interactive game for children, Probogotchi, has been developed. To facilitate interaction with children, Probo has an identity and corresponding history. Safety is ensured through Probo's soft embodiment and intrinsic safe actuation systems. To convey the illusion of life in a robotic creature, tools for the creation and management of motion sequences are put into the hands of the operator. All motions generated from operator triggered systems are combined with the motions originating from the autonomous reactive systems. The resulting motion is subsequently smoothened and transmitted to the actuation systems. With future applications to come, Probo is an ideal platform to create a friendly companion for hospitalised children

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    The feasibility of measuring rehabilitation-induced changes in upper limb movement and cognition using robotic kinematics in chronic stroke

    Get PDF
    Background: Robotic measurement of kinematics is a potential method to detect precise rehabilitation-induced changes in upper limb movement and cognition post-stroke. To what degree robot-derived data aligns with other gold-standard upper limb measurement tools has yet to be described. Such comparisons would be important for translating such tools to research and clinical practice. Methods: Using the Kinesiological Instrument for Normal and Altered Reaching Movement (Kinarm), we compared the relationship between robot-derived values and gold-standard clinical tests of upper limb performance and cognitive function before and after a rehabilitation intervention in patients with chronic stroke. The intervention involved 10 sessions of pairing aerobic exercise with skilled motor and cognitive practice. Participants underwent motor performance and cognitive function assessments using the Kinarm endpoint robot and standardized measurement scales at baseline, after the 10 intervention sessions and 30 days later. Results: Ten participants with chronic upper limb impairment due to stroke (69.4 ± 12.9 years old: 7 males, 3 females) completed the intervention sessions. There were no significant improvements in upper limb recovery when measured using the clinical gold-standard tests. However, robotic kinematics variables showed significant changes in motor performance at follow-up. There were no significant changes in cognitive measures pre- and post-rehabilitation intervention. Conclusion: Rehabilitation-induced changes in upper limb performance and cognitive changes may be effectively detected and quantified using robotic kinematics measures

    Musculoskeletal Modeling of the Human Lower Limb Stiffness for Robotic Applications

    Get PDF
    This research work presents a physiologically accurate and novel computationally fast neuromusculoskeletal model of the human lower limb stiffness. The proposed computational framework uses electromyographic signals, motion capture data and ground reaction forces to predict the force developed by 43 musculotendon actuators. The estimated forces are then used to compute the musculotendon stiffness and the corresponding joint stiffness. The estimations at each musculotendon unit is constrained to simultaneously satisfy the joint angles and the joint moments of force generated with respect to five degrees of freedom, including: Hip Adduction-Abduction, Hip Flexion-Extension, Hip Internal-External Rotation, Knee Flexion-Extension, and Ankle Plantar-Dorsi Flexion. Advanced methods are used to perform accurate muscle-driven dynamic simulations and to guarantee the dynamic consistency between kinematic and kinetic data. This study presents also the design, simulation and prototyping of a small musculoskeletal humanoid made for replicating the human musculoskeletal structure in an artificial apparatus capable to maintain a quiet standing position using only a completely passive elastic actuation structure. The proposed prototype has a total mass of about 2 kg and its height is 40 cm. It comprises of four segments for each leg and six degrees of freedom, including: Hip Adduction-Abduction, Hip Flexion-Extension, Knee Flexion-Extension, Ankle Plantar-Dorsi Flexion, Ankle Inversion-Eversion, and Toe Flexion-Extension. In order to reconstruct the continuous state space parameters proper of the assembly's control of quiet standing, a hybrid non-linear Extended Kalman Filter based technique is proposed to combine a base-excited inverted pendulum kinematic model of the robot with the discrete-time position measurements. This research work provides effective solutions and readily available software tools to improve the human interaction with robotic assistive devices, advancing the research in neuromusculoskeletal modeling to better understand the mechanisms of actuation provided by human muscles and the rules that govern the lower limb joint stiffness regulation. The obtained results suggest that the neuromusculoskeletal modeling technology can be exploited to address the challenges on the development of musculoskeletal humanoids, new generation human-robot interfaces, motion control algorithms, and intelligent assistive wearable devices capable to effectively ensure a proper dynamic coupling between human and robot

    3D printed pneumatic soft actuators and sensors: their modeling, performance quantification, control and applications in soft robotic systems

    Get PDF
    Continued technological progress in robotic systems has led to more applications where robots and humans operate in close proximity and even physical contact in some cases. Soft robots, which are primarily made of highly compliant and deformable materials, provide inherently safe features, unlike conventional robots that are made of stiff and rigid components. These robots are ideal for interacting safely with humans and operating in highly dynamic environments. Soft robotics is a rapidly developing field exploiting biomimetic design principles, novel sensor and actuation concepts, and advanced manufacturing techniques. This work presents novel soft pneumatic actuators and sensors that are directly 3D printed in one manufacturing step without requiring postprocessing and support materials using low-cost and open-source fused deposition modeling (FDM) 3D printers that employ an off-the-shelf commercially available soft thermoplastic poly(urethane) (TPU). The performance of the soft actuators and sensors developed is optimized and predicted using finite element modeling (FEM) analytical models in some cases. A hyperelastic material model is developed for the TPU based on its experimental stress-strain data for use in FEM analysis. The novel soft vacuum bending (SOVA) and linear (LSOVA) actuators reported can be used in diverse robotic applications including locomotion robots, adaptive grippers, parallel manipulators, artificial muscles, modular robots, prosthetic hands, and prosthetic fingers. Also, the novel soft pneumatic sensing chambers (SPSC) developed can be used in diverse interactive human-machine interfaces including wearable gloves for virtual reality applications and controllers for soft adaptive grippers, soft push buttons for science, technology, engineering, and mathematics (STEM) education platforms, haptic feedback devices for rehabilitation, game controllers and throttle controllers for gaming and bending sensors for soft prosthetic hands. These SPSCs are directly 3D printed and embedded in a monolithic soft robotic finger as position and touch sensors for real-time position and force control. One of the aims of soft robotics is to design and fabricate robotic systems with a monolithic topology embedded with its actuators and sensors such that they can safely interact with their immediate physical environment. The results and conclusions of this thesis have significantly contributed to the realization of this aim

    Design and Fabrication of Soft 3D Printed Actuators: Expanding Soft Robotics Applications

    Get PDF
    Soft pneumatic actuators are ideal for soft robotic applications due to their innate compliance and high power-weight ratios. Presently, the majority of soft pneumatic actuators are used to create bending motions, with very few able to produce significant linear movements. Fewer can actively produce strains in multiple directions. The further development of these actuators is limited by their fabrication methods, specifically the lack of suitable stretchable materials for 3D printing. In this thesis, a new highly elastic resin for digital light projection 3D printers, designated ElastAMBER, is developed and evaluated, which shows improvements over previously synthesised elastic resins. It is prepared from a di-functional polyether urethane acrylate oligomer and a blend of two different diluent monomers. ElastAMBER exhibits a viscosity of 1000 mPa.s at 40 °C, allowing easy printing at near room temperatures. The 3D-printed components present an elastomeric behaviour with a maximum extension ratio of 4.02 ± 0.06, an ultimate tensile strength of (1.23 ± 0.09) MPa, low hysteresis, and negligible viscoelastic relaxation

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society
    corecore