55,651 research outputs found

    Rhodium Doped Manganites : Ferromagnetism and Metallicity

    Get PDF
    The possibility to induce ferromagnetism and insulator to metal transitions in small A site cation manganites Ln_{1-x}Ca_xMnO_3 by rhodium doping is shown for the first time. Colossal magnetoresistance (CMR) properties are evidenced for a large compositional range (0.35 \leq x < 0.60). The ability of rhodium to induce such properties is compared to the results obtained by chromium and ruthenium doping. Models are proposed to explain this behavior.Comment: 11 pages, 8 figure

    Selective Cytotoxicity of Rhodium Metalloinsertors in Mismatch Repair-Deficient Cells

    Get PDF
    Mismatches in DNA occur naturally during replication and as a result of endogenous DNA damaging agents, but the mismatch repair (MMR) pathway acts to correct mismatches before subsequent rounds of replication. Rhodium metalloinsertors bind to DNA mismatches with high affinity and specificity and represent a promising strategy to target mismatches in cells. Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands in cells deficient in MMR versus those that are MMR-proficient. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle, monitored by flow cytometry assays, and induction of necrosis, monitored by dye exclusion and caspase inhibition assays, that occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anticancer agents

    Rhodium colloidal suspension deposition on porous silica particles by dry impregnation: Study of the influence of the reaction conditions on nanoparticles location and dispersion and catalytic reactivity

    Get PDF
    Rhodium composite nanomaterials were synthesized by an innovating process called dry impregnation in a fluidized bed. It consists in spraying an aqueous colloidal suspension of rhodium on silica porous particles. The use of this precursor solution containing preformed nanoparticles avoids calcination/activation step. Different composite nanomaterials were prepared displaying various metal loadings. The operating conditions were tuned to modify Ï„s, the solvent vapour saturation rate value, in order to influence the deposit location: either uniform on the whole silica particles or at the particles surface like a coating. Ï„s is defined as the ratio between solvent content in the bed atmosphere and the maximum solvent content. The obtained samples were investigated in catalytic hydrogenation of aromatic compounds under very mild conditions. Their catalytic performances were compared to those of the original colloidal suspension in one hand and of a similar catalyst prepared through wet impregnation in another hand. Interesting activity and selectivity were observed.This illustrates the interest of the dry impregnation method: this way allows an easy control of the metal loading as well as of the metal loading location in the support particles. Moreover, the support particle size and morphology are preserved

    Periodic density functional study of Rh and Pd interaction with the (100)MgO surface

    Get PDF
    The adsorption geometry and electronic properties of palladium and rhodium atoms deposited on the regular (100)MgO surface were analyzed by means of periodic DFT calculations using local, gradient-corrected and hybrid (B3LYP) functionals. Spin-polarized computations revealed doublet spin state of Rh atom to be the most stable electronic state for the adsorbed rhodium atom on (100)MgO. The preferred adsorption site of the metal (Pd and Rh) atoms was found to be the site on top of the surface oxygen atoms. A relatively stable geometry for the adsorption of the Pd and Rh in a bridge position above the two surface oxygens was found as well. The electronic structures suggested partly covalent bonding with contribution from electrostatic attraction between the metal and the oxygen atoms for both optimized structures. Small charge transfer was obtained from the support to the Pd and Rh metal atoms. The calculations showed that rhodium was bound stronger to the substrate probably due to stronger polarization effects

    Model arenes hydrogenation with silica-supported rhodium nanoparticles:The role of the silica grains and of the solvent on catalytic activities

    Get PDF
    Silica-supported rhodium-based nanoheterogeneous catalysts were easily prepared by impregnation with a pre-stabilized colloidal suspension. The resulting catalysts contain rhodium nanoparticles well-dispersed in the silica pores with a mean size of 5 nm. Influence of the silica grains size and of the solvent was investigated in arenes hydrogenation. It appeared that the size of the silica grains has a minimal influence on the reaction rate but the supported nanocatalysts displayed higher TOFs in hexane than in water

    Crystal structure, electronic, and magnetic properties of the bilayered rhodium oxide Sr3Rh2O7

    Get PDF
    The bilayered rhodium oxide Sr3Rh2O7 was synthesized by high-pressure and high-temperature heating techniques. The single-phase polycrystalline sample of Sr3Rh2O7 was characterized by measurements of magnetic susceptibility, electrical resistivity, specific heat, and thermopower. The structural characteristics were investigated by powder neutron diffraction study. The rhodium oxide Sr3Rh2O7 [Bbcb, a = 5.4744(8) A, b = 5.4716(9) A, c = 20.875(2) A] is isostructural to the metamagnetic metal Sr3Ru2O7, with five 4d electrons per Rh, which is electronically equivalent to the hypothetic bilayered ruthenium oxide, where one electron per Ru is doped into the Ru-327 unit. The present data show the rhodium oxide Sr3Rh2O7 to be metallic with enhanced paramagnetism, similar to Sr3Ru2O7. However, neither manifest contributions from spin fluctuations nor any traces of a metamagnetic transition were found within the studied range from 2 K to 390 K below 70 kOe.Comment: To be published in PR

    Low gravity containerless processing of immiscible gold rhodium alloys

    Get PDF
    Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedementation of the more dense of the immiscible liquid phases. However, under low-g conditions it should be possible to form a dispersion of the two immiscible liquids and maintain this dispersed structure during solidification. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the Marshall Space Flight Center 105 meter drop tube in order to investigate the influence of low gravity, containerless solidification on their microstructure. Hypermonotectic alloys composed of 65 atomic % rhodium exhibited a tendency for the gold rich liquid to wet the outer surface of the containerless processed samples. This tendency led to extensive segregation in several cases. However, well dispersed microstructures consisting of 2 to 3 micron diameter rhodium-rich spheres in a gold-rich matrix were produced in 23.4 atomic % rhodium alloys. This is one of the best dispersions obtained in research on immiscible alloy-systems to data

    Rhodium Pyrazolate Complexes as Potential CVD Precursors

    Get PDF
    Reaction of 3,5-(CF3)(2)PzLi with [Rh(mu-Cl)(eta(2)-C2H4)(2)](2) or [Rh(mu-Cl)(PMe3)(2)](2) in Et2O gave the dinuclear complexes [Rh(eta(2)-C2H4)(2)(mu-3,5-(CF3)(2)-Pz)](2) (1) and [Rh-2(mu-Cl)(mu-3,5-(CF3)(2)-Pz) (PMe3)(4)] (2) respectively (3,5-(CF3)(2)Pz = bis-trifluoromethyl pyrazolate). Reaction of PMe3 with [Rh(COD)(mu-3,5-(CF3)(2)-Pz)](2) in toluene gave [Rh(3,5-(CF3)(2)-Pz)(PMe3)(3)] (3). Reaction of 1 and 3 in toluene (1 : 4) gave moderate yields of the dinuclear complex [Rh(PMe3)(2)(mu-3,5-(CF3)(2)-Pz)](2) (4). Reaction of 3,5-(CF3)(2)PzLi with [Rh(PMe3)(4)]Cl in Et2O gave the ionic complex [Rh(PMe3)(4)][3,5-(CF3)(2)-Pz] (5). Two of the complexes, 1 and 3, were studied for use as CVD precursors. Polycrystalline thin films of rhodium (fcc-Rh) and metastable-amorphous films of rhodium phosphide (Rh2P) were grown from 1 and 3 respectively at 170 and 130 degrees C, 0.3 mmHg in a hot wall reactor using Ar as the carrier gas (5 cc min(-1)). Thin films of amorphous rhodium and rhodium phosphide (Rh2P) were grown from 1 and 3 at 170 and 130 degrees C respectively at 0.3 mmHg in a hot wall reactor using H-2 as the carrier gas (7 cc min(-1)).Welch Foundation F-816Petroleum Research Fund 47014-ACSNSF 0741973Chemistr
    • …
    corecore