237 research outputs found

    Automatic synthesis of fuzzy systems: An evolutionary overview with a genetic programming perspective

    Get PDF
    Studies in Evolutionary Fuzzy Systems (EFSs) began in the 90s and have experienced a fast development since then, with applications to areas such as pattern recognition, curve‐fitting and regression, forecasting and control. An EFS results from the combination of a Fuzzy Inference System (FIS) with an Evolutionary Algorithm (EA). This relationship can be established for multiple purposes: fine‐tuning of FIS's parameters, selection of fuzzy rules, learning a rule base or membership functions from scratch, and so forth. Each facet of this relationship creates a strand in the literature, as membership function fine‐tuning, fuzzy rule‐based learning, and so forth and the purpose here is to outline some of what has been done in each aspect. Special focus is given to Genetic Programming‐based EFSs by providing a taxonomy of the main architectures available, as well as by pointing out the gaps that still prevail in the literature. The concluding remarks address some further topics of current research and trends, such as interpretability analysis, multiobjective optimization, and synthesis of a FIS through Evolving methods

    Self learning neuro-fuzzy modeling using hybrid genetic probabilistic approach for engine air/fuel ratio prediction

    Get PDF
    Machine Learning is concerned in constructing models which can learn and make predictions based on data. Rule extraction from real world data that are usually tainted with noise, ambiguity, and uncertainty, automatically requires feature selection. Neuro-Fuzzy system (NFS) which is known with its prediction performance has the difficulty in determining the proper number of rules and the number of membership functions for each rule. An enhanced hybrid Genetic Algorithm based Fuzzy Bayesian classifier (GA-FBC) was proposed to help the NFS in the rule extraction. Feature selection was performed in the rule level overcoming the problems of the FBC which depends on the frequency of the features leading to ignore the patterns of small classes. As dealing with a real world problem such as the Air/Fuel Ratio (AFR) prediction, a multi-objective problem is adopted. The GA-FBC uses mutual information entropy, which considers the relevance between feature attributes and class attributes. A fitness function is proposed to deal with multi-objective problem without weight using a new composition method. The model was compared to other learning algorithms for NFS such as Fuzzy c-means (FCM) and grid partition algorithm. Predictive accuracy and the complexity of the Fuzzy Rule Base System (FRBS) including number of rules and number of terms in each rule were taken as terms of evaluation. It was also compared to the original GA-FBC depending on the frequency not on Mutual Information (MI). Experimental results using Air/Fuel Ratio (AFR) data sets show that the new model participates in decreasing the average number of attributes in the rule and sometimes in increasing the average performance compared to other models. This work facilitates in achieving a self-generating FRBS from real data. The GA-FBC can be used as a new direction in machine learning research. This research contributes in controlling automobile emissions in helping the reduction of one of the most causes of pollution to produce greener environment

    Learning of Type-2 Fuzzy Logic Systems using Simulated Annealing.

    Get PDF
    This thesis reports the work of using simulated annealing to design more efficient fuzzy logic systems to model problems with associated uncertainties. Simulated annealing is used within this work as a method for learning the best configurations of type-1 and type-2 fuzzy logic systems to maximise their modelling ability. Therefore, it presents the combination of simulated annealing with three models, type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and general type-2 fuzzy logic systems to model four bench-mark problems including real-world problems. These problems are: noise-free Mackey-Glass time series forecasting, noisy Mackey-Glass time series forecasting and two real world problems which are: the estimation of the low voltage electrical line length in rural towns and the estimation of the medium voltage electrical line maintenance cost. The type-1 and type-2 fuzzy logic systems models are compared in their abilities to model uncertainties associated with these problems. Also, issues related to this combination between simulated annealing and fuzzy logic systems including type-2 fuzzy logic systems are discussed. The thesis contributes to knowledge by presenting novel contributions. The first is a novel approach to design interval type-2 fuzzy logic systems using the simulated annealing algorithm. Another novelty is related to the first automatic design of general type-2 fuzzy logic system using the vertical slice representation and a novel method to overcome some parametrisation difficulties when learning general type-2 fuzzy logic systems. The work shows that interval type-2 fuzzy logic systems added more abilities to modelling information and handling uncertainties than type-1 fuzzy logic systems but with a cost of more computations and time. For general type-2 fuzzy logic systems, the clear conclusion that learning the third dimension can add more abilities to modelling is an important advance in type-2 fuzzy logic systems research and should open the doors for more promising research and practical works on using general type-2 fuzzy logic systems to modelling applications despite the more computations associated with it

    Fuzzy Predictor With Additive Learning for Very Short-Term PV Power Generation

    Get PDF
    Photovoltaic (PV) power generation is highly intermittent in nature and any accurate very short-term prediction can decrease the impact of its uncertainties and operation costs and boost the reliable and efficient integration of PV systems into micro/smart grids. This work develops a new generalized technique for very short-term prediction of PV power generation from the lagged power generation data using fuzzy techniques. A preprocessor extracts relevant statistical features from the PV data which are fed to the fuzzy predictor. A modified version of Wang-Mendel training algorithm is employed to directly extract the fuzzy rules from the training data pairs. This methodology exploits the limited training data more efficiently. In addition, an online additive learning routine is proposed, which enables the predictor to learn from new data while running the predictions. So, the prediction accuracy increases over time and the predictor updates to account for long-term changing conditions of weather and PV system performance and its surroundings. Numerical results of the comparison of the proposed approach with simple fuzzy and traditional artificial neural network methods on a live PV system in the United Kingdom demonstrate its improved prediction accuracy, outperforming the benchmark approaches with a normalized mean absolute error (NMAE) of 3.6%

    Deep Stacked Stochastic Configuration Networks for Lifelong Learning of Non-Stationary Data Streams

    Full text link
    The concept of SCN offers a fast framework with universal approximation guarantee for lifelong learning of non-stationary data streams. Its adaptive scope selection property enables for proper random generation of hidden unit parameters advancing conventional randomized approaches constrained with a fixed scope of random parameters. This paper proposes deep stacked stochastic configuration network (DSSCN) for continual learning of non-stationary data streams which contributes two major aspects: 1) DSSCN features a self-constructing methodology of deep stacked network structure where hidden unit and hidden layer are extracted automatically from continuously generated data streams; 2) the concept of SCN is developed to randomly assign inverse covariance matrix of multivariate Gaussian function in the hidden node addition step bypassing its computationally prohibitive tuning phase. Numerical evaluation and comparison with prominent data stream algorithms under two procedures: periodic hold-out and prequential test-then-train processes demonstrate the advantage of proposed methodology.Comment: This paper has been published in Information Science

    Multiobjective programming for type-2 hierarchical fuzzy inference trees

    Get PDF
    This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure. Specifically, a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of HFIT takes place in two phases. Firstly, a nondominated sorting based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (low model’s complexity) with a high accuracy. Secondly, the differential evolution algorithm is applied to optimize the obtained tree’s parameters. In the obtained tree, each node has a different input’s combination, where the evolutionary process governs the input’s combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree’s structural optimization that accept inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by most of the other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selectio

    Transparent but Accurate Evolutionary Regression Combining New Linguistic Fuzzy Grammar and a Novel Interpretable Linear Extension

    Get PDF
    Scientists must understand what machines do (systems should not behave like a black box), because in many cases how they predict is more important than what they predict. In this work, we propose a new extension of the fuzzy linguistic grammar and a mainly novel interpretable linear extension for regression problems, together with an enhanced new linguistic tree-based evolutionary multiobjective learning approach. This allows the general behavior of the data covered, as well as their specific variability, to be expressed as a single rule. In order to ensure the highest transparency and accuracy values, this learning process maximizes two widely accepted semantic metrics and also minimizes both the number of rules and the model mean squared error. The results obtained in 23 regression datasets show the effectiveness of the proposed method by applying statistical tests to the said metrics, which cover the different aspects of the interpretability of linguistic fuzzy models. This learning process has obtained the preservation of high-level semantics and less than 5 rules on average, while it still clearly outperforms some of the previous state-of-the-art linguistic fuzzy regression methods for learning interpretable regression linguistic fuzzy systems, and even to a competitive, pure accuracyoriented linguistic learning approach. Finally, we analyze a case study in a real problem related to childhood obesity, and a real expert carries out the analysis shown.Andalusian Government P18-RT-2248Health Institute Carlos III/Spanish Ministry of Science, Innovation and Universities PI20/00711Spanish Government PID2019-107793GB-I00 PID2020-119478GB-I0

    Flexible and Intelligent Learning Architectures for SOS (FILA-SoS)

    Get PDF
    Multi-faceted systems of the future will entail complex logic and reasoning with many levels of reasoning in intricate arrangement. The organization of these systems involves a web of connections and demonstrates self-driven adaptability. They are designed for autonomy and may exhibit emergent behavior that can be visualized. Our quest continues to handle complexities, design and operate these systems. The challenge in Complex Adaptive Systems design is to design an organized complexity that will allow a system to achieve its goals. This report attempts to push the boundaries of research in complexity, by identifying challenges and opportunities. Complex adaptive system-of-systems (CASoS) approach is developed to handle this huge uncertainty in socio-technical systems

    A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images

    Get PDF
    Skin lesion border irregularity is considered an important clinical feature for the early diagnosis of melanoma, representing the B feature in the ABCD rule. In this article we propose an automated approach for skin lesion border irregularity detection. The approach involves extracting the skin lesion from the image, detecting the skin lesion border, measuring the border irregularity, training a Convolutional Neural Network and Gaussian naive Bayes ensemble, to the automatic detection of border irregularity, which results in an objective decision on whether the skin lesion border is considered regular or irregular. The approach achieves outstanding results, obtaining an accuracy, sensitivity, specificity, and F-score of 93.6%, 100%, 92.5% and 96.1%, respectively
    corecore