
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

CoDi: Leveraging Compatibility and
Diversity in Computational Mashup

Creation from Large Loop Collections

Gonçalo Nuno Botelho Amaral Rolão Bernardo

DISSERTAÇÃO

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Gilberto Bernardes, PhD

July 21, 2021





CoDi: Leveraging Compatibility and Diversity in
Computational Mashup Creation from Large Loop

Collections

Gonçalo Nuno Botelho Amaral Rolão Bernardo

Mestrado Integrado em Engenharia Informática e Computação

July 21, 2021





Abstract

Music is a pervasive media in retail spaces, despite their considerable licensing costs and time-
consuming creative production methods. Free licensed music can ultimately reduce costs and
enhance the diversity of the musical contents. To leverage the generation of free music at scale
with minimum costs, intelligent music algorithms have been advanced, so that retail industries can
obtain full rights; stream it globally and disseminate to large markets. However, the multidimen-
sional and subjective nature of music is yet to be fully understood and systematized.

In this dissertation, we advance a novel approach to music generation with quality assessment
and stylistic diversity from the recombination of pre-recorded public domain loops, which prolifer-
ate in web musical repositories. Recombination will be tackled at both the vertical and horizontal
dimensions of musical structure. Loops are audio files with varied timbral qualities (e.g., lead,
comping, and drums), and so a formal structure of vertical layers allows for cohesive harmonic
fluctuations between instruments, and horizontal layers assure melodic transitions throughout the
generation.

To regulate quality we propose metrics for rhythmic, harmonic, and timbral compatibility
holding minimal post-processing of the audio content. To ensure diversity across multiple stylistic
conditions, we adopt evolutionary diversity optimization. Musical audio will be defined by a
reduced feature vector in a continuous descriptor space. The Artificial Immune Systems opt-aiNet
will be adopted to optimize the search for optimal compatibility with multiple diverse solutions.

To this end, we adopt the Artificial Immune System (AIS) opt-aiNet algorithm to efficiently
compute a population of compatible and diverse mashups from loop recombinations. Optimal
mashups result from local minima in a feature space that objectively represents harmonic and
rhythmic compatibility. We implemented our model as a prototype named CoDi. We conducted
an objective evaluation of three algorithmic models of AIS, Genetic Algorithm and Brute-Force
tackling three dimensions: loop recombination compatibility, mashup diversity, and computational
model efficiency – which the latter reports a 93% efficiency comparing AIS with BF. Furthermore,
a subjective evaluation through a perceptual experiment was employed to determine the relation-
ship between estimated user enjoyment as pleasantness as the musicological metrics of CoDi. Lis-
tening test results have proven to be significantly correlated to the values of the evaluation function
for both individual and continuous mashups, employing a statistical analysis through linear regres-
sion. We propose a functional prototype for automatic generation of music as recombinations of
loops, at scale.

Keywords: Music Information Retrieval, Music Similarity, Functional Languages, Generative
Music, Artificial Immune System, Audio Compatibility, Audio Similarity
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Resumo

A música é um meio de comunicação social omnipresente em espaços comerciais, apesar dos
seus consideráveis custos de licenciamento e métodos de produção criativa demorados. A música
gratuita licenciada pode, em última análise, reduzir os custos e aumentar a diversidade dos con-
teúdos musicais. Para potenciar a geração de música livre à escala com custos mínimos, foram
avançados algoritmos musicais inteligentes, de modo a que as indústrias retalhistas possam obter
plenos direitos; difundi-la globalmente e divulgá-la em grandes mercados. No entanto, a natureza
multidimensional e subjetiva da música ainda não foi totalmente compreendida e sistematizada.

Nesta dissertação, avançamos uma nova abordagem à geração de música com avaliação de
qualidade e diversidade estilística a partir da recombinação de loops de domínio público pré-
gravados, que proliferam nos repositórios musicais da web. A recombinação será abordada tanto
nas dimensões vertical como horizontal da estrutura musical. Os loops são ficheiros áudio com
qualidades tímbricas variadas (por exemplo vozes, acompanhamentos, e percussão). Assim, uma
estrutura formal de camadas verticais permite flutuações harmónicas coesas entre instrumentos, e
as camadas horizontais asseguram transições melódicas ao longo da geração.

Para regular a qualidade, propomos métricas de compatibilidade rítmica, harmónica e tim-
bral, mantendo um pós-processamento mínimo do conteúdo áudio. Para assegurar a diversidade
através de múltiplas condições estilísticas, adotamos uma otimização evolutiva da diversidade. O
áudio musical será definido por um vetor de características reduzido num espaço contínuo de de-
scritores. A opção Artificial Immune Systems opt-aiNet será adoptada para otimizar a procura de
compatibilidade com múltiplas soluções.

Para tal, adotamos o algoritmo opt-aiNet, do Sistema Imunitário Artificial (AIS), para calcular
eficazmente uma população de soluções como mashups compatíveis e diversos a partir de recombi-
nações de loops. Os mashups ideais resultam de mínimos locais num espaço de características que
objetivamente representa compatibilidade harmónica e rítmica. Implementamos o nosso modelo
como um protótipo chamado CoDi. Realizámos uma avaliação objectiva de três modelos algorít-
micos de AIS, Algoritmo Genético e Brute-Force abordando três dimensões: compatibilidade de
recombinação de loops, diversidade de mashup, e eficiência do modelo computacional – no qual
este reporta um valor de 93% de eficiência com AIS e comparativamente a abordagens BF. Além
disso, foi utilizada uma avaliação subjective através de uma experiência perceptual para determi-
nar a relação entre o grau estimado de agradabilidade do utilizador e as métrica musicológicas
pertencentes às funções de avaliação do CoDi. Os resultados dos testes de escuta provaram estar
significativamente correlacionados com os valores da função de avaliação para ambos mashups
individuais ou contínuos, recorrendo a uma análise estatística através de uma regressão linear.
Propõe-se um modelo funcional para a geração automática de música através de recombinações
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de loops, à escala.

Keywords: Recuperação de Informação Musical, Semelhança Musical, Línguas Funcionais, Música
Generativa, Sistema Imunitário Artificial, Compatibilidade Áudio, Similaridade Áudio
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Chapter 1

Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Methodology for Organizational Framework of Music Generation . . . . . 5

1.6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

This chapter introduces the topic of this dissertation, computational music mashup creation

from a large loop collection, and their relevancy under the current problems and challenges in

Sound and Music Computing. Section 1.1 clarifies the context of the work. Section 1.2 details

the underlying motivation. Section 1.3 exposes the methodologies employed, and the problem

underlying systems for Computational Music Mashup Creation whilst motivating the work for

this dissertation with Section 1.4 referring to questions developed through the development. Sec-

tion 1.5 describes our logical objective and technological processes of which the generative system

is objectively prepared to solve, with measurable output quality and stylistic diversity. Section 1.6

lists the objectives and the main problem addressed. Finally, Section 1.7 defines the structure of

the dissertation and Section 1.8 includes a peer-reviewed publication related to the current work.

1.1 Context

The automatic creation of musical content using computational technology became popular by

the mid-20th century. Particular emphasis has been devoted to the generation of Western tonal

music [4] that contributed to the evolution of computer music as means of programming, conse-

quently addressing a Sound and Music Computing (SMC) field. SMC inherits artistic, scientific

and technological developments into areas such as artificial cognition, neurosciences and interac-

tive design. By combining these methodologies it aims at understanding, modelling and generating

1



2 Introduction

sound and music through computational approaches. For that reason, the computational retrieval

of music information data was possible to advance through Music Information Retrieval (MIR)

and Information Systems. Studies within MIR have grown to develop systems capable of assisting

in music production in such an efforts to elevate understanding and knowledge defined as what

is within music. A great deal of work has been made to build methods of collecting high-level

information through music signals, resorted to as content-based approaches [27].

A new area of operation within MIR environment is in the field of Creative-MIR. Some of the

key aims of the Creative-MIR are to open up new possibilities for music production, engagement

and modulation, which is enabled by the capacity to analyze and perceive music signals compre-

hensively. Creative-MIR concerns the content-based processing of signals, especially that of auto-

mated music compositions [49]. Lately, these mechanisms are expected to become more prevalent

and significant, consequently positioning researchers to face the difficulties of the Creative-MIR.

Technological advances in Sound and Music Computing and Creative MIR have been building

the groundwork for breakthroughs in the large-scale and personalized free music recombination

to support artists and consumers. Nevertheless, the capabilities of musicological algorithms are

limited to the knowledge gathered nowadays. Several groups and conferences dedicated to Mu-

sical Engineering were possible to make a transition from offline to online tools assisting sound

and computing processes of auditory data. Notable regards for conferences are EvoMUSART1,

ISMIR2 or Sound and Music Computing network3.

Music mashup creation is a composition process greatly associated with the multiple genres of

electronic dance music, involving the recombination of pre-recorded musical audio [82]. The com-

putational modeling of music mashups has been pursued in academic and industry environments

in light of digital music’s significant growth and the increased interest of lay-users in the mashup

creation practice. In the latter scenario, computational mashup creation overcomes the need for

advanced knowledge on music theory, practice, and digital signal processing. The computational

modeling of music mashup features two foremost challenges: 1) the retrieval of compatible au-

dio from a dataset – either the search for several optimal matches or the search of musical audio

matches to a target query –, and 2) audio transformations that ‘force’ the audio to synchronize at

some attribute level. This dissertation focuses primarily on the underlying methods of the former

processing approach, which is commonly referred to as content-based retrieval within Creative-

MIR. Its application to music mashup creation has been recently identified as one of the grand

challenges of the community [41].

The capabilities of storing large amounts of audio collections progressed from minimal and

personal levels with artists producing their own content, to large scale musical repositories on the

Web. These collection particularly include various licenses with variable degree of access from

copyleft free music to highly restricted copyrighted and paid content [2]. The public domain’s

1International Conference on Computational Intelligence in Music, Sound, Art and Design -
http://www.evostar.org/2021/evomusart/

2International Society for Music Information Retrieval - https://www.ismir.net/
3http://www.smcnetwork.org/
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online resources stores large amounts of prerecorded musical audio. Loops, i.e., audio files con-

taining different perceptual qualities, instruments, and durations are a particular case of interest

here. Although having access to this data proliferated through the musical web environment is

easier nowadays, working with smaller and known datasets can relieve setbacks in implementing

a framework. Rather, searching for the exact musicological data from audio assets can be time

exhausting.

Music is a media element present in retail spaces with growing licensing costs and time-

consuming production of generative processes. As the notion of free music came to solve the

concern of pricing and variation of the generated musical content, it additionally enhanced pro-

cesses with new capabilities of dealing with increasing amounts of data in the algorithmic cre-

ation of music, in comparison to initial researches of computer analysis technologies of musical

data [86, 23]. Recent frameworks offer effective tools for the creative assisting of musical re-

sources with users. This content is consequently possible to get streamed globally and target upon

larger markets. However, the multidimensional composition of music is not fully structured to

handle complex assessments of networks containing musicological attributes, for which, in the

midst of the current environment, is the reason for writing this dissertation.

1.2 Motivation

This area of Algorithmic Compositions for musicological advances has grown extensively through

different branches within the formal structure of what describes the musical corpora, thanks to

progressive MIR techniques. Behind the generation of music, frameworks are created consider-

ing technological architectures with Similarity and Compatibility metrics of Harmony, Rhythm,

Timbre, and Organizational Structure. The evolution of musical repositories on the web has un-

doubtedly supported the implementations of these generative systems.

One of the recent concerns is reviews in algorithms oriented to optimize diversity from the

auditory data or the structural failure to ensure correctly established metrics. Additionally, the

growing use of loops and quality of both timbre and execution of the framework are made for

artists to sell their content for the application [1] and not for the sole purpose of computer-assisted

production of different auditory results in computational music generation. That is the motivation

behind this dissertation: developing content on a large scale inside a formal structure created from

horizontal and vertical segments, ensuring that the harmonic quality remains in the instruments’

variance and the generative system’s harmony. Current applications are limited because of brute

force use inside the musical sequences, asking musicians for audio sequences for each genre, and

producing no automatic generation of stylistic diversity, but rather an automatic generation of

music.
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1.3 Problem Statement

Loop-based music development has become popular in retail spaces as the distribution costs tend

to be expensive as well as the generative composition being time-consuming. The problem of cost

and variety of the created musical material can be solved by free music, or generative music, which

also strengthened processes with new capabilities to deal with increasing quantities of data in the

algorithmic production of music. Recent frameworks offer advanced methods for the creative

assistance of users with musical resources. Therefore, this data can be streamed worldwide and

aimed at larger markets. The multidimensional nature of music, however, is not completely tackled

in existing solutions, thus motivating this dissertation.

The advantage of these generative models has undeniably facilitated the development of mu-

sical libraries on the web. The ability to store large amounts of audio collections progressed

until larger musical web repositories. Furthermore, these models were created completely free of

charge. The online resources of the public domain store large quantities of pre-recorded loops,

and while it is simpler to reach these criteria via the musical network environment, dealing with

smaller and established datasets will mitigate setbacks in applying a structure.

Latest researches include analysis of algorithms aimed at maximizing auditory data diversity

or institutional inability to ensure properly defined metrics. Because of the use of brute force

within the musical sequences, asking musicians for audio sequences for each genre and creating

no automatic generation of stylistic variation, but only an automatic generation of sound, makes

existing implementations quite limited.

1.4 Research Questions

We advance 3 research questions (RQs) which directed this investigation.

RQ1 What are the technological problems for architectures driving Generative Music?

According to the state of the art in computational mixing of musical content, what are

its main concerns? Are there specific consequences for adopting certain methods or

musicological metrics?

RQ2 Which methodologies have been implemented to aid the generation of stylistic diversity
and quality of music?

How do we succeed in improving the mixes towards user’s preferences? What are the

structural solutions for accounting the multidimensional nature of music?

RQ3 Can optimization algorithms promote compatibility and diversity in musical audio re-
combination?

What are the mixing strategies in mind? What are some expected technical difficul-

ties for the generation of the musical content in a diverse solution space promoting

compatibility?
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1.5 Methodology for Organizational Framework of Music Genera-
tion

A novel approach is proposed for the production of music, with quality assessment and stylistic

diversity from the recombination of pre-recorded, public domain loops that proliferate in reposito-

ries of web music. Both the vertical and horizontal aspects of the harmonic system can be tackled

by recombination. Audio loops are samples with differing timbral features, therefore making a

formal vertical layer arrangement enabling bigger harmonic variations between instruments to be

coherent, and horizontal layers maintain melodic transitions within the generation.

To regulate quality we propose metrics for rhythmic, harmonic, and timbral compatibility

holding minimal post-processing of the audio content. To ensure diversity across multiple stylistic

conditions, we adopt evolutionary multimodal optimization. Musical audio will be defined by a

reduced feature vector in a continuous descriptor space.

Figure 1.1 depicts a diagram CoDi’s architecture model.

Figure 1.1: Proposed system framework for music generation with loop recombination [3])

The architecture of this application is a loop-based, generative system which is gathering au-

ditory information from a dataset coming from musical repositories. Thus, for each of the source’s

audio track of that dataset, four descriptors of the musical corpora will be configurated to capture

harmonic, rhythmic, and timbre attributes.

Computational methodologies for computing audio features and capturing the musical audio

compatibility of the above-mentioned attributes are based upon previous literature surveyed in

Chapter 2. We are applying a multidimensional framework capturing horizontal and vertical lay-

ers of musical structure. An Artificial Immune System is adapted to generate several auditory

combinations and continuations of tracks.

1.6 Objectives

The aim regarding the dissertation is the search for a framework capable of supplying users with

concise and pleasant generation of music, pervasive for many retailing industries. Upon this work,

the focus is to target the development of a system for generating automatic musical tracks at scale,
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with a recombination of loops in both the vertical and horizontal dimensions of musical structure.

Therefore, the corresponding research literature allows for definitions of specific objectives such

as:

• The development of a functional prototype for automatic generation of music as recombina-

tions of loops at scale that are adapted for the two dimensions of the musicological nature.

• To implement musical understanding, computationally, as compatibility metrics for musical

attributes. These structures help defining musical style in audio files along several combi-

nations possible.

• Define a computational method for optimized search in large musical loop spaces. This will

offer an optimization framework adapted to process large audio files in a continuous space

of descriptors.

This work adopts a multimodal optimization algorithm artificial immune system (AIS) for

searching compatible and diverse loop mashups from large loop datasets. Compatibility is driven

by two main objective criteria, harmonic compatibility [75], and rhythmic compatibility [56],

broadly following the metrics proposed in Mixmash [60]. Diversity accounts for the thorough

and concurrent exploration for optimal matches across the entire search space. Conversely to

existing systems driven by computationally expensive brute-force (BF) search methods (e.g., [27]

and [60]), we aim to provide a computer-aided tool that enables a fluid (efficient) workflow on a

large user-defined loop dataset while promoting a diverse set of optimal mashups. The model was

implemented in Python as a prototype application named CoDi.

1.7 Document Structure

The remainder of the dissertation is assembled as follows:

Chapter 2 is a literature analysis on the State-of-The-Art components for this research on Com-

putational Music Mashup Creation, in regards to generative architectures of musical composition

in loop-based environments, and recent methods of similarity and compatibility in defined musico-

logical attributes within Harmony, Rhythm, Timbre in a multimodal Formal Structure. An agenda

on evolutionary optimization system for musical audio recombination is addressed. Further inves-

tigations for each of its sections are described as well as further developed work on these metrics

through means of computation. Following Chapter 3 details the overview of the system, namely

the audio features adopted, feature extraction, and the optimization search. Practical work can be

found on Chapters 4 outlines the evaluation procedure of CoDi and the results, respectively. In

Chapter 5, a description is given, in significant detail, for the conclusion of the developed imple-

mentations and research, with expected output of results and understudy of their consequences in

the technical areas, and future work involved within the discussion.
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1.8 Publications

The initial development of research for this dissertation affirmed a deep case study analysis for

measures of the four musical modules previously mentioned. During that time of studying and re-

search, a submission for a collaborative paper from Cocharro et al. [21] was possible, and accepted

for one of Springer’s editions, named:

• Cocharro, Diogo & Bernardes, Gilberto & Bernardo, Gonçalo & Lemos, Cláudio. Revisit-

ing Rhythmic Representations and Similarity. In: Luisa Castilho et al. (Eds.) Perspectives

on music and musicology. Current Research in Systematic Musicology. Springer (2021)

Furthermore along the investigation, additional case studies were conducted, mainly in lever-

aging for compatibility and diversity in Computational Music Mashup Creation, such as:

• Bernardo, Gonçalo & Bernardes, Gilberto. Leveraging Compatibility and Diversity in Com-

putational MusicMashup Creation (2021), submitted for AudioMostly.

An exhaustive literature on state-of-the-art systems in Computational Music Mashup creation

while addressing a tentative agenda on affirming for Audio Compatibility in music production:

• Bernardo, Gonçalo & Bernardes, Gilberto. Musical Audio Compatibility Retrieval: To-

wards Computer-aided Music Production (2021), submitted for International Symposium

on Computer Music Multidisciplinary Research (CMMR).

Finally, a statistical analysis undertaking efficiency of the algorithmic models which are the

AIS, GA, and BF approaches:

• Bernardo, Gonçalo & Bernardes, Gilberto. Multimodal Optimization for Music Mashup

Creation (2021), submitted for Doctoral Congress of Engineering.
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The technological advances of sample-based audio recombination resides in two fulcral ele-

ments: representation, and perceptual distances at a given attribute level, commonly addressed as

similarity and compatibility. Systems for computational musical audio recombination have three

approaches of brute-force (or rule-based), Neural Network algorithms, or optimization strategies

for accelerating the process of generation. Academic research focused on promoting sample-based

music creation have become popular alongside the increasing interest. According to the proposed

objectives of the dissertation, there are four lines of action for musical structural parameters such

as Harmony, Rhythm, Timbre and Formal Structure. In this chapter, a description for a literary

review on generative architectures acting as instruments of sample recombination in Section 2.1,

as well as musicological strategies for compatibility approaches inside the domain of audio, and

what constitutes the four descriptors mentioned from Section 2.2 through Section 2.5. A majority

of the methodologies are dependent of structural descriptors, and so, raises a need for intermedi-

ate representations minimizing the structure onto the four modules of musical compatibility and

similarity.

2.1 Generative Systems for Loop-Based Methodologies

In this section, a review on the extensive literature of computational models in the context of

music generation through sample-based data. Further ahead in respective sections, a description

9
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is attained to Genetic Algorithms, Artificial Neural Networks, and Artificial Immune Systems,

paving new Evolutionary models for Computational Music Mashup Creation.

2.1.1 Genetic Algorithms - GA

Through Genetic Algorithms (GAs), evolutionary models have built recent methodologies to re-

strict specific knowledge to the issue’s domain [59, 20]. Beginning with the generation of a random

population constituent of chromosomes as symbols of binary data (gene pool) computationally

designated to act like candidates, each gets calculated a fitness score from a function significant to

a rule-based system that examines the chromosome’s capabilities of solving the issue. Generally,

candidates with scores higher than a threshold end the procedure and are considered fit to fulfill

their purpose. On the contrary, the new population is estimated by either:

• Selection/Reproduction: Ranking chromosomes through a candidacy of fitness values.

• Crossover: Segments of randomly matched chromosomes have intertwined values within a

crossing site.

• Mutation: Segments of the individual chromosome are changed through positioning by ran-

domness, or when a segment is discarded.

The first use of Genetic algorithms for music generation was documented by Horner [48],

using a technique of thematic bridging for the development of the new melodic sequences. Two

approaches to help construct this concept were suggested in an early study [87]: automated loop

extraction and aided loop selection, laying out the basis for the musical sector. Further use cases

aiding in musical composition have a common situation when implementing their computational

measures, whether loop-based [81, 80], or not. In possession of large-scale assets, a concern raises

in maintaining a navigation that is optimized and efficient within the musical space. Additionally,

the choice of loops are just as important for the process. With the aid of MIR techniques, loop

selection and extraction made possible an ease of search within the database. Past studies on

Compatibility Estimation for:

• Loop Extraction: Shi and Mysore [81] implemented a system made to segment a loop from

direct contact, by using compatibility measures of harmony, timbre and energy [87, 81].

Additionally, Smith et al. [85, 84] proposed to analyse a pattern of repetition to extract

loops.

• Loop Estimation: Kitahara et al. [53] affirmed a concept of a manual input level of excite-

ment from the user, however limiting usability and compatibility. Had the user found a loop

to his liking, it would have a chance to be musically incompatible.

In 1989, Dr. David Goldberg defined GA as natural selections and genetics, through mechan-

ical methodologies. Nowadays, the possibilities of deriving and mixing different artificial intelli-

gence algorithms are increasingly clearer, as this research explains ahead the Darwinian synthesis
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of using Neural Networks with GA, and, additionally, the symbolic and computational use cases

of Artificial Immune Systems, both implemented for musicological means.

2.1.2 Artificial Neural Networks - ANN

Evolutionary algorithmic models combined with Artificial Neural Networks (ANNs) have been

proposed as EANNs, or Evolutionary Artificial Neural Networks. An advantage from this con-

joining is the search optimization [50, 96] capability within recombinations of increasing amounts

of data as implementations below will refer to.

A structural analysis of ANN’s constituents are:

• Neuron: unit/element of artificial computing.

• Architecture: connections and corresponding patterns.

• Learning Phase: Procedure of training for neural networks.

One of the major dissimilarities between ANNs and GANNs mentioned is the process of stor-

ing relevant data [59]. Whereas systems based on Genetic Algorithms have data that is capable of

predicting solutions, Artificial Neural Networks include possible extra information that may not

have any use for the domain. Instead, ANNs assign low weights to the irrelevant data [88]. In

Chen et al, [20] a technological implementation of ANN for Loop Compatibility allowed models

based on Convolutional Neural Networks (CNN) evaluating representations within time and fre-

quency, and additionally, Siamese Neural Networks (SNN) processing individual compatibilities

for two segmented audio loops. By conducting a user test of combinations by the model, CNN per-

formed better than both SNN and the rule-based systems. Despite not implemented through the

use of Neural Networks, compatibility estimation systems such as MixMash and AutoMashup-

per [60, 27], explained in the Harmonic section of this dissertation, are mainly rule-based and may

be augmented by machine learning as they do not make decisions for the user, but rather aid that

choice.

2.1.3 Evolutionary Optimisation for Musical Audio Recombination - Artificial Im-
mune Systems (AIS)

Evolutionary algorithms are a class of artificial intelligence methods greatly motivated by opti-

mization processes inspired by natural phenomena, such as natural selection, species migration,

bird swarms, human culture, and ant colonies [83]. Evolutionary optimization algorithms can be

defined by two main criteria: modality (unimodality and multimodality) and the number of objec-

tive criteria to optimize (single- and multi-objective). The modality denotes optimization strategies

that seek solutions for one local optimum (unimodal) or multiple local optima (multimodal) in a

single run of the algorithm across multiple iterations. Multimodal evolutionary algorithms usu-

ally account for the population diversity, resulting from a comprehensive exploration of the search

space [97].
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Single and multiobjective optimization differ in terms of the objective search strategy applied.

Single objective finds optimal solutions to a single objective function, whereas multi-objective

accounts for problems with conflicting objectives with no single optimal solution [79]. In our

work, we concentrate on multimodal and single-objective search optimization, particularly the

AIS opt-aiNet algorithm.

Decastro [28] presented the AIS opt-aiNet algorithm to solve multimodal function optimiza-

tion problems. The algorithm can evolve a population of cells towards a set of optimal and diverse

solutions to a problem. It employs immunological concepts of clonal proliferation, mutation, and

repression to establish a network of inhibitors in the immune system network. In other words, opt-

aiNet integrates local and global search to find optimal solutions while maintaining their diversity.

Furthermore, the algorithm presents two additional important features: the automatic determina-

tion of the population size and a defined convergence criterion. [17] adopted the opt-aiNet to

the problem of computer-aided orchestration, i.e., the search for instrumental combinations that

match a reference sound by combining instrumental note samples. They showed the primacy of

the method in promoting diverse solutions with optimal quality.

For an Artificial Immune System (AIS), automated search spaces can be aided by detecting

segmented combinations of music files from datasets meeting a desired specification. In con-

trast from previously mentioned traditional GA, the AIS is worthy of seeking several variations as

strong candidate options, whilst ensuring variety. An assessment of the empirical and subjective

variety of ten candidate solutions discovered by the AIS was carried out in Abreu [3], compared

with 10 individual GA runs and fifteen Computer-Aided Musical Orchestration algorithms in ad-

dition. In order to acquire separate variated arrangements, the compositions found by the AIS

displayed compatibility and variability analogous to executing GA several cycles.

In addition to Abreu [3], an artificial immune system (AIS) called opt-aiNet would be imple-

mented to check for variations of segmented instrumental sounds minimizing the distances to a

target sound that is embodied in a fitness method, as a similar strategy in this dissertation. Inside a

fitness function, timbral compatibility is structured so the stronger combinations have better con-

vergence of higher fitness values, since the goal is to obtain variations that equate to the limits of

the fitness function, as seen in Figure 2.1. This fitness function is represented by several peaks,

layers, and the dark spots reflect values of individual sound fragments, or combinations. The ex-

tensive search for all possible combinations includes heuristics to reach a resolution in much less

time, or perhaps to suffer from heavy computational and time-consuming algorithms. Therefore,

the method through AIS works best when speaking about musical production and where different

solutions to the same problem are needed.

De Castro and Timmis [28] have developed an artificial immune system (AIS) designated opt-

aiNet for multidimensional optimization algorithms, presenting a variety of potential solutions as

an optimum fitness value. It employs immunological concepts of clonal proliferation, mutation

and repression to establish a network of inhibitors in the immune system. Opt-aiNet integrates

local and global search to find and achieve optimal fitness scores at the same time as maintaining

the variety of solutions, in both dimensions of horizontal and vertical space of musicology. It is
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Figure 2.1: 3D Representation of Recombination solutions from AIS vs Genetic Algorithm

capable of finding sets of good candidates who are distinct from each other, but considered equal

as solutions for the optimization. Abreu [3] implements its fitness utilizing such attributes, in order

to estimate fitness through compatibility between the audio configurations in the dataset and the

intended musical output. As mentioned above, AIS is often implemented to scan for variations

that approximate the pattern of the target sound, named orchestrations. Every orchestration is a

set of sounds differing in length that belong to their musical repository. An additional component

in their model was the phase vocoder design component utilized to track or condense each audio

fragment to the average temporal length, ensuring simultaneous ending and begining times, as

they are played together.

Another example of use cases for these algorithms are the implementation of Opt-aiNet by

the named system ChordAIS [65] assisting its users in generating realistic and functional chord

progressions. However, this is through a dimension of symbolic domain, not audio processing.

By procedures of optimization within the encodings of the objective function for progressions and

attractiveness of musical properties of Harmonicity, technological possibilities for Opt-aiNet are to

concurrently locate and output several multimodal solutions that are considered optimal, resulting

in multiple candidates of high quality that can be applied to the user’s desire. It is based upon more

abstract knowledge of musicological principles that allow a stronger manipulation of descriptors.

Validation is carried out by various experiments and hearing tests determining the auditory

consistency of the candidate chords proposed by ChordAIS [65]. These outputs were rated by most

listeners as stronger candidates for progression than the chords discarded by the system. When

comparing with two related architectures, ConChord (Gilberto et. al [8]) and ChordGA, which use

a regular GA instead of Opt-aiNet, consumer evaluation revealed a preference for ChordAIS over

ChordGA and ConChord. According to the findings, by recommending good-quality candidates

in all the keys evaluated, ChordAIS was considered capable of assisting users in the generation of

tonal chord progressions.
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An analysis review for evolutionary computation inside the musicological space notes that

architectures based on neural networks typically feed from the signal itself [66, 96, 20]. Whereas

other computational systems, for this regard, need intermediate representations that minimize the

subjective nature of the musical structure which are further ahead segmented and explained into 4

sections of metrics: Harmony, Rhythm, Timbre and Formal Structure.

2.1.3.1 Search Optimization and Fitness Function within AIS

As we’re presenting a search space according to distances, our optimization process seeks to min-

imize the distance between the continuous flow of solutions within the evaluation function, as

they are considered better for auditory perceptual senses. Recent literatures, however, adopted

maximization of similarity. As it is executed by an existing loop extraction algorithm, the main

concern is ensuring that both quality and stylistic diversity are shown in compositional results of

the framework. Furthermore the Artificial Immune System opt-aiNet is adopted to optimize the

search for optimal compatibility with multiple diverse solutions within minimum locals.

2.1.4 AIS vs GA

Carpentier et al. [19, 18, 89, 90] , because of their ability to discover and manipulate the search

space, use GAs to conduct this study of search optimization methodologies. The mechanics be-

hind its exploration is essential for searching for new potential solution space regions, or fitness

function peaks, in order to strengthen the value of the existing candidate solutions. Nevertheless,

the regular GA, as seen in Figure 2.1, faces a shortage of variety upon convergence, resulting

with only a single solution leading to a single peak generated by the GA. The stochastic design of

the detection algorithm will not mean that the optimal solution is discovered, sometimes trapped

in local optimum. Performing the GA several cycles to the same specifications also leads to the

subsequent peaks of the fitness function observed in dissimilar solutions.

2.2 Harmonic Compatibility

Harmony is a fundamental principle in Western tonal music as it relates to how sounds are verti-

cally aligned and looks to minimize concepts like dissonance. Measures for Harmonic Compati-

bility are defined as the capability for musical audios to generate audio of enjoyable quality, when

merged [74]. These methods are commonly expressed as two dimensions of horizontal (alterna-

tively known as sequential compatibility) and vertical (also described as simultaneous) compat-

ibility of musicological structure [54, 44], in which the underlying principle is to automatically

quantify the degree of harmonic proximity of two or more musical audio samples. When mixing

audio tracks, output possibilities are either harmonically compatible – making pleasant music – or

have a very dissonant auditory return.

Harmony compatibility in audio-content-based processing, notably in musical audio recombi-

nation, has been researched under ‘harmonic mixing’ [10, 60]. Moreover, Bernardes et al. [10]
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stress the importance of concurrent hierarchical dimensions in harmonic mixing at the level of

the key for large-scale structure (mostly enforcing the horizontal dimension) and dissonance and

perceptual relatedness or harmonic distance at the small-scale structure.

We identified three main categories of harmonic mixing methods: 1) key affinity, 2) chroma-

based similarity and in related (or enhanced) tonal pitch spaces, and 3) psychoacoustic (disso-

nance) metrics. Their main difference relies on the type of representation adopted, from which

typical metrics (e.g., Euclidean or angular distances) compute their similarity.

The methodologies for searching quality audio candidates in the harmonic compatibility of

generative music are following:

• Key Affinity prominent procedures methods used in commercial applications [95].

• Spectral Similarity methods to find the spectral candidate with similar characteristics and

patterns as the target track.

• Dissonance/Consonance based methodologies searching for the highest values of conso-

nance between merged musical audios [71]. These are perceptual calculations for the quality

in the mixing of tracks, as they can both output successful or badly perceptual tones.

Similarities in the spectral matching of audios are helpful to maintain technical correctness in

the structural harmonicity of the auditory mixing. If the user’s purpose is to test the sole power

of attraction, measures of dissonance/consonance computations give perceptual data of the en-

tire output. The ideal candidate is the one most compatible and of similar pattern and features,

compared to the auditory source.

Approaches recurring Dissonance and Consonance have higher possibilities of varied outputs

due to their evaluation of pleasantness [15, 24] coming from the mix, as the most compatible and

suitable candidate is a conjunction of root note and its corresponding octave.

2.2.1 Key Affinity

The affinity between musical keys is defined by distances across major and minor keys in the

double circular representation shown in Fig. 2.2, known within the DJ community as the ‘Camelot

Wheel’. This method favors large-scale harmonic similarity by promoting major-minor modes

mixes and intervals of fifth relations across musical keys and poorly captures small-scale harmonic

similarity [9].

2.2.2 Spectral Similarity

Methods from Spectral similarity do not prioritize defined frequencies, but are rather focused on

the harmonicity of mixings, taking into account higher levels of auditory representation such as

chromagrams or spectograms for pitch. Studies for in-depth harmonic compatibility have un-

dergone solutions for matching Chromagram values of different windows, with definitions of
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Figure 2.2: Camelot Wheel representation of major and minor keys, representing the perceptual
proximity of keys, commonly adopted in the context of harmonic mixing.

harmonic-based metrics in musical tracks both at small and large-scale whilst making new as-

sessments to perceptual relatedness within the Chroma space such as key affinity and vectors of

similar chroma [27]. Alternatively, transforming the auditory space into tonal vectors through

DFT correlation, or analysing windows of similarity with dissonance-based approaching. Beat-

synchronous chromagrams over pre-defined tempo and key ranges were possible for gathering

harmonic compatibility [27]. Ultimately, these are complying with the environment of Western

harmonicity and tonality [60].

2.2.2.1 Chroma Matching

Tonal information within musical audio files is computationally possible to be represented as

Chroma vectors, in which each segmented excerpt of the track is put into one of its corresponding

twelve dimensions of pitch classes (i.e., from C through B pitch class).

The concept of Chroma matching through vectors built groundwork for important case studies

in mashup creation, recognition of chords [52] or for magnifying techniques of MIR [64]. Notable

regards for this dissertation are MixMash and AutoMashupper, both frameworks to aid users in

the creation of mixings through different audio files. A base for Compatibility Estimation is the

implemented research of Davies et al [26, 27] with AutoMashupper on which sections of audio

tracks are conjoined or intermittently switched at different phases through algorithmic composi-

tion. To ensure optimal sequential compatibility, Chroma vectors between 2D convolutions of

the songs are integrated with beat-synchronous data of the musical files. However, both applica-

tions of Mixmash and AutoMashupper have a general concern of lacking a vertical dimension of

simultaneous compatibility according to the musical structure.
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This system was generalized by Lee et al. [54] and suggested that two components could

be more compatible if they have additional quantities of harmonic instability. There are two

drawbacks of AutoMashupper, which treats the harmonic and rhythmic resemblance as part of

mashability, While it is theoretically possible for two music segments to correspond, While hav-

ing various harmonies and rhythms, varied results are .

A measure of Spectral Balance came to popular rise, in recent times, after the implementation

of Automashupper, where developers segment regions dependent of the beat offsets of the tracks.

By a concept of perceptual loudness, they find the flattest spectrum coming from the beat offset

and create a mathematical conception of mashability.

2.2.2.2 Tonal Interval Space - TIS

Music theory specifies meanings of consonance and dissonance through intervals between the

notes in the musical scale. This information is valuable for determining both the perceptual human

listening and the existence of tonal intervals. This human perception of musical sections does not

prioritize methodologies using Chroma vectors as they are listed through proximity of frequency

in ascending order, rather than proximity of better harmoniously sound pitch classes, as Euler’s

model of Tonnetz states and is observable in Figure 2.3.

Figure 2.3: Euler’s Model for Tonnetz states (Source from Wikipedia’s public domain.)

The Tonal Interval Vector measure, or TIV, previously implemented in recent researches [60,

11, 8], reformulates the possibility of Chroma-matching vectors and models of Harmonic Compat-

ibility, with finding commonality between the intervals of pitch classes, as observed in Figure 2.4.

This research allows the prioritization of less dissonant mixes, between audio segments, through

the calculation of similarity in the dissonance of musical tracks.

Fernandez [74] conducted an online survey running several algorithms of Harmonic Com-

patibility on a ranking of worth, according to additional standard errors. Results were that the

implementation of TIV had better performance within the metrics established for harmonic com-

patibility, stated in Figure 2.5.
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Figure 2.4: TIV representation of Chroma Vector [7]

2.2.3 Dissonance/Consonance

Methods taking the phenomenon of dissonance have recently taken a conception of simultaneous

consonance, in which a perceptual salience is noted from musical notes playing simultaneously,

and represented in the spectrum. As referred in the theory of musical environment, consonant com-

binations are perceptually known to appeal users, rather than dissonant sets taking less enjoyable

combinations of tones [44].

This section presents algorithmic methods taking representations that are driven by perceptions

of Interference and Harmonicity.

2.2.3.1 Pure Dyads and Roughness

According to the terminology of chords, classifications can vary according to different dimensions.

Terms such as dyad or triad are composed of, respectively, a collection of two or three notes played

simultaneously. As such, the concept of pure dyads are of pairs characterized by two pure-tones

concurrently playing [44].

Interference of pure tones are possible through masking and beating, although studies are lim-

ited regarding consonance through masking, in contrast with beating. The impression that is beat-

ing comes from a pair of frequencies that are close within the spectrum, and consequently produce

an auditory sense of amplitude modulation. Accordingly recognized as perceptually unpleasant,

the beating from the sum of all frequencies is designated as Roughness.

The groundwork for more approachable models using this measure came from Plomp and Lev-

elt [71], where dyads are composed of an average coming from a set of tones and the divergence
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Figure 2.5: Harmonic compatibility algorithm worth with their standard errors [74].)

length between their harmonics. A concept of Critical Bandwith was defined as the frequency dif-

ference of two pure tones in which the sense of "Roughness" fades and smoother results are possi-

ble. Results were this methodology of perceptual roughness is dependent of the dyad difference in

frequency, and the Critical Bandwith. Studies further developing this model were from Gebhardt

et al. [38] implementing a mixing methodology, as shown in Figure 2.6, capable of diminishing

levels of roughness with a model of Pitch commonality from Parncutt and Strasburguer [69]; and

integrated with a roughness-based architecture in the works of Hutchinson and Knopoff [51]. To

achieve the greatest value of compatibility in a sequential dimension, a Spectral Modeling tool1

helps the current model to extrapolate values of roughness of two musical segments within a range

of one octave composed of both 48 ascending pitch shifts, as well as descending ones too. Later

on, Maffei [58] implemented a similar model minimizing levels of roughness by decreasing the

highest candidates of frequencies contributing for the perceptual Interference of roughness and

dissonance.

2.2.3.2 Psychoacoustic Metrics for Harmonic Compatibility

Systems based upon the notion of Periodicity have in consideration a pattern recurrence rate in

time and physical properties of a sound wave such as frequency, therefore making possible the

spectrum transformation into integers that are multiples of the fundamental frequency. Studies

that regard this methodology are limited to higher debates of measures such as an auto-correlation

1https://github.com/MTG/sms-tools
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Figure 2.6: Model of Pitch Commonality [38, 39])

transformation within the dimensions of time, and pattern similarity within the frequencies of the

spectrum [14, 44]. Thus, new forms of achieving consonance are also possible.

Peaks within the spectrum allow a perceptual inference of frequencies such as the fundamental

or any corresponding harmonics. Thus, even if they are not physically present in the mixing, users

go through this phenomenon of Virtual Pitch in order to sense the tones. A model was achieved

by calculating overtones, masking, loudness, and the high points of pure tones. The inference of

musical chords are possible through an algorithm of Pitch commonality, in which the power of

each of the twelve pitch classes mentioned are perceived.

Like stated, Gebhardt’s work [38] aided the process of musical mixing. While getting hold

of the Virtual Pitch algorithm, he made possible to determine, for both target and source tracks,

the perceiving power of triads composed of the three highest perceptual frequencies, available for

keys of Minor and Major scale [63]. The inter-relationship between the excerpts is a methodol-

ogy for consonance, as it is calculated from the 2 pairs of triads through the pitch commonality

algorithm [69]. For Harmonic Compatibility, the final results concluded the algorithm of pitch

commonality integrated within roughness [69] performed worse than models disregarding compo-

nents of masking or gain levels [38]. The model of spectral pattern matching returning the best

output considers a divergence in the harmonic processing of the spectrum [45]. This methodol-

ogy returns a probabilistic distribution and with the aid of Kullback-Leibler divergence, ensures a

constant value of 0 if no pitches are salient.

2.3 Rhythmic Compatibility

Symbolic representations of computational approaches provide degrees of associated abstractions

that are transparent and aligned within Western music’s notation formality. The complexity behind

audio processing and rhythm compatibility has posed harsher limits in the compilation evidences

so far. One of the common use cases is note onset detection [6], not freely accessible, but rather

implicit in audio recordings. In this section, a thorough literature on the audio domain repre-

sentations underpinning computational methods for audio compatibility adopted in content-based

generation. As such, a general viewpoint is shown in Figure 2.7
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Figure 2.7: Dimensions of Rhythm (Dis)similarity [21])

Early computational mashup creation systems focused on rhythmic-only features related to

the temporal arrangement between two or more musical tracks [10, 43]. Lee et al. [54] concen-

trated on rhythmic matching serving tempo as an input parameter for the system and employing

beat matching by stretching the beats through phase vocoder. Today, this strategy proliferate in

commercial software such as Tracktor, 2 Mashup 2, 3 and Mixxx. 4 Davies et al. [27] perform beat

and downbeat tracking to align the tracks, based on two onset detection functions – kick drum and

snare drum – while assuming a constant tempo and time signature across the entire duration of a

musical track.

Rhythmic representations from musical audio can be organized into three abstraction levels:

low, mid, and high. For this writing, low and mid dimensions are better focused for the matter

of rhythmic representation and compatibility through audio computations. Roads [76] describes

low-level classification as the retrieval of feature lists from which it is capable of segmenting

individual events. The classification of the middle level as transcription-based is equal to the level

of data as abstract representations. Finally, depending on the application, high-level definition as

the composition or style analysis. As mentioned from developing a previous publication, this is

following similar notations of Cocharro et al. [21]

2.3.1 Low-level Rhythmic Description of Compatibility

In low-level rhythmic definitions of audio, time series that reveal the volume of change of the

content of an audio signal, over time, are given a fundamental focus. The difference between

consecutive descriptor values of positive, negative derivatives and total shifts in the musical audio

material, is usually adopted to compute a novelty function [6].

Representative examples of baseline descriptors for the novelty feature computation are energy

and spectral-based representation. The primary application of novelty features is to detect abrupt

shifts in the musical audio sound, which typically signify the onset of notes. Different details may

be inferred based on the baseline function implemented. In order to catch improvements to the

audio signal that align with rhythmic variation, embracing sole energy information may not be

enough. In the frequency domain, a note transition over a series of conjoined notes can be best

2https://www.native-instruments.com/en/catalog/traktor/, last access on 20 April 2021.
3https://mashup.mixedinkey.com/, last access on 20 April, 2021.
4https://mixxx.org/, last access on 20 April, 2021.

https://www.native-instruments.com/en/catalog/traktor/
https://mashup.mixedinkey.com/
https://mixxx.org/


22 Generative Strategies for Musical Audio Recombination: a Literature Review

recorded. Similar to the energy-based innovation, this latter of spectral flux approach operates

from variations between consecutive spectral vectors.

2.3.2 Mid-level Rhythmic Description of Compatibility

A popular rhythmic representation of musical audio at the mid-level is a systematic series of string

from beginning of onset times. Onsets may be interpreted from novelty functions as local max-

imums. Inter-Onset-Intervals (IOIs) could be further determined from the resulting series, sup-

plying higher-level knowledge about the length of the periodicity of the rhythmic structure. The

salience of feature periodicity has, however, been more commonly discussed as continuous func-

tions, as several representations of the periodicity function were suggested. Their key distinction

is based on the type of information being represented like event locations, and their interpretation

as both sequence of events and histograms.

In the auto-correlation function (ACF) as states Dixon [30], limited bandwidth copies of the

signals are implemented from the amplitude envelope to detect periodicities in each band. To ap-

proximate tempo, meter, and the periodicity distribution to predict compositions, relations between

periodicities are then used.

The beat spectrum [33, 5, 67], as a result of time lags, reflects rhythmic periodicity. The beat

spectrum can be calculated from diagonal sums of pair distances in a self-similarity matrix [33]

after signal parameterization (e.g., brightness, loudness and MFCC). The measurable signal will

uncover the periodic structures from the peaks in the musical audio. Repetitive music can have

high peaks in the repetition times of the beat spectrum.

The Rhythmic or Fluctuation Patterns(FP) [57] define rhythm in various frequency bands as

the modulation of loudness. The effect is a time-invariant 24 critical Bark bands interpretation that

captures the audio signal’s repeating patterns (i.e. periodicities) and can demonstrate the rhythmic

structure of the critical bands. Pohle et al. [72] extend this concept of FP, as shown in Figure 2.8 in

a semitone space by an onset-based representation of rhythmic patterns, and its representation of

the matrix, called Onset Patterns, is normally minimized using the DCT [72] that dismiss higher

order coefficients.

From the FP algorithm, the rhythmic histogram description of musical tracks through all bands

can be derived, consequently anotating the magnitude of each modulation frequency bin [56]. In

an improved ACF version of a discrete transform signal, Tzanetakis and Cook [94] suggest a

related beat histogram guided from peaks.

Since in periodicity representations of musical rhythm [46] the temporal component is partly

disregarded, Holzapfel and Stylianou [47] follow the scale transformation as a special case of the

Mellin transformation, to ACF, allowing the rhythmic representation invariant of tempo shifts, ac-

counting for identical rhythms in various tempos. Tempo estimation and beat tracking, commonly

noted as an unified value derived from the periodicity function detailed above, are two additional

and fundamental mid-level rhythmic representations of musical audio [29, 42, 30].

Established state-of-the-art methods operate well among clear beats through musical mate-

rials, such as in commercial musical genres. Expressive tempo fluctuations and non-percussive
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Figure 2.8: Fluctuation Pattern of measured periodicities from a musical source [72]

audio content are rather quite difficult [62], and investigations for end-to-end algorithms have

tackled tempo detection and beat tracking, leveraging deep learning methods [16], displaying and

improved outputs, including non-percussive musical content [40].

Relevant to the context of our work is rhythmic compatibility computation adopting continuous

periodicity functions, such as those shown in Fig. 2.9. Three representative examples are the beat

spectrum, rhythmic or fluctuation patterns, and rhythmic histograms.

2.3.3 Feature-Based Methodologies for Audio Compatibility

To understand processes of compatibility, questions of what is measured and how it is mea-

sured [91] are brought to concern. There are distinguishable two broad approaches to rhythm

compatibility:

• Feature-based methods, which compare the number of common traits;

• Transformation-based methods, which measure how much effort is required to transform

one pattern into another [92].

For the current development, the dissertation is mainly focused upon common methodologies

for feature-based transformations (e.g. Euclidean Distance). As it is used in [29] for auditory

compatibility computation, it can also be implemented to classify related rhythmic patterns as

groups in clustering algorithms.

For the calculation of rhythmic similarities across musical audio, Foote et al. [34, 36, 35]

follow the cosine distance around the beat continuum and the Fourier beat spectrum coefficients.

Using rhythmic histogram, FP, and Onset Patterns [56, 70, 13], related metrics were introduced to

new computational systems. Supporting the Euclidean distance is among the most common cases

of the Minkowski distance with broad rhythmic compatibility formulations and can be generalized

to just about any rhythmic data representations, representing the distance between the magnitude

of the vectors.
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Figure 2.9: Rhythmic representation of a snare drum and closed hi-hat rhythm (represented in as-
cending order in the top image). The three bottom images represent rhythmic periodicity functions
(from left to right): beat spectrum, rhythm patterns, and rhythmic histogram.

Before the distance estimation, the dynamic time warping (DTW) algorithm is used to ac-

count for the estimation of the shortest distance through musical rhythms, typically applicable to

audio-driven models that have stronger granularity in the temporal resolution and express micro-

timing irregularities. By order to align them in the best possible strategy to reduce the Euclidean

distance, the DTW calculates the minimal cost throughout sequences [70]. Dynamic periodicity

warping (DPW) is a related technique yet was proposed to compensate for tempo variations in the

computation of their compatibility by rhythmic audio representation [46].

2.4 Timbre Compatibility

Perceptual dimensions of sound bearing timbre or analyzing source signal classifications have

gained scientific awareness, as a timbral field of musical studies leverages uncertainties for re-

searchers left to investigate. Timbre is characterized as every aspect of the sound independent of

loudness coming from the mix’s individual parts. A sounds’ timbral nature is defined as a musical

piece’s character independent of pitch and intensity. Timbre is one of the most elusive musical

audio attributes. It has been defined as “the psychoacoustician’s multidimensional wastebasket

category for everything that cannot be qualified as pitch or loudness” [61]. Unpacking the above

definition for the context of automatic mixing of musical audio, we can frame the idea of timbre

compatibility as a metric capturing musical structure attributes independent of pitch and loudness.

Studies upon timbral manipulation methodologies are directed towards analysis in musical

sections of human emotional responses or specific genre attributes with identification algorithms.

When judging a songs’ piece, we are perceptually judging the timbre of that corresponding sec-

tion. Recent studies [31, 32] conducted different timbral manipulations impacting the overall

perceptual sound quality. Regarding timbral compatibility measures, a framework for assisting

in creating musical mashup creation [60] compute the cosine distance between Mel-frequency
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spectrum coefficients (MFCC) as a timbral similarity metric to support users in selecting musi-

cal audio samples with varying degrees of timbral resemblance via a graph-based visualization of

large archive.

Inspired by the key role of equalization in audio mixing, Davies et al. [27] proposed a measure

of spectral balance to promote an equal energy distribution across the low, mid and high spectral

regions of a mix spectra. Mathematically, they apply the concept of spectral flatness to capture the

balance of the resulting mix.

Rocha [77] identifies polyphonic patterns that have been empirically chosen by a limited num-

ber of features to characterize timbre in the context of EDM. While specifying three kinds of

properties, it collects the most important dimensions of polyphonic textures for contrast with oth-

ers. Their analytical structure consists of three evaluations by means of MFCCs, Spectral Flatness,

and Dirtiness, which are further converted into a feature vector representing timbre of an auditory

fragment. Similarity between two separate sources is defined by measuring the Euclidean distance

between the two corresponding vectors, and the similarity rating model produced positive results.

As there is no ground reality for both literary computational knowledge and database for timbre

compatibility, there was no model evaluation inside the built architecture. However, it calculates

a similarity ranking focusing on various timbral features and equal weighting. A feature vector

was developed [77] to define a specific timbre, its most innovative feature being ’dirtiness,’ that

reasons for the harsh texture that is typical of certain forms of EDM.

Computer-aided orchestration is another relevant application dealing with timbral compatibil-

ity to approximate a target query sound – the task includes assessing the perceptual compatibility

of multiple instrument note combinations to the query timbre and the compatibility of the instru-

ment note mix. In Abreu et al. [17], the timbral dimensions considered are fundamental frequency,

pitch, and amplitude of the spectral peaks, loudness, spectral centroid, and spectral spread. The

artificial immune system opt-aiNet is adopted for an efficient optimization search across large mu-

sical instrumental note corpus, considering both quality and diversity in the resulting orchestration

mixes.

Following attributes from [31, 32], the next subsections express the relevance for recent method-

ologies adopting timbre similary.

2.4.1 Spectral Slope Manipulation

This concept is linearly correlated to the spectral centroid audio descriptor, an independent variable

α is defined as the variance of partials’ amplitudes acting as a lowpass filter. Consequently, upper

partials’ amplitudes can get intensified and perceptually brighter.

Ak =
1

kα
(2.1)

Symbol A as amplitude of partial and k as order of partial where k = Fk
F1

= 1,2, ...
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• If α=1, the partials have an amplitude proportional to the inverse of their harmonic number

(1, 1/2, 1/3, ...) approximating a sawtooth oscillation.

• If α=0, all partials and F1 have equal amplitude, approximating a pulse stream.

2.4.2 Odd to Even Ratio

Within this function, a variable β is controlling the even-number partials’ gain level by multiplying

with values between 0 and 1. It is densely correlated to the auditory descriptor named OER.

Researches within waveshapes affirmed square waves are related to distortion, which appends odd

harmonics. It is a conventional method for continuous waveshaping variation.

• If α=1 and β=0, the resulting sound would have no even-number harmonics and is similar

to a square-wave oscillation.

• If β=1 approaches a similarity to a sawtooth oscillation. Negative values give similar outputs

with inversed phases. Amounts progressing a threshold of one emphasize the oscillation an

octave higher.

2.4.3 Inharmonicity

This concept transforms the frequency of partials based on its corresponding partial number, with

a constant variable δ in which the ratio of partials is extended or contracted through the whole

spectrum, exponentially. It is linked to the auditory descriptor that is Inharmonicity, and, conse-

quentially, raises concerns regarding the phase positions of harmonics are raised.

Fk = Fk−1 +F1δ
k (2.2)

Symbol F as frequency of partial and k as order of partial.

• δ > 1 generates stretched partials

• δ < 1 in compressed partials

• δ = 1 is a perfect harmonic sound

Several instruments feature large amounts of distinctly inharmonic partials, and no computa-

tional limits for partial detuning have been found. Instruments like the piano are distinguished by

the detuned nature of the partials coming from the struck strings.

2.4.4 Distortion

Signal clipping of the output at an established amplitude in order to generate further partials.

Although not directly associated with an audio descriptor, it can influence multiple features inside

a spectral flux, spectral centroid, spectral flatness, inharmonicity, or spectral slope. Hence, it is a
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natural outcome of any physical system without limitless bandwidth. Henceforward the increasing

interest in the subject for the auditory system [55].

After a normalization process of the source signal, a constant variable γ is multiplied, and

consequently, every value greater than one is set to one, and every signal smaller than –1 is set to

–1.

Dependent on the input signal, it can accentuate the signal’s properties, making the sound

brighter and raise the amplitude of odd harmonics. If the signal presents a common inharmonic

partial situation, static signals can become dynamic with the output beating between the original

sound’s inharmonic partials and the distortion’s new partials. Dobrowohl additionally considered

the concept of plucking - a comb-filter effect [32].

Conclusions for the research allowed a better understanding of how one sawtooth waveshape

can implicate different outputs and user likings. To calculate deviations between the influence

of the effects and the user desires, a Perception Threshold value is assigned to each effect. The

highest value for timbral change was achieved within the Inharmonicity effect compared with the

other manipulations’ capabilities.

2.5 Compatibility of Formal Structure

The advancement and accessibility of technology and audio editing techniques have minimized

entry barriers for mashup production. Music sequencers constituent of loop-based systems, such

as Ableton Live, for instance, lead the user to suit the rhythms and push the audio sampling keys.

As more than just a result, despite structured musical training, systems producing mashups are now

most frequently produced by music lovers. Users will need to focus on their own backgrounds and

musical learning for the above resources to find suitable music clips to be blended together. If the

amount of streaming music already available rapidly increases, ill become time-consuming and

labour intensive to obtain adequate clips.

Automatic schemes have been suggested by several prior studies to build mashups. Noted,

these approaches [26, 27] concentrated only on the vertical appropriateness of the selected music

segment, because they always deemed the adequacy of the music sections to be layered, which

was described as the word ’mashability’. AutoMashupper [26, 27] seems to pertain as the ini-

tial research that included a detailed calculation analysis to identify suitable music fragments and

an automated mashup generation schematic to be layered together. In order to produce the fi-

nal mashup, samples from other tracks with both the maximum mashability upon its grounds of

chromagram compatibility, rhythmic compatibility, and spectral balance, have been overlaid with

every section mostly with corresponding segment throughout the main song. This architecture is

however supported by future work [25], which live input recording is known as the base track in

Davies [25], and the accompanying music parts are overlapped on the input signal. Tsuzuki et

al. [93] concentrated on allowing users to overlap vocals from various performers all along the

same accompanied music.
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Chuan-Lung Lee et al. [54] implemented a mechanism developed to produce mashup compo-

sitions dynamically by taking into account both the vertically and horizontally mashabilities. Two

new variables are also regarded and explored inside the vertical mashability of "harmonic change

control" and "volume weighting". Subjective assessments reveals that the auditory enjoyment of

the generated mashups would be increased relative to that of the existing equivalents created in

Davies [27]by keeping many such variables into consideration. In addition, pleasantness can gain

varying degrees of hearing satisfaction in mashups by combining with the horizontal mashability.

As a direct consequence, the first background track listeners choose to derive from and some nec-

essary structure metrics (such as the amount of background sections N and the quantity of lead

segments per background division M) given a collection of multitrack songs with formal compo-

nent names, the framework can then produce an automatic mashup. Investigations into these dual

dimensions of Nature in Music, as Figure 2.10 denotes, assumes that multitrack songs can include

at least two types of background and leads, in the sorted manner. This presumption is rational

since multitrack songs can effectively be retrieved via mashup websites5.

Figure 2.10: Horizontal and Vertical Multidimensions of Musical Space for Mashup Creation [54])

Initially, the framework developed by Lee would collect audio information in the preprocess-

ing step and pre-compute vertically and horizontally mashability for each potential combination

of units in the music package. Thus, as per user-specified structure variables such as the amount of

leads per context segment M, it specifies which auditory section should be placed in the resulting

mashup arrangement and from where. Additionally, how certain the fragments are converted to

create the subsequent mashup generation. The two phases, vertical and horizontal mashup pro-

cesses, would be done through iterative manners until the necessary duration of the consumer is

met by the resulting mashup. Firstly, the mashup generation stage will adjust the speed, loudness,

and pitch of each unit to the appropriate values. Next, to create the final mashup album, the units

would be matched and concatenated.

5Mixter - http://ccmixter.org
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Figure 2.11: Overview of the multiple attributes and hierarchies considered in musical audio com-
patibility underlying the composition process.

In producing mashups, it gives much greater versatility than just the structures suggested in

previous experiments, as it takes into consideration the recently enacted vertical mashability met-

rics. A case study test indicates that there has been a statistically meaningful increase in user

retention.

2.5.1 What Does Compatibility Entail?

Fig. 2.11 shows a typical computer-aided music production search problem from large musical

audio archives. It aims at finding a vocal musical audio sample that ‘fits’ the existing project

context, i.e., a previous vocal track excerpt and an accompaniment piano track. First and fore-

most, the journey typically commences by inspecting large-scale ‘meta-data’ attributes, such as

the duration, key, style, or instrumentation, to convey some unity across the musical structure at

higher-level hierarchies. One aims to find musical audio samples that belong to the same category

(e.g., to belong to the key of C major and the binary meter of Fig. 2.11). However, finding samples

that match high-level hierarchies does not guarantee a good ‘fit’ or compatibility with the existing

context. For example, within binary meters, one can have a myriad of inner accents (e.g., 6/8 or

2/4 meters), whose manifestation can be inspected at lower structural levels.

Musical audio compatibility, with a tool-set of representations and metrics, may be of use here

to account for the multiple hierarchical levels of interaction across musical audio tracks. Met-

rics must adhere to multi-objective and multi-hierarchy constraint optimization levels, which can

identify and distinguish, for example, varying degrees of syncopation at the low-level tactus grid,

while equally fitting the high temporal metrical organization. Furthermore, cognitive aware mod-

els and methods ought to leverage varying degrees of novelty and familiarity to a given context,

understood here as both the specific audio content from a particular work and the social-cultural
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and subjective dimensions involved in the composition process. The latter can be made explicit as

constraints defined manually by the user in a human-in-the-loop approach [99].

Harmonic compatibility must entail representations and metrics for large-scale compatibility

at the level of the tonal plan or key changes of the musical work. Mid-scale considerations of

harmonic function or tension (namely in the context of Western tonal music) ought to promote a

structural intent of the harmonic sequences. At the small-scale greater inspection of dissonance

concepts and pitch affinity at the level of the musical surface. For example, lets consider the

compatibility between the chord of C major and two other candidate chords of A Maj and A

min. Roughly, their combination presents only slightly different degrees of dissonance; however,

A Maj may not ‘fit’ the large-scale organization of the musical structure composition as A min,

considering a key of C major.

Rhythmic compatibility ought to equally consider the large- and mid-scale accents across the

phrase structures. Downbeat alignment plays a vital role in detecting larger structural organiza-

tions and the saliency of the beat or pulse structures within the metrical grid inspects the mid-level

compatibility. A relevant example of the latter mid-level compatibility is the distinction between

binary and ternary organization within equal metrical duration (e.g., distinguishing 3/4 and 6/8

meters). Finally, lower level or rhythmic manifestation, micro-timing deviations below the beat

level are important interactions to consider to accommodate the same rhythmic ‘feeling’ mani-

festation and avoid, for example, straight and swing feeling clashes, which can cause disruptive

rhythmic dissonance effects.

Finally, timbre compatibility is the most elusive attribute in grasping the multi-dimensional

perceptual qualities, namely at the instrumentation level and the spectral attributes the multiple

musical audios occupy. At the large-scale structure, coherent timbral content per musical layer

is typically pursued. At the small scale, a balanced interaction across the spectral energy space

each layer occupies can be accounted for, which can equally account for the linear progression

of individual tracks, an important dimension for the harmonic and melodic articulation of voice

leading.

2.5.2 Prototypical Formal Structure of Musical forms

As musical genres increasingly get more complex, representations of both notation and musical

form must remain coherent in the structural network, as analysed in a study conducting identifi-

cation of four categories of musical forms most known to the nature that is music. These are also

represented with capital lettering which affirm the segments corresponding to specific musical

structures.

• Strophic: characterized as AA, AAA or AA’ comprising one main theme, repeated with or

without minor alterations.

• Binary: consisted as AB or ABAB with two main alternating tunes which ends during the

second theme.
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• Ternary: represented as ABC, or ABA’. While having three main tunes, or two main themes

plus an initial theme re-insertion presenting a possibility of slight variations.

• Rondo: represented as ABACA, ABACABA or ABACADAEA, it is also characterized as a

tune that is recurring and alternated with others contrasting themes.

Strophic form [78, 22] is amongst the most prominent forms of music, often related to as

verse, more often used in popular music, folk tunes, or songs which are verse-based. Due to its

repetitiveness, it is considered highly simple in regards to other remaining types, and is normally

designed with a AAA structure typically with a length of 8 to 16 measures. Most misconceptions

fell on two dichotomies of strophic/round confusion and binary/ternary ambiguity. As observed

in Wu [98] and Figure 2.12, modifications of the repetition theme in (a) result in visualization

differences that can be easily mistaken with the depiction of the alternating theme, like case (b).

Appendix A.1 shows a brief list of common musical forms integrated in musical space and formal

structuring.

Figure 2.12: Visualization comparison of respectively (a) Strophic form and (b) Rondo form [98])

2.6 Summary

Generative architectures surrounding the loop-based methodologies and aid of musical composi-

tion, like Mixmash or Automashupper, can be limited in terms of product scaling and develop-

ment, which is the reason of suggesting generative applications based on compatibility metrics

of the environment of Music. Although Neural Loop Combiner seems to be a close approach to

optimized searches in musical space, the dataset available is quite scarse and would affirm long

terms of producing specific information for that domain. At this moment, algorithmic perspectives

for search optimization seem to point that AIS implement an optimized architecture that allows

working through descriptive spaces in large loop scales without storing unnecessary data.

Chapters before this segment have described a literature review on generative music systems

based on methodologies of audio-based loop recombinations, whilst describing a musicological

environment of attributes defining musical quality and stylistic diversity. These metrics, as ex-

plained, can be sectioned into four layers of audio compatibility for Harmony, Rhythm, Timbre,

and Formal (multimodal) Structure. Each component presents their specific computational domain

capable of, with the help of latest technologies for Creative-MIR, achieving limitless signal anal-

ysis with heavy loads of auditory data information coming from datasets annotating the necessary

attributes.
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In this chapter, for Section 3.1, we address the implementation of CoDi – found in GitHub

repository accessed in shorturl.at/cCFHV with all code and results – following a multimodal

architecture for an effective search space for diversity and compatibility. Section 3.2 follows an

agenda taking the procedure that was developing the feature extraction of the musicological met-

rics within the CoDi model and how that generates a feature dataset for evaluation. Section 3.3

mentions the properties within the computed evaluation functions assessing the audio files for the

vertical mashup generation. Section 3.4 denotes the computed evaluation functions assessing the

audio files for the horizontal mashup generation. Section 3.5 denotes the computational explaining

of the developed opt-AiNet algorithm within CoDi, upbringing the optimized search space men-

tioned in chapters above. Finally, Section 3.6 covers representation when executing CoDi and the

process enveloped in its implementation, and Section 3.7 mentions a summarized procedure of the

chapter.

3.1 Overview

In CoDi, we adopt the opt-aiNet to promote the computational efficient search for musical mashups

resulting from the recombination of musical audio loops, 1 understood in the opt-aiNet as network

cells. Mashups result from the combination loops li ∈ S, where i = {1, ...,L} is the index of the

1An audio loop is a short segment of audio, e.g., a measure of a drum beat, which is created to be repeated over
time [37].
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loop in the dataset S, with a total number of L musical loops. A mashup p is then a combination

of musical loops.

Each loop li is represented in a feature space, where distances equate to their compatibility.

The smaller the distance, the greater their compatibility. Optimal compatible mashups result from

minimizing an evaluation function Ep in the feature space. Diversity is guaranteed by pursuing

a combination of local and global search in exploiting the feature space, resulting from iterative

clonal mutation and selection of mashup candidates in the search space (see Fig. 3.1).

Figure 3.1: Representation of both search space (left) and correlated feature space (right) taking
harmonic and rhythmic measurements within the loop dataset.

Fig 3.2 shows the architecture of CoDi. A user-defined dataset S with musical audio loops

li is the collection of musical audio adopted in the mashups. Feature extraction algorithm define

harmonic T (k) and rhythmic r(b) representations for each dataset loop li, which are stored into a

feature dataset. The AIS opt-aiNet is then adopted to search for multiple compatible and diverse

mashups by evolving a random initial population. Finally, a set of optimal mashups result from

overlaying the mashup component loops.

3.2 Feature Extraction and Dataset

The feature extraction module is responsible for creating two vector representations that capture

the harmonic, rhythmic and timbral content of each musical audio loop li.

We adopt TIV, T (k), as a representation for the harmonic content of an audio loop. T (k) is a

12-dimensional vector computed as the DFT of a chroma vector c(m), such that:

T (k) = wa(k)
M−1

∑
m=0

c̄(m)e
− j2πkm

M
,

k ∈ Z with c̄(m) =
c(m)

∑
M−1
m=0 c(m)

,

(3.1)

where M = 12 is the dimension of the input vector and wa(k) = 3,8,11.5,15,14.5,7.5 are

weights derived from empirical ratings of dyads consonance used to adjust the contribution of each
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Figure 3.2: Multiple modules considered in CoDi underlying our AIS computational composition
process. Rectangular blocks are processing functions. Solid and dashed arrows denote audio or
control flow of information between processing modules, respectively.

dimension k of the DFT space. We set k to 1 ≤ k ≤ 6 for T (k), since the remaining coefficients

are symmetric. T (k) uses c̄(m) which is c(m) normalised by the DC component to allow the

representation and comparison of different hierarchical levels of tonal pitch.

Following [10, 11], we adopt the T (k) space to compute the harmonic compatibility H between

two given loops l1 and l2 using Eq. 3.2, which combines the dissonance D and perceptual distance

P metrics shown in Eq. 3.3 and 3.4, respectively. The lower the values of H, the higher the degree

of harmonic compatibility between two audio loops li. [74] has shown that the harmonic compati-

bility H indicator perceptually captures human judgments of pleasantness to a higher degree than

remaining harmonic compatibility metrics.

Hl1,l2 = Dl1,l2 ·Pl1,l2 (3.2)

Dl1,l2 = 1− a1T1(k)+a2T2(k)
a1 +a2wa(k)

(3.3)

where a1 and a2 are the amplitudes of T1(k) and T2(k), respectively.

Pl1,l2 =

√√√√ 6

∑
k=1
|T1(k)−T2(k)|2 (3.4)

A rhythmic histogram r(b) [56], where b = 60 bins, is adopted to represent the rhythmic

content of a musical loop as amplitude modulations. The representation derives from rhythmic

patterns [68], a matrix representation of fluctuations in different frequencies on critical bands

of the human’s listening range. Their fundamental difference is that rhythmic histogram r(b)

accumulates all frequency bands onto a single bin, resulting in a vector of 60 frequency modulation



36 CoDi

bins in the [0,600] BPM range [56]. The motivation to adopt rhythmic histograms r(b) instead of

the most common rhythmic patterns representation is to minimize pitch or spectral differences in

the compatibility computation, namely in light of the typical single-instrument nature of musical

loops used in production settings [68, 67].

To compute a rhythmic histogram r(b), we adopt a two-stage extraction process. First, we

group the frequency bands by loudness sensation, using a short-time Fourier transform. The re-

sulting spectral representation is then converted into a time-invariant 24 critical Bark bands modu-

lation frequency spectrum by applying a second Fourier transform. High amplitudes values in the

rhythmic histogram r(b) denote a recurrent period in the musical audio. For example, Figure 3.3

shows the rhythmic histogram with four predominant peaks at multiples of the tempo.

Figure 3.3: Rhythmic periodicity function for an audio loop including leads and brass within
rhythmic pulse.

The distance between rhythmic histograms r1(b) and r2(b) from two musical loops l1 and l2 is

computed as their angular distance, such that:

Rl1,l2 = arcos
r1(b) · r2(b)
|r1(b)||r2(b)|

. (3.5)

The MFCC is based upon the raw Cepstrum mathematical equation and leverages a filtering

process into the magnitude spectrum through sets of overlapping filters in triangular shape, based

upon the mel scale as Fig 3.4

The magnitude spectrum is consequently filtered, transformed onto the logarithmic scale, and

further modified to Mel-frequency Cepstral Coefficients when going through a Discrete Cosine

Transform. Equation 3.6 raises the general form for transforming frequency onto the mel scale,

and the distance of two MFCCS m f cc1 and m f cc2, from two musical loops l1 and l2, is computed

through an angular distance in Equation 3.7, such that:

m f ccl1 = 2595∗ log10(1+
f requencyl1

700
) , (3.6)



3.3 Vertical Evaluation Function 37

Figure 3.4: Representation of mel scale.

Ml1,l2 = arcos
m f cc1 ·m f cc2

|m f cc1||m f cc2|
. , (3.7)

To ensure a human-in-the-loop approach within CoDi, we assigned weights to each of the

featured metrics within the extraction process, as w in ranges of [0,1] so that users can infer

between more – or less – harmonic compatibility (wH = 0.45), rhythmic compatibility (wR = 0.45),

spectral balance (wF = 0.05), or continuous generation with MFCC (wM = 0.05).

3.3 Vertical Evaluation Function

To withhold compatibility in a vertical dimension within a diverse space of solutions, AIS opt-

aiNet assesses a population of musical loop mashups p at each iteration. The population evolves

across multiple iterations by minimizing an evaluation function Ep. To compute an objective

evaluation value per mashup p, we first define Hp and Rp as the sum of all pairwise distances

across the component loops li in the mashup p. A total of u(u−1)/2 pairwise values per harmonic

and rhythmic representation are summed using Eq. 3.2 and 3.5, respectively, where u is the total

number of loops li in a mashup p. Then, we apply Eq. 3.8 to combine the resulting harmonic Hp

and rhythmic Rp compatibility metrics linearly. Furthermore, a high penalty is applied to mashups

p that include repeating loops li, such that:

Ep = wHHp +wRRp +wFFp , (3.8)

where Fp = 0 if no li duplicate loops are found in p and Fp = 0.5, otherwise.

3.4 Horizontal Evaluation Function

In order to sustain for compatibility and continuity in a horizontal dimension within a diverse space

of solutions, a new evaluation function assesses the same population of musical loop mashups p

at each iteration. Since we are dealing with more than one run of the model CoDi algorithm (not

the number of iterations within the search algorithm), the function must search for the population
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of selected mashups in the previous population, or iteration, found in p− 1. Just as the vertical

dimension, we entail for minimizing an evaluation function Ep. To compute this new objective

evaluation for continuous generation, we retain the mashup p, as well as the computed Hp, Rp,

and Fp as the sum of all pairwise distances across the component loops li in the mashup p. After

retaining that information, we measure the distances of the current population, and the previous

solutions found in p−1 – raising new metrics of comparison such as Hp,p−1, Rp,p−1, Fp,p−1, and

to assure timbral quality and avoid auditive discrepancies in the continuation, we address Mp,p−1

We apply Eq. 3.9 to combine the resulting harmonic – Hp and Hp−1 – with rhythmic – Rp

and Rp−1 – as compatibility metrics of the entire population of selected mashups for generation,

gathered in Hp,p−1, Rp,p−1, Fp,p−1, and Mp,p−1 with the addition of MFCC metrics – Mp and Mp−1

– as a balanced measure of auditive continuity comparing the current and previous population.

The same high penalty is applied to mashups p and that include repeating loops li, such that:

Ep,p−1 = wHHp +wRRp +wFFp +wHHp,p−1 +wRRp,p−1 +wFFp,p−1 +wMMp,p−1 , (3.9)

where Fp = 0 if no p duplicate loops are found in p and Fp = 0.5, otherwise.

The following Figure 3.5 makes a representation of the different metrics within the feature

extraction for a non-context generation – or one run of the CoDi model – and context generation

– with more than one run of the CoDi model. We entail that the difference between these two

dimensions of non-context and context generation is the use of MFCC coefficients comparing the

current and the previous population.

Figure 3.5: Feature Extraction representation for non-context and context generation. Metrics of
harmonic, rhythmic and timbral compatibility are addressed for both dimensions.
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3.5 Searching Algorithm

The immunological operations in AIS opt-aiNet – cloning, mutation, and affinity suppression –

evolve an initial random population towards compatible and diverse mashups in the immune net-

work. Maintenance of compatibility is assured by the evaluation function Ep and leveraged by

cloning and mutation operators, which optimize the population of mashup candidates across mul-

tiple regions. Valleys (or local minima) in the multimodal search space indicate optimal mashup

candidates p. Fig 3.6 shows a flowchart diagram of the AIS opt-aiNet algorithm used in our work.

Figure 3.6: Opt-aiNet flowchart diagram.

The AIS opt-aiNet algorithm starts by instantiating a random population of mashups p. The

initial number of mashups in the population (i.e., population size or the number of network cells) is

not relevant. The algorithm includes mechanics for the automatic adjustment of the population size

via affinity suppression and population expansion. Cloning is responsible for creating a number Nc

of offspring cells per mashup in the population (or network cell) that are identical copies of their

parent cell. Each clone includes the parent and its Nc offspring. The offspring clones undergo an
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operation of somatic mutation to become variations of its parent. In other words, mutation asserts

if a given loop li in a mashup p is changed. A probability of a given loop li within a mashup p to

be mutated is inversely proportional to the mashup p evaluation value. Following [17], we adopt

Eq. 3.10 represented in Figure 3.7 to define the mutation probability of a given loop li within a

mashup p.

χ = exp(−γÊ) , (3.10)

Figure 3.7: Function of mutation probability given in a loop within the population.

where γ = 1.2 is a constant and Ê is the normalized evaluation value to the [0,1] range from

the corresponding mashup p (or to the cell undergoing mutation). For each of the loops li in the

mashup p, a random decimal value in the [0,1] range will determine its mutation onto a different

audio loop index i. If the decimal value is ≤ χ , another loop from the dataset S is randomly

fetched, or, in other words, its index i is replaced by a random index number in the [1,L] range.

A clonal selection performs an elitist optimization of the population to retain the best-ranked

mashups per clone. To this end, all clone mashups are evaluated using Eq. ,3.8 and the mashup

with the smallest evaluation value Ep per clone is retained in the population. Then, the population’s

average fitness is computed to assess if the local region optimization of the mashups has stabilized.

To compute the stabilization of the population, we compute the average error of the population

evaluation using Eq. 3.11, which computes the modulo of the ratio between the average evaluation

values of the previous iteration to the current iteration subtracted from unity. If the average error

is ≤ v where v = 0.001, the population is said to have stabilized, and the algorithm continues to

affinity suppression and population expansion. If the condition does not hold, a new iteration with

a clonal selection of the population is performed.

Average Error =
∣∣∣∣1− Average of Old Evaluation

Average of Evaluation

∣∣∣∣ , (3.11)

To maintain diversity, AIS opt-aiNet adopts the suppression operator to excludes mashups p

with high affinity, or below a given distance threshold t in the feature space. Pairwise mashup
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distances in the feature space are computed as the angular distance A of the weighted combination

of harmonic T (k) vectors and the linear combination of rhythmic r(b) vectors using Eq. 3.12 and

3.13, respectively. Prior to the angular distance computation each mashup p is represented by the

concatenated (Tc(k),rp(b)) vector.

Tp(k) = ∑
i=1

aliTli(k) (3.12)

rp(b) = ∑
i=1

rli(b) (3.13)

Hence, suppression excludes mashups p (candidate mashups) within a given radial range,

retaining the local optima mashups that minimize the value of Ep in Eq. 3.8 in multiple regions of

the search space. By excluding similar mashups p from the immune network, we ensure diversity

in the population. The remaining mashups in the immune network after suppression are referred

to as memory cells.

The AIS opt-aiNet includes two stopping criteria conditions. Whenever one condition is met,

the iterative method is stopped, and the population is output. The system’s output is the total

number of mashups in the population ranked by their evaluation Ep value in ascending order, i.e.,

from the best to worse ranked local optima. The stopping criteria include the user-defined maxi-

mum number of interactions u or once the number of memory cells in a population has stabilized

over two consecutive iterations. If the number of memory cells does not stabilize, a percentage

d = 40% of random network cells is appended to the population to expand the immune network

capacity to explore the space further.

Finally, once the algorithm outputs a population of local optima mashups, each mashup p is

synthesized by overlapping its component audio loops li, retrieved from the loop dataset S given

their index i.

3.6 Representation and Execution

Before running the model, users must gather two datasets of harmonic and rhythmic loops. When

running CoDi, the user specify the number of runs of the model, as this number will determine if

the mashup generation comes with context – values higher than 1 – or not – value of 1.

After the search algorithm finishes, the solution dataset is presented to the user while asking

if the content should be played, or not. If the user accepts playing the entire run of the model,

auditory information of the entire mashup is represented – such as the name and ID of each loop

gathered proportionalyl to the number of layer (in our case, two of harmonic content and one

of rhythmic content) – while it is playing. When finished, or when the user decides to not play

the mashup content, users must choose the index of the mashup of which they desire whether

for compositional purposes, or pure enjoyment of pleasantness. Figure 3.8 represents the three

mentioned phases of CoDi, from top to bottom.



42 CoDi

Fi
gu

re
3.

8:
T

hr
ee

di
st

in
ct

ph
as

es
of

ru
nn

in
g

C
oD

i.
To

p
fig

ur
e

sh
ow

s
th

e
in

iti
al

qu
es

tio
n

fo
r

in
iti

al
nu

m
be

r
of

ite
ra

tio
n.

M
id

dl
e

fig
ur

e
de

no
te

s
th

e
us

er
ac

ce
pt

in
g

th
e

ou
tp

ut
of

th
e

ge
ne

ra
te

d
m

as
hu

ps
,a

s
th

e
m

od
el

sh
ow

s
th

e
pa

th
of

ea
ch

se
le

ct
ed

lo
op

fo
rt

he
ge

ne
ra

tio
n.

L
ow

es
tfi

gu
re

re
pr

es
en

ts
au

di
to

ry
in

fo
rm

at
io

n
of

th
e

m
as

hu
p

pl
ay

in
g.



3.7 Summary 43

3.7 Summary

In this chapter, we propose CoDi, adopting the opt-aiNet to promote the computational efficient

search for musical mashups resulting from the recombination of musical audio loops. This model

follows a multimodal architecture for an effective search space for diversity and compatibility with

a procedure developing a feature extraction from musicological metrics within the CoDi model,

and how that generates a feature dataset for evaluation.

We develop evaluation functions regarding music generation for vertical dimension – or non-

context generation – and horizontal dimension – or context generation. CoDi’s computational

explaining of the developed opt-AiNet algorithm is additionally leveraged, upbringing the opti-

mized search space.
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The current chapter is based on the research paper [12] which the author co-authored. The

contents used are solely from the author.

As shown in previous studies [27, 39], compatibility between musical loops in a mashup is

fundamental to user enjoyment. However, diversity in mashup creation is equally important in

promoting multiple solutions from which users can select, taking into account their personal pref-

erences. Therefore, an application for assisting users in mashup creation should provide multiple

and perceptually different solutions. Section 4.1 mentions an initial developed phase of the disser-

tation where three models based on AIS, GA, and BF-based approaches searching for compatibil-

ity, diversity, and an efficient computational performance.

In this context, we adopted an intermediate evaluation procedure, with objective measures to

evaluate the 1) compatibility, 2) diversity, and 3) computational performance of the developed GA

and BF models compared to an initial developed AIS model in Pure Data, miXmash-AIS, with

two layers of auditive content. All systems use the same feature space, which results from the

combined harmonic H and rhythmic R representations. More importantly, the same evaluation

function in Eq. 3.8 to assess the compatibility of a mashup Ep. Similar to miXmash-AIS, CoDi

returns mashups ordered by fitness value.

A dataset of 171 drum intrumental drum loops were added to a dataset of 551 hip-hop instru-

mental loops from Apple Loops which are commonly distributed with proprietary Apple Digital

Audio Workstation software, such as Garageband and Logic 1 was adopted as our dataset S. In-

cluded loops range between five to 24 seconds and feature diverse tempo (or bpm) and multiple

1https://support.apple.com/guide/logicpro/apple-loops-in-logic-pro-lgcp734a05f6/
mac, last access on 10 May 2021.
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instruments within a large set of spectral regions, roughly in the [40,10000] Hz range. We have de-

fined CoDi’s AIS parameters to withstand an initial population of 30 cells and a value of 300 max

iterations. The number of clone generations – for each network cell – is set to 15, and respectively

with an affinity threshold of t = 0.1, as mentioned in Chapter 3.

4.1 Implemented Models for Objective Evaluation

Following the development of a research paper regarding the best choice of algorithms for an opti-

mized musical space, a development of three distinct algorithmic models were developed in Pure

Data, as mentioned. These models are based on the opt-AiNet AIS algorithm, as well as a GA

approach, and a BF-based approach. These models were algorithmic comparisons with the same

evaluation function analysing harmonic and rhythmic compatibility and diversity within a large

dataset of loops.

The motivation to pursue such a model is to:

• Tackle current scalability limitations in state-of-the-art (brute force) models.

• Enforce compatibility, i.e., recombination quality, of audio loops

• Create a pool of diverse solutions that can accommodate personal user preferences or pro-

mote different musical styles.

A proposition was made while developoing miXmash-AIS, a multimodal music mashup opti-

mization system for loop recombination at scale. It adopts the AIS opt-aiNet algorithm to leverage

compatible and diverse mashups while addressing the scalability issues in existing state-of-the-art

BF solutions for computational music mashup creation. In promoting a diverse set of optimal

mashups, the system can account for personal preferences and different stylistic traits. The con-

ducted evaluation compared the proposed system to a standard Genetic Algorithm (GA) and a

Brute Force (BF) approach. Figure 4.1 shows a visual representation of the Pure Data environ-

ment of miXmash-AIS.

An objective comparison of AIS opt-aiNet to a standard GA and BF approaches in the task

under study denotes the primacy of the AIS opt-aiNet in finding local and global optimal mashups,

closely matching the compatibility values of the BF approach.

4.2 Quantitative Evaluation - Intermediate Experiment

4.2.1 Evaluating Compatibility

To objectively assess and compare the compatibility in all models under evaluation, we average the

evaluation function values Ep of the 10 best-ranked mashups, thus providing an average indicator

of the model compatibility. The smaller the average compatibility value, the better it complies with
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Figure 4.1: Pure Data environment of the developed miXmash-AIS model

the objective criteria we aim to minimize, i.e., harmonic H and rhythmic R compatibility, and no

repeating (overlapped) loops F . Furthermore, in the AIS models, we ran the algorithms 10 times

to capture the diversion in optimization convergence mechanics across multiple runs. Diversion

is the optimization is expected to be more clearly noticeable in the results of the GA. The AIS

opt-aiNet algorithm also does not guarantee similar results with each run. However, the affinity

suppression and population expansion in AIS opt-aiNet algorithm minimize this behavior.

4.2.2 Evaluating Diversity

To objectively measure diversity in the three models under evaluation, we inspect distance rela-

tions across mashups in their feature space, i.e., within the same space as the affinity is calculated.

Mashup locations in the feature space reflect perceptual relations amongst the regions in which

they are found. Therefore, it is possible to associate diversity in the feature space with the concep-

tion of diversity along the perceptual dimensions, correlated with adopted harmonic ad rhythmic

features. We propose using the average distance across all unique pairwise mashups from the 10

best-ranked evaluation set in each model. A total of 45 distance values are averaged per model.

4.2.3 Evaluating Performance

The computational performance of the models is instrumental to the task of computational mashup

creation at scale due to the combinatorial explosion of the loop recombination number. Depending

on the size of the loop dataset L, defined a priori by the user by selecting the dataset, it affects the
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complexity of the problem – e.g. a BF approach in the dataset under consideration, which includes

551 loops, results in 151525 unique combinations for mashups with two overlapping loops.

The associated computational runtime cost of each iteration for AIS under evaluation can be

defined as O(LV ), where L is the current population size, and V is the length of the combined

rhythmic and harmonic representation vectors. The affinity suppression in AIS has an additional

computational cost of O(L2V ). The BF approach does not feature multiple iterations, and its

computational cost can be defined as O(L2V ). The population in CoDi’s and miXmash-AIS algo-

rithm is defined by the user (previous systems [17, 65] adopt values in the [10,30] range), whereas

both systems stand on value. These costs indicate greater computational gains when adopting an

approach with GA than AIS, whose affinity suppression adds complexity.

On the research conducting the AIS, GA, and BF versions of miXmash, the AIS and GA

suggested substantial gains compared to the BF. However, the former algorithms are dependent

on their ability to converge. Therefore, to assess the performance of the models in the real-case

scenario of Apple Loop collection recombination, we computed, for both CoDi and miXmash-

AIS, the average CPU usage in milliseconds (ms) over 10 runs. Furthermore, we equally report

the number of interactions and the number of population cell count at convergence, which is

particularly relevant for AIS due to the dynamic behavior of its population number adaptation.

4.3 Qualitative Evaluation - Perceptual Test

In order to perceptually assess the vertical and horizontal mashups developed by the CoDi model

and its evaluation function, a conducted online listening test was built for each multimodal struc-

ture. The principal aim of this experiment if to study and control the relationship between the

user enjoyment of the mashup solutions outputted and their capability of mashability. We want to

measure musical quality and sense of pleasantness of CoDi from harmonic and rhythmic feel.

To theoretically explore this experiment, users are ideally listening and evaluating each mashup

creation - whether an individual mashup (vertical) or a continuous generation of two or more con-

nected mashups (horizontal) from the same initial solution. However, there are some impractical

issues regarding that approach. Initially, it is difficult to ask listeners to judge their level of enjoy-

ment of a mashup with several layers of harmonic mixing. Furthermore, creating several mashup

combinations can create a long and tiring experience for user participants. Third, the estimated

mashability is, through empirical observation, connected to the likelihood of very high harmonic

and rhythmic compatibility. Thus, it is not trivial to meaningfully relate the concept of mashability

between long mashups with different sections of individual mashup combinations within the same

generation.

Nevertheless, an ordered output of evaluation values, or mashability within each individual

mashup, is denoted. Hence, in order to prevent the issues referred above, we conducted two

different sections for the listening experiment studying the multimodal approach of a singular

mashup, or a continuous mashup of two of more generations from the same initial solution.
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4.3.1 Listening Experiment

To create the mashup dataset employed in the experiment, a total of 20 mashups were randomly

picked – 10 for vertical loop combinations, and 10 for continuous horizontal mashups (which

means the initial seconds are the same for every output). Each output comes from a three-layer mix

of audio files from the large dataset of 722 (171 rhythmic plus 551 harmonic) instrumental loops.

For each mashup generated, we calculate and rank the level of mashability from a normalized

range of [0,1], and picked the total 10 vertical and horizontal outputs from low, middle, and high

values.

The purpose is to estimate a representative scenario using CoDi for within the human-in-the-

loop systems and Creative-MIR, where the best result is an automated music mashup creation

result given by CoDi, where lower ranked results represent the best recommendations minimizing

the cost.

The experiment is conducted as follows: participants are asked to listen to each randomized

mashup that is presented to them – each mashup has three layers of auditory mixing – with the

possibility of replaying the listening audio file at any instance. Next, users conducting the exper-

iment must rate their degree of pleasantness in a rating from 1-10 which denotes the enjoyment

while listening to the mashup and, efficiently, how successful the mixing of the audio files was.

This happens for each section in the multimodal approach – vertical and horizontal. As we have

two different evaluation functions for CoDi, the horizontal evaluation section takes 2 full itera-

tions of CoDi and presents 10 mashup generations from the initial mashup, taking the same initial

18 seconds. In this case, we are evaluating the function through the degree of pleasantness and

continuity of the mashup generation from CoDi’s model.

In total, a set of 100 participants – musicians and non-musicians – were recruited to take the

listening test. The duration of the questionnaire, in the QuestionPro platform, took a total to 5-10

minutes for participants. As mashups are appreciated independently of any musical training, this

was not a criterion for selecting participants, however the concern was to explain to participants

what the term "loop", "pleasantness", and “music mashup” meant. To prevent order effects, the

archive of the 20 total vertical and horizontal mashup generations were presented in a distinct

random order for each participant.

Section 4.4 gives specific attention to the results of the listening test. In the post completion of

the listening test, some participants gave their general opinion about CoDi, its generated mashups

and how even the worst results can sound pleasant for different users.

In Appendix B, a list of figures showing the developed perceptual listening survey, and the

procedure along the completion of it, from start to end.

4.3.2 Correlation Analysis - Pearson Correlation and R-Squared

To investigate the results of the listening test we assess the mean ratings that each participant

addressed per mashup generation. Regression analysis is a form of infering statistics in models of
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linear regression. Firstly, to gather the total values of the 100 participants and ascertain the average

of each rating for the generated mashup.

Pearson’s correlation coefficient is a test measuring the statistical relationship between two

continuous variables. Known as the best method of measuring the association between variables

of interest, it is based on the method of covariance giving information about the magnitude as well

as the direction of the relationship between them. Cases must be independent to each other and

variables must be linearly related. An assertion of this information can be generated through a

scatterplot checking if it possesses a relatively straight line. P-values help determine if the rela-

tionship in the sample is also existing in larger populations. For each independent variable, the

p-value tests the null hypothesis that the variable has no correlation with the dependent variable.

If no correlation is found, there is no existing association between the changes in the indepen-

dent variable and the shifts in the dependent variable – insufficient evidence that an effect in the

population is made.

If the p-value for a variable is less than the significance level, the information data provides

evidence that is enough to reject the null hypothesis for the entire population – essentially, the

hypothesis favors that there is a non-zero correlation where if independent variable changes, there

is an association with the variation in the dependent variable in the population. Nevertheless, if

high p-values are found, insufficient evidence is present within the gathered data to conclude any

existing correlation.

The coeffiecient of the regression is gathered from the sign and value between each indepen-

dent and dependent variable. Positive coefficients explain that as values from the independent

variable increase, the dependent variable’ mean increases. Negative coefficients suggest that if the

independent variable increases, the dependent variable tends to decrease.

The following items assert the degree of correlation coming from the Pearson coefficient cor-

relation values, which can be grasped through the linear slope:

• Perfect - If the correlation is near ± 1. As a variable increases, the other variable also

increases (if positive) or decrease (if negative).

• High degree - If the coefficient value lies between ± 0.50 and ± 1.

• Moderate degree: If the value lies between ± 0.30 and ± 0.49.

• Low degree: When the value lies below ± 0.29.

• No correlation: Value is zero.

R-squared – or coefficient of determination – evaluates scattered data points along the fitted re-

gression line. For the same dataset, higher R-squared values represent smaller differences between

the observed data and the fitted values.

The following items assert the meaning behind the values of the coefficient of determination:
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• 0 - a model that does not explain any of the variation in the response variable around its

mean. The mean of the dependent variable predicts the dependent variable as well as the

regression model.

• 1 - a model that explains all the variation in the response variable around the mean.

The higher the coefficient of determination, the better the regression model fits the values

coming from the experiment. Nevertheless, a good model can have a low value, and contrarily, a

biased model can have a high value. This is why we address the randomization procedure of the

mashups inside the survey, for each participant.

4.4 Results

In this section we address the results for both experiments made throughout the development phase

– an intermediate study on implementend algorithmic models in Pure Data and their capabilities of

searching through large archive and finding optimal solutions, and finally, a listening experiment

reaching 100 participants, this time for the CoDi model developed and its generated mashups both

vertically and horizontally.

4.4.1 Intermediate Experiment Results

The following tables denote the intermediate experiment taking in account the study upon the best

algorithmic model searching optimization in a large archive of audio file. Tables 4.1, 4.2, and 4.3

present the results for the dimensions under evaluation – compatibility, diversity, computational

performance – for each AIS, GA, and BF models. A boxplot was generated for each dimension to

be evaluated, correspondingly. The two models of AIS and GA ran 10 times to account for their

variability in local optima convergence. From each run of the algorithms, results account for the

10 best-ranked mashups. The BF model performs the same at every run of the algorithm, since

it computes all possible loop dataset combinations – meaning the algorithm was necessary to run

only once.

By comparing the average compatibility values across the AIS (1.368) and GA (2.694) models,

AIS outperforms the standard GA model with a significant reduction of the compatibility value,

finding local minima in the search space with smaller – and therefore, optimal – compatibility

values. These results reinforce the importance of the multimodal search in guaranteeing a com-

prehensive search across the search space, which typically guarantees enhanced access to global

and local optima. Conversely, the population of the GA algorithm typically converges to the same

region and does not guarantee to converge to local optima. The average compatibility of the BF ap-

proach (.774) is lower than the AIS (and GA), thus presenting a set of more compatible mashups

in its 10 best-ranked solutions. However, we must account the AIS is enforcing the exclusion

of mashup solution in the same region of the feature space, which denotes perceptually similar

mashups. Therefore, it can be excluding compatible and perceptually similar mashups, as it only

retains the optimal mashup in a surrounding affinity region. The lower median affinity value of the
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Table 4.1: AIS opt-aiNet objective evaluation.

Run Count (#) Iteration Count CPU Cell Count Average Median Affinity
Time (ms) Compatibility

1 35 2953 11 1.368 1.640
2 30 2593 12 1.528 1.639
3 60 4547 12 1.353 1.667
4 40 3250 13 1.556 1.655
5 75 6469 14 1.228 1.638
6 140 9749 14 1.451 1.613
7 80 7328 18 1.323 1.676
8 160 11984 12 1.259 1.602
9 95 8484 14 1.370 1.582
10 140 9625 12 1.247 1.529

Total Average - 6708 - 1.368 1.624

Table 4.2: Genetic algorithm objective evaluation.

Run Count (#) Iteration Count CPU Cell Count Average Median Affinity
Time (ms) Compatibility

1 200 1578 20 2.921 0.441
2 200 1422 20 2.403 0.356
3 200 1313 20 3.072 0.509
4 200 1422 20 2.537 0.226
5 200 1141 20 2.644 0.278
6 200 1000 20 2.647 0.103
7 200 1453 20 2.610 0.458
8 200 1891 20 2.568 0.398
9 200 1266 20 2.780 0.745
10 200 1797 20 2.756 0.865

Total Average - 1428 - 2.694 0.438

Table 4.3: Brute force objective evaluation.

Run Count (#) Iteration Count CPU Cell Count Average Median Affinity
Time (ms) Compatibility

1 - 151523 - 0.774 1.494

BA compared to the AIS reinforces this assertion, as it indicates the found 10 best-ranked mashups

in the BF have smaller diversity. Figure 4.2 expresses a boxplot for the three algorithmic models,

in which this dimension is visually justified with the data collected.

The median affinity for the three AIS (1.624), GA (.4379), and BF (1.494) denote a clear

advantage of the AIS in promoting diversity in the 10 best-ranked mashups as it finds mashups

whose global distances in the feature space are more spread then the remaining models. The GA
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performs very poorly in terms of diversity as it typically converges most solutions towards a unique

local optimal region in the search space. Equal to compatibility, Figure 4.3 shows a boxplot for

the diversity dimension and the consequential behaviour of the three AIS, GA and BF models.

By comparing the computational efficiency of the three models given by the CPU time to

complete a set of mashup solutions (i.e., the set of optima mashup solutions in AIS or GA and

the full set of pairwise comparison in BF), some gains are in the average CPU time of GA (1428

ms) and AIS algorithm (6698 ms) compared to the CPU time of the BF (151523 ms). The GA

could even be further optimized as no stopping criteria have been defined. The observation that

the evaluation function Ep needs several iterations to improve the population in the latter stages

of convergence. If no diversity is required, GA clearly stands as the best optimization strategy

due to its efficiency. The BF approach presents an obvious high computational cost in such a

combinatorial explosion problem. By inspecting the diverse iteration count in the AIS opt-aiNet

and the resulting average compatibility values in each run, we can denote the capacity of stopping

criteria in the algorithm to assess optimal convergence conditions.Figure 4.4 shows a boxplot for

the CPU Performance of the three AIS, GA and BF models.

Giving the final regards to this experiment, the opt-aiNet AIS would be an appropriate choice

for the algorithmic model implementation of CoDi. While the GA stands as the most efficient

algorithm, its poor results in terms of compatibility reinforce the primacy of the AIS opt-aiNet in

efficiently finding optimal compatible loop mashups. Furthermore, the AIS opt-aiNet showed to

promote a diverse mashup population, outperforming both GA or BF approaches. The AIS opt-

aiNet promotes diversity to a greater degree than the GA and the BF approach. Finally, GA and

AIS have significant computational performance gains compared to the BF approach.
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Figure 4.2: Boxplot Overview of the dimension related to Compatibility in the Objective Evalua-
tion
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Figure 4.3: Boxplot Overview of the dimension related to Diversity in the Objective Evaluation



56 Evaluation

Figure 4.4: Boxplot Overview of the dimension related to CPU Performance in the Objective
Evaluation
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4.4.2 Listening Experiment Results

In order to assess the effectiveness of the evaluation functions for both vertical and horizontal

dimensions, we raised the development of a listening experiment survey reaching 100 participants

found in Annex B. After gathering all survey information, we employed an objective assessment

on the correlation degree between the values of the evaluation function from CoDi, and the mean

of the perceptual rankings made by the participants.

It followed through a qualitative online listening perceptual tests on 100 users – both non-

musicians and musicians – measuring the value of pleasantness , which ensure quality is guaran-

teed at first hand. Secondly, to infer the possibility to compare the solutions in the implemented

musical space. Initial developed models in Pure Data [73], mentioned further in Chapter 3, allowed

for a study on three models based on AIS, GA, and Brute-force approach comparing diversity,

compatibility, and computational performance.

4.4.2.1 Vertical Dimension

Starting from the Vertical dimension section of the perceptual test – with an evaluation function

of harmonic, rhythmic, and spectral balance – Figures 4.5 denotes a scatter plot taking in account

each of the 10 mashups’ ID, and the mean average of all the 100 submissions and ranking values

for that corresponding mashup. Note that we submitted each mashup from the best minimized

value to the worst, which entails for the perceptual degree of pleasantness. For participants, the

mashup IDs were random so that no external manipulation gets across the results, and is handled.

The results have shown that since we are minimizing the cost values and searching for diverse

and compatible audio, we observe that if the evaluation function values increase, the values of

pleasantness decrease, and vice-versa. The CoDi model generates mashups which are not, in fact,

completely inaudible, and looking at the graphics at first hand, the linear correlation is accordingly

variating with the levels of harmonic mixing. Additionally, by calculating the standard deviation

and keeping the mean average value for each mashup, we employ for an error graph in Fig 4.6

showing the discrepancy of values for different users, as some may enjoy mashups with worse

values of evaluation and overall harmonic mixing.

The measurement of the statistical study with the Pearson Correlation and the Coefficient of

Determination, R-squared, is as observed in Figure 4.7 in which the representation of the linear

regression confirms the proportional correlation when the evaluation values increase – affecting

the harmonic mixing – and the survey rating diminish too. The information gathered makes notes

of high values of r-squared (approx. 0.982) in which the CoDi is a reference model that explains

all the variation in the response variable around the mean. As mentioned, the higher the coefficient

of determination, the better the regression model fits the values coming from the experiment. In

regards to the p-value of approximately zero, CoDi’s hypothesis makes a favorable assumption

that there is a non-zero correlation where if the independent variable of its objective evaluation

changes, there is an association with the variation in the dependent variable that is in the percep-

tual experiment filled by the population. Furthermore on the coefficient regression, an observed
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negative coefficient suggests that if the independent variable increases, the dependent variable

tends to decrease – which is the case for the computational mashup creation model that is CoDi.

Figure 4.5: Scatter plot of the original data gathered from the Vertical dimension of the perceptual
test survey.

Figure 4.6: Error graph of the data with standard deviation calculation, gathered from the Vertical
dimension section of the survey.
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4.4.2.2 Horizontal Dimension

As the evaluation function for the Horizontal Dimension takes more of musicological metrics –

with capabilities of MFCC – while helping the continuation of the mashup generation, another

section of the perceptual experiment was conducted, evaluating the degree of pleasantness and,

additionally, continuity as a form of a coherent continuous variation and generation of the mashup,

for 2 full iterations of CoDi. Figure 4.8 also informs a scatter plot with each of the 10 mashups’

ID, and the mean average of all the 100 submissions and ranking values for that corresponding

mashup. Equal to the vertical evaluation, each mashup was submitted from the best minimized

value to the worst, which entails for the perceptual degree of pleasantness and continuity. Mashup

IDs were random so that no external manipulation affects results.

The results have shown that as the horizontal evaluation function’s values increase, the values

of pleasantness and continuity decrease, and vice-versa. The continuous generation of the CoDi

model produces mashups which are not, in fact, completely inaudible following more than 1 iter-

ation, and looking at the graphics at first hand, the linear correlation is accordingly variating with

the levels of harmonic mixing. Additionally, by calculating the standard deviation and keeping the

mean average value for each mashup, we employ for an error graph in Fig 4.9 showing the discrep-

ancy of values for different users, as some may enjoy mashups with worse values of evaluation

and overall harmonic mixing.

As observed in Figure 4.10, the values of the Coefficient of Determination, R-squared, are

equally high as the vertical dimension (approx. 0.913) – in which the representation of the linear

regression confirms the proportional correlation when the evaluation values increase – affecting the

harmonic mixing and continuity – and the survey rating diminish too. The information gathered

makes notes of high values of r-squared in which the CoDi is a reference model that explains all

the variation in the response variable around the mean. As mentioned, the higher the coefficient

of determination, the better the regression model fits the values coming from the experiment.

CoDi’s p-value of approximately zero in the Horizontal Dimension makes CoDi’s hypothe-

sis favorable to a non-zero correlation – if the independent variable of its objective horizontal

evaluation changes, there is an association with the variation in the dependent variable that is in

the perceptual experiment filled by the population. Furthermore on the coefficient regression, an

observed negative coefficient suggests that if the independent variable increases, the dependent

variable decreases too – which is the case for the computational mashup creation model that is

CoDi.
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Figure 4.8: Scatter plot of the original data gathered from the Horizontal dimension of the percep-
tual test survey.

Figure 4.9: Error graph of the data with standard deviation calculation, gathered from the Hori-
zontal dimension section of the survey.
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4.5 Summary

Two evaluations of qualitative and quantitative nature make the case to leverage compatibility and

diversity in large musical corpora of audio files – with metrics of harmony, rhythm and timbre –

in a multimodal structure. First, an intermediate experiment and development of three algorithmic

models – in Pure Data – of AIS, GA and BF approach. This assessed the best algorithm for

raising an optimized search and evaluation function on compatibility, diversity, and computational

performance, where AIS stands as main candidate. A final experiment with the CoDi model,

developed in Python, employed a listening test reaching 100 participants, to assess the degree of

pleasantness for the vertical dimension of the mashup generation – with only one iteration of the

CoDi model – and additionally to that, the feeling of continuity from the horizontal dimension

which took two iterations of CoDi.
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Chapter 5

Conclusions

5.1 Contributions for Areas of Interest . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

In this dissertation, we propose a functional prototype for automatic generation of music as re-

combinations of loops at scale. It optimizes processes with large audio files in a continuous space

of descriptors, with the aid of AIS algorithm opt-aiNet. Furthermore, we raise the knowledge of

computationally structured metrics for defining musical style in audio files along several combi-

nations possible of output. We leverage an exhaustive reading on state-of-the-art solutions for the

issues of compatibility, diversity and computational performance, and mention several musical

systems and advantages to the use of Creative-MIR techniques for automated music generation.

Additionally to illustrate the considerable prospects of signal processing in the sense of music, and

for subsequent research of Creative-MIR.

We proposed CoDi, a multimodal music mashup optimization system for loop recombination

at scale. It adopts the AIS opt-aiNet algorithm to leverage compatible and diverse mashups while

addressing the scalability issues in existing state-of-the-art Brute-Force solutions for computa-

tional music mashup creation. In promoting a diverse set of optimal mashups, the system can

account for personal preferences and different stylistic traits. An objective comparison of AIS

opt-aiNet to a standard Genetic Algorithm and Brute-Force approaches in the task under study

denotes the primacy of the AIS opt-aiNet in finding local and global optimal mashups, closely

matching the compatibility values of the BF approach. The AIS opt-aiNet promotes diversity to

a greater degree than the GA and the BF approach, such as GA and AIS have significant com-

putational performance gains compared to the BF approach. Furthermore, a subjective evaluation

through a perceptual experiment was employed to determine the relationship between estimated

user enjoyment as pleasantness as the musicological metrics of CoDi. Results have shown high

correlation between the survey submissions and the values of the evaluation function.

65
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5.1 Contributions for Areas of Interest

With this disseration we acknowledge contributions for a scientific community, but also for the

artistic community within the human-in-the-loop approach of CoDi’s model. It is a supportive

tool in the compositional process of musicians and non-musicians which look for diverse and

compatible mashups in a multimodal optimization for context generation and non-context genera-

tion. As a computational music mashup model developed in a basis of programming informatics,

we denote that this research makes improvement within the Creative-MIR dimension.

In the given literature review, we leverage that musicological metrics as means of computa-

tion have not been fully acknowledged and constructed. However, with the development of this

work, we address that the present metrics of harmonic, rhythmic, and timbral content can still

raise compatibility and diversity in a large-scale feature space of solutions. The feature extraction

process has proven to be a good candidate to continue the development of this model and many

other systems based on computational generation of music.

5.2 Discussion

While the issue of consonance has been extensively studied, its relevance to the direction of music

composition and harmonic compatibility is rarely addressed. Most of prototypes are analyzed in

terms of consonance/dissonance by rating chords and afterwards the generated ranking is associ-

ated with human perception tests. Driven by immunological values, opt-aiNet produces a variety

of high quality options at the same time as retaining diversity. This inherent property of variety

enables opt-aiNet to bring convergence to all the optimum, both global or local of the fitness func-

tion, which expresses as compositions most of which are identical to the goal but distinct from

others. The AIS generates several selections when going through sample-based sounds, instead

of finding a single solution that is limited by parameterizations specified a priori, extending the

artistic capacity of automatic generation of music.

While the review on computational music mashup systems has almost exclusively focused

on methodologies for searching and retrieving musical audio content from large musical audio

archives, we must acknowledge that musical audio transformations are an important dimension

to consider in the future. Existing tools and methods incorporate such transformations to a small

degree and claim limitations in the resulting audio due to the artifacts introduced by these audio

processing techniques (e.g., time-stretching, pitch-shifting, or spectral filtering). Existing tools ac-

knowledge the need for multi-attribute optimization search within a pool of musical audio sample

candidates, yet very little knowledge of the interaction across these attributes is known.

Curating multi-track archives to understand the underlying phenomena of musical audio re-

combination can promote models that veridically assess the musical layers interaction and promote

better predictive models, namely by using deep learning architectures. Ultimately, advancing en-

hanced models of musical audio compatibility can foster the creative composition impetus across
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a broader range of users beyond highly trained composers or producers and facilitate the time-

consuming and demanding search across the growing number of musical audio content.

5.3 Future Work

In the future, we are planning to extend the current evaluation so it will explore the addition of

timbral compatibility criteria to the evaluation function Ep without narrowing the model’s capacity

to promote diverse solutions. Additionally, to keep assessing for an evaluation function with

added musicological metrics contemplating for continuous generation of music mashups, as we

investigate further the perceptual difference that mashups that are more pleasant than others, in

which they sound aesthetically better.

As opt-aiNet has proven to be a prominent candidate for an algorithm composition directed

for computational music mashup models, there are several other algorithms aiding in areas such

as music recomendation and music genre generation. Therefore, new features are pathways to

more consistent models building onto fully functional frameworks – going from human-in-the-

loop approach to the ease of any user – in which users can either generate or listen to music

mashups at indefinite times.
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Appendix A

Notable Music Forms

Notable Musical Forms
Form Structure Further Details
Fugue Contrapuntal form
Strophic A A’ A” A”’
Binary AA’, AB, AAB, ABB, AA’BB’
Ternary ABA, ABA’
Rondo ABACADA... A:’chorus’, B,C,D:’verse’
Sonata form AB-Dev-AB A:’principal’ theme
Rondo-Sonata form AB-AC-AB B:’secondary’ theme

Table A.1: Visualization of most notable musical forms. (Source from Wu [98])
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Appendix B

Online Survey - Listening Test

Figure B.1: Introduction of survey.
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Figure B.2: Section introduction for vertical mashups.

Figure B.3: Evaluation procedure of survey for vertical mashups ranking 1 (lowest) to 10 (highest)
pleasantness.
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Figure B.4: Section introduction for horizontal mashups.

Figure B.5: Evaluation procedure of survey for horizontal mashups ranking 1 (lowest) to 10 (high-
est) of pleasantness and continuation.

Figure B.6: End of survey.
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