3,104 research outputs found

    Gaze Tracking for Human Robot Interaction

    Get PDF

    Gaze Tracking for Human Robot Interaction

    Get PDF

    Project Half Double Current Results of Phase 1 and Phase 2, December 2017

    Get PDF
    The Half Double mission: Project Half Double has a clear mission. We want to succeed in finding a project methodology that can increase the success rate of our projects while increasing the development speed of new products and services. We are convinced that by doing so we can strengthen Denmark’s competitiveness and play an important role in the battle for jobs and future welfare. The overall goal is to deliver “Projects in half the time with double the impact” where projects in half the time should be understood as half the time to impact (benefit realization, effect is achieved) and not as half the time for project execution. The Half Double project journey: It all began in May 2013 when we asked ourselves: How do we create a new and radical project paradigm that can create successful projects? Today the movement includes hundreds of passionate project people, and it grows larger by the day. The formal part of Project Half Double was initiated in June 2015. It is a two-phase project: phase 1 took place from June 2015 to June 2016 with seven pilot projects, and phase 2 is in progress from July 2016 to July 2018 with 10 pilot projects.The Half Double consortium: Implement Consulting Group is the project leader establishing and managing the collaboration with the pilot project companies in terms of methodology. Aarhus University and the Technical University of Denmark will evaluate the impact of the pilot projects and legitimize the methodology in academia.The Danish Industry Foundation, an independent philanthropic foundation, is contributing to the project financially with DKK 13.8 million.About this report: This report focuses on phase 2 pilot projects documenting their development and further consolidates results from the phase 1 pilot projects. This is the third report about Project Half Double (Svejvig et al. 2016, Svejvig et al. 2017). This report’s target group inludes practitioners in Danish industry and society in general. The editorial team from Aarhus University prepared the report from October 2017 to December 2017, which means that data about pilot projects from December 2017 is not included

    Robot NAO used in therapy: Advanced design and evaluation

    Get PDF
    Treball de Final de Màster Universitari en Sistemes Intel·ligents. Codi: SIE043. Curs acadÚmic 2013-2014Following with the previous work which we have done in the Final Research Project, we introduced a therapeutic application with social robotics to improve the positive mood in patients with fibromyalgia. Different works about therapeutic robotics, positive psychology, emotional intelligence, social learning and mood induction procedures (MIPs) are reviewed. Hardware and software requirements and system development are explained with detail. Conclusions about the clinical utility of these robots are disputed. Nowadays, experiments with real fibromyalgia patients are running, the methodology and procedures which take place in them are described in the future lines section of this work

    A Biosymtic (Biosymbiotic Robotic) Approach to Human Development and Evolution. The Echo of the Universe.

    Get PDF
    In the present work we demonstrate that the current Child-Computer Interaction paradigm is not potentiating human development to its fullest – it is associated with several physical and mental health problems and appears not to be maximizing children’s cognitive performance and cognitive development. In order to potentiate children’s physical and mental health (including cognitive performance and cognitive development) we have developed a new approach to human development and evolution. This approach proposes a particular synergy between the developing human body, computing machines and natural environments. It emphasizes that children should be encouraged to interact with challenging physical environments offering multiple possibilities for sensory stimulation and increasing physical and mental stress to the organism. We created and tested a new set of computing devices in order to operationalize our approach – Biosymtic (Biosymbiotic Robotic) devices: “Albert” and “Cratus”. In two initial studies we were able to observe that the main goal of our approach is being achieved. We observed that, interaction with the Biosymtic device “Albert”, in a natural environment, managed to trigger a different neurophysiological response (increases in sustained attention levels) and tended to optimize episodic memory performance in children, compared to interaction with a sedentary screen-based computing device, in an artificially controlled environment (indoors) - thus a promising solution to promote cognitive performance/development; and that interaction with the Biosymtic device “Cratus”, in a natural environment, instilled vigorous physical activity levels in children - thus a promising solution to promote physical and mental health

    Robots, Industry 4.0 and humans, or why assembly work is more than routine work

    Get PDF
    This article condenses the key findings of qualitative studies on assembly work. Grounded conceptually in considerations of the role of experiential knowledge and living labor capacity with regard to informal expertise and tacit knowledge, the empirical results challenge the dominant view of assembly work as routine tasks that could easily be replaced by robotics. The empirical basis comprised of 62 qualitative interviews in five assembly plants provides answers to two questions: Are there non-routine aspects to be found in assembly work today? What exactly is the nature of experience in assembly work? The detailed research results are presented in three steps: the first focuses on the role of the non-routine in core assembly tasks; the second discusses the important and increasing role played by interactive capabilities in assembly work to ensure high performance, quality, and a smooth material flow; and the third highlights the usually neglected role of assembly workers in processes of innovation and organizational learning. The concluding chapter discusses the findings from the perspective of new technological options in robotics, possible worker resistance and effects on employment
    • 

    corecore