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ABSTRACT 

This thesis presents a design, development and analysis of a novel bending-

type pneumatic soft actuator as a drive source for a finger exoskeleton. Soft actuators 

are gaining momentum in robotic applications due to their simple structure, high 

compliance, high power-to-weight ratio and low production cost. Smaller and lighter 

soft actuator that can provide higher power transmission at lower operating air 

pressure will benefit finger actuation mechanism compared to motorized cable and 

pulley-driven finger rehabilitation devices. In this study, a soft actuator with new 

bending method is proposed. It is based on fibre reinforcement of two fibre braided 

angles of contraction and extension characteristics combined in a single-chamber 

cylindrical actuator. Another four design parameters identified that affect the bending 

motion and the actuating force were the air chamber diameter, position of fibre layer 

reinforcement, fibre reinforcement coverage angle, and silicone rubber materials. 

Geometrical and material parameters were varied in Finite Element Method (FEM) 

simulation for design optimization and some parameters were tested experimentally 

to validate the FEM models. The effects of fibre angles (contraction and extension) 

on the bending motion and force were analyzed. The optimized actuator can generate 

bending motion up to 131° bending angle and the end tip of the actuator can make 

contact with the other base tip at only 240 kPa given input pressure. Both 

displacement simulation and experimental testing results matched closely. Maximum 

bending force of 5.42 N was generated at 350 kPa. A wearable finger soft 

exoskeleton prototype with five optimized bending actuators was tested to drive 

finger flexion motion of eight healthy subjects with simulated paralysis conditions. 

The finger soft exoskeleton demonstrated the ability to provide gripping force of 3.61 

± 0.22 N, gained at 200 kPa given air pressure. The device can successfully provide 

assistance to weak fingers in gripping at least 240 g object. It shows potential in 

helping people with weakened finger muscle to be more independent in their finger 

rehabilitation exercise.   
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ABSTRAK 

Tesis ini membentangkan pembangunan penggerak lenturan lembut jenis 

pneumatik terbaru sebagai sumber pemacu dalam menggerakkan jari. Penggerak 

lembut mendapat momentum dalam aplikasi robotik kerana strukturnya yang mudah, 

sifat pematuhan yang tinggi, nisbah kuasa kepada berat yang tinggi dan memerlukan 

kos produksi yang rendah. Penggerak lembut yang lebih kecil, ringan dan dapat 

menjana kuasa penghantaran yang tinggi pada pengendalian tekanan udara yang 

lebih rendah dapat memanfaatkan mekanisme penggerak jari jika dibandingkan 

dengan penggerak jari menggunakan motor dan takal. Dalam kajian ini, kaedah 

lenturan baru untuk penggerak lembut diusulkan. Ia adalah berdasarkan kepada dua 

sudut corak gentian yang mempunyai sifat penguncupan dan pemanjangan 

digabungkan dalam penggerak silinder tunggal. Empat lagi parameter reka bentuk 

telah dikenal pasti dapat memberi kesan terhadap gerakan lentur dan daya 

penggeraknya, iaitu isipadu ruang udara, kedudukan lapisan gentian, liputan sudut 

gentian dan bahan getah silikon. Parameter geometri dan bahan telah diubah dalam 

simulasi Kaedah Unsur Terhingga (FEM) dalam pengoptimuman reka bentuk dan 

ada di antaranya yang diuji secara eksperimen untuk mengesahkan model FEM yang 

direka. Kesan daripada sudut gentian penguncupan dan pemanjangan terhadap 

gerakan lentur dan daya lenturan telah dianalisa. Penggerak yang telah 

dioptimumkan boleh menjana 131° sudut lenturan dan hujung akhir penggerak dapat 

menyentuh hujung yang lainnya hanya pada 240 kPa tekanan udara. Kedua-dua 

keputusan anjakan daripada analisis simulasi dan eksperimen hampir berpadanan. 

Daya lenturan sebanyak 5.42 N dapat dijana pada 350 kPa. Penggerak lembut yang 

telah dioptimumkan menunjukkan keupayaan cengkaman kuasa sebanyak 3.61 ± 

0.22 N pada 200 kPa tekanan udara. Sarung tangan kerangka luar menggunakan lima 

penggerak lenturan yang optimum telah diuji untuk membengkokkan jari lapan orang 

yang sihat yang dilemahkan. Berdasarkan ujian daya cengkaman yang dilakukan, 

sarung tangan kerangka luar ini dapat membantu menggerakkan jari yang lemah 

sekurang-kurangnya dalam menggenggam objek seberat 240 g. Ia menunjukkan 

potensi dalam membantu orang yang lemah otot jarinya untuk lebih berdikari dalam 

melakukan rehabilitasi senaman jari. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

It was reported that 49% of older people that face difficulties in performing 

physical tasks were caused by musculoskeletal diseases such as Arthritis, 13.7% by 

heart disease, 12% by injury, 11.7% by old age, 6% by lung disease, and remaining 

2.9% were caused by stroke [1]. Among those contributing factors, people with 

stroke was reported to be facing difficulties in using upper extremities and 

performing basic activities of daily living [1].  

 

Worldwide, stroke is the second commonest cause of death and a leading 

cause of adult disability [2]. According to statistics announced by National Stroke 

Association of Malaysia (NASAM), stroke is the third highest cause of death in 

Malaysia [3]. Nearly 40,000 people in Malaysia suffer from stroke every year, 

affecting adults more than children. Some studies shows that majority of stroke cases 

occurred due to cerebral infarction (50% - 87%), followed by cerebral hemorrhage 

(20% - 30%) [4]–[7]. Other most frequent risk factors include hypertension, diabetes 

mellitus and previous stroke [5], [8]–[13].  

 

Paralysis, a common disability resulting from stroke, may range from 

complete inability to move to less than total strength, thus affecting the stroke 

survivors in their daily activities, such as causing difficulty in walking and grasping 

objects. Depending on the severity of neurological deficits, 19% of stroke survivors 



2 
 

were very severely disabled, 4% of them severely disabled, 26% moderately 

disabled, 41% minor disabled and no disability shown for the remaining 10% [14].  

 

After completing stroke rehabilitation, a study shows 11% of the stroke 

survivors still very severely and severely disabled, 11% moderately disabled and 

another 78% shows minimum or no disability [14]. Other study in Singapore shows 

91.9% of the stroke survivors can independently conduct self-care activities after 

completed rehabilitation [13]. Other than stroke survivors, elderly and patients with 

prolonged intensive care (ICU) stay [15] can also exhibit general weakness and 

problems in coordinating that need physical rehabilitation. 

 

Early stage, repetitive and continuous rehabilitation can help the brain 

relearns lost skills much faster and with more significant results. The assistance of 

robotic devices, might also promote a cost-effective therapy for stroke survivors to 

maintain their ability to move after receiving standard in-hospital rehabilitation [16]–

[18]. Rehabilitation devices specifically designed for restoring hand function, usually 

known as finger exoskeleton must be able to at least assist flexion motion of fingers. 

Rondi Blackburn, a medical professional developed a theory that repeated exercises 

of the affected hand and fingers will open up new pathways of communication 

between the brain and the stroke-affected area (American Heart Association). 

Strength, mobility and precision exercises are types of exercises usually being 

performed to stroke survivor rehabilitation. 

 

With the advancements in robotics and mechatronics research in the last 

decade, rehabilitation robotics has become an active research area. Rehabilitation 

Robotics is the application of robotic technology to the rehabilitative needs of people 

with disabilities as well as the growing elderly population [19]. The main restriction 

in the current finger rehabilitation robot system is the complexity in its structure 

which requires metallic or plastic alignment in every finger joint in the finger 

actuation system [20]–[27]. Heavy unit from plastic and metal load can contribute to 

wearer discomfort. 
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 To counter these problems, Soft Actuator, also known as Rubber Actuator, is 

a pneumatic driven actuator which can offer simpler structure, high power-to-weight 

ratio, lightweight, comparative low cost, and easy maintenance [28]–[31], suitable to 

be utilized in finger exoskeleton. It converts energy from compressed air into various 

motions depending on its design. In comparison to hydraulic actuator, pneumatic 

actuator is relatively small in size, requires smaller tank for air storage and is 

lightweight. It is also easy to control with only simple on-off type control. It does not 

produce heat except for friction, thus the risk of accidental fire is low. This can 

promote safer interaction with human.  

 

Soft actuation by using Soft Actuator is still a young approach in robotics 

engineering and currently developing. There a few research groups around the world 

that implement soft actuator in robotics application. To name a few, there was Prof. 

Koichi Suzumori Research Group established at Okayama University in the early 

2000s. The group focuses on developing soft actuators mechanism in various field 

[28]–[50], especially in object manipulation and medical assistance. In the same 

university, there was also Prof. Toshiro Noritsugu Research Group that implement 

soft actuation in rehabilitation assistance [51]–[54]. Other groups that are currently 

actively involved in soft actuation research are the Whitesides and Conor J Walsh 

Research Group from Harvard University. Since 2011, they have been rapidly 

developing soft actuator technology especially in the field of biomimetic and 

assistive wearable rehabilitation [55]–[63].  

 

Although some studies in the recent years have focused on applying soft 

actuator in finger exoskeleton for object grasping manipulation [51]–[54], [64], there 

has been very little discussion on the gripping force assistance and these studies have 

been limited to the generated actuator force, not gripping force from the soft 

exoskeleton unit.  

 

This research proposed a novel soft exoskeleton to assist fingers weak in 

finger flexion motion by utilizing a new bending-type soft actuator. The research is 

expected to contribute highly to the development of a user-friendly, comfortable, 
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safer and more powerful finger exoskeleton prototype, where it can help in reducing 

therapists‘ workloads in performing therapy tasks to stroke survivors in the future. 

1.2 Problem Statements 

Wearable devices designed to suit many parts of body such as shoulder, 

elbow and finger assist system are gaining popularity at present due to their 

portability and can support movement in weak muscles especially in stroke 

survivors. Robots or devices that are comfortable to wear and easy to be used will 

increase user motivation in performing the exercises, thus hastening recovery. 

Simple mechanical design with high flexibility and proper softness in motion and 

touch is required in order to provide efficient therapy [58], [63], [65].  

 

Although some finger exoskeletons show promising results in providing 

grasping motion [51], [53], [54], [61] the size and force performance of bending-type 

actuator utilized in the actuation system can still be improved. In addition, little data 

of the assisted grasping force has been found [51], [53], [54], [61]. Smaller size 

bending-type soft actuator with increased power transmission at lower operated air 

pressure is required. 

 

A new soft actuator design suitable for power soft actuation is proposed 

based on fiber braided reinforcement in McKibben actuator. McKibben pneumatic 

artificial muscle (PAM) is known to be high achieving contraction force actuator due 

to fiber braided layer structure incorporated at the outer layer of its cylindrical body 

structure [66]. The fiber layer restrains radial contraction while promoting 

contraction forces. Due to its high force capability driven by the fiber braided 

reinforcement, two different fiber braided angles in a single chamber were proposed 

to obtain desired bending motion and force for finger flexion actuation. Currently, 

bending soft actuator prototype shown from literature that uses fiber braided 

contraction and extension fiber angles reinforcement are not mechanically 

interlocked and bulky [38].  
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1.3 Objectives  

The followings are the objectives of the research: 

1. To simulate, fabricate and optimize the proposed bending soft actuator using 

two fiber braided angles (contraction and extension) in one chamber. 

2. To validate the 3-D FEM models of the proposed bending soft actuator with 

the fabricated actuator models. 

3. To implement finger soft exoskeleton that utilized the optimized bending soft 

actuator in finger flexion. 

 

The main objective of this research is to develop a new single chamber fiber 

braided bending-type actuator (FBBA) using combined contraction and extension-

type fiber reinforcement. The new bending mechanism of soft actuator developed in 

this research is utilized in finger soft exoskeleton and is expected to be able to 

provide grasping assistance in weak fingers at least in holding light objects.  

1.4 Scope 

The followings are the scope of the research: 

1. FBBA design development using technical mathematical drawings of 

combined contraction and extension fiber angles reinforcement in one 

chamber. 

2. Proof of FBBA bending concept in FEM simulation analysis using MARC
®
 

Mentat software. 

3. FBBA 3-D FEM optimization and analysis based on several design 

parameters (air chamber diameter, position of fiber reinforcement, rubber 

materials, fiber reinforcement coverage angle) performed with FEM software, 

MARC
®

. 

4. Fabrications of the proposed FBBA using molding, rubber bonding and fiber 

knitting techniques. 

5. Evaluation of the FBBA based on tip trajectory plot, bending angle and 

generated tip force performance. 
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6. Implementation of the optimized FBBAs onto the glove (SOFT-EXOS) 

utilizing rubber band and elastic textile attachment. 

7. Evaluation of FBBA in SOFT-EXOS implementation based on the measured 

mean value of the assisted grip force in 8 healthy subjects. 

1.5 Contributions  

The main research contributions of the research are as follows: 

1. A new actuator bending actuator concept using two fiber braided angles 

(contraction and extension) in one chamber that can produce bending motion 

is introduced.  

2. A new 3-D FEM model designed with combined fiber pattern reinforcement 

is developed and validated by experimental testing of the fabricated actuator 

model. 

3. A new prototype of finger exoskeleton utilizing the novel bending actuator 

and flexible glove attachment is developed. 

1.6 Organization of the Thesis 

The thesis is organized in five chapters. Background of the research field, 

introduction to the recognized problems that need to be solved, the proposed 

solutions to the research problems, the scopes of the study, and some recognized 

contributions of the research are introduced in Chapter 1.  

 

In Chapter 2, the literature review on finger flexion methods in finger 

exoskeleton are presented in several actuating mechanisms, for example pulley 

system-operated, motor-operated, and pneumatic-operated. Soft actuation 

mechanisms showing different resulting motions, particularly in pneumatic and 

hydraulic operated system applied in diverse applications are also presented. Various 

bending concepts proposed from different groups of researcher studied in flexible 

and high force applications are also studied.  



7 
 

 

The research flow and methodology used in the development of the proposed 

actuator design and the implementation of the actuator design in simulation, 

experimental testing and application- based study are shown in Chapter 3.  

 

Chapter 4 mainly presents the results of FEM simulations and experimental 

testing of the proposed actuators that were evaluated by displacement and force 

performance. FEM model validation and optimization results in several geometrical 

parameter changes are also presented.  In addition, the feasibility study conducted on 

healthy subjects in order to evaluate the performance of the proposed actuator design 

implemented in the finger soft exoskeleton system is presented.  

 

Finally, the summary of research contributions and future solutions gained 

from the study are covered in Chapter 5. 
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