249 research outputs found

    Beat histogram features for rhythm-based musical genre classification using multiple novelty functions

    Get PDF
    In this paper we present beat histogram features for multiple level rhythm description and evaluate them in a musical genre classification task. Audio features pertaining to various musical content categories and their related novelty functions are extracted as a basis for the creation of beat histograms. The proposed features capture not only amplitude, but also tonal and general spectral changes in the signal, aiming to represent as much rhythmic information as possible. The most and least informative features are identified through feature selection methods and are then tested using Support Vector Machines on five genre datasets concerning classification accuracy against a baseline feature set. Results show that the presented features provide comparable classification accuracy with respect to other genre classification approaches using periodicity histograms and display a performance close to that of much more elaborate up-to-date approaches for rhythm description. The use of bar boundary annotations for the texture frames has provided an improvement for the dance-oriented Ballroom dataset. The comparably small number of descriptors and the possibility of evaluating the influence of specific signal components to the general rhythmic content encourage the further use of the method in rhythm description tasks

    From locomotion to dance and back : exploring rhythmic sensorimotor synchronization

    Full text link
    Le rythme est un aspect important du mouvement et de la perception de l’environnement. Lorsque l’on danse, la pulsation musicale induit une activité neurale oscillatoire qui permet au système nerveux d’anticiper les évènements musicaux à venir. Le système moteur peut alors s’y synchroniser. Cette thèse développe de nouvelles techniques d’investigation des rythmes neuraux non strictement périodiques, tels que ceux qui régulent le tempo naturellement variable de la marche ou la perception rythmes musicaux. Elle étudie des réponses neurales reflétant la discordance entre ce que le système nerveux anticipe et ce qu’il perçoit, et qui sont nécessaire pour adapter la synchronisation de mouvements à un environnement variable. Elle montre aussi comment l’activité neurale évoquée par un rythme musical complexe est renforcée par les mouvements qui y sont synchronisés. Enfin, elle s’intéresse à ces rythmes neuraux chez des patients ayant des troubles de la marche ou de la conscience.Rhythms are central in human behaviours spanning from locomotion to music performance. In dance, self-sustaining and dynamically adapting neural oscillations entrain to the regular auditory inputs that is the musical beat. This entrainment leads to anticipation of forthcoming sensory events, which in turn allows synchronization of movements to the perceived environment. This dissertation develops novel technical approaches to investigate neural rhythms that are not strictly periodic, such as naturally tempo-varying locomotion movements and rhythms of music. It studies neural responses reflecting the discordance between what the nervous system anticipates and the actual timing of events, and that are critical for synchronizing movements to a changing environment. It also shows how the neural activity elicited by a musical rhythm is shaped by how we move. Finally, it investigates such neural rhythms in patient with gait or consciousness disorders

    Synthesis of variable dancing styles based on a compact spatiotemporal representation of dance

    Get PDF
    Dance as a complex expressive form of motion is able to convey emotion, meaning and social idiosyncrasies that opens channels for non-verbal communication, and promotes rich cross-modal interactions with music and the environment. As such, realistic dancing characters may incorporate crossmodal information and variability of the dance forms through compact representations that may describe the movement structure in terms of its spatial and temporal organization. In this paper, we propose a novel method for synthesizing beatsynchronous dancing motions based on a compact topological model of dance styles, previously captured with a motion capture system. The model was based on the Topological Gesture Analysis (TGA) which conveys a discrete three-dimensional point-cloud representation of the dance, by describing the spatiotemporal variability of its gestural trajectories into uniform spherical distributions, according to classes of the musical meter. The methodology for synthesizing the modeled dance traces back the topological representations, constrained with definable metrical and spatial parameters, into complete dance instances whose variability is controlled by stochastic processes that considers both TGA distributions and the kinematic constraints of the body morphology. In order to assess the relevance and flexibility of each parameter into feasibly reproducing the style of the captured dance, we correlated both captured and synthesized trajectories of samba dancing sequences in relation to the level of compression of the used model, and report on a subjective evaluation over a set of six tests. The achieved results validated our approach, suggesting that a periodic dancing style, and its musical synchrony, can be feasibly reproduced from a suitably parametrized discrete spatiotemporal representation of the gestural motion trajectories, with a notable degree of compression

    A tempo-insensitive representation of rhythmic patterns

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Glasgow, Scotland, 200

    Spectral and Temporal Periodicity Representations of Rhythm for the Automatic Classification of Music Audio Signal

    Full text link

    Feature Extraction for Music Information Retrieval

    Get PDF
    Copyright c © 2009 Jesper Højvang Jensen, except where otherwise stated
    • …
    corecore