
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Engineering Management and Systems
Engineering Faculty Research & Creative Works

Engineering Management and Systems
Engineering

28 Feb 2015

Flexible and Intelligent Learning Architectures for SOS (FILA-SoS) Flexible and Intelligent Learning Architectures for SOS (FILA-SoS)

Cihan H. Dagli
Missouri University of Science and Technology, dagli@mst.edu

David Lee Enke
Missouri University of Science and Technology, enke@mst.edu

Nil Ergin

Dincer Konur
Missouri University of Science and Technology, konurd@mst.edu

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/engman_syseng_facwork/525

Follow this and additional works at: https://scholarsmine.mst.edu/engman_syseng_facwork

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
C. H. Dagli and D. L. Enke and N. Ergin and D. Konur and R. Qin and A. Gosavi and R. Wang and L. Pape
and S. Agarwal and R. D. Gottapu, "Flexible and Intelligent Learning Architectures for SOS (FILA-SoS),"
Systems Engineering Research Center (SERC) Technical Reports, Systems Engineering Research Center
(SERC), Feb 2015.

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Engineering Management and Systems Engineering Faculty Research & Creative Works by an
authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use
including reproduction for redistribution requires the permission of the copyright holder. For more information,
please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229129326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng_facwork/525
https://scholarsmine.mst.edu/engman_syseng_facwork?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

Flexible and Intelligent Learning Architectures for SoS (FILA-SoS)

Volume 13 – Meta-Architecture Generation Model: Flexible Architecting

Technical Report SERC-2015-TR-021-4
February 28, 2015

Principal Investigators

Dr. Cihan H. Dagli, Missouri University of Science and Technology

Research Team

Co-PI: Dr. David Enke, Missouri S&T

Co-PI: Dr. Nil Ergin, Penn State University

Co-PI: Dr. Dincer Konur, Missouri S&T

Co-PI: Dr. Ruwen Qin, Missouri S&T

Co-PI: Dr. Abhijit Gosavi, Missouri S&T

Dr. Renzhong Wang

Missouri S&T Graduate Students

Louis Pape II, Siddhartha Agarwal and Ram Deepak Gottapu

Report No. SERC-2015-TR-021 February 28, 2015

Copyright © 2014 Stevens Institute of Technology, Systems Engineering Research Center

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense
through the Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171 (Task Order
033, RT 48). SERC is a federally funded University Affiliated Research Center managed by Stevens Institute
of Technology

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY
THIS STEVENS INSTITUTE OF TECHNOLOGY AND SYSTEMS ENGINEERING RESEARCH CENTER MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. STEVENS INSTITUTE OF TECHNOLOGY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. STEVENS INSTITUTE OF TECHNOLOGY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution..

ii

TABLE OF CONTENTS

Executive Summary ... 1

Introduction .. 7
Motivation for Research ...7
System of System Challenges ...9
How Does FILA-SoS Address SoS Pain Points ... 12

Overview of the FILA-SoS integrated model ... 15
Definition of Variables for SoS .. 16
Independent modules of FILA-SOS .. 19

On the Flexibility of Systems in System of Systems Architecting: A new Meta-Architecture
Generation Model version 2.0 ... 22

SoS Architecting and System Flexibility ... 22
SoS Architecting Models with Inflexible and Flexible Systems ... 25

SoS Architecting with Inflexible Systems ... 27
SoS Architecting with Flexible Systems .. 29

SoS Architecting Algorithms with Inflexible and Flexible Systems .. 31
Pareto Front Approximation and Termination .. 32
Evolutionary Algorithm for SoS-I .. 33
Evolutionary Algorithm for SoS-F ... 33

SoS Architecting Analyses with Inflexible and Flexible Systems ... 34
Effects of Flexibility .. 37
Effects of Flexibility Levels.. 41

Concluding Remarks ... 44

Appendix A: List of Publicas Resulted and Papers Submitted from FILA-SoS Research 46

Appendix B: Cited and Related References .. 48

LIST OF FIGURES

Figure 1 Schematic Drawing of Four Classical Types of SoS Based on Degree of Control and Degree
of Complexity .. 8

Figure 2 ISR System-of-Systems for Testing FILA-SoS ... 14

Figure 3 SAR System-of-Systems for Testing FILA-SoS ... 14

Figure 4 Aircraft Carrier Performance Assessment for Testing FILA-SoS 15

Figure 5 The Wave Model of SoS initiation, Engineering, and Evolution 17

Figure 6 Integrated modules within FILA- SoS .. 19

Figure 7 Comparison of the Pareto Fronts with Inflexibility and Flexibility: n = 15, m = 15 41

Figure 8 Comparison of the Pareto Fronts with Different Flexibilities: n = 15, m = 15 44

iii

LIST OF TABLES

Table 1 System of Systems and Enterprise Architecture Activity ... 10

Table 2 Computational Statistics of EA-I for Inflexibility .. 36

Table 3 Computational Statistics of EA-F for Low Flexibility .. 36

Table 4 Computational Statistics of EA-F for Medium Flexibility ... 36

Table 5 Computational Statistics of EA-F for High Flexibility .. 37

Table 6 Quantitative Comparison of Inflexibility to Flexibility ... 38

Table 7 Qualitative Comparison of Inflexibility to Flexibility .. 39

Table 8 Qualitative Comparison of Flexibility Levels .. 42

iv

EXECUTIVE SUMMARY

Multi-faceted systems of the future will entail complex logic and reasoning with many levels of
reasoning in intricate arrangement. The organization of these systems involves a web of
connections and demonstrates self-driven adaptability. They are designed for autonomy and may
exhibit emergent behavior that can be visualized. Our quest continues to handle complexities,
design and operate these systems. The challenge in Complex Adaptive Systems design is to design
an organized complexity that will allow a system to achieve its goals. This report attempts to push
the boundaries of research in complexity, by identifying challenges and opportunities. Complex
adaptive system-of-systems (CASoS) approach is developed to handle this huge uncertainty in
socio-technical systems.

Although classically (Dahmann, Rebovich, Lowry, Lane, & Baldwin, 2011) four categories of SoS
are described in literature namely; Directed, Collaborated, Acknowledged and Virtual. However,
there exist infinitely many SoS on the edges of these categories thus making it a continuum. Many
SoS with different configurations can fill this gap. These four types of SoS vary based on their
degree of managerial control over the participating systems and their structural complexity. The
spectrum of SoS ranges from Directed SoS that represents complicated systems to Virtual SoS
that are complex systems.

Acknowledged SoS lie in between this spectrum. This particular SoS is the focal point of our
research endeavor. Acknowledged SoS and Directed SoS share some similarities such as both
have (Dahman & Baldwin, 2011) SoS objectives, management, funding and authority.
Nevertheless, unlike Directed SoS, Acknowledged SoS systems are not subordinated to SoS.
However, Acknowledged SoS systems retain their own management, funding and authority in
parallel with the SoS. Collaborative SoS are similar to Acknowledged SoS systems in the fact that
systems voluntarily work together to address shared or common interest.

Flexible and Intelligent Learning Architectures for SoS (FILA-SoS) integrated model is developed
in this research task provides a decision making aid for SoS manager based on the wave model.
The model developed called the FILA-SoS does so using straightforward system definitions
methodology and an efficient analysis framework that supports the exploration and
understanding of the key trade-offs and requirements by a wide range system-of-system
stakeholders and decision makers in a short time. FILA-SoS and the Wave Process address four
of the most challenging aspects of system-of-system architecting:

1. Dealing with the uncertainty and variability of the capabilities and availability of
potential component systems

2. Providing for the evolution of the system-of-system needs, resources and environment
over time

3. Accounting for the differing approaches and motivations of the autonomous component
system managers

4. Optimizing system-of-systems characteristics in an uncertain and dynamic environment
with fixed budget and resources

1

Some of the highlights of FILA-SoS are listed in terms of its capabilities, value added to systems
engineering, ability to perform “What-if Analysis”, modularity of integrated models, its potential
applications in the real world and future additions to the current version.

FILA-SoS has a number of unique capabilities such as integrated model for modeling and
simulating SoS systems with evolution for multiple waves. It also has modularity in the structure
where the models can be run independently and in conjunction with each other. Besides there
are a couple of different models for both architecture generation and SoS behavior and various
individual system behavior negotiation models between SoS and individual systems. In terms of
value added FILA-SoS aids the SoS manager in future decision making. It also helps in
understanding the emergent behavior of systems in the acquisition environment and impact on
SoS architecture quality. FILA-SoS serves as an artifact to study the dynamic behavior of different
type of systems (non-cooperative, semi-cooperative, cooperative). It enables us to identify intra
and interdependencies among SoS elements and the acquisition environment. FILA-SoS can
provide a “What-if” Analysis depending on variables such as SoS funding and capability priority
that can be changed as the acquisition progresses through wave cycles. It has the ability to
simulate any architecture through colored petri nets. In addition, it can simulate rules of
engagement & behavior settings: all systems are non-cooperative, all systems are semi-
cooperative, and all systems are cooperative or a combination. Some of the potential applications
include modeling a wide variety of complex systems models such as logistics, and cyber-physical
systems. It also acts as a test-bed for decision makers to evaluate operational guidelines and
principles for managing various acquisition environment scenarios. Future Capabilities that are
currently in progress are extending the model to include multiple interface alternatives among
systems and incorporation of risk models into environmental scenarios.

2

Integrated Model Structure for FILA-SoS Version 1.0 is described. It provides a short description
of all independent models that make up the FILA-SoS integrated model and reports the workings
of the model with three notional System-of-Systems namely; Toy Problem for aircraft carrier
performance assessment, ISR (intelligence surveillance and reconnaissance) and SAR (search and
rescue).

The project reports span 17 volumes. Each report describes the various aspects of the FILA-SOS
integrated model:

Volume 1: Integrated Model Structure
Volume 1 is the Integrated Model Structure report for FILA-SoS Version 1.0. It provides a short
description of all independent models that make up the FILA-SoS integrated model. Integrated
FILA-SoS developed is tested in three notional System-of-Systems namely; Toy Problem for
Aircraft Carrier Performance Assessment, ISR (intelligence surveillance and reconnaissance) and
SAR (search and rescue). FILA-SoS integrated model is currently being validated with a real life
data from a medium sized SoS. The results of this validation are given in volume 17.

Volume 2: Meta-Architecture Generation Multi-Level Model
Volume 2 describes Meta-Architecture Generation Multi-Level Model. The multi-level meta-
architecture generation model considers constructing an SoS architecture such that each
capability is provided by at least one system in the SoS and the systems in the SoS are able to
communicate with each other. Secondly, it has multiple objectives for generating a set of SoS
architectures namely; maximum total performance, minimum total costs and minimum deadline.
Finally, the model establishes initial contracts with systems to improve performances.

Volume 3: Fuzzy-Genetic Optimization Model
Volume 3 illustrates the second meta-architecture generation model known as the Fuzzy-Genetic
optimization model. This model is based on evolutionary multi-objective optimization for SoS
architecting using genetic algorithms and four key performance attributes (KPA) as the objective
functions. It also has a type-1 fuzzy assessor for dynamic assessment of domain inputs and that
forms the fitness function for the genetic algorithm. It returns the best architecture (meta-
architecture) consisting of systems and their interfaces. It is a generalized method with
application to multiple domains such as Gulf War Intelligence/Surveillance/Reconnaissance Case,
Aircraft Carrier Performance Assessment Case and Alaskan Maritime Search and Rescue Case.

Volume 4: Architecture Assessment Model
Volume 4 describes an Architecture Assessment Mode that can capture the non-linearity in key
performance attribute (KPA) tradeoffs, is able to accommodate any number of attributes for a
selected SoS capability, and incorporate multiple stakeholder’s understanding of KPA’s.
Assessment is based on a given meta-architecture alternative. This is done using type-1 fuzzy sets
and fuzzy inference engine. The model provides numerical values for meta-architecture quality.

Volume 5: Cooperative System Negotiation Model
Volume 5 specifically describes the Cooperative System Negotiation Model. The systems
following this model behave cooperatively while negotiating with the SoS manager. The model

3

of cooperative behavior is based on agent preferences and the negotiation length. Each system
agent has two inherent behaviors of cooperativeness: Purposive (normal behavior) and
Contingent (behavior driven by unforeseen circumstances). The approach models the tradeoff
between the two behaviors for the systems. A fuzzy weighted average approach is used to arrive
at the final proposed value.

Volume 6: Non-Cooperative System Negotiation Model
Volume 6 goes on to describe the Non-Cooperative System Negotiation Model in which systems
behave in their self-interest while negotiating with the SoS coordinator. A mathematical model
of individual system’s participation capability and self-interest negotiation behavior is created.
This methodology is an optimization-based generator of alternatives for strategically negotiating
multiple items with multiple criteria. Besides, a conflict evaluation function that estimates
prospective outcome for identified alternative is proposed.

Volume 7: Semi-Cooperative System Negotiation Model
Volume 7 describes the third and last system negotiation model, which illustrates the Semi-
Cooperative System Negotiation Model. It exhibits the capability of being flexible or
opportunistic: i.e., extremely cooperative or uncooperative based on different parameter values
settings. A Markov-chain based model designed for handling uncertainty in negotiation modeling
in an SoS. A model based on Markov chains is used for estimating the outputs. The work assigned
by the SoS to the system is assumed to be a ``project’’ that takes a random amount of time and
a random amount of resources (funding) to complete.

Volume 8: Incentive based Negotiation Model for System of Systems
Volume 8 explains the SoS negotiation model also called the Incentive Based Negotiation Model
for System of Systems. This model is based on two key assumptions that are to design a contract
to convince the individual systems to join the SoS development and motivate individual systems
to do their tasks well. Game theory and incentive based contracts are used in the negotiation
model that will maximize the welfare for parties involved in the negotiation. SoS utility function
takes into account local objectives for the individual systems as well as global SoS objective
whereas the incentive contract design persuades uncooperative systems to join the SoS
development.

Volume 9: Model for Building Executable Architecture
Volume 9 illustrates the process of building Executable Architectures for SoS. The operations of
the SoS is a dynamic process with participating system interacting with each other and exchange
various kinds of resources, which can be abstract information or physical objects. This is done
through a hybrid structure of OPM (Object process methodology) and CPN (Colored petri nets)
modeling languages. The OPM model is intuitive and easy to understand. However, it does not
support simulation, which is required for accessing the behavior related performance. This is
achieved by mapping OPM to CPN, which is an executable simulation language. The proposed
method can model the interactions between components of a system or subsystems in SoS. In
addition, it can capture the dynamic aspect of the SoS and simulate the behavior of the SoS.
Finally, it can access various behavior related performance of the SoS and access different

4

constitutions or configurations of the SoS which cannot be incorporated into the meta-
architecture generation models of Volume 2 & 3.

Volume 10: Integrated Model Software Architecture and Demonstration FILA-SoS Version 1.0
Volume 10 elucidates the Integrated Model Software Architecture and Demonstration based on
the models described above. Volume 11 and thereon the reports are aimed at the upcoming
newer version 2.0 of FILA-SoS.

Volume 11: Integrated Model Structure FILA-SoS Version 2.0
Volume 11 provides Integrated Model Structure for FILA-SoS Version 2.0 that could be
implemented in a new software environment.

Volume 12: Complex Adaptive System-of-System Architecture Evolution Strategy Model for
FILA-SoS Version 2.0
Volume 12 provides a model to answer the first research question “What is the impact of
different constituent system perspectives regarding participating in the SoS on the overall
mission effectiveness of the SoS?” It is named the Complex Adaptive System-of-System
Architecture Evolution Strategy Model and is incorporated in FILA-SoS Version 2.0. This volume
describes a computational intelligence based strategy involving meta-architecture generation
through evolutionary algorithms, meta-architecture assessment through type-2 fuzzy nets and
finally its implementation through an adaptive negotiation strategy.

Volume 13: On the Flexibility of Systems in System of Systems Architecting: A new Meta-
Architecture Generation Model for FILA-SoS Version 2.0
Volume 13 is termed the Flexibility of Systems in System of Systems Architecting: A new Meta-
Architecture Generation Model for FILA-SoS Version 2.0. The research question is answered
through an alternative technique to meta-architecture generation besides the one described in
Volume 2.

Volume 14: Assessing the Impact on SoS Architecture Different Level of Cooperativeness: A
new Model for FILA-SoS Version 2.0
Volume 14 proposes a new method for Assessing the Impact on SoS Architecture Different Level
of Cooperativeness. Second research question is answered through a model that allows different
levels of cooperativeness of individual systems.

Volume 15: Incentivizing Systems to Participate in SoS and Assess the Impacts of Incentives: A
new Model for FILA-SoS Version 2.0
Volume 15 is an extension of previous systems negotiation models based on incentivizing and is
aptly called Incentivizing Systems to Participate in SoS and Assess the Impacts of Incentives: A
new Model for FILA-SoS Version 2.0. It also provides an approach to answer the third research
question “How should decision-makers incentivize systems to participate in SoS, and better
understand the impact of these incentives during SoS development and effectiveness?”. This
model is based on the fact that providing incentives only depending on the outcome may not be
enough to attract the attention of the constituent systems to participate in SoS mission.
Therefore, this model extends the approach as described in Volume 8 while considering the

5

uncertainty in the acquisition environment. The incentive contract is designed based on the
objectives of the SoS and the individual systems. Individual system’s objective is to secure highest
incentives with minimal effort while the SoS manager’s goal is to convince individual systems to
join the SoS development while maximizing its own utility.

Volume 16: Integrated Model Software Architecture for FILA-SoS Version 2.0
Volume 16 gives an overview of the integrated model architecture in version 2.0 of the software.
It includes all old and new models previously mentioned.

Volume 17: FILA-SoS Version 1.0 Validation with Real Data
Volume 17 describes the validation of the FILA-SoS Version 1.0 with a real life data provided by
MITRE Corporation by from a moderately sized SoS.

6

INTRODUCTION

MOTIVATION FOR RESEARCH

In the real world, systems are complex, non-deterministic, evolving, and have human centric
capabilities. The connections of all complex systems are non-linear, globally distributed, and
evolve both in space and in time. Because of non-linear properties, system connections create
an emergent behavior. It is imperative to develop an approach to deal with such complex large-
scale systems. The approach and goal is not to try and control the system, but design the system
such that it controls and adapts itself to the environment quickly, robustly, and dynamically.
These complex entities include both socioeconomic and physical systems, which undergo
dynamic and rapid changes. Some of the examples include transportation, health, energy, cyber
physical systems, economic institutions and communication infrastructures.

In addition, the idea of “System-of-Systems” is an emerging and important multidisciplinary area.
An SoS is defined as a set or arrangement of systems that results when independent and useful
systems are integrated into a larger system that delivers unique capabilities greater than the sum
of the capabilities of the constituent parts. Either of the systems alone cannot independently
achieve the overall goal. System-of- Systems (SoS) consists of multiple complex adaptive systems
that behave autonomously but cooperatively (Dahman, Lane, Rebovich, & Baldwin, 2008). The
continuous interaction between them and the interdependencies produces emergent properties
that cannot be fully accounted for by the “normal” systems engineering practices and tools.
System of Systems Engineering (SoSE), an emerging discipline in systems engineering is
attempting to form an original methodology for SoS problems (Luzeaux, 2013).

Since SoS grow in complexity and scale with the passage of time it requires architectures that will
be necessary for understanding and governance and for proper management and control.
Systems architecting can be defined as specifying the structure and behavior of an envisioned
system. Classical system architecting deals with static systems whereas the processes of System
of Systems (SoS) architecting has to be first done at a meta-level. The architecture achieved at a
meta-level is known as the meta-architecture. The meta-architecture sets the tone of the
architectural focus (Malan & Bredemeyer, 2001). It narrows the scope of the fairly large domain
space and boundary. Although the architecture is still not fixed but meta-architecture provides
multiple alternatives for the final architecture. Thus architecting can be referred to as filtering
the meta-architectures to finally arrive at the architecture. The SoS architecting involves multiple
systems architectures to be integrated to produce an overall large scale system meta-
architecture for a specifically designated mission (Dagli & Ergin, 2008). SoS achieves the required
goal by introducing collaboration between existing system capabilities that are required in
creating a larger capability based on the meta-architecture selected for SoS. The level of the
degree of influence on individual systems architecture through the guidance of SoS manager in
implementing SoS meta-architecture can be classified as directed, acknowledged, collaborative
and virtual. Acknowledged SoS have documented objectives, an elected manager and defined
resources for the SoS. Nonetheless, the constituent systems retain their independent ownership,
objectives, capital, development, and sustainment approaches. Acknowledged SoS shares some

7

similarities with directed SoS and collaborative SoS. There are four types of SoS that are described
below:

Figure 1 Schematic Drawing of Four Classical Types of SoS Based on Degree of Control and Degree of Complexity

Virtual
• Virtual SoS lack a central management authority and a centrally agreed upon purpose for the

system-of-systems.
• Large-scale behavior emerges—and may be desirable—but this type of SoS must rely upon

relatively invisible mechanisms to maintain it.

Collaborative
• In collaborative SoS the component systems interact more or less voluntarily to fulfill agreed

upon central purposes.

Acknowledged (FILA-SoS integrated model is based on Acknowledged SoS)
• Acknowledged SoS have recognized objectives, a designated manager, and resources for the

SoS; however, the constituent systems retain their independent ownership, objectives,
funding, and development and sustainment approaches.

• Changes in the systems are based on collaboration between the SoS and the system.

Directed
• Directed SoS’s are those in which the integrated system-of-systems is built and managed to

fulfill specific purposes.
• It is centrally managed during long-term operation to continue to fulfill those purposes as

well as any new ones the system owners might wish to address.
• The component systems maintain an ability to operate independently, but their normal

operational mode is subordinated to the central managed purpose.

8

This research is based on Acknowledged SoS. The major objectives of the reasearch are:

• To develop a simulation for Acknowledged SoS architecture selection and evolution.
• To have a structured, repeatable approach for planning and modeling.
• To study and evaluate the impact of individual system behavior on SoS capability and

architecture evolution process.

The dynamic planning for a SoS is a challenging endeavor. Department of Defense (DoD)
programs constantly face challenges to incorporate new systems and upgrade existing systems
over a period of time under threats, constrained budget, and uncertainty. It is therefore
necessary for the DoD to be able to look at the future scenarios and critically assess the impact
of technology and stakeholder changes. The DoD currently is looking for options that signify
affordable acquisition selections and lessen the cycle time for early acquisition and new
technology addition. FILA-SoS provides a decision aid in answering some of the questions.

This volume gives an overview of a novel methodology known as the Flexible Intelligent &
Learning Architectures in System-of-Systems (FILA-SoS). Some the challenges that are prevalent
in SoS architecting and how FILA-SoS attempts to address them is explained in the next section.

SYSTEM OF SYSTEM CHALLENGES

All these recent developments are helping us to understand Complex Adaptive Systems. They are
at the edge of chaos as they maintain dynamic stability through constant self-adjustment and
evolution. Chaos and order are two complementary states of our world. A dynamic balance exists
between these two states.

Order and structure are vital to life. Order ensures consistency and predictability and makes the
creation of systems possible. However, too much order leads to rigidity and suppresses creativity.
Chaos constantly changes the environment creating disorder and instability but can also lead to
emergent behavior and allows novelty and creativity. Thus, sufficient order is necessary for a
system to maintain an ongoing identity, along with enough chaos to ensure growth and
development. The challenge in Complex Adaptive Systems design is to design an organized
complexity that will allow a system to achieve its goals. SoS is a complex systems by its nature
due to the following characteristics that are component systems are operationally independent
elements and also managerially independent of each other. This means that component systems
preserve existing operations independent of the SoS. SoS has an evolutionary development and
due to the large scale complex structure shows an emergent behavior. Emergence means the SoS
performs functions that do not reside in any one component system.

2012 INCOSE SoS working group survey identified seven ‘pain points’ raising a set of questions
for systems engineering of SoS which are listed in Table 1 (Dahman, 2012).

9

Table 1 System of Systems and Enterprise Architecture Activity

Pain Points Question

Lack of SoS Authorities & Funding What are effective collaboration patterns in systems of systems?

Leadership What are the roles and characteristics of effective SoS leadership?

Constituent Systems What are effective approaches to integrating constituent systems into a
SoS?

Capabilities & Requirements How can SE address SoS capabilities and requirements?

Autonomy, Interdependencies &
Emergence

How can SE provide methods and tools for addressing the complexities of
SoS interdependencies and emergent behaviors?

Testing, Validation & Learning How can SE approach the challenges of SoS testing, including incremental
validation and continuous learning in SoS?

SoS Principles What are the key SoS thinking principles, skills and supporting examples?

The importance and impact on systems engineering of each pain point is illustrated below:

• Lack of SoS Authorities & Funding and Leadership pose several and severe governance and
management issues for SoS. This conditions has a large impact on the ability to implement
systems engineering (SE) in the classical sense to SoS. In addition, this problem affects the
modeling & simulation activities.

• Constituent Systems play a very important role in the SoS. As explained earlier usually they
have different interests and ambitions to achieve, which may or may not be aligned with the
SoS.. Similarly models, simulations and data for these systems will naturally have to be
attuned to the specific needs of the systems, and may not lend themselves easily to
supporting SoS analysis or engineering

• Autonomy, Interdependencies & Emergence is ramifications of the varied behaviors and
interdependencies of the constituent systems making it complex adaptive systems.
Emergence comes naturally in such a state, which is often unpredictable. While modeling &
simulation can aid in representing and measuring these complexities, it is often hard to
achieve real life emergence. This is due to limited understanding of the issues that can bring
up serious consequences during validation.

• Capability of the SoS and the individual systems capability needs may be high level and need
definition in order to align them with the requirements of the SoS mission. The SoS mission
is supported by constituent systems, which may not be able (or willing) to address them.

• Testing, Validation & Learning becomes difficult since the constituent systems continuously
keep evolving, adapting, as does the SoS environment which includes stakeholders,
governments, etc. Therefore creating a practical test-bed for simulating the large dynamic
SoS is a challenge in itself. Again modeling & simulation can solve part of the problem such
as enhancing live test and addressing risk in SoS when testing is not feasible; however, this
requires a crystal clear representation of the SoS which can be difficult as discussed in earlier
points.

10

• SoS Principles are still being understood and implemented. Therefore, the rate of success is
yet to be addressed formally. This poses some pressure on the progress of SoS engineering.
Similarly, there is an absence of a well-established agreeable space of SoS principles to drive
development and knowledge. This constricts the effective use of potentially powerful tools.

The DoD 5000.2 is currently used as the acquisition process for complex systems. Schwartz (2010)
described this process as an extremely complex systemic process that cannot always constantly
produce systems with expected either cost or performance potentials. The acquisition in DoD is
an SoS problem that involves architecting, placement, evolution, sustainment, and discarding of
systems obtained from a supplier or producer. Numerous attempts undertaken to modify and
reform the acquisition process have found this problem difficult to tackle because the models
have failed to keep pace with actual operational scenarios. Dombkins (1996) offered a novel
approach to model complex projects as waves. He suggested that there exists a major difference
in managing and modeling traditional projects versus complex projects. He further illustrated his
idea through a wave planning model that exhibits a linear trend on a time scale; on a spatial scale,
it tries to capture the non-linearity and recursiveness of the processes. In general, the wave
model is a developmental approach that is similar to periodic waves. A period, or multiple
periods, can span a strategic planning time. The instances within the periods represent the
process updates. A recently proposed idea (Dahman, Lane, Rebovich, & Baldwin, 2008) that SoS
architecture development for the DoD acquisition process can be anticipated to follow a wave
model process. According to Dahman DoD 5000.2 may not be applicable to the SoS acquisition
process. Acheson (2013) proposed that Acknowledged SoS be modeled with an Object-Oriented
Systems Approach (OOSA). Acheson also proposes that for the development of SoS, the objects
should be expressed in the form of a agent based model.

The environment and the systems are continuously changing. Let there be an initial environment
model, which represents the SoS acquisition environment. As the SoS acquisition progresses
through, these variables are updated by the SoS Acquisition Manager to reflect current
acquisition environment. Thus, the new environment model at a new time has different
demands. To fulfill the demands of the mission a methodology is needed to assess the overall
performance of the SoS in this dynamic situation. The motivation of evolution are the changes in
the SoS environment (Chattopadhyay, Ross, & Rhodes, 2008). The environmental changes consist
of:

• SoS Stakeholder Preferences for key performance attributes
• Interoperability conditions between new and legacy systems
• Additional mission responsibilities to be accommodated
• Evolution of individual systems within the SoS

Evaluation of architectures is another SoS challenge area as it lends itself to a fuzzy approach
because the criteria are frequently non-quantitative, or subjective (Pape & Dagli, 2013), or based
on difficult to define or even unpredictable future conditions, such as “robustness.” Individual
attributes may not have a clearly defined, mathematically precise, linear functional form from
worst to best. The goodness of one attribute may or may not offset the badness of another

11

attribute. Several moderately good attributes coupled with one very poor attribute may be
better than an architecture with all marginally good attributes, or vice-versa. A fuzzy approach
allows many of these considerations to be handled using a reasonably simple set of rules, as well
as having the ability to include non-linear characteristics in the fitness measure. The simple rule
set allows small adjustments to be made to the model to see how seemingly small changes affect
the outcome. The methodology outlined in this research and technical report falls under a multi-
level plug-and-play type of modeling approach to address various aspects of SoS acquisition
environment: SoS architecture evaluation, SoS architecture evolution, and SoS acquisition
process dynamics including behavioral aspects of constituent systems.

HOW DOES FILA-SOS ADDRESS SOS PAIN POINTS

The first pain point is Lack of SoS Authorities & Funding which begs a question “What are effective
collaboration patterns in systems of systems?”

Since there is lack of SoS Authority but more so persuasion involved in the workings of a SoS,
systems are allowed to negotiate with the SoS manager. Deadline for preparation, funding and
performance required to complete the mission are some of the issues that form the negotiation
protocol. Besides different combination of behavior types assigned to the systems can help us
gauge the best effective collaboration patterns in systems of systems after the end of
negotiations.

The leadership issues pose the question, “What are the roles and characteristics of effective SoS
leadership?” This is addressed by incorporating views from multiple stakeholders while assessing
the architecture’s quality. In addition, we maintain that the characteristics are similar to what an
Acknowledged SoS manager would have while distributing funds and resources among systems
for a joint operation. The SoS manager also has the opportunity to form his decision based on
most likely future scenarios, thus imparting him an edge as compared to other models. This will
improve the process of acquisition in terms of overall effectiveness, less cycle time and
integrating legacy systems. Overall, the role of the leadership is presented a guide than someone
who would foist his authority.

The third pain point question, “What are effective approaches to integrating constituent systems
into a SoS? is addressed below. A balance has to be maintained during acquisition between
amount of resources used and the degree of control exercised by the SoS manager on the
constituent systems. The meta-architecture generation is posed as a multi-objective optimization
problem to address this pain point. The constituent systems and the interfaces between them
are selected while optimizing the resources such as operations cost, interfacing cost,
performance levels etc. The optimization approach also evaluates the solutions based on views
of multiple stakeholders integrated together using a fuzzy inference engine.

How can SE address capabilities and requirements? is the fourth pain point and is answered in
this paragraph. Organizations that acquire large-scale systems have transformed their attitude
to acquisition. Hence, these organizations now want solutions to provide a set of capabilities, not

12

a single specific system to meet an exact set of specifications. During the selection process of
systems it is ensured that, a single capability is provided by more than one system. The idea is to
choose at least one systems having unique capability to form the overall capability of the SoS.

The fifth pain point on autonomies, emergence and interdependencies is one of the most
important objectives of this research. This objective can be described as “How can SE provide
methods and tools for addressing the complexities of SoS interdependencies and emergent
behaviors?”. Each system has an autonomous behavior maintained through pre-assigned
negotiation behaviors, differ operations cost, interfacing cost and performance levels while
providing the same required capability. The interfacing among systems is encouraged to have
net-centric architecture. The systems communicate to each other through several
communication systems. This ensures proper communication channels. Together the behavior
and net-centricity make it complex systems thus bringing out the emergence needed to address
the mission.

FILA-SoS is an excellent integrated model for addressing the complexities of SoS
interdependencies and emergent behaviors as explained in the above paragraphs.

As for the sixth pain point on testing, validation and learning goes, FILA-SoS has been tested on
three notional examples so far the ISR, Search and Rescue (SAR) and the Toy problem for Aircraft
Carrier Performance Assessment. For ISR (refer to Figure 2) a guiding physical example is taken
from history. During the 1991 Gulf War, Iraqi forces used mobile SCUD missile launchers called
Transporter Erector Launchers (TELS) to strike at Israel and Coalition forces with ballistic missiles.
Existing intelligence, surveillance, and reconnaissance (ISR) assets were inadequate to find the
TELs during their vulnerable setup and knock down time. The “uninhabited and flat” terrain of
the western desert was in fact neither of those things, with numerous Bedouin goat herders and
their families, significant traffic, and thousands of wadis with culverts and bridges to conceal the
TELs and obscure their movement.

13

Figure 2 ISR System-of-Systems for Testing FILA-SoS

A Coast Guard Search and Rescue (SAR) (Figure 3) SoS engineering and development problem is
selected for serving the Alaskan coast. Detailed information about this case study can be found
in Dagli et al (2013). There is increasing use of the Bering Sea and the Arctic by commercial
fisheries, oil exploration and science, which increases the likelihood of occurrence of possible
SAR scenarios.

Figure 3 SAR System-of-Systems for Testing FILA-SoS

The toy problem for assessing the performance of the aircraft carrier involves multiple systems
such as satellites, uav’s and ground station that support the aircraft carrier to fulfill the mission
(refer to Figure 4). The results have been obtained for multiple waves of the evolution process
for all the examples.

14

Figure 4 Aircraft Carrier Performance Assessment for Testing FILA-SoS

These example discussed above clearly show the domain independence of FILA-SoS.

FILA-SoS is a novel method of making sequential decisions over a period for SoS development.
The goal is to apply the integrated model to dynamically evolve SoS architecture and optimize
SoS architecture, design and validate through simulation tools. The integrated model structure
can be applied to various application areas including development of dynamic water treatment
SoS architecture, development of dynamic Air Traffic Management SoS, and development of
autonomous ground transport SoS. FILA-SoS has a number of abilities that make it unique such
as:

• Aiding the SoS manager in future decision making
• To assist in understanding the emergent behavior of systems in the acquisition environment

and impact on SoS architecture quality
• To facilitate the learning of dynamic behavior of different type of systems (cooperative, semi-

cooperative , non-cooperative)
• Identifying intra and interdependencies among SoS elements and the acquisition

environment
• Modeling and application to a wide variety of complex systems models such as logistics,

cyber-physical systems and similar systems
• Acting as a Test-bed for decision makers to evaluate operational guidelines and principles for

managing various acquisition environment scenarios
• Appropriate to model SoS that evolve over a period of time under uncertainties by multiple

wave simulation capability.

OVERVIEW OF THE FILA-SOS INTEGRATED MODEL

In this section an overview of FILA-SoS is described. The model developed called the FILA-SoS is
using straightforward system definitions methodology and an efficient analysis framework that
supports the exploration and understanding of the key trade-offs and requirements by a wide
range system-of-system stakeholders and decision makers in a short time. FILA-SoS and the Wave
Process address four of the most challenging aspects of system-of-system architecting:

15

• Dealing with the uncertainty and variability of the capabilities and availability of potential
component systems.

• Providing for the evolution of the system-of-system needs, resources and environment over
time.

• Accounting for the differing approaches and motivations of the autonomous component
system managers.

• Optimizing system-of-systems characteristics in an uncertain and dynamic environment with
fixed budget and resources

DEFINITION OF VARIABLES FOR SOS

This list comprises of the notation for variables used to solve the Acknowledged SoS architectural
evolution problem:

C: Overall capability (the overall goal to be achieved by combining sub-capabilities)
𝑐𝑐𝑗𝑗: j ∈ J, J= {1, 2,…, M}:

Constituent system capabilities required
𝑠𝑠𝑖𝑖: i ∈ I, I= {1, 2,…, N}:

Total number of systems present in the SoS problem
Let 𝑨𝑨 be a 𝑁𝑁 x 𝑀𝑀 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑚𝑚𝑖𝑖𝑗𝑗 𝑤𝑤ℎ𝑒𝑒𝑚𝑚𝑒𝑒

𝑚𝑚𝑖𝑖𝑗𝑗 = 1 𝑚𝑚𝑜𝑜 capability 𝑗𝑗 is possessed by system 𝑚𝑚
𝑚𝑚𝑖𝑖𝑗𝑗 = 0 𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑒𝑒

𝑃𝑃𝑖𝑖: Performance of system 𝑚𝑚 for delivering all capabilities ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗
𝐹𝐹𝑖𝑖: Funding of system 𝑚𝑚 for delivering all capabilities ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗
𝐷𝐷𝑖𝑖: Deadline to participate in this round of mission development for system 𝑚𝑚
𝐼𝐼𝐹𝐹𝑖𝑖𝑖𝑖 Interface between systems 𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎 𝑘𝑘 s.t. s≠ 𝑘𝑘, k ∈ I
𝐼𝐼𝐼𝐼𝑖𝑖: The cost for development of interface for system 𝑚𝑚
𝑂𝑂𝐼𝐼𝑖𝑖: The cost of operations for system 𝑚𝑚
𝐾𝐾𝑃𝑃𝑟𝑟 : r ∈ R, R= {1, 2,…, Z}:

The key performance attributes of the SoS
𝐹𝐹𝐹𝐹: Funding allocated to SoS Manager
p= {1, 2,…, P}:
 Number of negotiation attributes for bilateral negotiation
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: Total round of negotiations possible
𝑚𝑚 : Current round of negotiation (epochs)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: Total round of negotiations possible
𝑉𝑉𝑝𝑝𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚): The value of the attribute 𝑝𝑝 for SoS manager at time 𝑚𝑚 for system 𝑚𝑚
𝑉𝑉𝑝𝑝𝑖𝑖𝑆𝑆 (𝑚𝑚): The value of the attribute 𝑝𝑝 for system 𝑚𝑚 owner at time t
𝑇𝑇𝑇𝑇: Threshold architecture quality

The model involves a list of stakeholders such as the Acknowledged SoS manager, system
owners/managers, SoS environment etc.

16

Figure 5 The Wave Model of SoS initiation, Engineering, and Evolution

FILA-SoS follows the Dahmann’s proposed SoS Wave Model process for architecture
development of the DoD acquisition process as depicted in Figure 5. FILA-SoS addresses the most
important challenges of SoS architecting in regards to dealing with the uncertainty and variability
of the capabilities and availability of potential component systems. The methodology also
provides for the evolution of the system-of-system needs, resources and environment over time
while accounting for the differing approaches and motivations of the autonomous component
system managers. FILA-SoS assumes to have an uncertain and dynamic environment with fixed
budget and resources for architecting SoS. The overall idea being to select a set of systems and
interfaces based on the needs of the architecture in a full cycle called the wave. Within the wave,
there may be many negotiation rounds, which are referred to as epochs. After each wave, the
systems selected during negotiation in the previous wave remain as part of the meta-architecture
whilst new systems are given a chance to replace those left out as a result.

Processes involved in the wave model and their analog in FILA-SoS can be explained through the
first stage of Initializing the SoS. In terms of initializing, wave process requires to understand the
SoS objectives and operational concept (CONOPS), gather information on core systems to
support desired capabilities. This starts with the overarching capability 𝐼𝐼 desired by
Acknowledged SoS manager and defining the 𝑐𝑐𝑗𝑗 or sub-capabilities required to produce capability
𝐼𝐼 and 𝐹𝐹𝐹𝐹, funding allocated to SoS Manager. These also form the input to the FILA-SoS for the
participating systems 𝑠𝑠𝑖𝑖. FILA-SoS requires 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 the number of negotiation cycles, selection of
the meta-architecture modelling procedure and system negotiation models assigned to
participating systems.

The second stage is called the Conduct_SoS_Analysis. For the Wave process, it represents starting
an initial SoS baseline architecture for SoS engineering based on SoS requirements space,
performance measures, and relevant planning elements. For FILA-SoS the baseline architecture
is called as the meta-architecture. Meta-architecture is basically picking up the systems 𝑠𝑠𝑖𝑖 and
their respective capabilities 𝑚𝑚𝑖𝑖𝑗𝑗. Meta-architecture modelling requires the values for 𝐾𝐾𝑃𝑃𝑡𝑡 , the
key performance attributes of the SoS, 𝑃𝑃𝑖𝑖 (Performance of system 𝑚𝑚) , 𝐹𝐹𝑖𝑖 (Funding of system 𝑚𝑚),
and 𝐷𝐷𝑖𝑖 deadline to participate in this round of mission development for system 𝑚𝑚 which is

17

assumed to be the total for all capabilities possessed by system 𝑚𝑚. The cost for development of a
single interface for system 𝑚𝑚, 𝐼𝐼𝐼𝐼𝑖𝑖 and 𝑂𝑂𝐼𝐼𝑖𝑖 the cost of operations for system 𝑚𝑚 is also needed at this
stage of the model. The next step is the Develop/ Evolve SoS. In this case in terms of the Wave
process essential changes in contributing systems in terms of interfaces and functionality in order
to implement the SoS architecture are identified. Within FILA-SoS this signals the command to
send connectivity request to individual systems and starting the negotiation between SoS and
individual systems. This stage requires the number of negotiation attributes 𝑃𝑃 for a bilateral
negotiation between Acknowledged SoS manager and each systems 𝑚𝑚 selected in the meta-
architecture and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 which denotes the total round of negotiations possible.

The next phase is Plan SoS Update in Wave process. In this, phase the architect plans for the next
SoS upgrade cycle based on the changes in external environment, SoS priorities, options and
backlogs. There is an external stimulus from the environment, which affects the SoS architecture.
To reflect that in FILA-SoS determines which systems to include based on the negotiation
outcomes and form a new SoS architecture. Finally, the last stage in Wave process is Implement
SoS Architecture which establishes a new SoS baseline based on SoS level testing and system
level implementation. In the FILA-SoS the negotiated architecture quality is evaluated based on
𝐾𝐾𝑃𝑃𝑟𝑟, key performance attributes of the SoS. If the architecture quality is not up to a predefined
quality or 𝑇𝑇𝑇𝑇 the threshold architecture quality the Acknowledged SoS manager and systems 𝑚𝑚
selected in the meta-architecture go for renegotiations. Finally the process moves on to the next
acquisition wave. The evolution of SoS should take into account availability of legacy systems and
the new systems willing to join, adapting to changes in mission and requirement, and
sustainability of the overall operation. FILA-SoS also has the proficiency to convert the meta-
architecture into an executable architecture using the Object Process Model (OPM) and Colored
Petri Nets (CPN) for overall functionality and capability of the meta-architecture. These
executable architectures are useful in providing the much-needed information to the SoS
coordinator for assessing the architecture quality and help him in negotiating better.

Some of the highlights of FILA-SoS are described in terms of its capabilities, value added to
systems engineering, ability to perform “What-if Analysis”, modularity of integrated models, its
potential applications in the real world and future additions to the current version. The most
important capability of FILA-SoS is it being an integrated model for modeling and simulating SoS
systems with evolution for multiple waves. Secondly, all models within FILA-SoS can be run
independently and in conjunction with each other. Thirdly, there are two model types that
represent SoS behavior and various individual system behaviors. Finally, it has the capacity to
study negotiation dynamics between SoS and individual systems.

The value added by FILA-SoS to systems engineering is it aids the SoS manager in future decision
making, can help in understanding the emergent behavior of systems in the acquisition
environment and its impact on SoS architecture quality. Besides, it has three independent
systems behavior models, which are referred to as cooperative, semi-cooperative and non-
cooperative. These behavior models are used to Study the dynamic behavior of different type of
systems while they are negotiating with SoS manager. In addition, FILA-SoS assists in identifying
intra and interdependencies among SoS elements and the acquisition environment.

18

FILA-SoS also can facilitate a “What-if” Analysis using variables such as SoS funding and capability
priority that can be changed as the acquisition progresses though wave cycles. The parameter
setting for all negotiation models can be changed and rules of engagement can be simulated for
different combinations of systems behaviors.

Potential Application of FILA-SoS include complex systems models such as logistics, cyber-
physical systems. In addition, it can act as test-bed for decision makers to evaluate operational
guidelines and principles for managing various acquisition environment scenarios. While the
future capabilities that we would like to be included are extending the model to include multiple
interface alternatives among systems and incorporation of risk models into environmental
scenarios.

INDEPENDENT MODULES OF FILA-SOS

The FILA-SoS has a number of independent modules that are integrated together for meta-
architecture generation, architecture assessment, meta-architecture executable model, and
meta-architecture implementation through negotiation. An overall view is presented in Figure 6.

Figure 6 Integrated modules within FILA- SoS

All the independent models are listed below for reference:

• Meta-Architecture Generation Model
• Architecture Assessment Model
• SoS Negotiation Model
• System Negotiation Model: Non-Cooperative

19

• System Negotiation Model: Cooperative
• System Negotiation Model: Semi-Cooperative
• Executable Architecting Model: OPM & CPN
• Overall Negotiation Framework

The first meta-architecture generation method is fuzzy-genetic optimization model (Pape,
Agarwal, Giammarco & Dagli, 2014). This model is based on evolutionary multi-objective
optimization for SoS architecting with many key performance attributes (KPA). It also has a type-
1 fuzzy assessor for dynamic assessment of domain inputs and that forms the fitness function for
the genetic algorithm. It returns the best architecture (meta-architecture) consisting of systems
and their interfaces. It is a generalized method with application to multiple domains such as Gulf
War Intelligence/Surveillance/Reconnaissance Case and Alaskan Maritime Search and Rescue
Case.

The second meta-architecture generation model is based on multi-level optimization (Konur &
Dagli, 2014). In this model, architecting is done in two rounds: the first being the initiating the
SoS by selecting the systems to be included in the SoS and then improving the SoS’s performance
by allocating funds to participating systems. The model is generic based on multiple attributes
such as maximum performance, minimum cost and minimum deadline. It based on a Stackelberg
game theoretical approach between the SoS architect and the individual systems.

The particle swarm optimization (Agarwal, Pape, & Dagli, 2014) technique for meta-architecture
generation is similar to fuzzy-genetic model. Except for the fact that evolutionary optimization
technique in this case is based on swarm intelligence. In addition, there are some new key
performance attributes used to calculate the architectures quality. Cuckoo search optimization
(Agarwal, Wang, & Dagli, 2014) based meta-architecture is again anew biologically inspired
method of optimization. It has been shown that it in certain cases it performs better than PSO.

The first architecture assessment method is based on type-1 fuzzy logic systems (FLS) (Pape et
al., 2013). The Key Performance Parameters (KPP) chosen are performance, affordability,
flexibility, and robustness. It can capture the viewpoints of multiple stakeholders’. It can also
accommodate any number of KPPs.

Another architecture assessment method is based on type-2 fuzzy modular nets (Agarwal, Pape
& Dagli, 2014). The attributes used for evaluation were Performance, Affordability,
Developmental Modularity, Net-Centricity and Operational Robustness. Type-1 fuzzy sets are
able to model the ambiguity in the input and output variables. However, type-1 fuzzy sets are
insufficient in characterizing the uncertainty present in the data. Type-2 fuzzy sets proposed by
Zadeh (1975) can model uncertainty and minimize its effects in FLS (Mendel & John, 2002).

It is not possible to implement such meta-architecture without persuading the systems to
participate, hence to address the issue a negotiation model is proposed based on game theory
(Ergin, 2104). It is an incentive based negotiation model to increase participation of individual
systems into Search and Rescue SoS. The model provides a strategy for SoS management to
determine the appropriate amount of incentives necessary to persuade individual systems while

20

achieving its own goal. The incentive contract is designed based on the objectives of the SoS and
the individual systems. Individual system’s objective is to secure highest incentives with minimal
effort while the SoS manager’s goal is to convince individual systems to join the SoS development
while maximizing its own utility. Determining the incentives for individual systems can be
formulated as a multi-constraint problem where SoS manager selects a reward for the individual
system such that the reward will maximize SoS manager’s expected utility while satisfying the
constraints of the individual systems.

Another negotiation model based on clustering and neural networks is developed (Agarwal,
Saferpour & Dagli, 2014). This model involves adapting the negotiation policy based on individual
systems behavior that is not known to the SoS manager. The behavior is predicted by clustering
the difference of multi-issue offers. Later the clustered data is trained using supervised learning
techniques for future prediction.

Individual systems providing required capabilities can use three kinds of negotiation models
based on their negotiation strategies non-cooperative Linear Optimization model, cooperative
fuzzy negotiation model, and Semi-cooperative Markov chain model (Dagli et al., 2013).

Executable architectures are generated using a hybrid of Object Process Methodology (OPM) and
Colored Petri Nets (CPN) (Agarwal, Wang, & Dagli, 2014), (Wang, Agarwal, & Dagli, 2014), and
(Wang & Dagli, 2011). To facilitate analysis of interactions between the participating systems in
achieving the overall SoS capabilities, an executable architecture model is imperative. In this
research, a modeling approach that combines the capabilities of OPM and CPN is proposed.
Specifically, OPM is used to specify the formal system model as it can capture both the structure
and behavior aspects of a system in a single model. CPN supplements OPM by providing
simulation and behavior analysis capabilities. Consequently, a mapping between OPM and CPN
is needed. OPM modeling supports both object-oriented and process-oriented paradigm. CPN
supports state-transition-based execution semantics with discrete-event system simulation
capability, which can be used to conduct extensive behavior analyses and to derive many
performance metrics.

21

ON THE FLEXIBILITY OF SYSTEMS IN SYSTEM OF SYSTEMS ARCHITECTING: A NEW META-
ARCHITECTURE GENERATION MODEL VERSION 2.0

System of Systems (SoS) architecting requires analyzing a set of individual systems
simultaneously in order to build a connected SoS, which can provide the capabilities needed. In
general, the systems can provide a set of capabilities and the SoS architect needs to decide which
systems to include in the SoS so that each capability is provided by at least one system. In this
case, the systems are inflexible, i.e., a selected system will contribute to the SoS with all the
capabilities it can provide. On the other hand, if SoS architect can incentivize systems to
contribute with specific capabilities instead of all of their capabilities, it might be possible to build
a better SoS in terms of not only one objective but all objectives considered. In this study, we
compare SoS architecting with inflexible and flexible systems and quantify the value of the
flexibility of the systems. We formulate the SoS architecting problems with inflexible and flexible
systems as multi-objective nonlinear binary programming models and propose an evolutionary
algorithm for each model. The evolutionary algorithms output a set of Pareto efficient SoS's for
the architect. Upon comparing the Pareto fronts of inflexible and flexible models, we quantify
the value of systems' flexibilities. We analyze the effects of systems' flexibility levels.

SOS ARCHITECTING AND SYSTEM FLEXIBILITY

In many industry, service, and defense enterprises, system engineering plays an important role,
as it is able to simultaneously capture the different dynamics among the elements of the whole
enterprise working towards common goals. A system can be considered as the smallest element
of the overall enterprise and it contributes to the enterprise with its own individual components
and unique capabilities. Kaplan (2006) notes that integration of many systems, their capabilities,
and the cumulative abilities achieved from their interoperability are crucial for gaining
competitive advantage in large business and defense projects. A System of Systems (SoS) is the
collection of individual and independent systems that are brought together for specific goals
(Gorod et al., 2008, Klein and Vliet, 2013). SoS architecting administers appropriate integration
of the systems, ensures connection among the individual systems, and guarantees that the
requirements are met overall. Many engineering, design, organizational, information, technology
management, and decision making models in manufacturing, health, energy, transportation,
logistics, and military are represented as SoS architectures (Jamshidi, 2008, Jamshidi, 2011). In
this volume, we analyze a multi-objective SoS architecting problem.

Most of the projects undertaken by the DoD are SoS architecting problems (DoD, 2008). Not only
defense projects, but also many strategy development projects for military missions are SoS
architecting problems (Owens, 1996, Manthorpe, 1996) and military systems are integrated as
SoS architectures (Bergey et al., 2009). DoD (2008) definition of SoS, which is adopted in this
study as well, is capability based and SoS is defined as the collection of systems integrated to
provide required capabilities. As noted by Domercant and Mavris (2010), this capability based
definition is reasonable as military missions are recently more related to capabilities based
planning. Furthermore, Dahmann and Baldwin (2008) highlight that independent control of the

22

individual systems will not achieve operational goals; hence, SoS architecting is crucial in defense
projects. Owens (1996), Manthorpe (1996), and Dahmann and Baldwin (2008) list examples of
SoS architectures in DoD. Specifically, Kaplan (2006) and Smith et al. (2011) both emphasize that
the missions (purposes) are the main drivers for architecting SoS for military projects. The SoS
architecting problem analyzed in this volume requires providing a set of capabilities.

There are two main components of SoS: the capabilities, which are determined based on the
mission's goals/targets, and the systems, who can contribute with specific capabilities. The SoS
architect is the agent constructing the SoS and the constructed SoS should be capable, that is, it
should be able to provide a set of precise capabilities. A capability is defined as a skill for
performing definite functions (DoD, 2008). Intelligence, surveillance, reconnaissance, defense
(air or missile), health, and communication skills are the general capabilities needed in military
missions (DoD, 2008, Dahmann and Baldwin, 2008, Bergey et al., 2009). For instance, a capability
can be the ability to track moving targets (DoD, 2008). Manthorpe (1996) lists a set of nine
capabilities identified for joint war fighting and Konur and Dagli (2014) note that specific search,
radar, command and control, exploitation, and communication capabilities are required for
targeting Scud TELs during Gulf War. The systems are the entities equipped with such capabilities.
Vehicles, softwares, and other systems such as aircrafts, fighters, platforms equipped with
weapons, sensors, communication tools and computers, and radars are military systems
(Manthorpe, 1996, Dahmann and Baldwin, 2008, Konur and Dagli, 2014). For instance, Owens
(1996) gives a list of military systems.

DoD must often combine military systems to perform mission goals (Kaplan, 2006) and Owens
(1996) notes that military systems are coming together as SoS architectures. Different agents
such as executive offices, principal staff assistants, staff boards, and military committees can
take the role of the SoS architect and the SoS architect's problem is then to determine which
systems with which capabilities should be included in the architecture (Kaplan, 2006). While
architecting the SoS, the SoS architect should take into account the individual system properties
and the communication among the systems contributing to the SoS. Different systems can
provision different capabilities with distinct costs, performance levels, and schedules; and, the
SoS architecture should consist of a set of systems such that each capability is provided by at
least one system, i.e., SoS is capable. Furthermore, the SoS architect should ensure that the
systems are connected by enabling communication among the systems included in the SoS.
Similar SoS architecting models have been investigated in many military projects such as air
defense (Maier, 1998, Sommerer et al., 2012), ballistic missile defense (Ender et al., 2010, Garrett
et al., 2011), navy carrier strike (Adams and Meyers, 2011), and future combat systems (Pernin
et al., 2012). This volume uses operations research tools to analyze SoS architecting problem with
two types of systems: inflexible and flexible.

In particular, flexibility can be associated with an individual system or the SoS itself. Roughly,
flexibility of a system or a SoS architecture can be described as the system's or the SoS
architecture's ability to respond to changes (Saleh et al., 2001, Saleh et al., 2009, Valerdi et al.,
2008, Gorod et al., 2008, Ross et al., 2008). This volume analyzes the effects of system flexibility
in the process of architecting the SoS. Specifically, a system is defined as inflexible when

23

engineering design changes within the system are not possible. An inflexible system will,
therefore, have a set of fixed capabilities integrated within and it will contribute to the SoS with
those capabilities. In case of inflexible systems, the SoS architecting problem is to select the best
systems within the SoS considering the architecture objectives. On the other hand, it might be of
benefit to the SoS architect that a system, instead of providing all of its capabilities, collaborate
with the SoS architect and contribute to the SoS with a subset of its capabilities. Through design
changes, some of the capabilities available in a system can be disintegrated from the system and
the SoS architect can benefit from the reduction in cost and/or completion time of the SoS
(Dahmann and Baldwin, 2008). We refer to such a system as a flexible system. As noted by Kaplan
(2006), a flexible system can be guided by the SoS architect. Therefore, in case of flexible systems,
the SoS architecting problem is to determine which systems will contribute to the SoS with which
capabilities.

Specifically, flexibility of a system can be considered as its cooperativeness with the SoS architect.
A flexible system can be considered as cooperative since the system can modify its settings as
guided by the SoS architect. Therefore, in this volume, we focus on analyzing the effects of
different levels of cooperativeness of the systems on the SoS architectures by proposing
mathematical formulations, solutions methods, and numerical analysis for different levels of
system flexibility.

The effects of system flexibility and its level on the cost, performance, and agility of the SoS
architecture are examined by mathematically formulating SoS architecting problem with both
inflexible and flexible systems as multi-objective optimization problems. The flow of actions in
both SoS architecting problems is as follows. Prior to physical architecting of the SoS, a set of
capabilities required for the SoS are defined considering the mission goals and the systems that
can provide these capabilities are specified (the set of the systems with similar capabilities
constitute a family of systems, DoD, 2008). During the SoS architecting, in case of inflexible
systems, the SoS architect selects the systems to be included in the SoS, the systems contribute
to the SoS with their capabilities, and the SoS architect ensures the connectedness of the SoS by
establishing the communication interfaces among the systems. In case of flexible systems, the
SoS architect selects the systems to be included in the SoS as well as the capabilities that the
systems will provide, the systems modify their designs and contribute to the SoS with the
requested capabilities, and the SoS architect ensures the connectedness of the SoS by
establishing the communication interfaces among the systems. Pernin et al. (2012) note that one
can utilize three main objectives in formulating SoS architectures: performance, schedule, and
cost. Therefore, similar to Konur and Dagli (2014) as well, in both of the cases, it is assumed that
the SoS architect constructs a capable and connected SoS regarding three objectives:
maximization of total performance, minimization of completion time, and minimization of total
cost.

Two common approaches adopted for solving multi-objective optimization models are reducing
the multi-objective model into a single-objective model and generating the set of non-dominated
solutions. A multi-objective model can be reduced to a single-objective model by associating
weights to the individual objective functions and creating a single objective function as the sum

24

of the weighted objective functions. Another approach for reduction to single-objective model is
to minimize the maximum of the deviations of the objective functions from their own individual
optimums. Nevertheless, reduction to a single-objective model assumes preferences for the
decision maker and returns a single solution based on these preferences. On the other hand,
generating a set of non-dominated solutions provides the decision maker with alternative
solutions, among which the decision maker can select one. The set of non-dominated solutions
is often referred to as the Pareto front and in this volume and we attempt to approximate the
Pareto fronts for the SoS architecting problems.

Due to complexity of the SoS architecting problems, we develop evolutionary algorithms for each
SoS architecting problem. While these evolutionary algorithms share a common fitness
evaluation and termination operations, they differ in the way they represent the SoS
architectures and mutate them. Analysis of the SoS architecting problem with inflexible and
flexible systems enable us to quantify the benefits of system flexibility in SoS architecting. In
particular, upon comparing the Pareto fronts of the SoS architecting problems with inflexible and
flexible systems, we note that system flexibility can improve SoS architectures. However, the
benefits of system flexibility depend on the level of system flexibility.

In this volume, our contributions are in providing mathematical formulations and developing
solution approaches for SoS architecting problem with inflexible and flexible systems. Both the
mathematical formulations and the solution algorithms presented are generic, that is, they are
easy to modify to capture different settings. Furthermore, we quantitatively demonstrate the
benefits of system flexibility and the level of flexibility. While we consider flexibility as the
cooperativeness of the systems, different cooperativeness approaches can be modeled using the
settings explained in this volume. Specifically, we define flexibility as cooperativeness since the
flexible systems cooperate with the SoS architect in re-designing their systems. The level or the
willingness of a system to cooperate is associated with a parameter, which we refer to as the
incentive charge for being flexible. Next, we explain the details of the mathematical formulations.

SOS ARCHITECTING MODELS WITH INFLEXIBLE AND FLEXIBLE SYSTEMS

Consider a SoS that requires 𝑎𝑎 capabilities and let the capabilities be indexed by 𝑚𝑚 such that 𝑚𝑚 ∈
𝐼𝐼, 𝐼𝐼 = {1,2, … , 𝑎𝑎}. As noted previously, these capabilities are defined based on the goals/targets
of the military mission under consideration. The systems that are equipped with required
capabilities and might be included in the SoS are identified using the military inventories. Suppose
that there are 𝑚𝑚 systems that can provide the capabilities and let the systems be indexed by j
such that 𝑗𝑗 ∈ 𝐽𝐽, 𝐽𝐽 = {1,2, … ,𝑚𝑚}. In particular, each system can provide all or some of the
capabilities required and let

𝑚𝑚𝑖𝑖𝑗𝑗 = �1: 𝑚𝑚𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑚𝑚 𝑗𝑗 𝑐𝑐𝑚𝑚𝑎𝑎 𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝𝑚𝑚𝑎𝑎𝑒𝑒 𝑐𝑐𝑚𝑚𝑝𝑝𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑠𝑠 𝑚𝑚,
0: 𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑒𝑒

and 𝑨𝑨 be the 𝑎𝑎 × 𝑚𝑚-matrix of 𝑚𝑚𝑖𝑖𝑗𝑗 values. Systems have varying characteristics as the system
providers distinguish from each other in the engineering of their system designs, the contractors
they use for assembling their systems, the properties of the subsystems they utilize, and the

25

resources they use in their systems. We, therefore, assume that the individual systems have
different performance levels for providing the capabilities they can provide due to these varying
characteristics. Again, due to these varying characteristics and distinct performance levels, the
cost and the integration time for a system to be able to provide a specific capability can be
different. Therefore, we assume that the systems have different performance levels, charges,
and completion times for providing capabilities. Specifically, let 𝑝𝑝𝑖𝑖𝑗𝑗, 𝑐𝑐𝑖𝑖𝑗𝑗, and 𝑎𝑎𝑖𝑖𝑗𝑗 denotes the
system 𝑗𝑗’s performance level, charge, and ready-time for providing capability 𝑚𝑚, respectively, and
let 𝑷𝑷, 𝑪𝑪, and 𝑫𝑫 denote the 𝑎𝑎 × 𝑚𝑚-matrix of 𝑝𝑝𝑖𝑖𝑗𝑗, 𝑐𝑐𝑖𝑖𝑗𝑗, and 𝑎𝑎𝑖𝑖𝑗𝑗 values, respectively.

The SoS architect's problem is to construct a fully connected and capable SoS with maximum total
performance, minimum completion time, and minimum total cost. A SoS is considered fully
connected when any system 𝑗𝑗1 ∈ 𝐽𝐽 included in the SoS can communicate with any other
system 𝑗𝑗2 ∈ 𝐽𝐽 included in the SoS. The communication between two systems is achieved through
an interface, which has a cost for being integrated into the SoS. Specifically, let ℎ𝑗𝑗1𝑗𝑗2 be the cost
of establishing an interface from system 𝑗𝑗1 to system 𝑗𝑗2. It is assumed that a system can
communicate with itself, therefore, ℎ𝑗𝑗𝑗𝑗 = 0 ∀𝑗𝑗 ∈ 𝐽𝐽. In the case two systems 𝑗𝑗1 and 𝑗𝑗2 in the SoS
are considered communicated when there are an interface from system 𝑗𝑗1 to system 𝑗𝑗2 and an
interface from system 𝑗𝑗1 to system 𝑗𝑗2, the cost of connecting systems 𝑗𝑗1 and 𝑗𝑗2amounts to ℎ𝑗𝑗1𝑗𝑗2 +
 ℎ𝑗𝑗2𝑗𝑗1. On the other hand, if two systems 𝑗𝑗1 and 𝑗𝑗2 in the SoS are considered communicated when
there is an interface from system 𝑗𝑗1 to system 𝑗𝑗2 or an interface from system from system 𝑗𝑗2 to
system 𝑗𝑗1, the cost of connecting systems amounts to min� ℎ𝑗𝑗1𝑗𝑗2 ,ℎ𝑗𝑗2𝑗𝑗1�. For both of the cases,
the SoS architect should decide on connecting the systems in the SoS. Let

𝑠𝑠𝑗𝑗1𝑗𝑗2 = �1: 𝑚𝑚𝑜𝑜 𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑒𝑒 𝑚𝑚𝑠𝑠 𝑐𝑐𝑜𝑜𝑎𝑎𝑎𝑎𝑒𝑒𝑐𝑐𝑚𝑚𝑚𝑚𝑜𝑜𝑎𝑎 𝑐𝑐𝑒𝑒𝑚𝑚𝑤𝑤𝑒𝑒𝑒𝑒𝑎𝑎 systems 𝑗𝑗1 and 𝑗𝑗2, 𝑗𝑗1, 𝑗𝑗2 ∈ 𝐽𝐽,
0: 𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑒𝑒

and let 𝒀𝒀 be the 𝑚𝑚 × 𝑚𝑚-matrix of 𝑠𝑠𝑗𝑗1𝑗𝑗2 , 𝑗𝑗1, 𝑗𝑗2 ∈ 𝐽𝐽 values. Then, the cost of establishing a
connection between systems 𝑗𝑗1 and 𝑗𝑗2 can be defined as 𝑤𝑤𝑗𝑗1𝑗𝑗2 = 𝑤𝑤𝑗𝑗2𝑗𝑗1such that 𝑤𝑤𝑗𝑗1𝑗𝑗2 = ℎ𝑗𝑗1𝑗𝑗2 +
 ℎ𝑗𝑗2𝑗𝑗1 in the case two interfaces are required (one for communicating system 𝑗𝑗1 with system 𝑗𝑗2
and one for communicating system 𝑗𝑗2 with system 𝑗𝑗1) and 𝑤𝑤𝑗𝑗1𝑗𝑗2 = min� ℎ𝑗𝑗1𝑗𝑗2 ,ℎ𝑗𝑗2𝑗𝑗1� in the case
one interface is sufficient for communicating systems 𝑗𝑗1 and 𝑗𝑗2. It should be remarked that, with
this definition of 𝑠𝑠𝑗𝑗1𝑗𝑗2 values, connecting either system to the other is sufficient for achieving a
connection between two systems included in the SoS, therefore, 𝑠𝑠𝑗𝑗1𝑗𝑗2 + 𝑠𝑠𝑗𝑗2𝑗𝑗1 ≥ 1 when both
systems 𝑗𝑗1 and 𝑗𝑗2 are included in the SoS. In formulating the SoS architect's problem, we add
constraints assuring the connectedness of the systems included in the SoS.

A SoS is defined to be capable when each capability is provided by at least one system. We
formulate the SoS architect's problem with two types of systems: inflexible and flexible. In case
of inflexible systems, the systems, who are selected by the SoS architect to be a part of the SoS,
contribute to the SoS with all of the capabilities they can provide. That is, the systems (or the
system providers) are not collaborative and they cannot or are not willing to change the
engineering design of their systems. On the other hand, in case of flexible systems, the SoS
architect can guide the systems to provide not necessarily all but some of the capabilities they

26

can provide. That is, the system providers can modify their system designs as requested by the
SoS architect.

The objectives of the SoS architect, however, are the same with inflexible and flexible systems.
In particular, Kaplan (2006) notes that agility, performance, and cost are considered by DoD in
creating the collection of systems. Therefore, maximization of the total performance and
minimizations of the completion time and total cost are used as the SoS architect's objectives
(which are the objectives suggested by Pernin et al. (2012) and used by Konur and Dagli (2014)
for SoS architecting). While the definitions of the total performance and completion time are
similar for SoS architecting with both inflexible and flexible systems, the total cost function is
slightly different depending on the system type. In particular, with both system types, the total
performance of a SoS is defined as the sum of the performances of the capabilities required in
the SoS and, the performance of a capability in the SoS is equal to the sum of the performance
levels offered by the systems included in the SoS for providing that capability. The completion
time of a SoS is defined as the time required to have every system ready to provide every
capability they need to. That is, with both system types, the ready time of a system is the
maximum of the times it takes to provide the capabilities it will contribute with and, the
completion time of the SoS is the maximum of the included systems' ready times. The total cost
of the SoS is equal to the sum of the costs charged by the systems for providing the capabilities
plus the connection costs among the included systems in case of inexible systems. In case of
exible systems, on the other hand, the SoS architect pays the system providers for changing their
system designs. Next, we mathematically formulate the SoS architect's problem with inflexible
and flexible systems.

SOS ARCHITECTING WITH INFLEXIBLE SYSTEMS

When the systems are inflexible, the SoS architect's main decision is to determine which systems
to select to be included within the SoS. Let

𝑆𝑆𝑗𝑗 = �1: 𝑚𝑚𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑚𝑚 𝑗𝑗 𝑚𝑚𝑠𝑠 𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑚𝑚𝑒𝑒𝑎𝑎 𝑐𝑐𝑠𝑠 𝑚𝑚ℎ𝑒𝑒 𝑆𝑆𝑜𝑜𝑆𝑆 𝑚𝑚𝑚𝑚𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑒𝑒𝑐𝑐𝑚𝑚,
0: 𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑒𝑒

and let 𝑺𝑺 be the 𝑚𝑚-vector of 𝑆𝑆𝑗𝑗 values. The SoS's performance for capability 𝑚𝑚 can be defined
differently considering various architecting settings. For instance, if the performance of a
capability in the SoS is the maximum of the performance levels by the selected systems providing
that capability, the SoS's performance for capability 𝑚𝑚 can be defined as max

𝑗𝑗∈𝐽𝐽
{𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗}. As noted

previously, we assume that the performance of a specific capability is the sum of this capability's
performance levels provided by the systems included in the SoS. For the settings of this study,
this assumption is reasonable as the capabilities define military mission capacities such as attack
power, search range, and control, which can be quantified by associated metrics and increase
cumulatively with each system's contribution towards the capabilities. The SoS's performance for
capability 𝑚𝑚 as a function of S can then be defined as ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗𝑗𝑗 . At this point, we further assume
that performances of different capabilities are additive, therefore, the total performance of the
SoS with inflexible systems as a function of S reads

𝑇𝑇𝑃𝑃1(𝑺𝑺) = ∑ ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 (1)

27

As discussed by Konur and Dagli (2014), one can modify Equation (1) to capture the cases where
performance of different capabilities are of different importance to the SoS architect. In such a
case, a weighted approach can be used to modify Equation (1). We note that the solution
methods discussed in this study can be easily modified for different functional forms used in
defining the total performance as well as capability performances.

The SoS's completion time is defined as the earliest time when all of the selected systems are
ready with all of the capabilities they can provide. In particular, when an inflexible system is
included in the SoS, the system's ready-time is the time when it is able to provide all of the
capabilities it can provide. Considering the definition of 𝑎𝑎𝑖𝑖𝑗𝑗, system 𝑗𝑗’s ready-time is equal
to max

𝑖𝑖∈𝐼𝐼
�𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗�. Then, the completion time of the SoS with inflexible systems as a function of S

can be defined as

𝑇𝑇𝑇𝑇1(𝑺𝑺) = max
𝑖𝑖∈𝐼𝐼

�max
𝑗𝑗∈𝐽𝐽

�𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗��. (2)

In Equation (2), it is assumed that a SoS is complete when all of the systems provide their
capabilities. In different architecting settings, one can assume that a SoS is complete whenever
there is at least one system providing each capability, i.e., the SoS is capable. In such a case,
capability 𝑚𝑚's ready-time by system 𝑗𝑗 is equal tomax�𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗, �1 − 𝑚𝑚𝑖𝑖𝑗𝑗�𝑀𝑀 + �1 − 𝑆𝑆𝑗𝑗�𝑀𝑀�,
where 𝑀𝑀 is a very large number (note that when 𝑆𝑆𝑗𝑗 = 0, or 𝑆𝑆𝑗𝑗 = 1 but 𝑚𝑚𝑖𝑖𝑗𝑗 = 0, it means that
system 𝑗𝑗 takes a very long time to provide capability 𝑚𝑚, which practically implies that system j is
not providing capability 𝑚𝑚). Then, the earliest ready-time for capability 𝑚𝑚 in the SoS is equal
to min

𝑗𝑗∈𝐽𝐽
�max�𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗 , �1 − 𝑚𝑚𝑖𝑖𝑗𝑗�𝑀𝑀 + �1 − 𝑆𝑆𝑗𝑗�𝑀𝑀��. It then follows that the earliest time when all

of the required capabilities are ready in the SoS is equal to max
𝑖𝑖∈𝐼𝐼

�min
𝑗𝑗∈𝐽𝐽

�max�𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗 , �1 −

𝑚𝑚𝑖𝑖𝑗𝑗�𝑀𝑀 + �1 − 𝑆𝑆𝑗𝑗�𝑀𝑀���.

The total cost of the SoS is equal to the sum of the costs of the systems plus the cost of
connections among the selected systems. An inflexible system's cost is equal to the sum of the
costs charged for providing the capabilities, i.e., system 𝑗𝑗's cost is ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 . Then, the cost of
the systems included in the SoS amounts to ∑ ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 . Note that given 𝑺𝑺, one can
determine 𝒀𝒀 very easily. Particularly, it can be observed that 𝑠𝑠𝑗𝑗1𝑗𝑗2 + 𝑠𝑠𝑗𝑗2𝑗𝑗1 = 1 if 𝑆𝑆𝑗𝑗1 + 𝑆𝑆𝑗𝑗2 = 2;
and 𝑠𝑠𝑗𝑗1𝑗𝑗2 + 𝑠𝑠𝑗𝑗2𝑗𝑗1 = 0 if 𝑆𝑆𝑗𝑗1 + 𝑆𝑆𝑗𝑗2 ≤ 1. In formulating the SoS architecting problem with inflexible
systems, we will include constraints that will assure that the selected systems are connected.
Then, the cost of connections among the selected systems amounts to ∑ ∑ 𝑤𝑤𝑗𝑗1𝑗𝑗2𝑠𝑠𝑗𝑗1𝑗𝑗2𝑗𝑗2∈𝐽𝐽𝑗𝑗1∈𝐽𝐽 . It
then follows that the total cost of the SoS with inflexible systems as a function of 𝑺𝑺 and 𝒀𝒀 reads
as

𝑇𝑇𝐼𝐼1(𝑺𝑺,𝒀𝒀) = ∑ ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 + ∑ ∑ ℎ𝑗𝑗1𝑗𝑗2𝑠𝑠𝑗𝑗1𝑗𝑗2𝑗𝑗2∈𝐽𝐽𝑗𝑗1∈𝐽𝐽 . (3)

The SoS architecting problem with inflexible systems (SoS-I) can then be formulated as follows:

28

Formulation 1 SoS Architect with Inflexible Systems (SoS-I)

Maximize
 𝑇𝑇𝑃𝑃1(𝑺𝑺)

Minimize
 𝑇𝑇𝑇𝑇1(𝑺𝑺)

 𝑇𝑇𝐼𝐼1(𝑺𝑺,𝒀𝒀)

Subject-to
 ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 ≥ 1 ⩝ 𝑚𝑚 ∈ 𝐼𝐼 (4)

 𝑠𝑠𝑟𝑟𝑟𝑟 + 𝑠𝑠𝑟𝑟𝑟𝑟 ≥ 𝑆𝑆𝑟𝑟+𝑆𝑆𝑟𝑟 − 1 ⩝ 𝑚𝑚, 𝑠𝑠 ∈ 𝐽𝐽 (5)

 𝑆𝑆𝑗𝑗 ∈ {0,1} ⩝ 𝑗𝑗 ∈ 𝐽𝐽 (6)

 𝑠𝑠𝑟𝑟𝑟𝑟 ∈ {0,1} ⩝ 𝑚𝑚, 𝑠𝑠 ∈ 𝐽𝐽 (7)

where 𝑇𝑇𝑃𝑃1(𝑺𝑺), 𝑇𝑇𝑇𝑇1(𝑺𝑺), and 𝑇𝑇𝐼𝐼1(𝑺𝑺,𝒀𝒀) are defined in Equations (1), (2), and (3), respectively.
Constraints (4) guarantee that each capability is provided by at least one of the systems included
in the SoS. Constraints (5) assure that there is a connection between any distinct pair of the
selected systems. Note that if 𝑆𝑆𝑗𝑗 + 𝑆𝑆𝑖𝑖 = 2, constraints (5) imply that 𝑠𝑠𝑗𝑗𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑗𝑗 ≥ 1; however,
since 𝑠𝑠𝑗𝑗𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑗𝑗 = 1 is sufficient for connectedness and an additional connection between
systems 𝑗𝑗 and 𝑘𝑘 increases costs while not changing to the SoS's total performance and
completion time, one has either 𝑠𝑠𝑗𝑗𝑖𝑖 = 1 or 𝑠𝑠𝑖𝑖𝑗𝑗 = 1 but not both 𝑠𝑠𝑗𝑗𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑗𝑗 = 1. Similarly, it can
be argued that if 𝑆𝑆𝑗𝑗 + 𝑆𝑆𝑖𝑖 ≤ 1, 𝑠𝑠𝑗𝑗𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. Constraints (6) and (7) give the binary definitions
of the decision variables.

SOS ARCHITECTING WITH FLEXIBLE SYSTEMS

When the systems are exible, the SoS architect's main decision is to determine which systems
will be requested to provide which capabilities. Let

𝑚𝑚𝑖𝑖𝑗𝑗 = �1: 𝑚𝑚𝑜𝑜 𝑐𝑐𝑚𝑚𝑝𝑝𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑠𝑠 𝑚𝑚 𝑚𝑚𝑠𝑠 𝑚𝑚𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑠𝑠𝑚𝑚𝑒𝑒𝑎𝑎 𝑜𝑜𝑚𝑚𝑜𝑜𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑚𝑚 𝑗𝑗,
0: 𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑤𝑤𝑒𝑒,

and let 𝑿𝑿 be the 𝑎𝑎 × 𝑚𝑚-matrix of 𝑚𝑚𝑖𝑖𝑗𝑗 values. Note that by definition of 𝑚𝑚𝑖𝑖𝑗𝑗, we have 𝑚𝑚𝑖𝑖𝑗𝑗 ≤ 𝑚𝑚𝑖𝑖𝑗𝑗.
That is, the SoS architect will not request a capability from a system which cannot provide that
capability. A system is selected in the SoS architecture if it is asked to provide at least one
capability. Let

𝑍𝑍𝑗𝑗 = �
1: 𝑚𝑚𝑜𝑜 �𝑚𝑚𝑖𝑖𝑗𝑗 ≥ 1

𝑖𝑖∈𝐼𝐼

,

0: 𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑤𝑤𝑒𝑒,

29

that is, 𝑍𝑍𝑗𝑗 is the binary variable indicating selection of system 𝑗𝑗 and let 𝒁𝒁 be the m-vector of 𝑍𝑍𝑗𝑗
values. It should be remarked that 𝒁𝒁 and 𝑺𝑺 are different. In particular, while 𝑺𝑺 is the decision
variables vector in case of inflexible systems, 𝒁𝒁 is the auxiliary decision variables vector,
determined by 𝑿𝑿, in case of flexible systems. Nonetheless, the relation between 𝒀𝒀 and a given 𝑺𝑺
is the same as the relation between 𝒀𝒀 and a given 𝒁𝒁. That is, 𝑠𝑠𝑗𝑗1𝑗𝑗2 + 𝑠𝑠𝑗𝑗2𝑗𝑗1 = 1 if 𝑍𝑍𝑗𝑗1 + 𝑍𝑍𝑗𝑗2 = 2;
and, 𝑠𝑠𝑗𝑗1𝑗𝑗2 + 𝑠𝑠𝑗𝑗2𝑗𝑗1 = 0 if 𝑍𝑍𝑗𝑗1 + 𝑍𝑍𝑗𝑗2 ≤ 1.

Following the definition of total performance stated in Equation (1), one can note that the total
performance of the SoS with flexible systems as a function of 𝑿𝑿 can be stated as follows:

𝑇𝑇𝐼𝐼1(𝑺𝑺,𝒀𝒀) = ∑ ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 + ∑ ∑ ℎ𝑗𝑗1𝑗𝑗2𝑠𝑠𝑗𝑗1𝑗𝑗2𝑗𝑗2∈𝐽𝐽𝑗𝑗1∈𝐽𝐽 (8)

Similar to Equation (2), the completion time of the SoS with flexible systems as a function of X
reads as

𝑇𝑇𝑇𝑇2(𝑺𝑺𝑿𝑿) = max
𝑖𝑖∈𝐼𝐼

�max
𝑗𝑗∈𝐽𝐽

�𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗�� (9)

The total cost of the SoS with flexible systems is slightly different than the definition of the total
cost of the SoS with inflexible systems. In particular, similar to Equation (3), the total cost of the
SoS with flexible systems includes the sum of the costs charged by the systems for providing the
capabilities they are requested to and the cost of the connections among the selected systems.
In addition, the total cost of the SoS with flexible systems includes the incentives paid by the SoS
architect to the systems for their collaborations to be flexible. Specifically, when the SoS architect
requests only a subset of the capabilities a system can provide, the system provider needs to
disassemble the unrequested capabilities and make engineering design changes in its system
accordingly. This, of course, is a costly process. Therefore, we assume that the SoS architect is
subject to incentive charges 𝑒𝑒𝑖𝑖𝑗𝑗 for requesting system j not to provide capability 𝑚𝑚, which would
be provided otherwise and let 𝑬𝑬 be the 𝑎𝑎 × 𝑚𝑚-matrix of 𝑒𝑒𝑖𝑖𝑗𝑗 values. Then, the total cost of the SoS
with flexible systems as a function of 𝑿𝑿 and 𝒀𝒀 amounts to

𝑇𝑇𝐼𝐼2(𝑿𝑿,𝒀𝒀) = ∑ ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 + ∑ ∑ (𝑚𝑚𝑖𝑖𝑗𝑗 − 𝑚𝑚𝑖𝑖𝑗𝑗)𝑒𝑒𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 + ∑ ∑ ℎ𝑗𝑗1𝑗𝑗2𝑠𝑠𝑗𝑗1𝑗𝑗2𝑗𝑗2∈𝐽𝐽𝑗𝑗1∈𝐽𝐽 (10)

where the first term is the costs charged by the systems for providing the capabilities they are
requested to, the second term is the incentive costs paid by the SoS architect to the systems for
not providing the capabilities they originally could, and the last term is the cost of connections
among the selected systems. Note that when 𝑚𝑚𝑖𝑖𝑗𝑗, system j provides capability 𝑚𝑚; hence, the SoS
architect is subject to charges of 𝑐𝑐𝑖𝑖𝑗𝑗. On the other hand, if 𝑚𝑚𝑖𝑖𝑗𝑗 = 0 when 𝑚𝑚𝑖𝑖𝑗𝑗 = 1, this means that
the SoS architect is requesting system 𝑗𝑗 not to provide capability 𝑚𝑚; thus, the SoS architect is
subject to charges of 𝑒𝑒𝑖𝑖𝑗𝑗.

The SoS architecting problem with flexible systems (SoS-F) can then be formulated as follows:

30

Formulation 2 SoS Architect with Flexible Systems (SoS-F)

Maximize
 𝑇𝑇𝑃𝑃2(𝑿𝑿,𝒀𝒀)

Minimize
 𝑇𝑇𝑇𝑇2(𝑿𝑿)

 𝑇𝑇𝐼𝐼2(𝑿𝑿,𝒀𝒀)

Subject-to
 𝑚𝑚𝑖𝑖𝑗𝑗 ≤ 𝑚𝑚𝑖𝑖𝑗𝑗 ∀𝑚𝑚 ∈ 𝐼𝐼 (11)

 ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 ≥ 1 ⩝ 𝑚𝑚 ∈ 𝐼𝐼 (12)

 𝑠𝑠𝑟𝑟𝑟𝑟 + 𝑠𝑠𝑟𝑟𝑟𝑟 ≥ 𝑍𝑍𝑟𝑟+𝑍𝑍𝑟𝑟 − 1 ⩝ 𝑚𝑚, 𝑠𝑠 ∈ 𝐽𝐽 (13)

 𝑍𝑍𝑗𝑗 ≤ ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 ⩝ 𝑗𝑗 ∈ 𝐽𝐽 (14)

 𝑍𝑍𝑗𝑗 ≥ 1/𝑎𝑎∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 ⩝ 𝑗𝑗 ∈ 𝐽𝐽 (15)

 𝑚𝑚𝑖𝑖𝑗𝑗 ∈ {0,1} ⩝ 𝑚𝑚 ∈ 𝐼𝐼 ⩝ 𝑗𝑗 ∈ 𝐽𝐽 (16)

 𝑍𝑍𝑗𝑗 ∈ {0,1} ⩝ 𝑗𝑗 ∈ 𝐽𝐽 (17)

 𝑠𝑠𝑟𝑟𝑟𝑟 ∈ {0,1} ⩝ 𝑚𝑚, 𝑠𝑠 ∈ 𝐽𝐽 (18)

where 𝑇𝑇𝑃𝑃2(𝑿𝑿), 𝑇𝑇𝑇𝑇2(𝑿𝑿), and 𝑇𝑇𝐼𝐼2(𝑿𝑿,𝒀𝒀) are defined in Equations (8), (9), and (10), respectively.
Constraints (11) ensure that the SoS architect can request the capabilities a system can provide.
Constraints (12) and (13) are defined similar to constraints (4) and (5), respectively. Constraints
(14) and (15) guarantee that a system is selected in the SoS if at least one capability is requested
from it; and, not selected otherwise. Particularly, if ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 = 0constraint (7) indicates that 𝑍𝑍𝑗𝑗 =
0 as 𝑍𝑍𝑗𝑗 ∈ {0,1}; and, if ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 > 0,0 < 1/𝑎𝑎∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 ≤ 1; hence, constraint (15) indicates that
𝑍𝑍𝑗𝑗 = 1 as 𝑍𝑍𝑗𝑗 ∈ {0,1}. Constraints (16), (17), and (18) give the binary definitions. Next, we explain
the details of the solution methods for SoS-I and SoS-F.

SOS ARCHITECTING ALGORITHMS WITH INFLEXIBLE AND FLEXIBLE SYSTEMS

Note that both SoS-I and SoS-F are bi-objective binary-integer non-linear optimization problems.
Two common methods for solving multi-objective optimization problems are Pareto front
generation (where the decision maker is provided with a set of solutions, among which a solution
is selected) and reduction to single-objective formulation (where different weights are assigned
to different objectives considering the decision maker's preferences or the maximum deviation
from the optimum solution of the individual objectives is minimized and a solution is provided to
the decision maker). In this volume, we adopt the former method and approximate the Pareto
front (PF) of SoS-I and SoS-F by generating a set of Pareto effcient SoS's for each case. To do so,
due to the binary definitions of the decision variables, we propose two evolutionary heuristic

31

algorithms; one for SoS-I, denoted by EA-I, and one for SoS-F, denoted by EA-F. Both of these
algorithms consist of four main steps: (i) chromosome representation and initialization, (ii) fitness
evaluation, (iii) mutation, and (iv) termination. Basically, an evolutionary algorithm works as
follows. Given a set of solutions (chromosomes), i.e., a population, the best chromosome(s) are
selected through fitness evaluation to generate the next population. The best chromosomes of a
population constitute the parent chromosomes of the next population. The next population is
generated by mutating the parent chromosomes of the current population. These steps are
repeated until a certain termination criteria is met. Steps (ii) and (iv) are common in both of the
algorithms we propose, while steps (i) and (iii) are different due to the distinct characteristics of
SoS-I and SoS-F. We, therefore, first explain the common steps (ii) and (iv), and then, steps (i) and
(iii) for each algorithm.

PARETO FRONT APPROXIMATION AND TERMINATION

Let 𝑺𝑺𝑺𝑺𝑺𝑺 denote a solution for SoS-I or SoS-F and let (𝑇𝑇𝑃𝑃,𝑇𝑇𝑇𝑇,𝑇𝑇𝐼𝐼) be the total performance,
completion time, and total cost of 𝑺𝑺𝑺𝑺𝑺𝑺, respectively. Note that 𝑺𝑺𝑺𝑺𝑺𝑺 = (𝑺𝑺,𝒀𝒀) and (𝑇𝑇𝑃𝑃,𝑇𝑇𝑇𝑇,𝑇𝑇𝐼𝐼) =
(𝑇𝑇𝑃𝑃1(𝑺𝑺),𝑇𝑇𝑇𝑇1(𝑺𝑺), 𝑇𝑇𝐼𝐼1(𝑺𝑺,𝒀𝒀)) for SoS-I, and 𝑺𝑺𝑺𝑺𝑺𝑺 = (𝑿𝑿,𝒀𝒀) and (𝑇𝑇𝑃𝑃,𝑇𝑇𝑇𝑇,𝑇𝑇𝐼𝐼) =
(𝑇𝑇𝑃𝑃2(𝑿𝑿),𝑇𝑇𝑇𝑇2(𝑿𝑿),𝑇𝑇𝐼𝐼2(𝑿𝑿,𝒀𝒀)) for SoS-F. Now suppose that a set of solutions 𝑅𝑅 is given and let
𝑺𝑺𝑺𝑺𝑺𝑺𝒓𝒓 ∈ 𝑅𝑅be the 𝑚𝑚𝑡𝑡ℎ solution 𝑚𝑚 ≤ |𝑅𝑅|, such that (𝑇𝑇𝑃𝑃𝑟𝑟 ,𝑇𝑇𝑇𝑇𝑟𝑟 ,𝑇𝑇𝐼𝐼𝑟𝑟) defines the total performance,
completion time and total cost of 𝑺𝑺𝑺𝑺𝑺𝑺𝒓𝒓. In fitness evaluation of EA-I and EA-F, the purpose is to
select the best chromosomes out of a given population, i.e., the parent chromosomes that will
be used in generating the next population. To do so, since both SoS-I or SoS-F are bi-objective
optimization problems, we focus on generating the Pareto efficient solutions out of a given
population.

A solution is Pareto efficient if it is not Pareto dominated by another solution. Unless
 (𝑇𝑇𝑃𝑃𝑟𝑟1 ,𝑇𝑇𝑇𝑇𝑟𝑟1 ,𝑇𝑇𝐼𝐼𝑟𝑟1) = (𝑇𝑇𝑃𝑃𝑟𝑟2 ,𝑇𝑇𝑇𝑇𝑟𝑟2 ,𝑇𝑇𝐼𝐼𝑟𝑟2), 𝑺𝑺𝑺𝑺𝑺𝑺𝒓𝒓𝟏𝟏 Pareto dominates 𝑺𝑺𝑺𝑺𝑺𝑺𝒓𝒓𝟐𝟐if 𝑇𝑇𝑃𝑃𝑟𝑟1 ≥
𝑇𝑇𝑃𝑃𝑟𝑟2, 𝑇𝑇𝑇𝑇𝑟𝑟1 ≤ 𝑇𝑇𝑇𝑇𝑟𝑟2, and 𝑇𝑇𝐼𝐼𝑟𝑟1 ≤ 𝑇𝑇𝐼𝐼𝑟𝑟2 (Berube et al., 2009). Therefore, the following procedure
can be used to generate all of the Pareto efficient solutions within a given set of solutions R,
denoted by PF(R).

Algorithm 1 Determining PF(R)

Step 0) Set 𝑚𝑚 = 1
Step 1) While 𝑚𝑚 ≤ |𝑅𝑅| − 1
Step 2) Set 𝑤𝑤 = 𝑚𝑚 + 1
Step 3) While 𝑤𝑤 ≤ |𝑅𝑅|
Step 3.1) If (𝑇𝑇𝑃𝑃𝑡𝑡 ,𝑇𝑇𝑇𝑇t,𝑇𝑇𝐼𝐼t) ≠ (𝑇𝑇𝑃𝑃𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑤𝑤 ,𝑇𝑇𝐼𝐼w),𝑇𝑇𝑃𝑃𝑡𝑡 ≥ 𝑇𝑇𝑃𝑃𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇𝑤𝑤 ,

and 𝑇𝑇𝐼𝐼𝑡𝑡 ≤ 𝑇𝑇𝐼𝐼𝑤𝑤
Step 3.1.1) Set 𝑅𝑅: = 𝑅𝑅\{𝑺𝑺𝑺𝑺𝑺𝑺𝒘𝒘} and 𝑤𝑤: = 𝑤𝑤 − 1
Step 3.2) If (𝑇𝑇𝑃𝑃𝑡𝑡 ,𝑇𝑇𝑇𝑇t,𝑇𝑇𝐼𝐼t) ≠ (𝑇𝑇𝑃𝑃𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑤𝑤,𝑇𝑇𝐼𝐼w),𝑇𝑇𝑃𝑃𝑡𝑡 ≥ 𝑇𝑇𝑃𝑃𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇𝑤𝑤 ,

and 𝑇𝑇𝐼𝐼𝑡𝑡 ≤ 𝑇𝑇𝐼𝐼𝑤𝑤
Step 3.2.1) Set 𝑅𝑅: = 𝑅𝑅\{𝑺𝑺𝑺𝑺𝑺𝑺𝒕𝒕} and 𝑤𝑤 ≔ |𝑅𝑅| and 𝑚𝑚: = 𝑚𝑚 − 1
Step 3.3) Set 𝑤𝑤: = 𝑤𝑤 + 1
Step 3.4) Set 𝑚𝑚: = 𝑚𝑚 + 1
Step 3.5) Return 𝑃𝑃𝐹𝐹(𝑅𝑅) = 𝑅𝑅

32

Given a population R, PF(R) is taken as the set of parent chromosomes for the next population. If
PF(R) is not changing over a pre-specified number of populations, defined as K, in EA-I and EA-F,
algorithms are terminated. The latest PF(R) is the set of solutions returned for the decision maker.
Next, the details of steps (i) and (iii) for each algorithm are explained.

EVOLUTIONARY ALGORITHM FOR SOS-I

Recall that 𝑺𝑺 is the binary decision variables vector in SoS-I and given 𝑺𝑺, one can easily determine
the corresponding 𝒀𝒀. Therefore, 𝑺𝑺 is sufficient for defining a SoS with inflexible systems. This
suggests that 𝑺𝑺 can be used as a chromosome in EA-I. The details of the chromosome
representation and initialization and mutation steps of EA-I are as follows.

• Chromosome Representation and Initialization: As noted above, the chromosome is
defined by 𝑺𝑺. Initially, we generate 𝑎𝑎𝑚𝑚 feasible chromosomes. Note that not every binary
m-vector is feasible for SoS-I. As suggested by constraints (4), 𝑺𝑺 is feasible
when ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 ≥ 1 ∀𝑚𝑚 ∈ 𝐼𝐼. Therefore, in generating the initial population of
chromosomes, we first randomly generate a binary m-vector 𝑅𝑅 = [𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑚𝑚].
If ∑ 𝑅𝑅𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 = 0 for some 𝑚𝑚 ∈ 𝐼𝐼, 𝑅𝑅 is infeasible. In case 𝑅𝑅 is infeasible, for each 𝑚𝑚 ∈ 𝐼𝐼 such
that ∑ 𝑅𝑅𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 = 0, a system 𝑗𝑗 such that 𝑚𝑚𝑖𝑖𝑗𝑗 = 1 is randomly selected and we set 𝑅𝑅𝑗𝑗 = 1.
Then, the final 𝑅𝑅 is accepted as a feasible chromosome 𝑺𝑺.

• Mutation: Given a set of parent chromosomes, which is achieved by applying Procedure
PF on the current population, the next set of chromosomes consists of the parent
chromosomes and the newly generated chromosomes through mutation. Including the
parent chromosomes within the next population guarantees that the Pareto front is not
worsening over populations. New chromosomes are generated by applying a neighbor
mutation on each gene of every parent chromosome. The neighbor mutation works as
follows. Consider a parent chromosome S and a gene 𝑐𝑐 ≤ 𝑚𝑚. If 𝑆𝑆𝑙𝑙 = 0, we set 𝑆𝑆𝑙𝑙 = 1. Note
that with the addition of a new system into a feasible SoS, the SoS will continue to be
feasible. Therefore, by setting 𝑆𝑆𝑙𝑙 = 1 when 𝑆𝑆𝑙𝑙 = 0, a new feasible chromosome is
generated. On the other hand, when 𝑆𝑆𝑙𝑙 = 1, to avoid infeasibility of the mutant
chromosome, we set 𝑆𝑆𝑙𝑙 = 0 if ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽:𝑗𝑗≠𝑙𝑙 ≥ 1 ⩝ 𝑚𝑚 ∈ 𝐼𝐼. That is, we exclude system 𝑐𝑐
from the SoS defined by the current parent chromosome as long as its exclusion does not
cause infeasibility by making SoS incapable. Note that one can generate at most 𝑚𝑚 new
chromosomes out of a given parent chromosome with the neighbor mutation.

EVOLUTIONARY ALGORITHM FOR SOS-F

Recall that 𝑿𝑿 is the binary decision variables vector in SoS-F. Given 𝑿𝑿, one can determine 𝒁𝒁 by
setting 𝑍𝑍𝑗𝑗 = 1 if ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 ≥ 1 and 𝑍𝑍𝑗𝑗 = 0 otherwise. Then, using 𝒁𝒁, one can determine the
corresponding 𝒀𝒀. That is, 𝑿𝑿 represents a SoS by itself; therefore, we construct EA-F such that it
evolves with 𝑿𝑿. The details of the chromosome representation and initialization and mutation
steps of EA-F are as follows.

• Chromosome Representation and Initialization: We adopt the binary matrix

33

representation of 𝑿𝑿 as the chromosome. The jth column of 𝑿𝑿 defines the jth gene of the
chromosome. We set the initial population size equal to 𝑎𝑎𝑚𝑚 and we generate a feasible
chromosome as follows. Note that there are ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 systems that can provide capability
𝑚𝑚 and, as suggested by constraints (12), ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 𝑚𝑚𝑖𝑖𝑗𝑗 ≥ 1 in a feasible 𝑿𝑿. Therefore, in
generating a feasible chromosome, we first randomly generate the number, 𝑝𝑝𝑖𝑖, between
1 and ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 to be the number of systems, from which capability 𝑚𝑚 will be requested.
Then, for each capability 𝑚𝑚, we randomly select 𝑝𝑝𝑖𝑖 systems among the systems with 𝑚𝑚𝑖𝑖𝑗𝑗 =
1 and set 𝑚𝑚𝑖𝑖𝑗𝑗 = 1. Repeating this process for each capability, a feasible 𝑿𝑿 is generated.

• Mutation: Similar to EA-I, given a set of parent chromosomes, the next set of
chromosomes consists of the parent chromosomes and the newly generated
chromosomes through mutation to have non-worsening Pareto fronts over populations.
New chromosomes are generated by applying two mutations on each gene of every
parent chromosome: adding request and dropping request. Consider a parent
chromosome 𝑿𝑿, which defines a feasible SoS, and a gene 𝑐𝑐 ≤ 𝑚𝑚, representing the 𝑐𝑐 th
system. Adding request aims at requesting one additional capability from system 𝑐𝑐, if
possible. Specifically, adding request is executed by randomly selecting a capability 𝑚𝑚 from
the set of capabilities that can be provided by system 𝑐𝑐, i.e., 𝑚𝑚𝑖𝑖𝑙𝑙 = 1, but currently not
requested from system 𝑐𝑐, i.e., 𝑚𝑚𝑖𝑖𝑙𝑙 = 0. Then, in case there exists at least one such
capability with 𝑚𝑚𝑖𝑖𝑙𝑙 = 0. and 𝑚𝑚𝑖𝑖𝑙𝑙 = 1, we set 𝑚𝑚𝑖𝑖𝑙𝑙 = 1 for one of such capabilities, which is
randomly selected. Dropping request aims at requesting one less capability from system
𝑐𝑐, if possible. Specifically, dropping request is executed by randomly selecting a capability
𝑚𝑚 from the set of capabilities that are currently requested from system 𝑐𝑐, i.e., 𝑚𝑚𝑖𝑖𝑙𝑙 = 1, such
that the SoS remains capable if capability 𝑚𝑚 is not provided by system 𝑐𝑐. That is, we set
𝑚𝑚𝑖𝑖𝑙𝑙 = 0 for a randomly selected capability 𝑚𝑚 from the set of capabilities such that 𝑚𝑚𝑖𝑖𝑙𝑙 = 1
and ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽:𝑗𝑗≠𝑙𝑙 ≥ 1 ⩝ 𝑚𝑚 ∈ 𝐼𝐼. One can generate at most 2𝑚𝑚 new chromosomes out of
a given parent chromosome.

SOS ARCHITECTING ANALYSES WITH INFLEXIBLE AND FLEXIBLE SYSTEMS

In this section, we conduct a numerical study to analyze (i) the benefits of SoS architecting with
flexible systems compared to SoS architecting with in inflexible systems and (ii) the effects of
flexibility levels on the SoS architectures. To do so, we consider different problem sizes and
different problem classes. In particular, we consider 9 different problem sizes, each of which
corresponds to a combination of 𝑎𝑎 = {5,10,15} and 𝑚𝑚 = {5,10,15}. Given 𝑎𝑎 and 𝑚𝑚, we randomly
generate 10 problem instances assuming that 𝑝𝑝𝑖𝑖𝑗𝑗~ 𝑈𝑈[10,20], 𝑎𝑎𝑖𝑖𝑗𝑗~ 𝑈𝑈[5,10], 𝑐𝑐𝑖𝑖𝑗𝑗~ 𝑈𝑈[20,40], and
ℎ𝑟𝑟𝑟𝑟~ 𝑈𝑈[1,5], where 𝑈𝑈[𝑚𝑚, 𝑐𝑐] denotes the continuous uniform distribution with range [𝑚𝑚, 𝑐𝑐].
Furthermore, for each problem instance, we randomly generate the binary 𝑨𝑨 matrix such that
∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 ≥ 1 ⩝ 𝑚𝑚 ∈ 𝐼𝐼, i.e., there is at least on system who can provide each capability (this ensures
that the problem instance is feasible).

A given problem instance {A, P, D, C} is solved four times assuming inflexibility, low flexibility,
medium flexibility, and high flexibility. When inflexibility is assumed, SoS-I is solved using EA-I

34

with the given {A, P, D, C}. In case of flexible systems, we define three levels of flexibility by
considering the relation between 𝑐𝑐𝑖𝑖𝑗𝑗 and 𝑒𝑒𝑖𝑖𝑗𝑗 values. Recall that 𝑐𝑐𝑖𝑖𝑗𝑗 is system 𝑗𝑗's charge for
providing capability 𝑚𝑚 and 𝑒𝑒𝑖𝑖𝑗𝑗 is the charge for asking system 𝑗𝑗 not to provide capability 𝑚𝑚. In
generating 𝑒𝑒𝑖𝑖𝑗𝑗 values, we assume 𝑒𝑒𝑖𝑖𝑗𝑗 = 𝑐𝑐𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗, where 𝑐𝑐𝑖𝑖𝑗𝑗 is used to define the level of flexibility.
We assume that 𝑐𝑐𝑖𝑖𝑗𝑗~ 𝑈𝑈[0,1] as it is reasonable and practical to assume that 𝑐𝑐𝑖𝑖𝑗𝑗 ≤ 𝑒𝑒𝑖𝑖𝑗𝑗 since 𝑐𝑐𝑖𝑖𝑗𝑗
includes the cost of the capability and its assembly to the system while 𝑒𝑒𝑖𝑖𝑗𝑗 is the cost of
disassembly of the capability from the system. Note that when 𝑐𝑐𝑖𝑖𝑗𝑗values are low, system 𝑗𝑗 can
be accepted as highly flexible. On the other hand, large 𝑐𝑐𝑖𝑖𝑗𝑗values indicate that system 𝑗𝑗 is less
flexible. Then, for a given problem instance {A, P, D, C}, its flexible versions {A, P, D, C, E} with
low, medium, and high flexibility are defined by assuming 𝑐𝑐𝑖𝑖𝑗𝑗~ 𝑈𝑈[0.6,0.8] 𝑐𝑐𝑖𝑖𝑗𝑗~ 𝑈𝑈[0.4,0.6], and
𝑐𝑐𝑖𝑖𝑗𝑗~ 𝑈𝑈[0.2,0.4], respectively. When there is flexibility, SoS-F is solved using EA-F with the given
{A, P, D, C, E}. Let 𝑃𝑃𝐹𝐹𝐼𝐼 denote the Pareto front returned by EA-I in case of inflexibility and let
𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 , 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 , and 𝑃𝑃𝐹𝐹𝐹𝐹ℎ denote the Pareto fronts returned by EA-F in cases of low, medium, and
high flexibilities, respectively.

We generate 10 problem instances for each problem size and solve it four times as explained
above. All of the algorithms are coded in Matlab 2014 and executed on a personal computer with
3Ghz processor and 8GB RAM. For different problem sizes and flexibility levels considered, Tables
3.1, 3.2, 3.3, and 3.4 summarize the average values over all 10 problem instances solved for the
following statistics of EA-I and EA-F: the number of populations evaluated (pop. #), the number
of SoS's evaluated per population (i.e., the average population size, denoted as |R|), the number
of Pareto efficient SoS's per population (i.e., the parent size, denoted as |PF(R)|), the number of
Pareto efficient SoS's returned at termination (denoted as |𝑃𝑃𝐹𝐹𝐼𝐼|, |𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙| , |𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚| , and |𝑃𝑃𝐹𝐹𝐹𝐹ℎ|
for inflexibility, low flexibility, medium flexibility, and high flexibility cases, respectively), and the
computational time in seconds (CPU).

As can be seen in the tables, on average, inflexible problem instances can be solved in less
computational time with EA-I compared to the flexible problem instances solved with EA-F.
Furthermore, one can note that flexible problem instances have more solutions within their
Pareto fronts on average. These results are expected as the flexible problem instances have larger
solution sets compared to the inflexible problem instances. In particular, while there are 2m

possible SoS's (including feasible and infeasible solutions) for SoS-I, there are 2nm possible SoS's
for SoS-F. Finally, as expected, as the problem size gets larger, the number of populations
evaluated, the number of SoS's evaluated per population, the size of the Pareto front, and the
computational time increase.

35

Table 2 Computational Statistics of EA-I for Inflexibility

 Inflexibility
n m pop. # |R| |PF (R)| |PFI| CPU
5 5 6.5 4.9 2.6 3.0 0.00

 10 11.4 71.0 16.2 20.3 0.09
 15 16.7 576.9 72.7 96.7 3.21

10 5 6.1 3.7 3.1 3.7 0.00
 10 8.5 83.0 27.8 36.1 0.09
 15 13.4 790.8 125.7 170.5 3.34

15 5 6.0 3.3 3.3 3.9 0.00
 10 8.5 85.4 37.8 49.0 0.10
 15 11.8 813.3 145.0 195.3 3.03

avg. 9.9 270.3 48.2 64.3 1.10

Table 3 Computational Statistics of EA-F for Low Flexibility

 Low Flexibility
n m pop. # |R| |PF (R)| |PFFl| CPU
5 5 4.4 7.0 5.1 5.2 0.02

 10 8.2 63.8 25.9 28.4 1.32
 15 11.1 244.0 64.4 78.3 21.19

10 5 7.1 38.2 19.3 21.5 0.51
 10 13.1 241.3 67.9 82.5 14.31
 15 16.8 940.4 166.6 211.6 196.10

15 5 8.5 39.8 19.5 21.2 0.28
 10 16.2 594.1 126.4 157.3 68.17
 15 23.5 2454.3 328.0 417.0 1539.03

avg. 12.1 513.7 91.5 113.7 204.55

Table 4 Computational Statistics of EA-F for Medium Flexibility

 Medium Flexibility
n m pop. # |R| |PF (R)| |PFFm| CPU
5 5 4.8 8.7 6.4 6.7 0.04

 10 7.0 53.2 24.3 27.6 0.76
 15 10.0 242.9 65.4 81.2 12.22

10 5 7.0 44.5 21.0 23.9 0.88
 10 12.5 332.4 89.2 112.7 28.94
 15 17.5 1073.8 193.1 251.0 251.60

15 5 8.0 46.5 21.5 24.5 0.35
 10 17.2 624.5 139.4 173.3 85.02
 15 23.1 3499.7 458.1 610.1 3494.34

avg. 11.9 658.5 113.1 145.7 430.46

36

Table 5 Computational Statistics of EA-F for High Flexibility

 High Flexibility
n m pop. # |R| |PF (R)| |PFFh| CPU
5 5 4.9 8.5 6.3 6.5 0.04

 10 7.7 59.5 26.2 30.0 1.36
 15 10.5 298.7 78.0 97.3 21.57

10 5 6.5 35.2 19.3 22.2 0.46
 10 12.5 312.4 87.0 108.9 26.08
 15 17.2 1312.1 226.4 298.7 423.28

15 5 9.5 53.7 25.9 29.0 0.60
 10 17.8 706.3 158.7 203.9 110.52
 15 24.4 3236.3 423.8 565.7 2933.12

avg. 12.3 669.2 116.8 151.4 390.78

Next, we focus on analyzing the effects of flexibility and flexibility incentive charges on the SoS
architectures. For each analysis, we quantitatively and qualitatively compare the Pareto fronts of
the same problem instance with different flexibility levels as follows. Consider two Pareto fronts
𝑃𝑃𝐹𝐹𝐼𝐼 and 𝑃𝑃𝐹𝐹𝐹𝐹. For quantitative comparison, we focus on the size of the Pareto fronts and the
percentage of the problem instances where the Pareto fronts have the same size or one is greater
than the other, i.e., the percentage of the problem instances where |𝑃𝑃𝐹𝐹𝐼𝐼| > |𝑃𝑃𝐹𝐹𝐹𝐹|, |𝑃𝑃𝐹𝐹𝐼𝐼| =
|𝑃𝑃𝐹𝐹𝐹𝐹|, and |𝑃𝑃𝐹𝐹𝐼𝐼| < |𝑃𝑃𝐹𝐹𝐹𝐹|. For qualitative comparison, we focus on comparing the solutions
within the Pareto fronts. In particular, we determine whether 𝑃𝑃𝐹𝐹𝐼𝐼 dominates 𝑃𝑃𝐹𝐹𝐹𝐹 or vice versa.
To determine the dominance between 𝑃𝑃𝐹𝐹𝐼𝐼 and 𝑃𝑃𝐹𝐹𝐹𝐹, we use the following definition:

Unless 𝑃𝑃𝐹𝐹𝐼𝐼 ≡ 𝑃𝑃𝐹𝐹𝐹𝐹, 𝑃𝑃𝐹𝐹𝐼𝐼Pareto dominates 𝑃𝑃𝐹𝐹𝐹𝐹, denoted as 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐹𝐹, if 𝑃𝑃𝐹𝐹𝑈𝑈 = 𝑃𝑃𝐹𝐹𝐼𝐼, where
𝑃𝑃𝐹𝐹𝑈𝑈 = 𝑃𝑃𝐹𝐹(𝑃𝑃𝐹𝐹𝐼𝐼 ∪ 𝑃𝑃𝐹𝐹𝐹𝐹). That is, 𝑃𝑃𝐹𝐹𝐹𝐹 includes no solution that Pareto dominates any solution
in 𝑃𝑃𝐹𝐹𝐼𝐼.

Procedure PF can be used to determine the set of the Pareto efficient SoS architectures within
the union set of the Pareto efficient SoS architectures with inflexibility and flexibility, i.e., 𝑃𝑃𝐹𝐹𝑈𝑈 =
𝑃𝑃𝐹𝐹(𝑃𝑃𝐹𝐹𝐼𝐼 ∪ 𝑃𝑃𝐹𝐹𝐹𝐹). For qualitative comparison, we document the percentage of the problem
instances where 𝑃𝑃𝐹𝐹𝐼𝐼 ≡ 𝑃𝑃𝐹𝐹𝐹𝐹 (i.e., each solution in one set has a matching solution in the other in
terms of objective function values), 𝑃𝑃𝐹𝐹𝐼𝐼~𝑃𝑃𝐹𝐹𝐹𝐹 (i.e., neither 𝑃𝑃𝐹𝐹𝐼𝐼 dominates 𝑃𝑃𝐹𝐹𝐹𝐹 nor 𝑃𝑃𝐹𝐹𝐹𝐹

dominates 𝑃𝑃𝐹𝐹𝐼𝐼), 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐹𝐹 (i.e., 𝑃𝑃𝐹𝐹𝐼𝐼 dominates 𝑃𝑃𝐹𝐹𝐹𝐹), and 𝑃𝑃𝐹𝐹𝐼𝐼 ≪ 𝑃𝑃𝐹𝐹𝐹𝐹 (i.e., 𝑃𝑃𝐹𝐹𝐹𝐹 dominates
𝑃𝑃𝐹𝐹𝐼𝐼). Furthermore, we compare the percentage of the Pareto efficient SoS architectures in 𝑃𝑃𝐹𝐹𝐼𝐼

as well as in 𝑃𝑃𝐹𝐹𝑈𝑈 and the percentage of the Pareto efficient SoS architectures in 𝑃𝑃𝐹𝐹𝐹𝐹 as well as
in 𝑃𝑃𝐹𝐹𝑈𝑈.

EFFECTS OF FLEXIBILITY

To analyze the effects of flexibility, we compare inflexibility to low, medium, and high flexibilities
quantitatively and qualitatively. Table 6 summarizes the quantitative comparison results. Similar
to Table 7, it can also be observed that flexibility results in more Pareto efficient SoS architectures
compared to inflexibility on average. Furthermore, it can be observed that as the level of

37

flexibility increases, the percentage of the problem instances where flexibility results in more SoS
architectures increases while the percentage of the problem instances where inflexibility results
in more SoS architectures tends to decrease. In particular, one can note that, on average, for
88%, 89%, and 90% of the problem instances, inflexibility results in less Pareto efficient SoS
architectures compared to flexibility with low, medium, and high levels of flexibility, respectively,
and, for 10%, 9%, and 9% of the problem instances, inflexibility results in more Pareto efficient
SoS architectures compared to flexibility with low, medium, and high levels of flexibility,
respectively.

Table 6 Quantitative Comparison of Inflexibility to Flexibility

 Inflexibility vs. Inflexibility vs. Inflexibility vs.
 Low Flexibility Medium Flexibility High Flexibility

 |PFI|> |PFI|= |PFI|< |PFI|> |PFI|= |PFI|< |PFI|> |PFI|=
|PFI|<

n m |PFFL| |PFFL| |PFFL| |PFFm| |PFFm| |PFFm|
|PFFh

| |PFFh| |PFFh|
5 5 0% 10% 90% 0% 10% 90% 0% 10% 90%

 10 0% 0% 100% 0% 10% 90% 20% 0% 80%
 15 50% 10% 40% 60% 0% 40% 50% 0% 50%

10 5 0% 0% 100% 0% 0% 100% 0% 0% 100%
 10 0% 0% 100% 0% 0% 100% 0% 0% 100%
 15 30% 0% 70% 20% 0% 80% 10% 0% 90%

15 5 0% 0% 100% 0% 0% 100% 0% 0% 100%
 10 10% 0% 90% 0% 0% 100% 0% 0% 100%
 15 0% 0% 100% 0% 0% 100% 0% 0% 100%

avg. 10.0% 2.2% 87.8% 8.9% 2.2% 88.9% 8.9% 1.1% 90.0%

As expected, flexibility of the systems results in more Pareto efficient SoS architectures. However,
quantitative comparison does not indicate better SoS architectures due to flexibility. Therefore,
we compare the Pareto fronts of the problem instances solved with inflexibility, and different
levels of flexibilities qualitatively. Table 7 presents the results of the qualitative comparison of
inflexibility to flexibility for different levels of flexibilities.

38

Table 7 Qualitative Comparison of Inflexibility to Flexibility

 Inflexibility vs Low Flexibility
 𝑃𝑃𝐹𝐹𝐼𝐼 ≡ 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐼𝐼 ≪ 𝑃𝑃𝐹𝐹𝐼𝐼~

|𝑃𝑃𝐹𝐹𝑈𝑈|
% of 𝑃𝑃𝐹𝐹𝐼𝐼 % of 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙

n m 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈
5 5 0% 0% 10% 90% 6.3 40% 72%

 10 0% 0% 0% 100% 37.8 53% 51%
 15 0% 0% 0% 100% 150.9 63% 39%

10 5 0% 0% 0% 100% 22.2 24% 80%
 10 0% 0% 0% 100% 107.2 39% 62%
 15 0% 0% 0% 100% 355.1 48% 52%

15 5 0% 0% 0% 100% 21.6 18% 85%
 10 0% 0% 0% 100% 198.3 27% 73%
 15 0% 0% 0% 100% 586.5 34% 66%

avg. 0% 0% 1% 99% 165.1 39% 64%

 Inflexibility vs Medium Flexibility
 𝑃𝑃𝐹𝐹𝐼𝐼 ≡ 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐼𝐼 ≪ 𝑃𝑃𝐹𝐹𝐼𝐼~

|𝑃𝑃𝐹𝐹𝑈𝑈|
% of 𝑃𝑃𝐹𝐹𝐼𝐼 % of 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚

n m 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈
5 5 0% 0% 10% 90% 7.6 36% 75%

 10 0% 0% 0% 100% 37.9 52% 52%
 15 0% 0% 0% 100% 151.4 60% 41%

10 5 0% 0% 0% 100% 24.8 23% 81%
 10 0% 0% 0% 100% 134.0 34% 67%
 15 0% 0% 0% 100% 385.8 43% 57%

15 5 0% 0% 0% 100% 23.9 17% 86%
 10 0% 0% 0% 100% 208.8 25% 75%
 15 0% 0% 0% 100% 759.7 28% 72%

avg. 0% 0% 1% 99% 192.7 35% 67%

 Inflexibility vs High Flexibility
 𝑃𝑃𝐹𝐹𝐼𝐼 ≡ 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐼𝐼 ≪ 𝑃𝑃𝐹𝐹𝐼𝐼~

|𝑃𝑃𝐹𝐹𝑈𝑈|
% of 𝑃𝑃𝐹𝐹𝐼𝐼 % of 𝑃𝑃𝐹𝐹𝐹𝐹ℎ

n m 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈
5 5 0% 0% 10% 90% 7.8 36% 76%

 10 0% 0% 0% 100% 40.8 51% 53%
 15 0% 0% 0% 100% 165.8 56% 46%

10 5 0% 0% 0% 100% 23.4 20% 83%
 10 0% 0% 0% 100% 130.6 33% 68%
 15 0% 0% 0% 100% 425.8 40% 60%

15 5 0% 0% 0% 100% 30.2 14% 88%
 10 0% 0% 0% 100% 240.1 21% 79%
 15 0% 0% 0% 100% 714.6 28% 72%

avg. 0% 0% 1% 99% 197.7 33% 69%

39

We have the following observations based on Table 7:

• In all of the problem instances solved, there was no instance where 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐹𝐹 . For one
problem instance with n = 5, m = 5, 𝑃𝑃𝐹𝐹𝐼𝐼 ≪ 𝑃𝑃𝐹𝐹𝐹𝐹 . For most of the problem instances (99%
on average), there was no clear dominance between the Pareto front of the inflexibility
compared to the Pareto fronts of the flexibilities. This result is expected as the SoS
architect regards three objectives in his/her SoS architecting problem. In particular,
compared to flexibility, if inflexibility results in higher costs and/or higher completion
times, it also results in higher performance of the SoS; therefore, Pareto fronts of the
flexibilities cannot dominate the Pareto front of the inflexibility.

• On the other hand, when the percentages of the Pareto efficient SoS architectures being
included within the Pareto efficient SoS architectures of the union of the Pareto fronts
are compared, one can observe that the flexibilities return more solutions than
inflexibility, which are included in 𝑃𝑃𝐹𝐹𝑈𝑈. This suggests that flexibility of the systems is able
to generate more Pareto dominating solutions compared to the Pareto efficient solutions
with inflexibility. Furthermore, as the level of flexibility increases, SoS architecting with
flexible (inflexible) systems results in more (less) Pareto efficient solutions that are still
Pareto efficient compared to the Pareto efficient solutions of the SoS architecting with
inflexible (flexible) systems.

Figure 7 illustrates the Pareto front with inflexible systems to the Pareto front with flexible
systems with low, medium, and high flexibilities for a problem instance with n = 15 and m = 15
(similar figures are observed for all problem instances solved). As can be noted in Figure 1 as well,
SoS architecting with inflexible systems results in higher completion times and costs for similar
performance levels of SoS architecting with flexible systems; however, SoS architecting with
inflexible systems can reduce costs further than SoS architecting with flexible systems at
expenses of high completion times and low performances. These observations suggest that
system flexibility offers benefits for SoS architecting by providing more and better SoS
architectures. Nevertheless, this does not mean that SoS architecting with inflexible systems will
be dominated by SoS architecting with flexible systems.

40

Figure 7 Comparison of the Pareto Fronts with Inflexibility and Flexibility: n = 15, m = 15

EFFECTS OF FLEXIBILITY LEVELS

To analyze the effects of flexibility levels, we compare different flexibility levels qualitatively.
Table 8 summarizes the qualitative comparison results. In particular, Table 8 documents the
qualitative comparison of SoS architecting with low flexibility to medium flexibility, SoS

41

architecting with low flexibility to high flexibility, and SoS architecting with medium flexibility to
high flexibility. We have the following observations based on Table 8:

• In all of the problem instances solved, there was no instance where Pareto front with a
lower flexibility level dominated the Pareto front with a higher flexibility level. For one
problem instance with n = 5, m = 5, Pareto front with higher flexibility level dominated
the Pareto front with lower flexibility. For most of the problem instances (99% on
average), there was no clear dominance between the Pareto fronts of different flexibility
levels. These results follow from the fact that as flexibility increases, the SoS architect is
able to lower costs and completion times at an expense of lower performances.

• On the other hand, when the percentages of the Pareto efficient SoS architectures being
included within the Pareto efficient SoS architectures of the union of the Pareto fronts
are compared, one can observe that the higher flexibility levels return more solutions that
lower flexibility levels, which are included in 𝑃𝑃𝐹𝐹𝑈𝑈. This suggests that higher flexibility of
the systems is able to generate more Pareto dominating solutions compared to the Pareto
efficient solutions with lower flexibility. Furthermore, as the level of flexibility increases,
SoS architecting with higher flexibility results in more Pareto efficient solutions that are
still Pareto efficient compared to the Pareto efficient solutions of the SoS architecting
with lower flexibility systems.

Figure 8 illustrates the Pareto fronts with different flexibilities for a problem instance with n = 15
and m = 15 (similar figures are observed for all problem instances solved). As can be noted in
Figure 8 as well, SoS architecting with higher flexibility improves completion times and
performances with similar costs. Nevertheless, SoS architecting with lower flexibility can result
in higher performance at an expense of increased costs and completion times. These
observations suggest that higher system flexibility offers benefits for SoS architecting by
providing more and better SoS architectures. Nevertheless, this does not mean that SoS
architecting with lower flexibility will be dominated by SoS architecting with higher flexibilities.

Table 8 Qualitative Comparison of Flexibility Levels

 Low Flexibility vs. Medium Flexibility

 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≡ 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≫ 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≪ 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙~
|𝑃𝑃𝐹𝐹𝑈𝑈|

% of 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 % of 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚

n m 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈

5 5 10% 0% 0% 90% 7.9 36.6% 99.1%

 10 0% 0% 0% 100% 28.7 9.6% 99.5%

 15 0% 0% 0% 100% 88.3 7.0% 96.5%

10 5 0% 0% 0% 100% 25.1 15.2% 99.8%

 10 0% 0% 0% 100% 116.5 4.3% 97.9%

 15 0% 0% 0% 100% 258.2 3.6% 97.3%

15 5 0% 0% 0% 100% 25.5 9.2% 100.0%

 10 0% 0% 0% 100% 176.7 2.8% 98.6%

 15 0% 0% 0% 100% 644.7 5.7% 94.7%

avg. 1% 0% 0% 99% 152.4 10.4% 98.2%

42

 Low Flexibility vs. High Flexibility

𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≡ 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≫ 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≪
 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙~

|𝑃𝑃𝐹𝐹𝑈𝑈|
% of 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 % of 𝑃𝑃𝐹𝐹𝐹𝐹ℎ

n m 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈

5 5 10% 0% 0% 90% 7.5 36.2% 100.0%

 10 0% 0% 0% 100% 31.0 9.5% 100.0%

 15 0% 0% 0% 100% 102.7 6.1% 97.0%

10 5 0% 0% 0% 100% 24.2 16.3% 98.8%

 10 0% 0% 0% 100% 112.4 3.6% 98.7%

 15 0% 0% 0% 100% 305.0 3.1% 97.6%

15 5 0% 0% 0% 100% 30.0 8.3% 100.0%

 10 0% 0% 0% 100% 208.8 2.8% 98.3%

 15 0% 0% 0% 100% 601.9 5.5% 94.9%

avg. 1% 0% 0% 99% 158.2 10.2% 98.4%

 Medium Flexibility vs. High Flexibility

 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 ≡ 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 ≫ 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 ≪
 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚~

|𝑃𝑃𝐹𝐹𝑈𝑈|
% of 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 % of 𝑃𝑃𝐹𝐹𝐹𝐹ℎ

n m 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈

5 5 10% 0% 0% 90% 7.5 36.2% 100.0%

 10 0% 0% 0% 100% 31.5 11.4% 97.8%

 15 0% 0% 0% 100% 101.1 6.2% 96.9%

10 5 0% 0% 0% 100% 24.0 16.1% 99.0%

 10 0% 0% 0% 100% 116.0 8.2% 94.0%

 15 0% 0% 0% 100% 315.4 8.3% 92.4%

15 5 0% 0% 0% 100% 30.0 8.3% 100.0%

 10 0% 0% 0% 100% 209.3 3.0% 98.1%

 15 0% 0% 0% 100% 585.2 3.3% 97.1%

avg. 1% 0% 0% 99% 157.8 11.2% 97.3%

43

Figure 8 Comparison of the Pareto Fronts with Different Flexibilities: n = 15, m = 15

CONCLUDING REMARKS

In this volume, operations research tools are used to analyze the effects of system flexibility in
System of Systems (SoS) architecting. SoS architecting finds many practical applications,
especially, in defense/military projects. We formulated multi-objective optimization models for
SoS architecting problem with inflexible and flexible systems. Due to the complexity of the
models, evolutionary algorithms are developed to generate a set of Pareto efficient solutions for
the SoS architecting problems. The models and the solution methods proposed are generic in the
sense that they can be easily modified to capture different SoS architecting settings.

In particular, formulations and solution methods proposed for SoS architecting models with
inflexible and flexible systems enable investigation of the potential benefits of system flexibility
in SoS architecting. Flexibility is considered as the level of cooperativeness between the SoS
architect and the systems as flexible systems can cooperate with the SoS architect since the SoS
architect can guide flexible systems for modifying their systems. Through a numerical study, it is
observed that system flexibility can provide the SoS architect with more alternative SoS
architectures and most of these alternatives will be better compared to the alternative SoS
architectures generated in case of inflexible systems. Nevertheless, due to the consideration of
more than two objectives in the SoS architecting problem, one cannot clearly say that system
flexibility will always improve all objectives considered. System flexibility can improve completion
times and costs at an expense of reduced performance. This insight follows as flexible systems
does not provide some of the capabilities they can, which reduces costs and the system's ready-

44

time (and thereby overall costs and completion time of the SoS) as well as the overall
performance since the capability's cumulative performance decreases. Further numerical study
suggests that higher flexibility levels may offer SoS architecting benefits. Similar to the
comparison of inflexibility to flexibility, it is observed that when systems have higher flexibilities,
the SoS architect can benefit from SoS architectures with lower costs and higher performances
with similar costs (or one can equivalently say that lower completion times and costs with similar
performances).

This volume contributes to the literature by analyzing SoS architecting with different types of
flexibility using operations research tools. Future research directions include SoS architecting
with adjustable flexibility levels. In this study, we assumed that the incentive charges for flexibility
are fixed; however, it is possible that incentive charges vary and depending on the incentive
charges, the systems' flexibility levels can change. Another future research direction is to analyze
the effects of flexible systems in case of stochastic SoS architecting problems. Specifically, robust
SoS architecting with inflexible and flexible systems is an open research area.

45

APPENDIX A: LIST OF PUBLICAS RESULTED AND PAPERS SUBMITTED FROM FILA-SOS RESEARCH

Wang, R., Agarwal,S., & Dagli, C. (2014). Executable System of Systems Architecture Using OPM in
Conjunction with Colored Petri Net: A Module for Flexible Intelligent & Learning Architectures for
System of Systems, In Europe Middle East & Africa Systems Engineering Conference (EMEASEC).

Ergin, N. K.,(2014), Improving Collaboration in Search and Rescue System of Systems, Procedia
Computer Science, Volume 36, Pages 13-20.

Agarwal, S., & Dagli, C. H. (2013). Augmented Cognition in Human–System Interaction through
Coupled Action of Body Sensor Network and Agent Based Modeling. Procedia Computer Science, 16,
20-28.

Acheson, P., Dagli, C., & Kilicay-Ergin, N. (2013). Model Based Systems Engineering for System of
Systems Using Agent-based Modeling. Procedia Computer Science, 16, 11-19.

Agarwal, S., Pape, L. E., & Dagli, C. H. (2014). A Hybrid Genetic Algorithm and Particle Swarm
Optimization with Type-2 Fuzzy Sets for Generating Systems of Systems Architectures. Procedia
Computer Science, 36, 57-64.

Agarwal, S., Pape, L. E., Kilicay-Ergin, N., & Dagli, C. H. (2014). Multi-agent Based Architecture for
Acknowledged System of Systems. Procedia Computer Science, 28, 1-10.

Agarwal, S., Saferpour, H. R., & Dagli, C. H. (2014). Adaptive Learning Model for Predicting
Negotiation Behaviors through Hybrid K-means Clustering, Linear Vector Quantization and 2-Tuple
Fuzzy Linguistic Model. Procedia Computer Science, 36, 285-292.

Agarwal,S., Wang, R., & Dagli, C., (2015) FILA-SoS, Executable Architectures using Cuckoo Search
Optimization coupled with OPM and CPN-A module: A new Meta-Architecture Model for FILA-SoS,
France, Complex Systems Design & Management (CSD&M) editor, Boulanger, Frédéric, Krob, Daniel,
Morel, Gérard, Roussel, Jean-Claude, P 175-192 . Springer International Publishing.

Pape, L., Agarwal, S., Giammarco, K., & Dagli, C. (2014). Fuzzy Optimization of Acknowledged System
of Systems Meta-architectures for Agent based Modeling of Development. Procedia Computer
Science, 28, 404-411.

Pape, L., & Dagli, C. (2013). Assessing robustness in systems of systems meta-architectures. Procedia
Computer Science, 20, 262-269.

Pape, L., Giammarco, K., Colombi, J., Dagli, C., Kilicay-Ergin, N., & Rebovich, G. (2013). A fuzzy
evaluation method for system of systems meta-architectures. Procedia Computer Science, 16, 245-
254.

Acheson, P., Dagli, C., & Kilicay-Ergin, N. (2013). Model Based Systems Engineering for System of
Systems Using Agent-based Modeling. Procedia Computer Science, 16, 11-19.

46

Acheson, P., Dagli, C., & Kilicay-Ergin, N. (2014). Fuzzy Decision Analysis in Negotiation between
the System of Systems Agent and the System Agent in an Agent-Based Model. arXiv preprint
arXiv:1402.0029.

Kilicay-Ergin, N. H., Acheson, P., Colombi, J. M., & Dagli, C. H. (2012). Modeling system of systems
acquisition. In SoSE (pp. 514-518).

Acheson, P., Pape, L., Dagli, C., Kilicay-Ergin, N., Columbi, J., & Haris, K. (2012). Understanding System
of Systems Development Using an Agent-Based Wave Model. Procedia Computer Science, 12, 21-
30.

Konur, D., & Dagli, C. (2014). Military system of systems architecting with individual system
contracts. Optimization Letters, 1-19.

Dagli et al., 2015 Flexible and Intelligent Learning Architectures for SoS (FILA-SoS): Architectural
evolution in Systems-of-Systems, 2015 Conference on Systems Engineering Research.

Ergin, D., & Dagli, C., Incentive Based Negotiation Model for System of Systems Acquisition.
(Accepted by Systems Engineering Journal)

Wang, R., & Dagli, C., Search Based Systems Architecture Development Using Holistic Approach
(Accepted to IEEE Systems Journal with minor revisions)

47

APPENDIX B: CITED AND RELATED REFERENCES

Abo-Sinna, M. A., & Baky, I. A. (2007). Interactive Balance Space Approach for Solving Multi-Level
Multi-Objective Programming Problems. Information Sciences, 177(16), 3397-3410.

Abraham, A., & Jain, L. (2005). Evolutionary Multi-objective Optimization (pp. 1-6). Springer London.

Acheson, P. (2010, April). Methodology for Object-Oriented System Architecture Development. In
Systems Conference, 2010 4th Annual IEEE (pp. 643-646). IEEE.

Acheson, P., Dagli, C., & Kilicay-Ergin, N. (2014). Fuzzy Decision Analysis in Negotiation between the
System of Systems Agent and the System Agent in an Agent-Based Model. arXiv preprint
arXiv:1402.0029.

Acheson, P., Pape, L., Dagli, C., Kilicay-Ergin, N., Columbi, J., & Haris, K. (2012). Understanding System
of Systems Development Using an Agent-Based Wave Model. Procedia Computer Science, 12, 21-
30.

Adams, K. M., & Meyers, T. J. (2011). The US Navy carrier strike group as a system of systems.
International Journal of System of Systems Engineering, 2(2), 91-97.

Agarwal, S., & Dagli, C. H. (2013). Augmented Cognition in Human–System Interaction through
Coupled Action of Body Sensor Network and Agent Based Modeling. Procedia Computer Science,
16, 20-28.

Acheson, P., Dagli, C., & Kilicay-Ergin, N. (2013). Model Based Systems Engineering for System of
Systems Using Agent-based Modeling. Procedia Computer Science, 16, 11-19.

Agarwal, S., Pape, L. E., & Dagli, C. H. (2014). A Hybrid Genetic Algorithm and Particle Swarm
Optimization with Type-2 Fuzzy Sets for Generating Systems of Systems Architectures. Procedia
Computer Science, 36, 57-64.

Agarwal, S., Pape, L. E., Kilicay-Ergin, N., & Dagli, C. H. (2014). Multi-Agent Based Architecture for
Acknowledged System of Systems. Procedia Computer Science, 28, 1-10.

Agarwal, S., Saferpour, H. R., & Dagli, C. H. (2014). Adaptive Learning Model for Predicting
Negotiation Behaviors through Hybrid K-means Clustering, Linear Vector Quantization and 2-Tuple
Fuzzy Linguistic Model. Procedia Computer Science, 36, 285-292.

Agarwal,S., Wang, R., & Dagli, C., (2015) FILA-SoS, Executable Architectures using Cuckoo Search
Optimization coupled with OPM and CPN-A module: A new Meta-Architecture Model for FILA-SoS,
France, Complex Systems Design & Management (CSD&M) editor, Boulanger, Frédéric, Krob, Daniel,
Morel, Gérard, Roussel, Jean-Claude, P 175-192 . Springer International Publishing.

Ahn, J. H., Ryu, Y., & Baik, D. K. (2012). An Archietcture Description method for Acknowledged
System of Systems based on Federated Architeture. Advanced Science and Technology Letters, 5.

48

Alberts, D. S., (2011). The Agility Advantage: A Survival Guide for Complex Enterprises and
Endeavors. Washington DC: Center for Advanced Concepts and Technology.

Alberts, D. S., Garstka, J. J., & Stein, F. P. (1999). {Network Centric Warfare: Developing and
Leveraging Information Superiority}.

Alfaris, A. A. F. (2009). The Evolutionary Design Model (EDM) for the Design of Complex Engineered
Systems: Masdar City as a Case Study (Doctoral dissertation, Massachusetts Institute of Technology).

Alves, M. J., Dempe, S., & Júdice, J. J. (2012). Computing the Pareto Frontier of a Bi-objective Bi-level
Linear Problem using a Multi-objective Mixed-integer Programming Algorithm. Optimization, 61(3),
335-358.

Amberg, M. (1996, October). Modeling Adaptive Workflows in Distributed Environments. In Proc.
of the 1st Int. Conf. on Practical Aspects of Knowledge Management, Basel, 30th-31th Oct.

Anandalingam, G., & Friesz, T. L. (1992). Hierarchical Optimization: an Introduction. Annals of
Operations Research, 34(1), 1-11.

ASD(NII), D. (2010). DoD Architecture Framework Version 2.02 (DoDAF v2.02). Washington DC:
Department of Defense.

AT&L, O. U. S. D. (2008). Systems Engineering Guide for Systems of Systems. Washington, DC:
Pentagon.

Arnold, A., Boyer, B., & Legay, A. (2013). Contracts and Behavioral Patterns for SoS: The EU IP DANSE
Approach. arXiv preprint arXiv:1311.3631.

Bac, M., & Raff, H. (1996). Issue-by-issue Negotiations: the Role of Information and Time Preference.
Games and Economic Behavior, 13(1), 125-134.

Baky, I. A. (2009). Fuzzy Goal Programming Algorithm for Solving De-centralized Bi-level Multi-
objective Programming Problems. Fuzzy Sets and Systems, 160(18), 2701-2713.

Baky, I. A. (2010). Solving Multi-level Multi-objective Linear Programming Problems through Fuzzy
Goal Programming Approach. Applied Mathematical Modelling, 34(9), 2377-2387.

Bergey, J. K., Blanchette Jr, S., Clements, P. C., Gagliardi, M. J., Klein, J., Wojcik, R., & Wood, W.
(2009). US Army Workshop on Exploring Enterprise, System of Systems, System, and Software
Architectures.

Blanchard, B. S., & Fabryeky, W. J. (2010). Systems Engineering and Analysis. Upper Saddle River,
NJ: Prentice Hall.

49

Bonabeau, E. (2002). Agent-based modeling: Methods and Techniques for Simulating Human
Systems. Proceedings of the National Academy of Sciences of the United States of America, 99 (Suppl
3), 7280-7287.

Bouleimen, K. L. E. I. N., & Lecocq, H. O. U. S. N. I. (2003). A New Efficient Simulated Annealing
Algorithm for the Resource-constrained Project Scheduling Problem and Its Multiple Mode Version.
European Journal of Operational Research, 149(2), 268-281.

Bradley, S. P., Hax, A. C., & Magnanti, T. L. Applied Mathematical Programming. 1977.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained Project
Scheduling: Notation, Classification, Models, and Methods. European Journal of Operational
Research, 112(1), 3-41.

Cara, A. B., Wagner, C., Hagras, H., Pomares, H., & Rojas, I. (2013). Multi-objective Optimization and
Comparison of Non-singleton type-1 and Singleton interval type-2 Fuzzy Logic Systems. Fuzzy
Systems, IEEE Transactions on, 21(3), 459-476.

Chattopadhyay, D., Ross, A. M., & Rhodes, D. H. (2008, April). A Framework for Trade-space
Exploration of Systems of Systems. In 6th Conference on Systems Engineering Research, Los Angeles,
CA.

Christian III, J. A. (2004). A Quantitative Approach to Assessing System Evolvability. Houston: NASA
Johnson Space Center.

CJCSI 6212.01F. (12 Mar 2012). Net Ready Key Performance Parameter (NR KPP). Washington DC:
US Dept of Defense.

Clouthier, R. J., Diamrio, M. J., & Polzer, H. W. (2009). Net Centricity and System of Systems. In M.
Jamshidi, System of Systems Engineering (pp. 150-168). Hoboken NJ: John Wiley & Sons.

Clune, J., Mouret, J. B., & Lipson, H. (2013). The Evolutionary Origins of Modularity. Proceedings of
the Royal Society b: Biological sciences, 280 (1755), 20122863.

Coello, C. A. C., & Lamont, G. B. (2004). Applications of Multi-objective Evolutionary Algorithms (Vol.
1). World Scientific.

Cohon, J. L. (1985). Multi-criteria Programming: Brief Review and Application. Design optimization,
163.

Coleman, J. W., Malmos, A. K., Larsen, P. G., Peleska, J., & Hains, R. (2012). COMPASS Tool Vision for
a System of Systems Collaborative Development Environment. In International Conference on
System of Systems Engineering.

50

Contag, G., Laing, C., Pabon, J., Rosenberg, E., Tomasino, K., & Tonello, J. (2013). Nighthawk System
Search and Rescue (SAR) Unmanned Vehicle (UV) System Development. SE4150 Design Project,
Naval Postgraduate School.

Cox Jr., L. A. (2009). Risk Analysis of Complex and Uncertain Systems (Vol. 129). US: Springer-Verlag.

Crossley, W. A., & Laananen, D. H. (1996). Conceptual Design of Helicopters via Genetic Algorithm.
Journal of Aircraft, 33(6), 1062-1070.

Dagli, C. H., & Kilicay-Ergin, N. (2008). System of Systems Architecting. Jamshidi, M. (Ed.). In System
of Systems Engineering: Innovations for the Twenty-first Century (Vol. 58). John Wiley & Sons., 77-
100.

Dagli, C., Ergin, N., Enke, D., Gosavi, A., Qin, R., Colombi, J.,Agarwal,S., ... & Pape, L. (2013). An
Advanced Computational Approach to System of Systems Analysis & Architecting Using Agent-Based
Behavioral Model (No. SERC-2013-TR-021-2). MISSOURI UNIV OF SCIENCE AND TECHNOLOGY
ROLLA.

Dagli, C. H., Singh, A., Dauby, J. P., & Wang, R. (2009, December). Smart Systems Architecting:
Computational Intelligence Applied to Trade Space Exploration and System Design. In Systems
Research Forum (Vol. 3, No. 02, pp. 101-119). World Scientific Publishing Company.

Dahmann, J., Lane, J., Rebovich, G., & Baldwin, K. (2008, April). A Model of Systems Engineering in a
System of Systems Context. In Proceedings of the Conference on Systems Engineering Research, Los
Angeles, CA, USA.

Dahmann, J., Baldwin, K. J., & Rebovich Jr, G. (2009, April). Systems of Systems and Net-Centric
Enterprise Systems. In 7th Annual Conference on Systems Engineering Research, Loughborough.

Dahmann, J., Rebovich, G., Lowry, R., Lane, J., & Baldwin, K. (2011, April). An Implementers' View of
Systems Engineering for Systems of Systems. In Systems Conference (SysCon), 2011 IEEE
International (pp. 212-217). IEEE.

Dahmann, J. S., & Baldwin, K. J. (2008, April). Understanding the Current State of US Defense Systems
of Systems and the Implications for Systems Engineering. In Systems Conference, 2008 2nd Annual
IEEE (pp. 1-7). IEEE.

Dahmann, J. (2012). INCOSE SoS Working Group Pain Points. In Proc TTCP-JSA-TP4 Meeting.
Retrieved from http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/NDIA-
SE-MS-SoS_2013-08-20_Dahmann.pdf

Dauby, J. P., & Dagli, C. H. (2011). The Canonical Decomposition Fuzzy Comparative Methodology
for Assessing Architectures. Systems Journal, IEEE,5(2), 244-255.

Dauby, J. P., & Upholzer, S. (2011). Exploring Behavioral Dynamics in Systems of Systems. Procedia
Computer Science, 6, 34-39.

51

http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/NDIA-SE-MS-SoS_2013-08-20_Dahmann.pdf
http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/NDIA-SE-MS-SoS_2013-08-20_Dahmann.pdf

Deb, K. (2000). An Efficient Constraint Handling Method for Genetic Algorithms. Computer Methods
in Applied Mechanics and Engineering, 186(2), 311-338.

Deb, K. (2001). Multi-objective Optimization using Evolutionary Algorithms (Vol. 16). John Wiley &
Sons.

Deb, K., & Gupta, H. (2006). Introducing Robustness in Multi-objective Optimization. Evolutionary
Computation, 14(4), 463-494.

Deb, K., & Sinha, A. (2009, January). Solving Bi-level Multi-objective Optimization Problems using
Evolutionary Algorithms. In Evolutionary Multi-Criterion Optimization (pp. 110-124). Springer Berlin
Heidelberg.

DeLaurentis, D., Marais, K., Davendralingam, N., Han, S. Y., Uday, P., Fang, Z., & Gurainiello, C.
(2012). Assessing the Impact of Development Disruptions and Dependencies in Analysis of
Alternatives of System of Systems. Hoboken NJ: Stevens Institute of Technology, Systems
Engineering Research Center,

Department of the Navy, (1997). Contractor Performance Assessment Reporting System (CPARS).
Washington DC.

Díaz, E., Tuya, J., & Blanco, R. (2003, October). Automated Software Testing Using a Metaheuristic
Technique based on Tabu Search. In Automated Software Engineering, 2003. Proceedings. 18th IEEE
International Conference on (pp. 310-313). IEEE.

Díaz, E., Tuya, J., Blanco, R., & Javier Dolado, J. (2008). A Tabu Search Algorithm for Structural
Software Testing. Computers & Operations Research,35(10), 3052-3072.

Director Systems and Software Engineering, OUSD (AT&L). (2008). Systems Engineering Guide for
Systems of Systems. Available from http://acq.osd.mil/se/doc/SE-Guid-for-SoS.pdf.

Djavanshir, G. R., Alavizadeh, A., & Tarokh, M. J. (2012). From System-of-Systems to Meta-Systems:
Ambiguities and Challenges. System of Systems.

DoD, A. S. D. "DoD Architecture Framework Version 2.0 (DoDAF V2. 0)."Department of Defense,
Washington DC (2009).

DoD, Navy. "Contractor Performance Assessment Reporting System (CPARS)," Washington DC
(1997).

DoD, Systems engineering guide for systems of systems (2008). Tech. rep., Systems and Software
Engineering, Department of Defense.

Dolado, J. J. (2000). A Validation of the Component-based Method for Software Size Estimation.
Software Engineering, IEEE Transactions on, 26(10), 1006-1021.

52

http://acq.osd.mil/se/doc/SE-Guid-for-SoS.pdf

Dolado, J. J. (2001). On the Problem of the Software Cost Function. Information and Software
Technology, 43(1), 61-72.

Dombkins, D. (1996). Project Managed Change: The Application of Project Management Techniques
to Strategic Change Programs. Centre for Corporate Change, Australian Graduate School of
Management, University of New South Wales.

Dombkins, D. (2007). Complex Project Management. South Carolina: Booksurge Publishing.

Dombkins, D. H. (2013).Realizing Complex Policy: Using a Systems-of-Systems Approach to Develop
and Implement Policy. Editor’s Introduction, Volume II, Issue 5, 22.

Domerçant, J. C., & Mavris, D. N. (2011, March). Measuring the architectural complexity of
military systems-of-systems. In Aerospace Conference, 2011 IEEE (pp. 1-16). IEEE.

Dudek, G., Jenkin, M. R., Milios, E., & Wilkes, D. (1996). A Taxonomy for Multi-agent Robotics.
Autonomous Robots, 3(4), 375-397.

Dudenhoeffer, D. D., & Jones, M. P. (2000). A Formation Behavior for Large-scale Micro-robot Force
Deployment. In Simulation Conference, 2000. Proceedings. Winter (Vol. 1, pp. 972-982). IEEE.

Dutta, P. K. (1999). Strategies and Games: Theory and Practice. MIT Press.

Eichfelder, G. (2010). Multi-objective Bi-level Optimization. Mathematical Programming, 123(2),
419-449.

Ender, T., Leurck, R. F., Weaver, B., Miceli, P., Blair, W. D., West, P., & Mavris, D. (2010).
Systems-of-systems analysis of ballistic missile defense architecture effectiveness through
surrogate modeling and simulation. Systems Journal, IEEE, 4(2), 156-166.

Epperly, T. G. W. (1995). Global Optimization of Non-convex Non-linear Programs using Parallel
Branch and Bound (Doctoral dissertation, UNIVERSITY OF WISCONSIN–MADISON).

Ergin, N. K.,(2014), Improving Collaboration in Search and Rescue System of Systems, Procedia
Computer Science, Volume 36, Pages 13-20.

Faratin, P., Sierra, C., & Jennings, N. R. (1998). Negotiation Decision Functions for Autonomous
Agents. Robotics and Autonomous Systems, 24(3), 159-182.

Farmani, R., & Wright, J. A. (2003). Self-Adaptive Fitness Formulation for Constrained Optimization.
Evolutionary Computation, IEEE Transactions on, 7(5), 445-455.

Fatima, S. S., Wooldridge, M., & Jennings, N. R. (2004). An Agenda-based Framework for Multi-issue
Negotiation. Artificial Intelligence, 152(1), 1-45.

53

Flanigan, D., & Brouse, P. (2012). System of Systems Requirements Capacity Allocation. Procedia
Computer Science, 8, 112-117.

Fogel, D. B. (2006). Evolutionary Computation: Toward a new Philosophy of Machine Intelligence
(Vol. 1). John Wiley & Sons.

Fonseca, C. M., & Fleming, P. J. (1995). An Overview of Evolutionary Algorithms in Multi-objective
Optimization. Evolutionary Computation, 3(1), 1-16.

Fonseca, C. M., & Fleming, P. J. (1998). Multi-objective Optimization and Multiple Constraint
Handling with Evolutionary Algorithms. I: A Unified Formulation. Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on, 28(1), 26-37.

Fry, D. N., & DeLaurentis, D. A. (2011, June). Measuring Net-centricity. In System of Systems
Engineering (SoSE), 2011 6th International Conference on(pp. 264-269). IEEE.

Gao, J., Buldyrev, S. V., Stanley, H. E., & Havlin, S. (2011, January). Networks Formed from
Interdependent Networks. Nature Physics, 8, 40-48, doi:10.1038/NPHYS2180.

Gao, Y., Zhang, G., & Lu, J. (2009). A Fuzzy Multi-objective Bi-level Decision Support System.
International Journal of Information Technology & Decision Making, 8(01), 93-108.

Garrett, R. K., Anderson, S., Baron, N. T., & Moreland, J. D. (2011). Managing the Interstitials, a
System of Systems Framework Suited for the Ballistic Missile Defense System. Systems Engineering,
14(1), 87-109.

Garvey, P., & Pinto, A. (2009, June). Introduction to Functional Dependency Network Analysis. In
The MITRE Corporation and Old Dominion, Second International Symposium on Engineering
Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Ge, B., Hipel, K. W., Yang, K., & Chen, Y. (2013). A Data-centric Capability-focused Approach for
System-of-systems Architecture Modeling and Analysis. Systems Engineering, 16(3), 363-377.

Gegov, A. (2010). Fuzzy Networks for Complex Systems A Modular Rule Base Approach. Springer-
Verlag Berlin Heidelberg.

Giachetti, R. E. (2012). A Flexible Approach to Realize an Enterprise Architecture. Procedia Computer
Science, 8, 147-152.

Glover, F. (1989). Tabu Search – Part I. ORSA Journal on Computing, 1(3), 190-206.

Glover, F. (1990). Tabu Search – Part II. ORSA Journal on Computing, 2(1), 4-32.

Goldberg, D. E. (1990). Genetic Algorithms in Search, Optimization and Machine Learning. Reading:
Addison-Wesley.

54

Gonzalez-Zugasti, J. P., Otto, K. N., & Baker, J. D. (2000). A Method for Architecting Product
Platforms. Research in Engineering Design, 12(2), 61-72.

Gorod, A., Gandhi, S. J., Sauser, B., & Boardman, J. (2008). Flexibility of system of systems. Global
Journal of Flexible Systems Management, 9(4), 21-31.

Gries, M. (2004). Methods for Evaluating and Covering the Design Space during Early Design
Development. Integration, the VLSI journal, 38(2), 131-183.

Guariniello, C., & DeLaurentis, D. (2013). Dependency Analysis of System-of-Systems Operational
and Development Networks. Procedia Computer Science,16, 265-274.

Haimes, Y. Y. (2012). Modeling Complex Systems of Systems with Phantom System Models. Systems
Engineering, 15(3), 333-346.

Han, S. Y., & DeLaurentis, D. (2013). Development Interdependency Modeling for System-of-
Systems (SoS) using Bayesian Networks: SoS Management Strategy Planning. Procedia Computer
Science, 16, 698-707.

Hansen, P., Jaumard, B., & Savard, G. (1992). New Branch-and-bound Rules for Linear Bi-level
Programming. SIAM Journal on Scientific and Statistical Computing, 13(5), 1194-1217.

Hassan, R., & Crossley, W. (2007). Approach to Discrete Optimization Under Uncertainty: The
Population-Based Sampling Genetic Algorithm. AIAA Journal,45, 2799-2809.

Hassan, R., De Weck, O., & Springmann, P. (2004, May). Architecting a Communication Satellite
Product Line. In 22nd AIAA International Communications Satellite Systems Conference & Exhibit
(ICSSC). Monterey, CA.

He, Z., Yen, G. G., & Zhang, J. (2014). Fuzzy-Based Pareto Optimality for Many-Objective Evolutionary
Algorithms. Evolutionary Computation, IEEE Transactions on, 18(2), 269-285.

Henson, S. A., Henshaw, M. J. D., Barot, V., Siemieniuch, C. E., Sinclair, M. A., Jamshidi, M., ... &
DeLaurentis, D. (2013, June). Towards a Systems of Systems Engineering EU Strategic Research
Agenda. In System of Systems Engineering (SoSE), 2013 8th International Conference on (pp. 99-104).
IEEE.

Herroelen, W., De Reyck, B., & Demeulemeester, E. (1998). Resource-constrained Project
Scheduling: a Survey of Recent Developments. Computers & Operations Research, 25(4), 279-302.

Hill Climbing. (n.d.). Retrieved October 24, 2013, from http://en.wikipedia.org/wiki/Hill_climbing

Holland, J. H. (1973). Genetic Algorithms and the Optimal Allocation of Trials. SIAM Journal on
Computing, 2(2), 88-105.

55

http://en.wikipedia.org/wiki/Hill_climbing

Hunt, B. R., Lipsman, R. L., Rosenberg, J. M., Coombes, K. R., Osborn, J. E., & Stuck, G. J. (2006). A
Guide to MATLAB: for Beginners and Experienced Users. Cambridge University Press.

Hwang, C. L., Masud, A. S. M., Paidy, S. R., & Yoon, K. P. (1979). Multiple objective Decision Making,
Methods and Applications: a State-of-the-art Survey (Vol. 164). Berlin: Springer.

INCOSE, (2011). SYSTEMS ENGINEERING HANDBOOK v 3.2.2. San Diego: INCOSE.

Jamshidi, M. (2008). System of Systems Engineering - New Challenges for the 21st century.
Aerospace and Electronic Systems Magazine, IEEE, 23(5), 4-19.

Jamshidi, M. (Ed.). (2011). System of systems engineering: innovations for the twenty-first century
(Vol. 58). John Wiley & Sons.

Jackson, S., & Ferris, T. L. (2013). Resilience Principles for Engineered Systems. Systems Engineering,
16(2), 152-164.

Jia, L., Wang, Y., & Fan, L. (2011, December). Uniform Design Based Hybrid Genetic Algorithm for
Multi-objective Bi-level Convex Programming. In Computational Intelligence and Security (CIS), 2011
Seventh International Conference on (pp. 159-163). IEEE.

Johnston, W., Mastran, K., Quijano, N., & Stevens, M. (2013). Unmanned Vehicle Search and Rescue
Initiative. SE4150 Design Project, Naval Postgraduate School.

Joint Staff (2010). CJCSM 3500.04C, UNIVERSAL JOINT TASK LIST (UJTL). Washing DC: Department
of Defense.

Jonker, C. M., Robu, V., & Treur, J. (2007). An Agent Architecture for Multi-attribute Negotiation
using Incomplete Preference Information. Autonomous Agents and Multi-Agent Systems, 15(2),
221-252.

Kaplan, J. (2006). A New Conceptual Framework for Net-Centric, Enterprise-Wide, System-of-
Systems Engineering (v). Washington, DC: Center for Technology and National Security
Policy. National Defense University.

Karnik, N. N., Mendel, J. M., & Liang, Q. (1999). Type-2 Fuzzy Logic Systems. Fuzzy Systems, IEEE
Transactions on, 7(6), 643-658.

Kilicay-Ergin, N.,(2014), Improving Collaboration in Search and Rescue System of Systems, Procedia
Computer Science, Volume 36, Pages 13-20.

Kilicay-Ergin, N., Enke, D., & Dagli, C. (2012). Biased Trader Model and Analysis of Financial Market
Dynamics. International Journal of Knowledge-based and Intelligent Engineering Systems, 16(2), 99-
116.

56

Kinnunen, M. J. (2006). Complexity Measures for System Architecture Models (Doctoral dissertation,
Massachusetts Institute of Technology).

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science,
220(4598), 671-680.

Klein, J., & van Vliet, H. (2013, June). A systematic review of system-of-systems architecture
research. In Proceedings of the 9th international ACM Sigsoft conference on Quality of
software architectures (pp. 13-22). ACM.

Koch, P. N., Evans, J. P., & Powell, D. (2002). Inter-digitation for Effective Design Space Exploration
using iSIGHT. Structural and Multidisciplinary Optimization, 23(2), 111-126.

Konur, D., & Dagli, C. (2014). Military System of Systems Architecting with Individual System
Contracts. Optimization Letters, 1-19.

Konur, D., & Golias, M. M. (2013). Cost-stable Truck Scheduling at a Cross-dock Facility with
Unknown Truck Arrivals: A Meta-heuristic Approach. Transportation Research Part E: Logistics and
Transportation Review, 49(1), 71-91.

Kraus, S. (1996). An Overview of Incentive Contracting. Artificial Intelligence, 83(2), 297-346.

Kraus, S. (2001). Automated Negotiation and Decision Making in Multi-agent Environments. In
Multi-agent Systems and Applications (pp. 150-172). Springer Berlin Heidelberg.

Krothapalli, N. K. C., & Deshmukh, A. V. (1999). Design of Negotiation Protocols for Multi-agent
Manufacturing Systems. International Journal of Production Research, 37(7), 1601-1624.

Lafleur, J. M. (2012). A Markovian State-Space Framework for Integrating Flexibility into Space
System Design. Atlanta: Georgia Institute of Technology School of Aerospace Engineering Doctoral
Thesis.

Lamar, B. W., & Bedford, M. A. (2009). Min-additive Utility Functions. MITRE Corporation.

Lane, J. A., & Bohn, T. (2013). Using SysML Modeling to Understand and Evolve Systems of Systems.
Systems Engineering, 16(1), 87-98.

Li, C., & Chiang, T. W. (2013). Complex Neurofuzzy ARIMA Forecasting — A New Approach Using
Complex Fuzzy Sets. Fuzzy Systems, IEEE Transactions on, 21(3), 567-584.

Li, M., Lin, D., & Wang, S. (2010). Solving a Type of Bi-objective Bi-level Programming Problem Using
NSGA-II. Computers & Mathematics with Applications, 59(2), 706-715.

Lopes, F., Wooldridge, M., & Novais, A. Q. (2008). Negotiation among Autonomous Computational
Agents: Principles, Analysis and Challenges. Artificial Intelligence Review, 29(1), 1-44.

57

Lu, J., Zhang, G., & Dillon, T. (2008). Fuzzy Multi-objective Bi-level Decision Making by an
Approximation Kth-Best Approach. Journal of Multiple-Valued Logic & Soft Computing, 14.

Luzeaux, D., System-of-Systems (and Large-Scale Complex Systems) Engineering, presentation at
CSDM Conference, 2013.

Maier, M. W. (1998). Architecting principles for systems-of-systems. Systems Engineering, 1(4),
267-284.

Maier, M. W., & Rechtin, E. (2009). The Art of Systems Architecting, 3rd ed. Boca Raton: CRC Press.

Malan, R., & Bredemeyer, D. (2001). Architecture Resources. Defining Non-Functional
Requirements. Retreived from http://www.bredemeyer.com/pdf_files/ArchitectureDecisions.pdf

Manthorpe, W. H. (1996). The emerging joint system of systems: A systems engineering challenge
and opportunity for APL. Johns Hopkins APL Technical Digest, 17(3), 305.

Maskin, E. S. (1996). Theories of the Soft Budget-constraint. Japan and the World Economy, 8(2),
125-133.

Mekdeci, B., Shah, N., Ross, A. M., Rhodes, D. H., & Hastings, D. (2014). Revisiting the Question: Are
Systems of Systems just (traditional) Systems or Are they a new class of Systems? Cambridge, MA:
Systems Engineering Advancement Research Initiative (SEAri).

Mendel, J. M. (2013). On KM algorithms for Solving Type-2 Fuzzy Set Problems. Fuzzy Systems, IEEE
Transactions on, 21(3), 426-446.

Mendel, J. M., & John, R. B. (2002). Type-2 Fuzzy Sets Made Simple. Fuzzy Systems, IEEE Transactions
on, 10(2), 117-127.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of
State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087-1092.

Mezura Montes, E., & Coello Coello, C. A. (2005). A Simple Multi-membered Evolution Strategy to
Solve Constrained Optimization Problems. Evolutionary Computation, IEEE Transactions on, 9(1), 1-
17.

Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary Algorithms for Constrained Parameter
Optimization Problems. Evolutionary Computation, 4(1), 1-32.

Miettinen, K. M., & Optimization, N. L. M. O. (1999). Kluwer Academic Publisher.

Migdalas, A., Pardalos, P. M., & Värbrand, P. (Eds.). (1998). Multilevel Optimization: Algorithms and
Applications (Vol. 20). Springer.

58

http://www.bredemeyer.com/pdf_files/ArchitectureDecisions.pdf

Min, B. K., & Chang, S. H. (1991). System Complexity Measure in the Aspect of Operational Difficulty.
Nuclear Science, IEEE Transactions on, 38(5), 1035-1039.

Mordecai, Y., & Dori, D. (2013). I5: A Model-Based Framework for Architecting System-of-Systems
Interoperability, Interconnectivity, Interfacing, Integration, and Interaction. In International
Symposium of the International Council on Systems Engineering (INCOSE).

Mostafavi, A., Abraham, D., Noureldin, S., Pankow, G., Novak, J., Walker, R., ... & George, B. (2012).
Risk-Based Protocol for Inspection of Transportation Construction Projects Undertaken by State
Departments of Transportation. Journal of Construction Engineering and Management, 139(8), 977-
986.

Osman, M. S., Abo-Sinna, M. A., Amer, A. H., & Emam, O. E. (2004). A Multi-level Non-linear Multi-
objective Decision-making under Fuzziness. Applied Mathematics and Computation, 153(1), 239-
252.

Owens, W. A. (1996). The emerging US system-of-systems (No. 63). National Defense University,
Washington D.C., Instruction for National Strategic Studies.

Pape, L., Agarwal, S., Giammarco, K., & Dagli, C. (2014). Fuzzy Optimization of Acknowledged System
of Systems Meta-architectures for Agent-based Modeling of Development. Procedia Computer
Science, 28, 404-411.

Pape, L., & Dagli, C. (2013). Assessing Robustness in Systems of Systems Meta-architectures.
Procedia Computer Science, 20, 262-269.

Pape, L., Giammarco, K., Colombi, J., Dagli, C., Kilicay-Ergin, N., & Rebovich, G. (2013). A Fuzzy
Evaluation Method for System of Systems Meta-architectures. Procedia Computer Science, 16, 245-
254.

Pedrycz, W., Ekel, P., & Parreiras, R. (2011). Fuzzy Multi-criteria Decision-making: Models, Methods
and Applications. John Wiley & Sons.

Pernin, C. G., Axelband, E., Drezner, J. A., Dille, B. B., Gordon, I. V., Held, B. J., ... & Shah, A. R.
(2012). Lessons from the Army's Future Combat Systems Program. Rand Arroyo
Center Santa Monica CA.

Pieume, C. O., Marcotte, P., Fotso, L. P., & Siarry, P. (2011). Solving Bi-level Linear Multi-objective
Programming Problems. American Journal of Operations Research, 1, 214.

Pitsko, R., & Verma, D. (2012). Principles for Architecting Adaptable Command and Control Systems.
Procedia Computer Science, 8, 135-140.

Ravindran, A., Reklaitis, G. V., & Ragsdell, K. M. (2006). Engineering Optimization: Methods and
Applications. John Wiley & Sons.

59

Räihä, O. (2008). Applying Genetic Algorithms in Software Architecture Design.

Rela, L. (2004). Evolutionary Computing in Search-based Software Engineering.

Rios, L. M., & Sahinidis, N. V. (2013). Derivative-free Optimization: a Review of Algorithms and
Comparison of Software Implementations. Journal of Global Optimization, 56(3), 1247-1293.

Ricci, N., Ross, A. M., Rhodes, D. H., & Fitzgerald, M. E. (2013). Considering Alternative Strategies for
Value Sustainment in Systems-of-Systems (Draft). Systems Engineering Advancement Research
Initiative, Cambridge MA.

Rosenau, W. (1991). Coalition Scud Hunting in Iraq, 1991. RAND Corporation.

Ross, A. M., Rhodes, D. H., & Hastings, D. E. (2008). Defining Changeability: Reconciling Flexibility,
Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value.
Systems Engineering, 246 – 262.

Ross, S. M. (2014). Introduction to Probability Models, 8th Edition. Academic Press.

Rostker, B. (200, July 25). Iraq’s Scud Ballistic Missiles. Retrieved Sep 12, 2013, from Iraq Watch:
http://www.iraqwatch.org/government/US/Pentagon/dodscud.htm

Runarsson, T. P., & Yao, X. (2000). Stochastic Ranking for Constrained Evolutionary Optimization.
Evolutionary Computation, IEEE Transactions on, 4(3), 284-294.

Russell, S. (2009). Artificial Intelligence: A Modern Approach Author: Stuart Russell, Peter Norvig,
Publisher: Prentice Hall Pa.

Saleh, J. H., Hastings, D. E., & Newman, D. J. (2001). Extracting the essence of flexibility in system
design. In Evolvable Hardware, 2001. Proceedings. The Third NASA/DoD Workshop on
(pp. 59-72). IEEE.

Saleh, J. H., Mark, G., & Jordan, N. C. (2009). Flexibility: a multi-disciplinary literature review and
a research agenda for designing flexible engineering systems. Journal of Engineering Design,
20(3), 307-323.

Sanz, J. A., Fernández, A., Bustince, H., & Herrera, F. (2013). IVTURS: A Linguistic Fuzzy Rule-Based
Classification System Based On a New Interval-Valued Fuzzy Reasoning Method With Tuning and
Rule Selection. IEEE T. Fuzzy Systems, 21(3), 399-411.

Schäfer, R. (2001, October). Rules for using Multi-attribute Utility Theory for Estimating a User’s
Interests. In Ninth Workshop Adaptivität und Benutzenmodellierung in Interaktiven
Softwaresystemen (pp. 8-10).

Schreiner, M. W., & Wirthlin, J. R. (2012). Challenges Using Modeling and Simulation in Architecture
Development. Procedia Computer Science, 8, 153-158.

60

http://www.iraqwatch.org/government/US/Pentagon/dodscud.htm

Schwartz, M. (2010, April). Defense Acquisitions: How DoD Acquires Weapon Systems and Recent
Efforts to Reform the Process. LIBRARY OF CONGRESS WASHINGTON DC CONGRESSIONAL
RESEARCH SERVICE.

Selva, D., & Crawley, E. F. (2013). VASSAR: Value Assessment of System Architectures using Rules.
IEEE Aerospace Conference (pp. 1-21). Big Sky MT: IEEE.

Shi, X., & Xia, H. S. (2001). Model and Interactive Algorithm of Bi-level Multi-objective Decision-
making with Multiple Interconnected Decision Makers. Journal of Multi-Criteria Decision Analysis,
10(1), 27-34.

Shtub, A., Bard, J. F., & Globerson, S. (1994). Project Management: Engineering, Technology, and
Implementation. Prentice-Hall, Inc..

Singer, Y. (2006, November). Dynamic Measure of Network Robustness. In Electrical and Electronics
Engineers in Israel, 2006 IEEE 24th convention of (pp. 366-370). IEEE.

Siemieniuch, C., Sinclair, M., Lim, S. L., Henson, M. S., Jamshidi, M., & DeLaurentis, D. (2013). Project
Title Trans-Atlantic Research and Education Agenda in Systems of Systems (T-AREA-SoS).

Simpson, T. W., & D’souza, B. S. (2002). Assessing Variable Levels of Platform Commonality within a
Product Family using a Multi-objective Genetic Algorithm. In Proceeding of the 9th AIAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, AIAA.

Singh, A., & Dagli, C. H. (2009, March). Multi-objective Stochastic Heuristic Methodology for
Tradespace Exploration of a Network Centric System of Systems. In Systems Conference, 2009 3rd
Annual IEEE (pp. 218-223). IEEE.

Smartt, C., & Ferreira, S. (2012). Constructing a General Framework for Systems Engineering
Strategy. Systems Engineering, 15(2), 140-152.

Sommerer, S., Guevara, M. D., Landis, M. A., Rizzuto, J. M., Sheppard, J. M., & Grant, C. J.
(2012). Systems-of-Systems Engineering in Air and Missile Defense. Johns Hopkins APL
Technical Digest, 31(1), 5-20.

SPEC Innovations. (2014). Model-Based Systems Engineering Tools. Retrieved August 20,2014, from
https://www.innoslate.com/systems-engineering.

Suarez, R. (2004, Dec 9). Troops Question Secretary of Defense Donald Rumsfeld about Armor.
Retrieved Apr 14, 2014, from PBS NewsHour: http://www.pbs.org/newshour/bb/military-july-
dec04-armor_12-9/

Sumathi, S., & Paneerselvam, S. (2010). Computational Intelligence Paradigms: Theory &
Applications using MATLAB. CRC Press.

61

https://www.innoslate.com/systems-engineering
http://www.pbs.org/newshour/bb/military-july-dec04-armor_12-9/
http://www.pbs.org/newshour/bb/military-july-dec04-armor_12-9/

Trans-Atlantic Research and Education Agenda in Systems of Systems (T-AREA-SOS) Project, "The
Systems of Systems Engineering Strategic Research Agenda," Loughborough University,
Loughborough, 2013.

Talbot, F. B. (1982). Resource-constrained Project Scheduling with Time-resource Tradeoffs: The
Non-preemptive Case. Management Science, 28(10), 1197-1210.

Taleb, N. N. (2004). Fooled by Randomness. New York: Random House Trace Paperbacks.

Thompson, M. (2002). Iraq: The Great Scud Hunt. Time Magazine, 23.

Valerdi, R., Axelband, E., Baehren, T., Boehm, B., Dorenbos, D., Jackson, S., ... & Settles, S.
(2008). A research agenda for systems of systems architecting. International Journal of
System of Systems Engineering, 1(1), 171-188.

Wall, M. B. (1996). A Genetic Algorithm for Resource-constrained Scheduling (Doctoral dissertation,
Massachusetts Institute of Technology).

Wang, J. Q., & Zhang, H. Y. (2013). Multi-criteria Decision-making Approach based on Atanassov's
Intuitionistic Fuzzy Sets with Incomplete Certain Information on Weights. Fuzzy Systems, IEEE
Transactions on, 21(3), 510-515.

Wang, R., & Dagli, C. H. (2011). Executable System Architecting using Systems Modeling Language
in Conjunction with Colored Petri Nets in a Model-driven Systems Development Process. Systems
Engineering, 14(4), 383-409.

Wang, R., & Dagli, C. H. (2013). Developing a Holistic Modeling Approach for Search-based System
Architecting. Procedia Computer Science, 16, 206-215.

Wang, R., Agarwal,S., & Dagli, C. (2014). Executable System of Systems Architecture Using OPM in
Conjunction with Colored Petri Net: A Module for Flexible Intelligent & Learning Architectures for
System of Systems, In Europe Middle East & Africa Systems Engineering Conference (EMEASEC).

Wang, Y., & Cai, Z. (2012). Combining Multi-objective Optimization with Differential Evolution to
Solve Constrained Optimization Problems. Evolutionary Computation, IEEE Transactions on, 16(1),
117-134.

Wang, Y., Cai, Z., Guo, G., & Zhou, Y. (2007). Multi-objective Optimization and Hybrid Evolutionary
Algorithm to Solve Constrained Optimization Problems. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 37(3), 560-575.

Wanyama, T., & Homayoun Far, B. (2007). A Protocol for Multi-agent Negotiation in a Group-choice
Decision Making Process. Journal of Network and Computer Applications, 30(3), 1173-1195.

Wappler, S. (2007). Automatic Generation of Object-oriented Unit Tests using Genetic Programming
(Doctoral dissertation, Universitätsbibliothek).

62

Wappler, S., & Wegener, J. (2006, July). Evolutionary Unit Testing of Object-oriented Software using
Strongly-typed Genetic Programming. In Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation (pp. 1925-1932). ACM.

Warfield, J. N. (1973). Binary Matrices in Systems Modeling. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-3 (No. 5, September), 441-449.

Weiss, W. E. (2008, December). Dynamic Security: An Agent-based Model for Airport Defense. In
Simulation Conference, 2008. WSC 2008. Winter (pp. 1320-1325). IEEE.

Welby, S. P. Systems Engineering FY 2012 Annual Report.

Woldesenbet, Y. G., Yen, G. G., & Tessema, B. G. (2009). Constraint Handling in Multi-objective
Evolutionary Optimization. Evolutionary Computation, IEEE Transactions on, 13(3), 514-525.

Wooldridge, M., & Parsons, S. (2000, August). Languages for Negotiation. In ECAI (pp. 393-400).

Wu, D., & Mendel, J. M. (2007). Uncertainty Measures for Interval Type-2 Fuzzy Sets. Information
Sciences, 177(23), 5378-5393.

Yi, J. S., Kang, Y., Stasko, J. T., & Jacko, J. A. (2007), Nov/Dec). Toward a Deeper Understanding of the
Role of Interaction in Information Visualization. IEEE Transactions on Visualization and Computer
Graphics, 13(6), 1224-1231.

Yu, O. Y., Guikema, S. D., Briaud, J. L., & Burnett, D. (2012). Sensitivity Analysis for Multi-attribute
System Selection Problems in Onshore Environmentally Friendly Drilling (EFD). Systems Engineering,
15(2), 153-171.

Yu, T. L., Yassine, A. A., & Goldberg, D. E. (2007). An Information Theoretic Method for Developing
Modular Architectures using Genetic Algorithms. Research in Engineering Design, 18(2), 91-109.

Zadeh, L. A. (1975). Fuzzy Logic and Approximate Reasoning. Synthese, 30(3-4), 407-428.

Zhang, T., Hu, T., Zheng, Y., & Guo, X. (2012). An Improved Particle Swarm Optimization for Solving
Bi-level Multi-objective Programming Problem. Journal of Applied Mathematics, 2012.

Zhang, T., Hu, T., Chen, J. W., Wan, Z., & Guo, X. (2012, November). Solving Bi-level Multi-objective
Programming Problem by Elite Quantum Behaved Particle Swarm Optimization. In Abstract and
Applied Analysis (Vol. 2012). Hindawi Publishing Corporation.

Zhang, G., Lu, J., & Gao, Y. (2008). An Algorithm for Fuzzy Multi-objective Multi-follower Partial
Cooperative Bi-level Programming. Journal of Intelligent and Fuzzy Systems, 19(4), 303-319.

Zhang, G., Lu, J., & Gao, Y. (2008). Fuzzy Bi-level Programming: Multi-objective and Multi-follower
with Shared Variables. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 16(supp02), 105-133.

63

Zhang, G., & Lu, J. (2010). Fuzzy Bi-level Programming with Multiple Objectives and Cooperative
Multiple Followers. Journal of Global Optimization, 47(3), 403-419.

Zheng, Y., Wan, Z., & Wang, G. (2011). A Fuzzy Interactive Method for a Class of Bi-level Multi-
objective Programming Problem. Expert Systems with Applications, 38(8), 10384-10388.

Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N., & Zhang, Q. (2011). Multi-objective
Evolutionary Algorithms: A Survey of the State of the Art. Swarm and Evolutionary Computation,
1(1), 32-49.

64

	Flexible and Intelligent Learning Architectures for SOS (FILA-SoS)
	Recommended Citation

	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Motivation for Research
	System of System Challenges
	How Does FILA-SoS Address SoS Pain Points

	Overview of the FILA-SoS integrated model
	Definition of Variables for SoS
	Independent modules of FILA-SOS

	On the Flexibility of Systems in System of Systems Architecting: A new Meta-Architecture Generation Model version 2.0
	SoS Architecting and System Flexibility
	SoS Architecting Models with Inflexible and Flexible Systems
	SoS Architecting with Inflexible Systems
	SoS Architecting with Flexible Systems

	SoS Architecting Algorithms with Inflexible and Flexible Systems
	Pareto Front Approximation and Termination
	Evolutionary Algorithm for SoS-I
	Evolutionary Algorithm for SoS-F

	SoS Architecting Analyses with Inflexible and Flexible Systems
	Effects of Flexibility
	Effects of Flexibility Levels

	Concluding Remarks

	Appendix A: List of Publicas Resulted and Papers Submitted from FILA-SoS Research
	Appendix B: Cited and Related References

