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ABSTRACT

This paper presents a method for retrieving music record-
ings by means of rhythmic similarity in the context of tra-
ditional Greek and African music. To this end, Self Sim-
ilarity Analysis is applied either on the whole recording
or on instances of a music thumbnail that can be extracted
from the recording with an optional thumbnailing scheme.
This type of analysis permits the extraction of arhythmic
signature per music recording. Similarity between signa-
tures is measured with a standard Dynamic Time Warping
technique. The proposed method was evaluated on cor-
pora of Greek and African traditional music where human
improvisation plays a key role and music recordings ex-
hibit a variety of music meters, tempi and instrumentation.

1 INTRODUCTION

In the context of Music Information Retrieval (MIR), find-
ing music recordings with similar rhythmic characteristics
is a highly desired task both for the untrained listener and
the musicologist.

Over the years, several methods have been proposed
in the context of Western music for retrieving music with
similar rhythmic characteristics, e.g. tempo, meter and
rhythmic patterns. Here a short overview of relevant pa-
pers is given: The work in [1] measures the similarity
between rhythmic patterns extracted from music record-
ings and artificially generated percussive sounds. The ap-
proach in [2] extracts temporal patterns from the energy
envelop of the signal in an attempt to classify music re-
cordings to predefined classes. In [3] a set of classifica-
tion schemes are proposed that are based on extracting
rhythmic patterns from the signal’s spectrum. The method
proposed in [4] focuses on ballroom dances and is based
on features stemming from the histogram of Inter-Onset
Intervals. Finally, the work in [5] evolves around self sim-
ilarity analysis of the music recording. In some of the
above methods, the term “rhythmic signature” is used to
as a means to encode fundamental rhythmic characteris-
tics of the music recordings.

This paper focuses on rhythmic similarity in non West-
ern music, i.e., Traditional Greek and African music, whi-
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ch have so far received little attention in the field of MIR.
Such traditions impose a number of research challenges,
mainly due to the complexity of the music meters, the sys-
tem of music intervals and the highly improvisational at-
titude of the music performers. The latter gives an addi-
tional research challenge as serves the preservation of cul-
tural heritage and also highlights the importance of MIR
systems to apply to corpora that fall outside the traditional
Western schemes. In an attempt to measure rhythmic sim-
ilarity in such music corpora, this paper exploits the repet-
itive nature of the music recordings by means of Self Sim-
ilarity Analysis. This type of analysis reveals periodicities
that are inherent in the music signal. Such periodicities are
expressed as a sequence of values to which we also refer
by the termrhythmic signature. To this end, we inves-
tigate the possibility of applying an optional thumbnail-
ing scheme as a preprocessing step to extracting rhythmic
signatures. Similarity measurement between signatures is
performed by means of a standardDynamic Time Warping
technique.

Section 2 presents the proposed audio thumbnailing
scheme and Section 3 describes howrhythmic signatures
are extracted from the music signal. The proposed similar-
ity measure is presented in Section 4. Results and imple-
mentation details are given in Section 5 and conclusions
are drawn in Section 6.

2 THUMBNAILING SCHEME

The proposed audio thumbnailing scheme is optional and
is considered to be a variation of the method proposed in
[6], in the sense that a different feature extraction scheme
is used in this paper.

2.1 Feature extraction

At a first step, the music recording is short-term processed
by means of a moving window technique. The short-
term frames are chosen to be≃ 186 msecs long, non-
overlapping and are multiplied by aHamming window.
Each frame is given as input to a mel-scale filter bank [8]
that consists of overlapping triangular filters. The center
frequencies of the filters coincide with the frequencies of
whole tones on a chromatic scale, starting fromF0 = 110
Hz and moving up to≃ 6.3 KHz, resulting into36 filters
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which cover approximately six octaves. In the sequel we
will refer to this type of MFCCs aschroma-based MFCCs
due to the similarities it bears with the “chroma vector”
[6]. Further details are given in [7].

To proceed, letc(n) be the36 × 1 vector ofchroma-
based MFCCs from then-th frame. The sequence of vec-
tors can be written in matrix notation as

C36×N = [c(1) c(2) . . . c(N)],

whereN is the number of short-term frames.
At a next step,Singular Value Decomposition (SVD)

is applied on the transpose,CT , of C, i.e., CT = UΣV,
whereUN×36 andV36×36 are the projection matrices and
Σ36×36 is the matrix of singular values. The first six rows
of the transpose,UT , of U, are finally selected as the fea-
ture sequence.

2.2 Thumbnail selection

TheSSM is generated from the first six rows ofU
T using

the Euclidean Distance function as metric [5]. By its defi-
nition theSSM is symmetric around the main diagonal and
it therefore suffices to focus on its lower triangle. At a first
step, theSSM is correlated with a rectangular window,w
(sizeD × D). The window has1’s on the main diagonal
and zeros elsewhere. If (i, j) are the position indices of
an element ofSSM, the upper left corner ofw is chosen
to coincide with (i, j). The correlation result,S(i, j), for
SSM(i, j) is therefore computed as follows:

S(i, j) =

D−1
∑

d1=0

D−1
∑

d2=0

SSM(i + d1, j + d2)w(d1, d2)

=

D−1
∑

d=0

SSM(i + d, j + d) (1)

At a second step, letS(k,m) be the lowest value ofS.
S(k,m) resides on the diagonal with indexk −m and el-
ements{S(k,m), S(k+1,m+1), . . . , S(k+D−1,m+
D − 1)} form a segment on the diagonal that defines the
desired thumbnail. The two corresponding feature subse-
quences, i.e., two instances of the thumbnail, are

{UT
k , UT

k+1, . . . U
T
k+D−1}

and
{UT

m, UT
m+1, . . . , U

T
m+D−1},

respectively. ParameterD controls the size of the thumb-
nail and is user defined, depending on the corpus under
study (see Section 5).

It has to be noted that the proposed thumbnailing sche-
me is optional and depends on the dataset under study. If
it is skipped, therhythmic signatures (see next section)
will be extracted by taking into account the whole audio
recording. This is desirable if one is unsure whether the
two instances of the extracted thumbnail are indeed repre-
sentative of the complete music recording. In the sequel,
the term music signal will refer to either the two instances
of the selected thumbnail or the complete music record-
ing.

3 EXTRACTING RHYTHMIC SIGNATURES

3.1 Feature extraction

At a first step, the music signal (i.e., the two thumbnail in-
stances or the complete recording) is short-term processed
to extract a sequence ofchroma-based MFCCs, as in Sec-
tion 2.1. However, this time, shorter, overlapping win-
dows are used (window length is≃ 93 msecs and window
step is11.6 msecs). Following the notation that was intro-
duced in Section 2.1, letC = [c(1) c(2) . . . c(N)], be
the new sequence of MFCCs.

At a first step,C is long-term segmented with a mov-
ing long-term window (window length is4 secs and step
is 1 sec). To simplify notation, letCt = [ct(1) ct(2) . . .
ct(M)], be the subsequence that corresponds to thet-th
long-term window, whereM is the window length mea-
sured in number of frames. TheSSM is then calculated
for each long-term window, using the Euclidean Distance
metric. For thet-th long-term window, the mean value,
Rt(k), of each diagonal in the lowerSSM triangle is com-
puted, i.e.,Rt(k) = 1

M−k

∑M

l=k

∥

∥ct(l), ct(l − k)
∥

∥, where
k is the diagonal index and‖.‖ is the Euclidean distance
function. EachRt is treated as a signal. At a next step, the
mean signal,Rµ, of all Rt’s is computed, i.e.,

Rµ(k) =
1

T

T
∑

t=1

Rt(k),

whereT is the number of long-term windows.Rµ is then

normalized to unity, i.e.,Rµ(k) =
Rµ(k)

max(Rµ) .
As can be seen in Figure 1,Rµ exhibits a number of

valleys (local minima). Each valley corresponds to a pe-
riodicity that is inherent in the music signal. Such peri-
odicities are related to the rhythmic characteristics of the
recording, e.g., music meter and tempo [7]. In what fol-
lows, we will refer toRµ as therhythmic signature of the
music recording. The main idea behind this approach, is
that, recordings with similar rhythmic characteristics are
expected to yield “similar” signatures (as can be seen in
the upper part of Figure 1). On the contrary, different
rhythmic characteristics will result into “dissimilar” sig-
natures (bottom part of Figure 1). Therefore, the next
challenge is to devise a similarity measure for signatures.

4 SIMILARITY MEASURE FOR SIGNATURES

If L is the number of music recordings in a corpus,L
rhythmic signatures are first extracted and stored as meta-
data. In order to measure similarity between signatures, a
standardDynamic Time Warping cost has been employed.
As is the case withDTW techniques [8], a set of local
path constraints needs to be first defined. In our study we
experimented with two types of constraints, i.e.,Sakoe-
Chiba andItakura and adopted the former.

If a rhythmic signature is drawn from the corpus, its
matching cost against the remainingL-1 signatures is cal-
culated using the adoptedDTW technique. This proce-
dure yieldsL−1 cost values which are sorted in ascending
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Figure 1. Top: Signatures from two recordings of music
meter7

8 . Bottom: Signatures from a recording of meter78
and a recording of meter24 .

order, with the lowest values indicating highest similar-
ity. The next section focuses on evaluating this matching
scheme on two corpora of traditional Greek and African
music.

5 EXPERIMENTS AND RESULTS

5.1 Corpus of Greek Traditional Dance music

The first corpus of our study consists of220 tracks of
Greek Traditional Dance Music, which are drawn from
various Greek regions. The tracks were manually cate-
gorised into four genres as shown in Table 1. These gen-
res exhibit certain variety in terms of instrumentation and
rhythm. From the corpus description it can be noticed that
the longest music meter duration (approximately2 secs)
appears in class2, for tempo∼= 90 bpm and music meter
3
4 . By using a thumbnail which is10 secs long, the longest
music meter is repeated up to5 times in each long-term
segment. Our study has revealed that, this expected num-
ber of repetitions is sufficient for the extraction of reliable
rhythmic signatures and justifies our choice for the length
of thumbnails. Similarly, the longest meter duration af-
fects the length of the long-term window in Section 3.1.
By the definition of self similarity analysis, a periodicity
of k lags will manifest itself as a valley ofRµ, if the long-
term window is at least2k long. Therefore the length of
the long-term window was chosen equal to4secs to cap-
ture the periodicity of the longest music meter. Finally,
the range of lags ofRµ on whichDTW is employed starts
with the lag corresponding to the fastest tempo value and
reaches up to the lag that corresponds to the longest meter-
tempo pair.

Table 2 presents the confusion matrix for the Greek
corpus, where the leave-one-out method was applied on
the complete corpus. Table 2 reveals that, when only the

best result (lowest matching cost) was examined, limited
confusion occured between the classes3 and4 and classes
1 and2. Further experimentation revealed that, when the
two lowest matching costs were taken into account, the
confusion matrix remained the same within statistical con-
fidence.

class id # of songs meter tempo range (bpm)

1 53 2/4 91-95
2 63 3/4 93-105
3 62 7/8 250-280
4 42 2/4 150-180

Table 1. Description of Greek Traditional Dance corpus.

Precision % Class 1 Class 2 Class 3 Class 4

Class 1 94.3 3.2 1.7 0
Class 2 3.8 96.8 0 0
Class 3 1.9 0 96.6 10.9
Class 4 0 0 1.7 89.1

Recall % Class 1 Class 2 Class 3 Class 4

Class 1 94.3 3.8 1.9 0
Class 2 3.2 96.8 0 0
Class 3 1.6 0 90.3 8.1
Class 4 0 0 2.4 97.6

Table 2. Precision and recall for Greek Traditional corpus.

5.2 Corpus of African music

A collection of 103 pieces was selected from the music
archives of the Royal Museum of Central-Africa in Ter-
vuren (Brussels). This institute has one of the most im-
portant collections of African music in the world.1 The
current selection contains field recordings of Congo and
Rwanda recorded during the second half of the20th cen-
tury [9]. Similarly to the Greek music corpus, the rhyth-
mic structure is highly repetitive and contains a wide range
of rhythmic structures, including irregular meters that are
seldom found in Western music [10].

class id # of songs meter

1 27 3/4
2 26 4/4
3 24 5/4
4 26 6/4

Table 3. Description of the1st set of the African corpus.

The corpus has been manually annotated with a (percei-
ved) ground truth which has been used to evaluate the
computer analysis. Two types of classification were made:
one according to the meter, the other focusing on a selec-
tion of characteristic repetitive rhythmic patterns. The first
classification, Table 3, uses four metric classes3

4 , 4
4 , 5

4 and

1 http://music.africamuseum.be



Precision %
Class id 1 2 3 4

1 68.8 4.3 20 0
2 12.5 82.6 12 3.7
3 15.6 13 64 3.7
4 3.1 0 4 92.6

Recall %
Class id 1 2 3 4

1 78.6 3.6 17.9 0
2 14.8 70.4 11.1 3.7
3 20 12 64 4
4 3.7 0 3.7 92.6

Table 4. Precision and recall (1st set of African corpus).

6
4 . Table 5, is restricted to 44 pieces which can be classi-
fied as variants of 5 prototypical patterns: short-long-long
(quintuple); short-long-long-short-long-long-long (sextu-
ple); long-short-short-long (triple1); short-long (triple2);
and short-short-long (duple).

class id # of songs pattern

quintuple 10

sextuple 14

triple1 8

triple2 5

duple 7

Table 5. Description of the2nd set of African corpus.

The thumbnail that was selected for each piece by the
proposed method, often tended to contain parts of the song
where the most percussive events occurred. Since this
could lead to a dense regular structure that can easily be
confused with patterns in which each beat is articulated
therhythmic signatures, Rµ’s were extracted from whole
audio recordings and the thumbnail scheme was skipped.
Tables 4, 6 reveal that the results of both sets of African
music are promising. When manually checking the prob-
lematic cases, mistakes can mostly be related to the occur-
rence of variants of the main pattern within one piece. The
possible variations are mostly the addition of a percussive
event where a rest used to be, or the opposite: omission of
a percussive event. The meter and beat stay however the
same.

6 CONCLUSIONS

This paper presented a music retrieval method based on
rhythmic similarity measurement. The method yielded
satisfactory results on coprora of traditional Greek and
African music. In future work, more sophisticatedDTW
techniques will be used on larger corpora and the possi-
bility to extract multiple rhythmic signatures per music
recording will be investigated.

Precision %
Class id 1 2 3 4 5

1 70.80 3.1 0 10 14.3
2 4.2 84.4 0 0 0
3 8.3 3.1 86.7 0 0
4 8.3 0 13.3 60 0
5 8.3 9.4 0 30 85.7

Recall %
Class id 1 2 3 4 5

1 85 5 0 5 5
2 3.6 96.4 0 0 0
3 12.5 6.3 81.3 0 0
4 20 0 20 60 0
5 14.3 21.4 0 21.4 42.9

Table 6. Precision and recall (2nd set of African corpus).
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