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EXECUTIVE SUMMARY 

Multi-faceted systems of the future will entail complex logic and reasoning with many levels of 
reasoning in intricate arrangement. The organization of these systems involves a web of 
connections and demonstrates self-driven adaptability. They are designed for autonomy and may 
exhibit emergent behavior that can be visualized. Our quest continues to handle complexities, 
design and operate these systems. The challenge in Complex Adaptive Systems design is to design 
an organized complexity that will allow a system to achieve its goals. This report attempts to push 
the boundaries of research in complexity, by identifying challenges and opportunities. Complex 
adaptive system-of-systems (CASoS) approach is developed to handle this huge uncertainty in 
socio-technical systems. 

Although classically (Dahmann, Rebovich, Lowry, Lane, & Baldwin, 2011) four categories of SoS 
are described in literature namely; Directed, Collaborated, Acknowledged and Virtual. However, 
there exist infinitely many SoS on the edges of these categories thus making it a continuum. Many 
SoS with different configurations can fill this gap. These four types of SoS vary based on their 
degree of managerial control over the participating systems and their structural complexity. The 
spectrum of SoS ranges from Directed SoS that represents complicated systems to Virtual SoS 
that are complex systems. 

Acknowledged SoS lie in between this spectrum. This particular SoS is the focal point of our 
research endeavor. Acknowledged SoS and Directed SoS share some similarities such as both 
have (Dahman & Baldwin, 2011) SoS objectives, management, funding and authority. 
Nevertheless, unlike Directed SoS, Acknowledged SoS systems are not subordinated to SoS. 
However, Acknowledged SoS systems retain their own management, funding and authority in 
parallel with the SoS. Collaborative SoS are similar to Acknowledged SoS systems in the fact that 
systems voluntarily work together to address shared or common interest. 

Flexible and Intelligent Learning Architectures for SoS (FILA-SoS) integrated model is developed 
in this research task provides a decision making aid for SoS manager based on the wave model. 
The model developed called the FILA-SoS does so using straightforward system definitions 
methodology and an efficient analysis framework that supports the exploration and 
understanding of the key trade-offs and requirements by a wide range system-of-system 
stakeholders and decision makers in a short time. FILA-SoS and the Wave Process address four 
of the most challenging aspects of system-of-system architecting: 

1. Dealing with the uncertainty and variability of the capabilities and availability of 
potential component systems 

2. Providing for the evolution of the system-of-system needs, resources and environment 
over time 

3. Accounting for the differing approaches and motivations of the autonomous component 
system managers 

4. Optimizing system-of-systems characteristics in an uncertain and dynamic environment 
with fixed budget and resources 
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Some of the highlights of FILA-SoS are listed in terms of its capabilities, value added to systems 
engineering, ability to perform “What-if Analysis”, modularity of integrated models, its potential 
applications in the real world and future additions to the current version. 

 

FILA-SoS has a number of unique capabilities such as integrated model for modeling and 
simulating SoS systems with evolution for multiple waves. It also has modularity in the structure 
where the models can be run independently and in conjunction with each other. Besides there 
are a couple of different models for both architecture generation and SoS behavior and various 
individual system behavior negotiation models between SoS and individual systems. In terms of 
value added FILA-SoS aids the SoS manager in future decision making. It also helps in 
understanding the emergent behavior of systems in the acquisition environment and impact on 
SoS architecture quality. FILA-SoS serves as an artifact to study the dynamic behavior of different 
type of systems (non-cooperative, semi-cooperative, cooperative). It enables us to identify intra 
and interdependencies among SoS elements and the acquisition environment. FILA-SoS can 
provide a “What-if” Analysis depending on variables such as SoS funding and capability priority 
that can be changed as the acquisition progresses through wave cycles. It has the ability to 
simulate any architecture through colored petri nets. In addition, it can simulate rules of 
engagement & behavior settings: all systems are non-cooperative, all systems are semi-
cooperative, and all systems are cooperative or a combination. Some of the potential applications 
include modeling a wide variety of complex systems models such as logistics, and cyber-physical 
systems. It also acts as a test-bed for decision makers to evaluate operational guidelines and 
principles for managing various acquisition environment scenarios. Future Capabilities that are 
currently in progress are extending the model to include multiple interface alternatives among 
systems and incorporation of risk models into environmental scenarios. 

2 
 



 

Integrated Model Structure for FILA-SoS Version 1.0 is described.  It provides a short description 
of all independent models that make up the FILA-SoS integrated model and reports the workings 
of the model with three notional System-of-Systems namely; Toy Problem for aircraft carrier 
performance assessment, ISR (intelligence surveillance and reconnaissance) and SAR (search and 
rescue). 

The project reports span 17 volumes. Each report describes the various aspects of the FILA-SOS 
integrated model: 

Volume 1: Integrated Model Structure 
Volume 1 is the Integrated Model Structure report for FILA-SoS Version 1.0. It provides a short 
description of all independent models that make up the FILA-SoS integrated model. Integrated 
FILA-SoS developed is tested in three notional System-of-Systems namely; Toy Problem for 
Aircraft Carrier Performance Assessment, ISR (intelligence surveillance and reconnaissance) and 
SAR (search and rescue). FILA-SoS integrated model is currently being validated with a real life 
data from a medium sized SoS. The results of this validation are given in volume 17. 

Volume 2: Meta-Architecture Generation Multi-Level Model 
Volume 2 describes Meta-Architecture Generation Multi-Level Model. The multi-level meta-
architecture generation model considers constructing an SoS architecture such that each 
capability is provided by at least one system in the SoS and the systems in the SoS are able to 
communicate with each other. Secondly, it has multiple objectives for generating a set of SoS 
architectures namely; maximum total performance, minimum total costs and minimum deadline. 
Finally, the model establishes initial contracts with systems to improve performances. 

Volume 3: Fuzzy-Genetic Optimization Model 
Volume 3 illustrates the second meta-architecture generation model known as the Fuzzy-Genetic 
optimization model. This model is based on evolutionary multi-objective optimization for SoS 
architecting using genetic algorithms and four key performance attributes (KPA) as the objective 
functions. It also has a type-1 fuzzy assessor for dynamic assessment of domain inputs and that 
forms the fitness function for the genetic algorithm. It returns the best architecture (meta-
architecture) consisting of systems and their interfaces. It is a generalized method with 
application to multiple domains such as Gulf War Intelligence/Surveillance/Reconnaissance Case, 
Aircraft Carrier Performance Assessment Case and Alaskan Maritime Search and Rescue Case. 

Volume 4: Architecture Assessment Model 
Volume 4 describes an Architecture Assessment Mode that can capture the non-linearity in key 
performance attribute (KPA) tradeoffs, is able to accommodate any number of attributes for a 
selected SoS capability, and incorporate multiple stakeholder’s understanding of KPA’s. 
Assessment is based on a given meta-architecture alternative. This is done using type-1 fuzzy sets 
and fuzzy inference engine. The model provides numerical values for meta-architecture quality. 

Volume 5: Cooperative System Negotiation Model 
Volume 5 specifically describes the Cooperative System Negotiation Model. The systems 
following this model behave cooperatively while negotiating with the SoS manager. The model 
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of cooperative behavior is based on agent preferences and the negotiation length. Each system 
agent has two inherent behaviors of cooperativeness: Purposive (normal behavior) and 
Contingent (behavior driven by unforeseen circumstances). The approach models the tradeoff 
between the two behaviors for the systems. A fuzzy weighted average approach is used to arrive 
at the final proposed value. 

Volume 6: Non-Cooperative System Negotiation Model 
Volume 6 goes on to describe the Non-Cooperative System Negotiation Model in which systems 
behave in their self-interest while negotiating with the SoS coordinator. A mathematical model 
of individual system’s participation capability and self-interest negotiation behavior is created. 
This methodology is an optimization-based generator of alternatives for strategically negotiating 
multiple items with multiple criteria. Besides, a conflict evaluation function that estimates 
prospective outcome for identified alternative is proposed. 

Volume 7: Semi-Cooperative System Negotiation Model 
Volume 7 describes the third and last system negotiation model, which illustrates the Semi-
Cooperative System Negotiation Model. It exhibits the capability of being flexible or 
opportunistic: i.e., extremely cooperative or uncooperative based on different parameter values 
settings. A Markov-chain based model designed for handling uncertainty in negotiation modeling 
in an SoS. A model based on Markov chains is used for estimating the outputs. The work assigned 
by the SoS to the system is assumed to be a ``project’’ that takes a random amount of time and 
a random amount of resources (funding) to complete. 

Volume 8: Incentive based Negotiation Model for System of Systems 
Volume 8 explains the SoS negotiation model also called the Incentive Based Negotiation Model 
for System of Systems. This model is based on two key assumptions that are to design a contract 
to convince the individual systems to join the SoS development and motivate individual systems 
to do their tasks well. Game theory and incentive based contracts are used in the negotiation 
model that will maximize the welfare for parties involved in the negotiation. SoS utility function 
takes into account local objectives for the individual systems as well as global SoS objective 
whereas the incentive contract design persuades uncooperative systems to join the SoS 
development. 

Volume 9: Model for Building Executable Architecture 
Volume 9 illustrates the process of building Executable Architectures for SoS. The operations of 
the SoS is a dynamic  process with participating system interacting with each other and exchange 
various kinds of resources, which can be abstract information or physical objects. This is done 
through a hybrid structure of OPM (Object process methodology) and CPN (Colored petri nets) 
modeling languages. The OPM model is intuitive and easy to understand. However, it does not 
support simulation, which is required for accessing the behavior related performance. This is 
achieved by mapping OPM to CPN, which is an executable simulation language. The proposed 
method can model the interactions between components of a system or subsystems in SoS. In 
addition, it can capture the dynamic aspect of the SoS and simulate the behavior of the SoS. 
Finally, it can access various behavior related performance of the SoS and access different 
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constitutions or configurations of the SoS which cannot be incorporated into the meta-
architecture generation models of Volume 2 & 3. 

Volume 10: Integrated Model Software Architecture and Demonstration FILA-SoS Version 1.0 
Volume 10 elucidates the Integrated Model Software Architecture and Demonstration based on 
the models described above. Volume 11 and thereon the reports are aimed at the upcoming 
newer version 2.0 of FILA-SoS. 

Volume 11: Integrated Model Structure  FILA-SoS Version 2.0 
Volume 11 provides Integrated Model Structure for FILA-SoS Version 2.0 that could be 
implemented in a new software environment. 

Volume 12: Complex Adaptive System-of-System Architecture Evolution Strategy Model for 
FILA-SoS Version 2.0 
Volume 12 provides a model to answer the first research question “What is the impact of 
different constituent system perspectives regarding participating in the SoS on the overall 
mission effectiveness of the SoS?” It is named the Complex Adaptive System-of-System 
Architecture Evolution Strategy Model and is incorporated in FILA-SoS Version 2.0. This volume 
describes a computational intelligence based strategy involving meta-architecture generation 
through evolutionary algorithms, meta-architecture assessment through type-2 fuzzy nets and 
finally its implementation through an adaptive negotiation strategy. 

Volume 13: On the Flexibility of Systems in System of Systems Architecting: A new Meta-
Architecture Generation Model for FILA-SoS Version 2.0 
Volume 13 is termed the Flexibility of Systems in System of Systems Architecting: A new Meta-
Architecture Generation Model for FILA-SoS Version 2.0. The research question is answered 
through an alternative technique to meta-architecture generation besides the one described in 
Volume 2. 

Volume 14: Assessing the Impact on SoS Architecture Different Level of Cooperativeness: A 
new Model for FILA-SoS Version 2.0 
Volume 14 proposes a new method for Assessing the Impact on SoS Architecture Different Level 
of Cooperativeness. Second research question is answered through a model that allows different 
levels of cooperativeness of individual systems.  

Volume 15: Incentivizing Systems to Participate in SoS and Assess the Impacts of Incentives: A 
new Model for FILA-SoS Version 2.0 
Volume 15 is an extension of previous systems negotiation models based on incentivizing and is 
aptly called Incentivizing Systems to Participate in SoS and Assess the Impacts of Incentives: A 
new Model for FILA-SoS Version 2.0. It also provides an approach to answer the third research 
question “How should decision-makers incentivize systems to participate in SoS, and better 
understand the impact of these incentives during SoS development and effectiveness?”. This 
model is based on the fact that providing incentives only depending on the outcome may not be 
enough to attract the attention of the constituent systems to participate in SoS mission. 
Therefore, this model extends the approach as described in Volume 8 while considering the 
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uncertainty in the acquisition environment. The incentive contract is designed based on the 
objectives of the SoS and the individual systems. Individual system’s objective is to secure highest 
incentives with minimal effort while the SoS manager’s goal is to convince individual systems to 
join the SoS development while maximizing its own utility.  

Volume 16: Integrated Model Software Architecture for FILA-SoS Version 2.0 
Volume 16 gives an overview of the integrated model architecture in version 2.0 of the software. 
It includes all old and new models previously mentioned. 

Volume 17: FILA-SoS Version 1.0 Validation with Real Data 
Volume 17 describes the validation of the FILA-SoS Version 1.0 with a real life data provided by 
MITRE Corporation by from a moderately sized SoS. 
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INTRODUCTION 

MOTIVATION FOR RESEARCH 

In the real world, systems are complex, non-deterministic, evolving, and have human centric 
capabilities. The connections of all complex systems are non-linear, globally distributed, and 
evolve both in space and in time. Because of non-linear properties, system connections create 
an emergent behavior. It is imperative to develop an approach to deal with such complex large-
scale systems. The approach and goal is not to try and control the system, but design the system 
such that it controls and adapts itself to the environment quickly, robustly, and dynamically. 
These complex entities include both socioeconomic and physical systems, which undergo 
dynamic and rapid changes. Some of the examples include transportation, health, energy, cyber 
physical systems, economic institutions and communication infrastructures. 

In addition, the idea of “System-of-Systems” is an emerging and important multidisciplinary area. 
An SoS is defined as a set or arrangement of systems that results when independent and useful 
systems are integrated into a larger system that delivers unique capabilities greater than the sum 
of the capabilities of the constituent parts. Either of the systems alone cannot independently 
achieve the overall goal. System-of- Systems (SoS) consists of multiple complex adaptive systems 
that behave autonomously but cooperatively (Dahman, Lane, Rebovich, & Baldwin, 2008). The 
continuous interaction between them and the interdependencies produces emergent properties 
that cannot be fully accounted for by the “normal” systems engineering practices and tools. 
System of Systems Engineering (SoSE), an emerging discipline in systems engineering is 
attempting to form an original methodology for SoS problems (Luzeaux, 2013). 

Since SoS grow in complexity and scale with the passage of time it requires architectures that will 
be necessary for understanding and governance and for proper management and control. 
Systems architecting can be defined as specifying the structure and behavior of an envisioned 
system. Classical system architecting deals with static systems whereas the processes of System 
of Systems (SoS) architecting has to be first done at a meta-level. The architecture achieved at a 
meta-level is known as the meta-architecture. The meta-architecture sets the tone of the 
architectural focus (Malan & Bredemeyer, 2001). It narrows the scope of the fairly large domain 
space and boundary. Although the architecture is still not fixed but meta-architecture provides 
multiple alternatives for the final architecture. Thus architecting can be referred to as filtering 
the meta-architectures to finally arrive at the architecture. The SoS architecting involves multiple 
systems architectures to be integrated to produce an overall large scale system meta-
architecture for a specifically designated mission (Dagli & Ergin, 2008). SoS achieves the required 
goal by introducing collaboration between existing system capabilities that are required in 
creating a larger capability based on the meta-architecture selected for SoS. The level of the 
degree of influence on individual systems architecture through the guidance of SoS manager in 
implementing SoS meta-architecture can be classified as directed, acknowledged, collaborative 
and virtual. Acknowledged SoS have documented objectives, an elected manager and defined 
resources for the SoS. Nonetheless, the constituent systems retain their independent ownership, 
objectives, capital, development, and sustainment approaches. Acknowledged SoS shares some 
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similarities with directed SoS and collaborative SoS. There are four types of SoS that are described 
below: 

 
Figure 1 Schematic Drawing of Four Classical Types of SoS Based on Degree of Control and Degree of Complexity 

Virtual 
• Virtual SoS lack a central management authority and a centrally agreed upon purpose for the 

system-of-systems. 
• Large-scale behavior emerges—and may be desirable—but this type of SoS must rely upon 

relatively invisible mechanisms to maintain it. 

Collaborative 
• In collaborative SoS the component systems interact more or less voluntarily to fulfill agreed 

upon central purposes. 

Acknowledged   (FILA-SoS integrated model is based on Acknowledged SoS) 
• Acknowledged SoS have recognized objectives, a designated manager, and resources for the 

SoS; however, the constituent systems retain their independent ownership, objectives, 
funding, and development and sustainment approaches. 

• Changes in the systems are based on collaboration between the SoS and the system. 

Directed 
• Directed SoS’s are those in which the integrated system-of-systems is built and managed to 

fulfill specific purposes.  
• It is centrally managed during long-term operation to continue to fulfill those purposes as 

well as any new ones the system owners might wish to address.  
• The component systems maintain an ability to operate independently, but their normal 

operational mode is subordinated to the central managed purpose. 
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This research is based on Acknowledged SoS. The major objectives of the reasearch are: 

• To develop a simulation for Acknowledged SoS architecture selection and evolution. 
• To have a structured, repeatable approach for planning and modeling. 
• To study and evaluate the impact of individual system behavior on SoS capability and 

architecture evolution process. 
 
The dynamic planning for a SoS is a challenging endeavor. Department of Defense (DoD) 
programs constantly face challenges to incorporate new systems and upgrade existing systems 
over a period of time under threats, constrained budget, and uncertainty. It is therefore 
necessary for the DoD to be able to look at the future scenarios and critically assess the impact 
of technology and stakeholder changes. The DoD currently is looking for options that signify 
affordable acquisition selections and lessen the cycle time for early acquisition and new 
technology addition. FILA-SoS provides a decision aid in answering some of the questions. 

This volume gives an overview of a novel methodology known as the Flexible Intelligent & 
Learning Architectures in System-of-Systems (FILA-SoS). Some the challenges that are prevalent 
in SoS architecting and how FILA-SoS attempts to address them is explained in the next section. 

SYSTEM OF SYSTEM CHALLENGES 

All these recent developments are helping us to understand Complex Adaptive Systems. They are 
at the edge of chaos as they maintain dynamic stability through constant self-adjustment and 
evolution. Chaos and order are two complementary states of our world. A dynamic balance exists 
between these two states. 

Order and structure are vital to life. Order ensures consistency and predictability and makes the 
creation of systems possible. However, too much order leads to rigidity and suppresses creativity. 
Chaos constantly changes the environment creating disorder and instability but can also lead to 
emergent behavior and allows novelty and creativity. Thus, sufficient order is necessary for a 
system to maintain an ongoing identity, along with enough chaos to ensure growth and 
development. The challenge in Complex Adaptive Systems design is to design an organized 
complexity that will allow a system to achieve its goals. SoS is a complex systems by its nature 
due to the following characteristics that are component systems are operationally independent 
elements and also managerially independent of each other. This means that component systems 
preserve existing operations independent of the SoS. SoS has an evolutionary development and 
due to the large scale complex structure shows an emergent behavior. Emergence means the SoS 
performs functions that do not reside in any one component system. 

2012 INCOSE SoS working group survey identified seven ‘pain points’ raising a set of questions 
for systems engineering of SoS which are listed in Table 1 (Dahman, 2012). 
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Table 1 System of Systems and Enterprise Architecture Activity 

Pain Points Question 

Lack of SoS Authorities & Funding What are effective collaboration patterns in systems of systems? 

Leadership What are the roles and characteristics of effective SoS leadership? 

Constituent Systems What are effective approaches to integrating constituent systems into a 
SoS?   

Capabilities & Requirements How can SE address SoS capabilities and requirements? 

Autonomy, Interdependencies & 
Emergence 

How can SE provide methods and tools for addressing the complexities of 
SoS interdependencies and emergent behaviors? 

Testing, Validation & Learning How can SE approach the challenges of SoS testing, including incremental 
validation and continuous learning in SoS? 

SoS Principles What are the key SoS thinking principles, skills and supporting examples? 

 

The importance and impact on systems engineering of each pain point is illustrated below: 

• Lack of SoS Authorities & Funding and Leadership pose several and severe governance and 
management issues for SoS. This conditions has a large impact on the ability to implement 
systems engineering (SE) in the classical sense to SoS. In addition, this problem affects the 
modeling & simulation activities. 

• Constituent Systems play a very important role in the SoS. As explained earlier usually they 
have different interests and ambitions to achieve, which may or may not be aligned with the 
SoS.. Similarly models, simulations and data for these systems will naturally have to be 
attuned to the specific needs of the systems, and may not lend themselves easily to 
supporting SoS analysis or engineering 

• Autonomy, Interdependencies & Emergence is ramifications of the varied behaviors and 
interdependencies of the constituent systems making it complex adaptive systems. 
Emergence comes naturally in such a state, which is often unpredictable. While modeling & 
simulation can aid in representing and measuring these complexities, it is often hard to 
achieve real life emergence. This is  due to limited understanding of the issues that can bring 
up serious consequences during validation. 

• Capability of the SoS and the individual systems capability needs may be high level and need 
definition in order to align them with the requirements of the SoS mission. The SoS mission 
is supported by constituent systems, which may not be able (or willing) to address them.  

• Testing, Validation & Learning becomes difficult since the constituent systems continuously 
keep evolving, adapting, as does the SoS environment which includes stakeholders, 
governments, etc. Therefore creating a practical test-bed for simulating the large dynamic 
SoS is a challenge in itself. Again modeling & simulation can solve part of the problem such 
as enhancing live test and addressing risk in SoS when testing is not feasible; however, this 
requires a crystal clear representation of the SoS which can be difficult as discussed in earlier 
points. 
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• SoS Principles are still being understood and implemented. Therefore, the rate of success is 
yet to be addressed formally. This poses some pressure on the progress of SoS engineering. 
Similarly, there is an absence of a well-established agreeable space of SoS principles to drive 
development and knowledge. This constricts the effective use of potentially powerful tools. 

 
The DoD 5000.2 is currently used as the acquisition process for complex systems. Schwartz (2010) 
described this process as an extremely complex systemic process that cannot always constantly 
produce systems with expected either cost or performance potentials. The acquisition in DoD is 
an SoS problem that involves architecting, placement, evolution, sustainment, and discarding of 
systems obtained from a supplier or producer. Numerous attempts undertaken to modify and 
reform the acquisition process have found this problem difficult to tackle because the models 
have failed to keep pace with actual operational scenarios. Dombkins (1996) offered a novel 
approach to model complex projects as waves. He suggested that there exists a major difference 
in managing and modeling traditional projects versus complex projects. He further illustrated his 
idea through a wave planning model that exhibits a linear trend on a time scale; on a spatial scale, 
it tries to capture the non-linearity and recursiveness of the processes. In general, the wave 
model is a developmental approach that is similar to periodic waves. A period, or multiple 
periods, can span a strategic planning time. The instances within the periods represent the 
process updates.  A recently proposed idea (Dahman, Lane, Rebovich, & Baldwin, 2008) that SoS 
architecture development for the DoD acquisition process can be anticipated to follow a wave 
model process. According to Dahman DoD 5000.2 may not be applicable to the SoS acquisition 
process. Acheson (2013) proposed that Acknowledged SoS be modeled with an Object-Oriented 
Systems Approach (OOSA). Acheson also proposes that for the development of SoS, the objects 
should be expressed in the form of a agent based model. 

The environment and the systems are continuously changing. Let there be an initial environment 
model, which represents the SoS acquisition environment.  As the SoS acquisition progresses 
through, these variables are updated by the SoS Acquisition Manager to reflect current 
acquisition environment. Thus, the new environment model at a new time has different 
demands. To fulfill the demands of the mission a methodology is needed to assess the overall 
performance of the SoS in this dynamic situation. The motivation of evolution are the changes in 
the SoS environment (Chattopadhyay, Ross, & Rhodes, 2008). The environmental changes consist 
of: 

• SoS Stakeholder Preferences for key performance attributes 
• Interoperability conditions between new and legacy systems 
• Additional mission responsibilities to be accommodated 
• Evolution of individual systems within the SoS 
 
Evaluation of architectures is another SoS challenge area as it lends itself to a fuzzy approach 
because the criteria are frequently non-quantitative, or subjective (Pape & Dagli, 2013), or based 
on difficult to define or even unpredictable future conditions, such as “robustness.”  Individual 
attributes may not have a clearly defined, mathematically precise, linear functional form from 
worst to best.  The goodness of one attribute may or may not offset the badness of another 

11 
 



 

attribute.  Several moderately good attributes coupled with one very poor attribute may be 
better than an architecture with all marginally good attributes, or vice-versa.  A fuzzy approach 
allows many of these considerations to be handled using a reasonably simple set of rules, as well 
as having the ability to include non-linear characteristics in the fitness measure.  The simple rule 
set allows small adjustments to be made to the model to see how seemingly small changes affect 
the outcome. The methodology outlined in this research and technical report falls under a multi-
level plug-and-play type of modeling approach to address various aspects of SoS acquisition 
environment: SoS architecture evaluation, SoS architecture evolution, and SoS acquisition 
process dynamics including behavioral aspects of constituent systems. 

HOW DOES FILA-SOS ADDRESS SOS PAIN POINTS 

The first pain point is Lack of SoS Authorities & Funding which begs a question “What are effective 
collaboration patterns in systems of systems?” 

Since there is lack of SoS Authority but more so persuasion involved in the workings of a SoS, 
systems are allowed to negotiate with the SoS manager.  Deadline for preparation, funding and 
performance required to complete the mission are some of the issues that form the negotiation 
protocol. Besides different combination of behavior types assigned to the systems can help us 
gauge the best effective collaboration patterns in systems of systems after the end of 
negotiations. 

The leadership issues pose the question, “What are the roles and characteristics of effective SoS 
leadership?” This is addressed by incorporating views from multiple stakeholders while assessing 
the architecture’s quality. In addition, we maintain that the characteristics are similar to what an 
Acknowledged SoS manager would have while distributing funds and resources among systems 
for a joint operation.  The SoS manager also has  the opportunity to form his decision based on 
most likely future scenarios, thus imparting him an edge as compared to other models. This will 
improve the process of acquisition in terms of overall effectiveness, less cycle time and 
integrating legacy systems. Overall, the role of the leadership is presented a guide than someone 
who would foist his authority. 

The third pain point question, “What are effective approaches to integrating constituent systems 
into a SoS? is addressed below.  A balance has to be maintained during acquisition between 
amount of resources used and the degree of control exercised by the SoS manager on the 
constituent systems. The meta-architecture generation is posed as a multi-objective optimization 
problem to address this pain point. The constituent systems and the interfaces between them 
are selected while optimizing the resources such as operations cost, interfacing cost, 
performance levels etc. The optimization approach also evaluates the solutions based on views 
of multiple stakeholders integrated together using a fuzzy inference engine. 

How can SE address capabilities and requirements? is the fourth pain point and is answered in 
this paragraph. Organizations that acquire large-scale systems have transformed their attitude 
to acquisition. Hence, these organizations now want solutions to provide a set of capabilities, not 
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a single specific system to meet an exact set of specifications. During the selection process of 
systems it is ensured that, a single capability is provided by more than one system. The idea is to 
choose at least one systems having unique capability to form the overall capability of the SoS. 

The fifth pain point on autonomies, emergence and interdependencies is one of the most 
important objectives of this research. This objective can be described as “How can SE provide 
methods and tools for addressing the complexities of SoS interdependencies and emergent 
behaviors?”. Each system has an autonomous behavior maintained through pre-assigned 
negotiation behaviors, differ operations cost, interfacing cost and performance levels while 
providing the same required capability. The interfacing among systems is encouraged to have 
net-centric architecture. The systems communicate to each other through several 
communication systems. This ensures proper communication channels. Together the behavior 
and net-centricity make it complex systems thus bringing out the emergence needed to address 
the mission. 

FILA-SoS is an excellent integrated model for addressing the complexities of SoS 
interdependencies and emergent behaviors as explained in the above paragraphs. 

As for the sixth pain point on testing, validation and learning goes, FILA-SoS has been tested on 
three notional examples so far the ISR, Search and Rescue (SAR) and the Toy problem for Aircraft 
Carrier Performance Assessment. For ISR (refer to Figure 2) a guiding physical example is taken 
from history.  During the 1991 Gulf War, Iraqi forces used mobile SCUD missile launchers called 
Transporter Erector Launchers (TELS) to strike at Israel and Coalition forces with ballistic missiles.  
Existing intelligence, surveillance, and reconnaissance (ISR) assets were inadequate to find the 
TELs during their vulnerable setup and knock down time.  The “uninhabited and flat” terrain of 
the western desert was in fact neither of those things, with numerous Bedouin goat herders and 
their families, significant traffic, and thousands of wadis with culverts and bridges to conceal the 
TELs and obscure their movement. 
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Figure 2 ISR System-of-Systems for Testing FILA-SoS 

A Coast Guard Search and Rescue (SAR) (Figure 3) SoS engineering and development problem is 
selected for serving the Alaskan coast. Detailed information about this case study can be found 
in Dagli et al (2013). There is increasing use of the Bering Sea and the Arctic by commercial 
fisheries, oil exploration and science, which increases the likelihood of occurrence of possible 
SAR scenarios. 

 
Figure 3 SAR System-of-Systems for Testing FILA-SoS 

The toy problem for assessing the performance of the aircraft carrier involves multiple systems 
such as satellites, uav’s and ground station that support the aircraft carrier to fulfill the mission 
(refer to Figure 4). The results have been obtained for multiple waves of the evolution process 
for all the examples. 
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Figure 4 Aircraft Carrier Performance Assessment for Testing FILA-SoS 

These example discussed above clearly show the domain independence of FILA-SoS. 

FILA-SoS is a novel method of making sequential decisions over a period for SoS development. 
The goal is to apply the integrated model to dynamically evolve SoS architecture and optimize 
SoS architecture, design and validate through simulation tools.  The integrated model structure 
can be applied to various application areas including development of dynamic water treatment 
SoS architecture, development of dynamic Air Traffic Management SoS, and development of 
autonomous ground transport SoS.  FILA-SoS has a number of abilities that make it unique such 
as: 

• Aiding the SoS manager in future decision making 
• To assist in understanding the emergent behavior of systems in the acquisition environment 

and impact on SoS architecture quality 
• To facilitate the learning of dynamic behavior of different type of systems (cooperative, semi-

cooperative , non-cooperative) 
• Identifying intra and interdependencies among SoS elements and the acquisition 

environment 
• Modeling and application to a wide variety of complex systems models such as logistics, 

cyber-physical systems and similar systems   
• Acting as a Test-bed for decision makers to evaluate operational guidelines and principles for 

managing various acquisition environment scenarios 
• Appropriate to model SoS that evolve over a period of time under uncertainties by multiple 

wave simulation capability. 
 
OVERVIEW OF THE FILA-SOS INTEGRATED MODEL 

In this section an overview of FILA-SoS is described. The model developed called the FILA-SoS is 
using straightforward system definitions methodology and an efficient analysis framework that 
supports the exploration and understanding of the key trade-offs and requirements by a wide 
range system-of-system stakeholders and decision makers in a short time. FILA-SoS and the Wave 
Process address four of the most challenging aspects of system-of-system architecting: 
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• Dealing with the uncertainty and variability of the capabilities and availability of potential 
component systems. 

• Providing for the evolution of the system-of-system needs, resources and environment over 
time. 

• Accounting for the differing approaches and motivations of the autonomous component 
system managers. 

• Optimizing system-of-systems characteristics in an uncertain and dynamic environment with 
fixed budget and resources 

 

DEFINITION OF VARIABLES FOR SOS 

This list comprises of the notation for variables used to solve the Acknowledged SoS architectural 
evolution problem: 

C:   Overall capability (the overall goal to be achieved by combining sub-capabilities) 
𝑐𝑐𝑗𝑗:  j ∈ J, J= {1, 2,…, M}:  

Constituent system capabilities required  
𝑠𝑠𝑖𝑖: i ∈ I, I= {1, 2,…, N}:   

Total number of systems present in the SoS problem  
Let 𝑨𝑨 be a 𝑁𝑁 x 𝑀𝑀 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑚𝑚𝑖𝑖𝑗𝑗 𝑤𝑤ℎ𝑒𝑒𝑚𝑚𝑒𝑒  

𝑚𝑚𝑖𝑖𝑗𝑗 = 1 𝑚𝑚𝑜𝑜 capability 𝑗𝑗 is possessed by system 𝑚𝑚 
𝑚𝑚𝑖𝑖𝑗𝑗 = 0 𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑒𝑒  

𝑃𝑃𝑖𝑖:   Performance of system 𝑚𝑚 for delivering all capabilities ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗  
𝐹𝐹𝑖𝑖:   Funding of system 𝑚𝑚 for delivering all capabilities ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗  
𝐷𝐷𝑖𝑖:   Deadline to participate in this round of mission development for system 𝑚𝑚 
𝐼𝐼𝐹𝐹𝑖𝑖𝑖𝑖   Interface between systems 𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎 𝑘𝑘 s.t. s≠ 𝑘𝑘, k ∈ I 
𝐼𝐼𝐼𝐼𝑖𝑖:   The cost for development of interface for system 𝑚𝑚 
𝑂𝑂𝐼𝐼𝑖𝑖:   The cost of operations for system 𝑚𝑚 
𝐾𝐾𝑃𝑃𝑟𝑟 : r ∈ R, R= {1, 2,…, Z}:  

The key performance attributes of the SoS 
𝐹𝐹𝐹𝐹:   Funding allocated to SoS Manager 
p= {1, 2,…, P}: 
  Number of negotiation attributes for bilateral negotiation 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚:   Total round of negotiations possible 
𝑚𝑚 :   Current round of negotiation (epochs) 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚:   Total round of negotiations possible 
𝑉𝑉𝑝𝑝𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚):  The value of the attribute 𝑝𝑝 for SoS manager at time 𝑚𝑚 for system 𝑚𝑚 
𝑉𝑉𝑝𝑝𝑖𝑖𝑆𝑆 (𝑚𝑚):   The value of the attribute 𝑝𝑝 for system 𝑚𝑚 owner at time t  
𝑇𝑇𝑇𝑇:    Threshold architecture quality 
 
The model involves a list of stakeholders such as the Acknowledged SoS manager, system 
owners/managers, SoS environment etc. 
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Figure 5 The Wave Model of SoS initiation, Engineering, and Evolution 

FILA-SoS follows the Dahmann’s proposed SoS Wave Model process for architecture 
development of the DoD acquisition process as depicted in Figure 5. FILA-SoS addresses the most 
important challenges of SoS architecting in regards to dealing with the uncertainty and variability 
of the capabilities and availability of potential component systems. The methodology also 
provides for the evolution of the system-of-system needs, resources and environment over time 
while accounting for the differing approaches and motivations of the autonomous component 
system managers. FILA-SoS assumes to have an uncertain and dynamic environment with fixed 
budget and resources for architecting SoS. The overall idea being to select a set of systems and 
interfaces based on the needs of the architecture in a full cycle called the wave. Within the wave, 
there may be many negotiation rounds, which are referred to as epochs. After each wave, the 
systems selected during negotiation in the previous wave remain as part of the meta-architecture 
whilst new systems are given a chance to replace those left out as a result. 

Processes involved in the wave model and their analog in FILA-SoS can be explained through the 
first stage of Initializing the SoS. In terms of initializing, wave process requires to understand the 
SoS objectives and operational concept (CONOPS), gather information on core systems to 
support desired capabilities. This starts with the overarching capability 𝐼𝐼 desired by 
Acknowledged SoS manager and defining the 𝑐𝑐𝑗𝑗 or sub-capabilities required to produce capability 
𝐼𝐼 and 𝐹𝐹𝐹𝐹, funding allocated to SoS Manager. These also form the input to the FILA-SoS for the 
participating systems 𝑠𝑠𝑖𝑖. FILA-SoS requires  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 the number of negotiation cycles, selection of 
the meta-architecture modelling procedure and system negotiation models assigned to 
participating systems. 

The second stage is called the Conduct_SoS_Analysis. For the Wave process, it represents starting 
an initial SoS baseline architecture for SoS engineering based on SoS requirements space, 
performance measures, and relevant planning elements. For FILA-SoS the baseline architecture 
is called as the meta-architecture. Meta-architecture is basically picking up the systems 𝑠𝑠𝑖𝑖  and 
their respective capabilities 𝑚𝑚𝑖𝑖𝑗𝑗. Meta-architecture modelling requires the values for 𝐾𝐾𝑃𝑃𝑡𝑡 , the 
key performance attributes of the SoS, 𝑃𝑃𝑖𝑖  (Performance of system 𝑚𝑚) , 𝐹𝐹𝑖𝑖   (Funding of system 𝑚𝑚 ), 
and 𝐷𝐷𝑖𝑖 deadline to participate in this round of mission development for system 𝑚𝑚 which is 
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assumed to be the total for all capabilities possessed by system 𝑚𝑚. The cost for development of a 
single interface for system 𝑚𝑚, 𝐼𝐼𝐼𝐼𝑖𝑖 and 𝑂𝑂𝐼𝐼𝑖𝑖 the cost of operations for system 𝑚𝑚 is also needed at this 
stage of the model. The next step is the Develop/ Evolve SoS. In this case in terms of the Wave 
process essential changes in contributing systems in terms of interfaces and functionality in order 
to implement the SoS architecture are identified. Within FILA-SoS this signals the command to 
send connectivity request to individual systems and starting the negotiation between SoS and 
individual systems. This stage requires the number of negotiation attributes 𝑃𝑃 for a bilateral 
negotiation between Acknowledged SoS manager and each systems 𝑚𝑚 selected in the meta-
architecture and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 which denotes the total round of negotiations possible. 

The next phase is Plan SoS Update in Wave process. In this, phase the architect plans for the next 
SoS upgrade cycle based on the changes in external environment, SoS priorities, options and 
backlogs. There is an external stimulus from the environment, which affects the SoS architecture. 
To reflect that in FILA-SoS determines which systems to include based on the negotiation 
outcomes and form a new SoS architecture. Finally, the last stage in Wave process is Implement 
SoS Architecture which establishes a new SoS baseline based on SoS level testing and system 
level implementation. In the FILA-SoS the negotiated architecture quality is evaluated based on 
𝐾𝐾𝑃𝑃𝑟𝑟, key performance attributes of the SoS. If the architecture quality is not up to a predefined 
quality or 𝑇𝑇𝑇𝑇 the threshold architecture quality the Acknowledged SoS manager and systems 𝑚𝑚 
selected in the meta-architecture go for renegotiations. Finally the process moves on to the next 
acquisition wave. The evolution of SoS should take into account availability of legacy systems and 
the new systems willing to join, adapting to changes in mission and requirement, and 
sustainability of the overall operation. FILA-SoS also has the proficiency to convert the meta-
architecture into an executable architecture using the Object Process Model (OPM) and Colored 
Petri Nets (CPN) for overall functionality and capability of the meta-architecture. These 
executable architectures are useful in providing the much-needed information to the SoS 
coordinator for assessing the architecture quality and help him in negotiating better. 

Some of the highlights of FILA-SoS are described in terms of its capabilities, value added to 
systems engineering, ability to perform “What-if Analysis”, modularity of integrated models, its 
potential applications in the real world and future additions to the current version. The most 
important capability of FILA-SoS is it being an integrated model for modeling and simulating SoS 
systems with evolution for multiple waves. Secondly, all models within FILA-SoS can be run 
independently and in conjunction with each other. Thirdly, there are two model types that 
represent SoS behavior and various individual system behaviors. Finally, it has the capacity to 
study negotiation dynamics between SoS and individual systems. 

The value added by FILA-SoS to systems engineering is it aids the SoS manager in future decision 
making, can help in understanding the emergent behavior of systems in the acquisition 
environment and its impact on SoS architecture quality. Besides, it has three independent 
systems behavior models, which are referred to as cooperative, semi-cooperative and non-
cooperative. These behavior models are used to Study the dynamic behavior of different type of 
systems while they are negotiating with SoS manager. In addition, FILA-SoS assists in identifying 
intra and interdependencies among SoS elements and the acquisition environment. 
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FILA-SoS also can facilitate a “What-if” Analysis using variables such as SoS funding and capability 
priority that can be changed as the acquisition progresses though wave cycles. The parameter 
setting for all negotiation models can be changed and rules of engagement can be simulated for 
different combinations of systems behaviors. 

Potential Application of FILA-SoS include complex systems models such as logistics, cyber-
physical systems. In addition, it can act as test-bed for decision makers to evaluate operational 
guidelines and principles for managing various acquisition environment scenarios. While the 
future capabilities that we would like to be included are extending the model to include multiple 
interface alternatives among systems and incorporation of risk models into environmental 
scenarios. 

INDEPENDENT MODULES OF FILA-SOS 

The FILA-SoS has a number of independent modules that are integrated together for meta-
architecture generation, architecture assessment, meta-architecture executable model, and 
meta-architecture implementation through negotiation. An overall view is presented in Figure 6. 

 
Figure 6 Integrated modules within FILA- SoS 

All the independent models are listed below for reference: 

• Meta-Architecture Generation Model 
• Architecture Assessment Model 
• SoS Negotiation Model 
• System Negotiation Model: Non-Cooperative 
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• System Negotiation Model: Cooperative 
•  System Negotiation Model: Semi-Cooperative   
• Executable Architecting Model: OPM & CPN 
• Overall Negotiation Framework 
 
The first meta-architecture generation method is fuzzy-genetic optimization model (Pape, 
Agarwal, Giammarco & Dagli, 2014). This model is based on evolutionary multi-objective 
optimization for SoS architecting with many key performance attributes (KPA). It also has a type-
1 fuzzy assessor for dynamic assessment of domain inputs and that forms the fitness function for 
the genetic algorithm. It returns the best architecture (meta-architecture) consisting of systems 
and their interfaces. It is a generalized method with application to multiple domains such as Gulf 
War Intelligence/Surveillance/Reconnaissance Case and Alaskan Maritime Search and Rescue 
Case. 

The second meta-architecture generation model is based on multi-level optimization (Konur & 
Dagli, 2014). In this model, architecting is done in two rounds: the first being the initiating the 
SoS by selecting the systems to be included in the SoS and then improving the SoS’s performance 
by allocating funds to participating systems. The model is generic based on multiple attributes 
such as maximum performance, minimum cost and minimum deadline. It based on a Stackelberg 
game theoretical approach between the SoS architect and the individual systems. 

The particle swarm optimization (Agarwal, Pape, & Dagli, 2014) technique for meta-architecture 
generation is similar to fuzzy-genetic model. Except for the fact that evolutionary optimization 
technique in this case is based on swarm intelligence. In addition, there are some new key 
performance attributes used to calculate the architectures quality. Cuckoo search optimization 
(Agarwal, Wang, & Dagli, 2014) based meta-architecture is again anew biologically inspired 
method of optimization. It has been shown that it in certain cases it performs better than PSO. 

The first architecture assessment method is based on type-1 fuzzy logic systems (FLS) (Pape et 
al., 2013). The Key Performance Parameters (KPP) chosen are performance, affordability, 
flexibility, and robustness. It can capture the viewpoints of multiple stakeholders’. It can also 
accommodate any number of KPPs. 

Another architecture assessment method is based on type-2 fuzzy modular nets (Agarwal, Pape 
& Dagli, 2014). The attributes used for evaluation were Performance, Affordability, 
Developmental Modularity, Net-Centricity and Operational Robustness. Type-1 fuzzy sets are 
able to model the ambiguity in the input and output variables. However, type-1 fuzzy sets are 
insufficient in characterizing the uncertainty present in the data. Type-2 fuzzy sets proposed by 
Zadeh (1975) can model uncertainty and minimize its effects in FLS (Mendel & John, 2002). 

It is not possible to implement such meta-architecture without persuading the systems to 
participate, hence to address the issue a negotiation model is proposed based on game theory 
(Ergin, 2104). It is an incentive based negotiation model to increase participation of individual 
systems into Search and Rescue SoS. The model provides a strategy for SoS management to 
determine the appropriate amount of incentives necessary to persuade individual systems while 
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achieving its own goal. The incentive contract is designed based on the objectives of the SoS and 
the individual systems. Individual system’s objective is to secure highest incentives with minimal 
effort while the SoS manager’s goal is to convince individual systems to join the SoS development 
while maximizing its own utility. Determining the incentives for individual systems can be 
formulated as a multi-constraint problem where SoS manager selects a reward for the individual 
system such that the reward will maximize SoS manager’s expected utility while satisfying the 
constraints of the individual systems. 

Another negotiation model based on clustering and neural networks is developed (Agarwal, 
Saferpour & Dagli, 2014). This model involves adapting the negotiation policy based on individual 
systems behavior that is not known to the SoS manager. The behavior is predicted by clustering 
the difference of multi-issue offers. Later the clustered data is trained using supervised learning 
techniques for future prediction. 

Individual systems providing required capabilities can use three kinds of negotiation models 
based on their negotiation strategies non-cooperative Linear Optimization model, cooperative 
fuzzy negotiation model, and Semi-cooperative Markov chain model (Dagli et al., 2013). 

Executable architectures are generated using a hybrid of Object Process Methodology (OPM) and 
Colored Petri Nets (CPN) (Agarwal, Wang, & Dagli, 2014), (Wang, Agarwal, & Dagli, 2014), and 
(Wang & Dagli, 2011). To facilitate analysis of interactions between the participating systems in 
achieving the overall SoS capabilities, an executable architecture model is imperative. In this 
research, a modeling approach that combines the capabilities of OPM and CPN is proposed. 
Specifically, OPM is used to specify the formal system model as it can capture both the structure 
and behavior aspects of a system in a single model. CPN supplements OPM by providing 
simulation and behavior analysis capabilities. Consequently, a mapping between OPM and CPN 
is needed. OPM modeling supports both object-oriented and process-oriented paradigm. CPN 
supports state-transition-based execution semantics with discrete-event system simulation 
capability, which can be used to conduct extensive behavior analyses and to derive many 
performance metrics. 
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ON THE FLEXIBILITY OF SYSTEMS IN SYSTEM OF SYSTEMS ARCHITECTING: A NEW META-
ARCHITECTURE GENERATION MODEL VERSION 2.0 

System of Systems (SoS) architecting requires analyzing a set of individual systems 
simultaneously in order to build a connected SoS, which can provide the capabilities needed. In 
general, the systems can provide a set of capabilities and the SoS architect needs to decide which 
systems to include in the SoS so that each capability is provided by at least one system. In this 
case, the systems are inflexible, i.e., a selected system will contribute to the SoS with all the 
capabilities it can provide. On the other hand, if SoS architect can incentivize systems to 
contribute with specific capabilities instead of all of their capabilities, it might be possible to build 
a better SoS  in terms of not only one objective but all objectives considered. In this study, we 
compare SoS architecting with inflexible and flexible systems and quantify the value of the 
flexibility of the systems. We formulate the SoS architecting problems with inflexible and flexible 
systems as multi-objective nonlinear binary programming models and propose an evolutionary 
algorithm for each model. The evolutionary algorithms output a set of Pareto efficient SoS's for 
the architect. Upon comparing the Pareto fronts of inflexible and flexible models, we quantify 
the value of systems' flexibilities.  We analyze the effects of systems' flexibility levels. 

SOS ARCHITECTING AND SYSTEM FLEXIBILITY 

In many industry, service, and defense enterprises, system engineering plays an important role, 
as it is able to simultaneously capture the different dynamics among the elements of the whole 
enterprise working towards common goals. A system can be considered as the smallest element 
of the overall enterprise and it contributes to the enterprise with its own individual components 
and unique capabilities. Kaplan (2006) notes that integration of many systems, their capabilities, 
and the cumulative abilities achieved from their interoperability are crucial for gaining 
competitive advantage in large business and defense projects. A System of Systems (SoS) is the 
collection of individual and independent systems that are brought together for specific goals 
(Gorod et al., 2008, Klein and Vliet, 2013). SoS architecting administers appropriate integration 
of the systems, ensures connection among the individual systems, and guarantees that the 
requirements are met overall. Many engineering, design, organizational, information, technology 
management, and decision making models in manufacturing, health, energy, transportation, 
logistics, and military are represented as SoS architectures (Jamshidi, 2008, Jamshidi, 2011). In 
this volume, we analyze a multi-objective SoS architecting problem. 

Most of the projects undertaken by the DoD are SoS architecting problems (DoD, 2008). Not only 
defense projects, but also many strategy development projects for military missions are SoS 
architecting problems (Owens, 1996, Manthorpe, 1996) and military systems are integrated as 
SoS architectures (Bergey et al., 2009). DoD (2008) definition of SoS, which is adopted in this 
study as well, is capability based and SoS is defined as the collection of systems integrated to 
provide required capabilities. As noted by Domercant and Mavris (2010), this capability based 
definition is reasonable as military missions are recently more related to capabilities based 
planning. Furthermore, Dahmann and Baldwin (2008) highlight that independent control of the 
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individual systems will not achieve operational goals; hence, SoS architecting is crucial in defense 
projects. Owens (1996), Manthorpe (1996), and Dahmann and Baldwin (2008) list examples of 
SoS architectures in DoD. Specifically, Kaplan (2006) and Smith et al. (2011) both emphasize that 
the missions (purposes) are the main drivers for architecting SoS for military projects. The SoS 
architecting problem analyzed in this volume requires providing a set of capabilities. 

There are two main components of SoS: the capabilities, which are determined based on the 
mission's goals/targets, and the systems, who can contribute with specific capabilities. The SoS 
architect is the agent constructing the SoS and the constructed SoS should be capable, that is, it 
should be able to provide a set of precise capabilities. A capability is defined as a skill for 
performing definite functions (DoD, 2008). Intelligence, surveillance, reconnaissance, defense 
(air or missile), health, and communication skills are the general capabilities needed in military 
missions (DoD, 2008, Dahmann and Baldwin, 2008, Bergey et al., 2009). For instance, a capability 
can be the ability to track moving targets (DoD, 2008). Manthorpe (1996) lists a set of nine 
capabilities identified for joint war fighting and Konur and Dagli (2014) note that specific search, 
radar, command and control, exploitation, and communication capabilities are required for 
targeting Scud TELs during Gulf War. The systems are the entities equipped with such capabilities. 
Vehicles, softwares, and other systems such as aircrafts, fighters, platforms equipped with 
weapons, sensors, communication tools and computers, and radars are military systems 
(Manthorpe, 1996, Dahmann and Baldwin, 2008, Konur and Dagli, 2014). For instance, Owens 
(1996) gives a list of military systems. 

DoD must often combine military systems to perform mission goals (Kaplan, 2006) and Owens 
(1996) notes that military systems are coming together as SoS architectures. Different agents 
such as executive offices, principal staff  assistants, staff boards, and military committees can 
take the role of the SoS architect and the SoS architect's problem is then to determine which 
systems with which capabilities should be included in the architecture (Kaplan, 2006). While 
architecting the SoS, the SoS architect should take into account the individual system properties 
and the communication among the systems contributing to the SoS. Different systems can 
provision different capabilities with distinct costs, performance levels, and schedules; and, the 
SoS architecture should consist of a set of systems such that each capability is provided by at 
least one system, i.e., SoS is capable. Furthermore, the SoS architect should ensure that the 
systems are connected by enabling communication among the systems included in the SoS. 
Similar SoS architecting models have been investigated in many military projects such as air 
defense (Maier, 1998, Sommerer et al., 2012), ballistic missile defense (Ender et al., 2010, Garrett 
et al., 2011), navy carrier strike (Adams and Meyers, 2011), and future combat systems (Pernin 
et al., 2012). This volume uses operations research tools to analyze SoS architecting problem with 
two types of systems: inflexible and flexible. 

In particular, flexibility can be associated with an individual system or the SoS itself. Roughly, 
flexibility of a system or a SoS architecture can be described as the system's or the SoS 
architecture's ability to respond to changes (Saleh et al., 2001, Saleh et al., 2009, Valerdi et al., 
2008, Gorod et al., 2008, Ross et al., 2008). This volume analyzes the effects of system flexibility 
in the process of architecting the SoS. Specifically, a system is defined as inflexible when 
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engineering design changes within the system are not possible. An inflexible system will, 
therefore, have a set of fixed capabilities integrated within and it will contribute to the SoS with 
those capabilities. In case of inflexible systems, the SoS architecting problem is to select the best 
systems within the SoS considering the architecture objectives. On the other hand, it might be of 
benefit to the SoS architect that a system, instead of providing all of its capabilities, collaborate 
with the SoS architect and contribute to the SoS with a subset of its capabilities. Through design 
changes, some of the capabilities available in a system can be disintegrated from the system and 
the SoS architect can benefit from the reduction in cost and/or completion time of the SoS 
(Dahmann and Baldwin, 2008). We refer to such a system as a flexible system. As noted by Kaplan 
(2006), a flexible system can be guided by the SoS architect. Therefore, in case of flexible systems, 
the SoS architecting problem is to determine which systems will contribute to the SoS with which 
capabilities. 

Specifically, flexibility of a system can be considered as its cooperativeness with the SoS architect. 
A flexible system can be considered as cooperative since the system can modify its settings as 
guided by the SoS architect. Therefore, in this volume, we focus on analyzing the effects of 
different levels of cooperativeness of the systems on the SoS architectures by proposing 
mathematical formulations, solutions methods, and numerical analysis for different levels of 
system flexibility.  

The effects of system flexibility and its level on the cost, performance, and agility of the SoS 
architecture are examined by mathematically formulating SoS architecting problem with both 
inflexible and flexible systems as multi-objective optimization problems. The flow of actions in 
both SoS architecting problems is as follows. Prior to physical architecting of the SoS, a set of 
capabilities required for the SoS are defined considering the mission goals and the systems that 
can provide these capabilities are specified (the set of the systems with similar capabilities 
constitute a family of systems, DoD, 2008). During the SoS architecting, in case of inflexible 
systems, the SoS architect selects the systems to be included in the SoS, the systems contribute 
to the SoS with their capabilities, and the SoS architect ensures the connectedness of the SoS by 
establishing the communication interfaces among the systems. In case of flexible systems, the 
SoS architect selects the systems to be included in the SoS as well as the capabilities that the 
systems will provide, the systems modify their designs and contribute to the SoS with the 
requested capabilities, and the SoS architect ensures the connectedness of the SoS by 
establishing the communication interfaces among the systems. Pernin et al. (2012) note that one 
can utilize three main objectives in formulating SoS architectures: performance, schedule, and 
cost. Therefore, similar to Konur and Dagli (2014) as well, in both of the cases, it is assumed that 
the SoS architect constructs a capable and connected SoS regarding three objectives: 
maximization of total performance, minimization of completion time, and minimization of total 
cost. 

Two common approaches adopted for solving multi-objective optimization models are reducing 
the multi-objective model into a single-objective model and generating the set of non-dominated 
solutions. A multi-objective model can be reduced to a single-objective model by associating 
weights to the individual objective functions and creating a single objective function as the sum 
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of the weighted objective functions. Another approach for reduction to single-objective model is 
to minimize the maximum of the deviations of the objective functions from their own individual 
optimums. Nevertheless, reduction to a single-objective model assumes preferences for the 
decision maker and returns a single solution based on these preferences. On the other hand, 
generating a set of non-dominated solutions provides the decision maker with alternative 
solutions, among which the decision maker can select one. The set of non-dominated solutions 
is often referred to as the Pareto front and in this volume and we attempt to approximate the 
Pareto fronts for the SoS architecting problems. 

Due to complexity of the SoS architecting problems, we develop evolutionary algorithms for each 
SoS architecting problem. While these evolutionary algorithms share a common fitness 
evaluation and termination operations, they differ in the way they represent the SoS 
architectures and mutate them. Analysis of the SoS architecting problem with inflexible and 
flexible systems enable us to quantify the benefits of system flexibility in SoS architecting. In 
particular, upon comparing the Pareto fronts of the SoS architecting problems with inflexible and 
flexible systems, we note that system flexibility can improve SoS architectures. However, the 
benefits of system flexibility depend on the level of system flexibility. 

In this volume, our contributions are in providing mathematical formulations and developing 
solution approaches for SoS architecting problem with inflexible and flexible systems. Both the 
mathematical formulations and the solution algorithms presented are generic, that is, they are 
easy to modify to capture different settings. Furthermore, we quantitatively demonstrate the 
benefits of system flexibility and the level of flexibility. While we consider flexibility as the 
cooperativeness of the systems, different cooperativeness approaches can be modeled using the 
settings explained in this volume. Specifically, we define flexibility as cooperativeness since the 
flexible systems cooperate with the SoS architect in re-designing their systems. The level or the 
willingness of a system to cooperate is associated with a parameter, which we refer to as the 
incentive charge for being flexible. Next, we explain the details of the mathematical formulations. 

SOS ARCHITECTING MODELS WITH INFLEXIBLE AND FLEXIBLE SYSTEMS 

Consider a SoS that requires 𝑎𝑎 capabilities and let the capabilities be indexed by 𝑚𝑚 such that 𝑚𝑚 ∈
𝐼𝐼, 𝐼𝐼 = {1,2, … , 𝑎𝑎}. As noted previously, these capabilities are defined based on the goals/targets 
of the military mission under consideration. The systems that are equipped with required 
capabilities and might be included in the SoS are identified using the military inventories. Suppose 
that there are 𝑚𝑚 systems that can provide the capabilities and let the systems be indexed by j 
such that 𝑗𝑗 ∈ 𝐽𝐽, 𝐽𝐽 = {1,2, … ,𝑚𝑚}. In particular, each system can provide all or some of the 
capabilities required and let 

𝑚𝑚𝑖𝑖𝑗𝑗 = �1: 𝑚𝑚𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑚𝑚 𝑗𝑗 𝑐𝑐𝑚𝑚𝑎𝑎 𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝𝑚𝑚𝑎𝑎𝑒𝑒 𝑐𝑐𝑚𝑚𝑝𝑝𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑠𝑠 𝑚𝑚,
0:                                                     𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑒𝑒

 

and 𝑨𝑨 be the 𝑎𝑎 × 𝑚𝑚-matrix of 𝑚𝑚𝑖𝑖𝑗𝑗  values. Systems have varying characteristics as the system 
providers distinguish from each other in the engineering of their system designs, the contractors 
they use for assembling their systems, the properties of the subsystems they utilize, and the 
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resources they use in their systems. We, therefore, assume that the individual systems have 
different performance levels for providing the capabilities they can provide due to these varying 
characteristics. Again, due to these varying characteristics and distinct performance levels, the 
cost and the integration time for a system to be able to provide a specific capability can be 
different. Therefore, we assume that the systems have different performance levels, charges, 
and completion times for providing capabilities. Specifically, let 𝑝𝑝𝑖𝑖𝑗𝑗, 𝑐𝑐𝑖𝑖𝑗𝑗, and 𝑎𝑎𝑖𝑖𝑗𝑗 denotes the 
system 𝑗𝑗’s performance level, charge, and ready-time for providing capability 𝑚𝑚, respectively, and 
let 𝑷𝑷, 𝑪𝑪, and 𝑫𝑫 denote the 𝑎𝑎 × 𝑚𝑚-matrix of 𝑝𝑝𝑖𝑖𝑗𝑗, 𝑐𝑐𝑖𝑖𝑗𝑗, and 𝑎𝑎𝑖𝑖𝑗𝑗 values, respectively. 

The SoS architect's problem is to construct a fully connected and capable SoS with maximum total 
performance, minimum completion time, and minimum total cost. A SoS is considered fully 
connected when any system 𝑗𝑗1 ∈ 𝐽𝐽 included in the SoS can communicate with any other 
system 𝑗𝑗2 ∈ 𝐽𝐽 included in the SoS. The communication between two systems is achieved through 
an interface, which has a cost for being integrated into the SoS. Specifically, let ℎ𝑗𝑗1𝑗𝑗2  be the cost 
of establishing an interface from system 𝑗𝑗1 to system 𝑗𝑗2. It is assumed that a system can 
communicate with itself, therefore, ℎ𝑗𝑗𝑗𝑗 = 0 ∀𝑗𝑗 ∈ 𝐽𝐽. In the case two systems 𝑗𝑗1 and 𝑗𝑗2 in the SoS 
are considered communicated when there are an interface from system 𝑗𝑗1 to system 𝑗𝑗2 and an 
interface from system 𝑗𝑗1 to system 𝑗𝑗2, the cost of connecting systems 𝑗𝑗1 and 𝑗𝑗2amounts to ℎ𝑗𝑗1𝑗𝑗2 +
 ℎ𝑗𝑗2𝑗𝑗1. On the other hand, if two systems 𝑗𝑗1 and 𝑗𝑗2 in the SoS are considered communicated when 
there is an interface from system 𝑗𝑗1 to system 𝑗𝑗2 or an interface from system from system 𝑗𝑗2 to 
system 𝑗𝑗1, the cost of connecting systems amounts to min� ℎ𝑗𝑗1𝑗𝑗2 ,ℎ𝑗𝑗2𝑗𝑗1�. For both of the cases, 
the SoS architect should decide on connecting the systems in the SoS. Let 

𝑠𝑠𝑗𝑗1𝑗𝑗2 = �1: 𝑚𝑚𝑜𝑜 𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑒𝑒 𝑚𝑚𝑠𝑠 𝑐𝑐𝑜𝑜𝑎𝑎𝑎𝑎𝑒𝑒𝑐𝑐𝑚𝑚𝑚𝑚𝑜𝑜𝑎𝑎 𝑐𝑐𝑒𝑒𝑚𝑚𝑤𝑤𝑒𝑒𝑒𝑒𝑎𝑎 systems 𝑗𝑗1 and 𝑗𝑗2, 𝑗𝑗1, 𝑗𝑗2 ∈ 𝐽𝐽,
0:                                                                                                        𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑒𝑒

 

and let 𝒀𝒀 be the 𝑚𝑚 × 𝑚𝑚-matrix of 𝑠𝑠𝑗𝑗1𝑗𝑗2 , 𝑗𝑗1, 𝑗𝑗2 ∈ 𝐽𝐽 values. Then, the cost of establishing a 
connection between systems 𝑗𝑗1 and 𝑗𝑗2 can be defined as 𝑤𝑤𝑗𝑗1𝑗𝑗2 = 𝑤𝑤𝑗𝑗2𝑗𝑗1such that 𝑤𝑤𝑗𝑗1𝑗𝑗2 = ℎ𝑗𝑗1𝑗𝑗2 +
 ℎ𝑗𝑗2𝑗𝑗1  in the case two interfaces are required (one for communicating system 𝑗𝑗1 with system 𝑗𝑗2 
and one for communicating system 𝑗𝑗2 with system 𝑗𝑗1) and 𝑤𝑤𝑗𝑗1𝑗𝑗2 = min� ℎ𝑗𝑗1𝑗𝑗2 ,ℎ𝑗𝑗2𝑗𝑗1� in the case 
one interface is sufficient for communicating systems 𝑗𝑗1 and 𝑗𝑗2. It should be remarked that, with 
this definition of 𝑠𝑠𝑗𝑗1𝑗𝑗2  values, connecting either system to the other is sufficient for achieving a 
connection between two systems included in the SoS, therefore,  𝑠𝑠𝑗𝑗1𝑗𝑗2 +  𝑠𝑠𝑗𝑗2𝑗𝑗1 ≥ 1 when both 
systems 𝑗𝑗1 and 𝑗𝑗2 are included in the SoS. In formulating the SoS architect's problem, we add 
constraints assuring the connectedness of the systems included in the SoS. 

A SoS is defined to be capable when each capability is provided by at least one system. We 
formulate the SoS architect's problem with two types of systems: inflexible and flexible. In case 
of inflexible systems, the systems, who are selected by the SoS architect to be a part of the SoS, 
contribute to the SoS with all of the capabilities they can provide. That is, the systems (or the 
system providers) are not collaborative and they cannot or are not willing to change the 
engineering design of their systems. On the other hand, in case of flexible systems, the SoS 
architect can guide the systems to provide not necessarily all but some of the capabilities they 
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can provide. That is, the system providers can modify their system designs as requested by the 
SoS architect. 

The objectives of the SoS architect, however, are the same with inflexible and flexible systems. 
In particular, Kaplan (2006) notes that agility, performance, and cost are considered by DoD in 
creating the collection of systems. Therefore, maximization of the total performance and 
minimizations of the completion time and total cost are used as the SoS architect's objectives 
(which are the objectives suggested by Pernin et al. (2012) and used by Konur and Dagli (2014) 
for SoS architecting). While the definitions of the total performance and completion time are 
similar for SoS architecting with both inflexible and flexible systems, the total cost function is 
slightly different depending on the system type. In particular, with both system types, the total 
performance of a SoS is defined as the sum of the performances of the capabilities required in 
the SoS and, the performance of a capability in the SoS is equal to the sum of the performance 
levels offered by the systems included in the SoS for providing that capability. The completion 
time of a SoS is defined as the time required to have every system ready to provide every 
capability they need to. That is, with both system types, the ready time of a system is the 
maximum of the times it takes to provide the capabilities it will contribute with and, the 
completion time of the SoS is the maximum of the included systems' ready times. The total cost 
of the SoS is equal to the sum of the costs charged by the systems for providing the capabilities 
plus the connection costs among the included systems in case of inexible systems. In case of 
exible systems, on the other hand, the SoS architect pays the system providers for changing their 
system designs. Next, we mathematically formulate the SoS architect's problem with inflexible 
and flexible systems. 

SOS ARCHITECTING WITH INFLEXIBLE SYSTEMS 

When the systems are inflexible, the SoS architect's main decision is to determine which systems 
to select to be included within the SoS. Let  
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and let 𝑺𝑺 be the 𝑚𝑚-vector of 𝑆𝑆𝑗𝑗 values. The SoS's performance for capability 𝑚𝑚 can be defined 
differently considering various architecting settings. For instance, if the performance of a 
capability in the SoS is the maximum of the performance levels by the selected systems providing 
that capability, the SoS's performance for capability 𝑚𝑚 can be defined as max 

𝑗𝑗∈𝐽𝐽
{𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗}. As noted 

previously, we assume that the performance of a specific capability is the sum of this capability's 
performance levels provided by the systems included in the SoS. For the settings of this study, 
this assumption is reasonable as the capabilities define military mission capacities such as attack 
power, search range, and control, which can be quantified by associated metrics and increase 
cumulatively with each system's contribution towards the capabilities. The SoS's performance for 
capability 𝑚𝑚 as a function of S can then be defined as ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗𝑗𝑗 . At this point, we further assume 
that performances of different capabilities are additive, therefore, the total performance of the 
SoS with inflexible systems as a function of S reads 

𝑇𝑇𝑃𝑃1(𝑺𝑺) = ∑ ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼  (1) 
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As discussed by Konur and Dagli (2014), one can modify Equation (1) to capture the cases where 
performance of different capabilities are of different importance to the SoS architect. In such a 
case, a weighted approach can be used to modify Equation (1). We note that the solution 
methods discussed in this study can be easily modified for different functional forms used in 
defining the total performance as well as capability performances. 

The SoS's completion time is defined as the earliest time when all of the selected systems are 
ready with all of the capabilities they can provide. In particular, when an inflexible system is 
included in the SoS, the system's ready-time is the time when it is able to provide all of the 
capabilities it can provide. Considering the definition of 𝑎𝑎𝑖𝑖𝑗𝑗, system 𝑗𝑗’s ready-time is equal 
to max

𝑖𝑖∈𝐼𝐼
�𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗�. Then, the completion time of the SoS with inflexible systems as a function of S 

can be defined as 

𝑇𝑇𝑇𝑇1(𝑺𝑺) = max
𝑖𝑖∈𝐼𝐼

�max
𝑗𝑗∈𝐽𝐽

�𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗��. (2) 

In Equation (2), it is assumed that a SoS is complete when all of the systems provide their 
capabilities. In different architecting settings, one can assume that a SoS is complete whenever 
there is at least one system providing each capability, i.e., the SoS is capable. In such a case, 
capability 𝑚𝑚's ready-time by system 𝑗𝑗 is equal tomax�𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗, �1 − 𝑚𝑚𝑖𝑖𝑗𝑗�𝑀𝑀 + �1 − 𝑆𝑆𝑗𝑗�𝑀𝑀�, 
where 𝑀𝑀 is a very large number (note that when 𝑆𝑆𝑗𝑗 = 0, or 𝑆𝑆𝑗𝑗 = 1 but 𝑚𝑚𝑖𝑖𝑗𝑗 = 0, it means that 
system 𝑗𝑗 takes a very long time to provide capability 𝑚𝑚, which practically implies that system j is 
not providing capability 𝑚𝑚). Then, the earliest ready-time for capability 𝑚𝑚 in the SoS is equal 
to min

𝑗𝑗∈𝐽𝐽
�max�𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗 , �1 − 𝑚𝑚𝑖𝑖𝑗𝑗�𝑀𝑀 + �1 − 𝑆𝑆𝑗𝑗�𝑀𝑀��. It then follows that the earliest time when all 

of the required capabilities are ready in the SoS is equal to max
𝑖𝑖∈𝐼𝐼

�min
𝑗𝑗∈𝐽𝐽

�max�𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗 , �1 −

𝑚𝑚𝑖𝑖𝑗𝑗�𝑀𝑀 + �1 − 𝑆𝑆𝑗𝑗�𝑀𝑀���. 

The total cost of the SoS is equal to the sum of the costs of the systems plus the cost of 
connections among the selected systems. An inflexible system's cost is equal to the sum of the 
costs charged for providing the capabilities, i.e., system 𝑗𝑗's cost is ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 . Then, the cost of 
the systems included in the SoS amounts to ∑ ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 . Note that given 𝑺𝑺, one can 
determine 𝒀𝒀 very easily. Particularly, it can be observed that 𝑠𝑠𝑗𝑗1𝑗𝑗2 + 𝑠𝑠𝑗𝑗2𝑗𝑗1 = 1 if 𝑆𝑆𝑗𝑗1 + 𝑆𝑆𝑗𝑗2 = 2; 
and 𝑠𝑠𝑗𝑗1𝑗𝑗2 + 𝑠𝑠𝑗𝑗2𝑗𝑗1 = 0 if 𝑆𝑆𝑗𝑗1 + 𝑆𝑆𝑗𝑗2 ≤ 1. In formulating the SoS architecting problem with inflexible 
systems, we will include constraints that will assure that the selected systems are connected. 
Then, the cost of connections among the selected systems amounts to ∑ ∑ 𝑤𝑤𝑗𝑗1𝑗𝑗2𝑠𝑠𝑗𝑗1𝑗𝑗2𝑗𝑗2∈𝐽𝐽𝑗𝑗1∈𝐽𝐽 . It 
then follows that the total cost of the SoS with inflexible systems as a function of 𝑺𝑺 and 𝒀𝒀 reads 
as 

𝑇𝑇𝐼𝐼1(𝑺𝑺,𝒀𝒀) =  ∑ ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 +  ∑ ∑ ℎ𝑗𝑗1𝑗𝑗2𝑠𝑠𝑗𝑗1𝑗𝑗2𝑗𝑗2∈𝐽𝐽𝑗𝑗1∈𝐽𝐽 . (3) 

The SoS architecting problem with inflexible systems (SoS-I) can then be formulated as follows: 
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Formulation 1 SoS Architect with Inflexible Systems (SoS-I) 

Maximize 
 𝑇𝑇𝑃𝑃1(𝑺𝑺)  

Minimize 
 𝑇𝑇𝑇𝑇1(𝑺𝑺)  

 𝑇𝑇𝐼𝐼1(𝑺𝑺,𝒀𝒀)  

Subject-to
 ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 ≥ 1     ⩝ 𝑚𝑚 ∈ 𝐼𝐼 (4) 

 𝑠𝑠𝑟𝑟𝑟𝑟 + 𝑠𝑠𝑟𝑟𝑟𝑟 ≥ 𝑆𝑆𝑟𝑟+𝑆𝑆𝑟𝑟 − 1     ⩝ 𝑚𝑚, 𝑠𝑠 ∈ 𝐽𝐽 (5) 

 𝑆𝑆𝑗𝑗 ∈ {0,1}     ⩝ 𝑗𝑗 ∈ 𝐽𝐽 (6) 

 𝑠𝑠𝑟𝑟𝑟𝑟 ∈ {0,1}     ⩝ 𝑚𝑚, 𝑠𝑠 ∈ 𝐽𝐽 (7) 

where 𝑇𝑇𝑃𝑃1(𝑺𝑺), 𝑇𝑇𝑇𝑇1(𝑺𝑺), and 𝑇𝑇𝐼𝐼1(𝑺𝑺,𝒀𝒀) are defined in Equations (1), (2), and (3), respectively. 
Constraints (4) guarantee that each capability is provided by at least one of the systems included 
in the SoS. Constraints (5) assure that there is a connection between any distinct pair of the 
selected systems. Note that if 𝑆𝑆𝑗𝑗 + 𝑆𝑆𝑖𝑖 = 2, constraints (5) imply that 𝑠𝑠𝑗𝑗𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑗𝑗 ≥ 1; however, 
since 𝑠𝑠𝑗𝑗𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑗𝑗 = 1 is sufficient for connectedness and an additional connection between 
systems 𝑗𝑗 and 𝑘𝑘 increases costs while not changing to the SoS's total performance and 
completion time, one has either 𝑠𝑠𝑗𝑗𝑖𝑖 = 1 or 𝑠𝑠𝑖𝑖𝑗𝑗 = 1 but not both 𝑠𝑠𝑗𝑗𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑗𝑗 = 1. Similarly, it can 
be argued that if 𝑆𝑆𝑗𝑗 + 𝑆𝑆𝑖𝑖 ≤ 1, 𝑠𝑠𝑗𝑗𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. Constraints (6) and (7) give the binary definitions 
of the decision variables. 

SOS ARCHITECTING WITH FLEXIBLE SYSTEMS 

When the systems are exible, the SoS architect's main decision is to determine which systems 
will be requested to provide which capabilities. Let 

𝑚𝑚𝑖𝑖𝑗𝑗 = �1: 𝑚𝑚𝑜𝑜 𝑐𝑐𝑚𝑚𝑝𝑝𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑠𝑠 𝑚𝑚 𝑚𝑚𝑠𝑠 𝑚𝑚𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑠𝑠𝑚𝑚𝑒𝑒𝑎𝑎 𝑜𝑜𝑚𝑚𝑜𝑜𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑚𝑚 𝑗𝑗,
0:                                                              𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑤𝑤𝑒𝑒, 

and let 𝑿𝑿 be the 𝑎𝑎 × 𝑚𝑚-matrix of 𝑚𝑚𝑖𝑖𝑗𝑗 values. Note that by definition of 𝑚𝑚𝑖𝑖𝑗𝑗, we have 𝑚𝑚𝑖𝑖𝑗𝑗 ≤ 𝑚𝑚𝑖𝑖𝑗𝑗. 
That is, the SoS architect will not request a capability from a system which cannot provide that 
capability. A system is selected in the SoS architecture if it is asked to provide at least one 
capability. Let 

𝑍𝑍𝑗𝑗 = �
1: 𝑚𝑚𝑜𝑜 �𝑚𝑚𝑖𝑖𝑗𝑗 ≥ 1

𝑖𝑖∈𝐼𝐼

,

0:    𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑚𝑚𝑤𝑤𝑚𝑚𝑠𝑠𝑤𝑤𝑒𝑒,
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that is, 𝑍𝑍𝑗𝑗 is the binary variable indicating selection of system 𝑗𝑗 and let 𝒁𝒁 be the m-vector of 𝑍𝑍𝑗𝑗 
values. It should be remarked that 𝒁𝒁 and 𝑺𝑺 are different. In particular, while 𝑺𝑺 is the decision 
variables vector in case of inflexible systems, 𝒁𝒁 is the auxiliary decision variables vector, 
determined by 𝑿𝑿, in case of flexible systems. Nonetheless, the relation between 𝒀𝒀 and a given 𝑺𝑺 
is the same as the relation between 𝒀𝒀 and a given 𝒁𝒁. That is, 𝑠𝑠𝑗𝑗1𝑗𝑗2 + 𝑠𝑠𝑗𝑗2𝑗𝑗1 = 1 if 𝑍𝑍𝑗𝑗1 + 𝑍𝑍𝑗𝑗2 = 2; 
and, 𝑠𝑠𝑗𝑗1𝑗𝑗2 + 𝑠𝑠𝑗𝑗2𝑗𝑗1 = 0 if 𝑍𝑍𝑗𝑗1 + 𝑍𝑍𝑗𝑗2 ≤ 1. 

Following the definition of total performance stated in Equation (1), one can note that the total 
performance of the SoS with flexible systems as a function of 𝑿𝑿 can be stated as follows: 

𝑇𝑇𝐼𝐼1(𝑺𝑺,𝒀𝒀) =  ∑ ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 +  ∑ ∑ ℎ𝑗𝑗1𝑗𝑗2𝑠𝑠𝑗𝑗1𝑗𝑗2𝑗𝑗2∈𝐽𝐽𝑗𝑗1∈𝐽𝐽  (8) 

Similar to Equation (2), the completion time of the SoS with flexible systems as a function of X 
reads as 

𝑇𝑇𝑇𝑇2(𝑺𝑺𝑿𝑿) = max
𝑖𝑖∈𝐼𝐼

�max
𝑗𝑗∈𝐽𝐽

�𝑚𝑚𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗�� (9) 

The total cost of the SoS with flexible systems is slightly different than the definition of the total 
cost of the SoS with inflexible systems. In particular, similar to Equation (3), the total cost of the 
SoS with flexible systems includes the sum of the costs charged by the systems for providing the 
capabilities they are requested to and the cost of the connections among the selected systems. 
In addition, the total cost of the SoS with flexible systems includes the incentives paid by the SoS 
architect to the systems for their collaborations to be flexible. Specifically, when the SoS architect 
requests only a subset of the capabilities a system can provide, the system provider needs to 
disassemble the unrequested capabilities and make engineering design changes in its system 
accordingly. This, of course, is a costly process. Therefore, we assume that the SoS architect is 
subject to incentive charges 𝑒𝑒𝑖𝑖𝑗𝑗 for requesting system j not to provide capability 𝑚𝑚, which would 
be provided otherwise and let 𝑬𝑬 be the 𝑎𝑎 × 𝑚𝑚-matrix of 𝑒𝑒𝑖𝑖𝑗𝑗 values. Then, the total cost of the SoS 
with flexible systems as a function of 𝑿𝑿 and 𝒀𝒀 amounts to 

𝑇𝑇𝐼𝐼2(𝑿𝑿,𝒀𝒀) =  ∑ ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 + ∑ ∑ (𝑚𝑚𝑖𝑖𝑗𝑗 − 𝑚𝑚𝑖𝑖𝑗𝑗)𝑒𝑒𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 +  ∑ ∑ ℎ𝑗𝑗1𝑗𝑗2𝑠𝑠𝑗𝑗1𝑗𝑗2𝑗𝑗2∈𝐽𝐽𝑗𝑗1∈𝐽𝐽  (10) 

where the first term is the costs charged by the systems for providing the capabilities they are 
requested to, the second term is the incentive costs paid by the SoS architect to the systems for 
not providing the capabilities they originally could, and the last term is the cost of connections 
among the selected systems. Note that when 𝑚𝑚𝑖𝑖𝑗𝑗, system j provides capability 𝑚𝑚; hence, the SoS 
architect is subject to charges of 𝑐𝑐𝑖𝑖𝑗𝑗. On the other hand, if 𝑚𝑚𝑖𝑖𝑗𝑗 = 0 when 𝑚𝑚𝑖𝑖𝑗𝑗 = 1, this means that 
the SoS architect is requesting system 𝑗𝑗 not to provide capability 𝑚𝑚; thus, the SoS architect is 
subject to charges of 𝑒𝑒𝑖𝑖𝑗𝑗. 

The SoS architecting problem with flexible systems (SoS-F) can then be formulated as follows: 
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Formulation 2 SoS Architect with Flexible Systems (SoS-F) 

Maximize
 𝑇𝑇𝑃𝑃2(𝑿𝑿,𝒀𝒀)  

Minimize 
 𝑇𝑇𝑇𝑇2(𝑿𝑿)  

 𝑇𝑇𝐼𝐼2(𝑿𝑿,𝒀𝒀)  

Subject-to 
 𝑚𝑚𝑖𝑖𝑗𝑗 ≤ 𝑚𝑚𝑖𝑖𝑗𝑗      ∀𝑚𝑚 ∈ 𝐼𝐼 (11) 

 ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 ≥ 1     ⩝ 𝑚𝑚 ∈ 𝐼𝐼 (12) 

 𝑠𝑠𝑟𝑟𝑟𝑟 + 𝑠𝑠𝑟𝑟𝑟𝑟 ≥ 𝑍𝑍𝑟𝑟+𝑍𝑍𝑟𝑟 − 1     ⩝ 𝑚𝑚, 𝑠𝑠 ∈ 𝐽𝐽 (13) 

 𝑍𝑍𝑗𝑗 ≤ ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼      ⩝ 𝑗𝑗 ∈ 𝐽𝐽 (14) 

 𝑍𝑍𝑗𝑗 ≥ 1/𝑎𝑎∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼      ⩝ 𝑗𝑗 ∈ 𝐽𝐽 (15) 

 𝑚𝑚𝑖𝑖𝑗𝑗 ∈ {0,1}     ⩝ 𝑚𝑚 ∈ 𝐼𝐼 ⩝ 𝑗𝑗 ∈ 𝐽𝐽 (16) 

 𝑍𝑍𝑗𝑗 ∈ {0,1}     ⩝ 𝑗𝑗 ∈ 𝐽𝐽 (17) 

 𝑠𝑠𝑟𝑟𝑟𝑟 ∈ {0,1}     ⩝ 𝑚𝑚, 𝑠𝑠 ∈ 𝐽𝐽 (18) 

where 𝑇𝑇𝑃𝑃2(𝑿𝑿), 𝑇𝑇𝑇𝑇2(𝑿𝑿), and 𝑇𝑇𝐼𝐼2(𝑿𝑿,𝒀𝒀) are defined in Equations (8), (9), and (10), respectively. 
Constraints (11) ensure that the SoS architect can request the capabilities a system can provide. 
Constraints (12) and (13) are defined similar to constraints (4) and (5), respectively. Constraints 
(14) and (15) guarantee that a system is selected in the SoS if at least one capability is requested 
from it; and, not selected otherwise. Particularly, if ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 = 0constraint (7) indicates that 𝑍𝑍𝑗𝑗 =
0 as 𝑍𝑍𝑗𝑗 ∈ {0,1}; and, if ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 > 0,0 < 1/𝑎𝑎∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 ≤  1; hence, constraint (15) indicates that 
𝑍𝑍𝑗𝑗 = 1 as 𝑍𝑍𝑗𝑗 ∈ {0,1}. Constraints (16), (17), and (18) give the binary definitions. Next, we explain 
the details of the solution methods for SoS-I and SoS-F. 

SOS ARCHITECTING ALGORITHMS WITH INFLEXIBLE AND FLEXIBLE SYSTEMS 

Note that both SoS-I and SoS-F are bi-objective binary-integer non-linear optimization problems. 
Two common methods for solving multi-objective optimization problems are Pareto front 
generation (where the decision maker is provided with a set of solutions, among which a solution 
is selected) and reduction to single-objective formulation (where different weights are assigned 
to different objectives considering the decision maker's preferences or the maximum deviation 
from the optimum solution of the individual objectives is minimized and a solution is provided to 
the decision maker). In this volume, we adopt the former method and approximate the Pareto 
front (PF) of SoS-I and SoS-F by generating a set of Pareto effcient SoS's for each case. To do so, 
due to the binary definitions of the decision variables, we propose two evolutionary heuristic 
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algorithms; one for SoS-I, denoted by EA-I, and one for SoS-F, denoted by EA-F. Both of these 
algorithms consist of four main steps: (i) chromosome representation and initialization, (ii) fitness 
evaluation, (iii) mutation, and (iv) termination. Basically, an evolutionary algorithm works as 
follows. Given a set of solutions (chromosomes), i.e., a population, the best chromosome(s) are 
selected through fitness evaluation to generate the next population. The best chromosomes of a 
population constitute the parent chromosomes of the next population. The next population is 
generated by mutating the parent chromosomes of the current population. These steps are 
repeated until a certain termination criteria is met. Steps (ii) and (iv) are common in both of the 
algorithms we propose, while steps (i) and (iii) are different due to the distinct characteristics of 
SoS-I and SoS-F. We, therefore, first explain the common steps (ii) and (iv), and then, steps (i) and 
(iii) for each algorithm. 

PARETO FRONT APPROXIMATION AND TERMINATION 

Let 𝑺𝑺𝑺𝑺𝑺𝑺 denote a solution for SoS-I or SoS-F and let (𝑇𝑇𝑃𝑃,𝑇𝑇𝑇𝑇,𝑇𝑇𝐼𝐼) be the total performance, 
completion time, and total cost of 𝑺𝑺𝑺𝑺𝑺𝑺, respectively. Note that 𝑺𝑺𝑺𝑺𝑺𝑺 = (𝑺𝑺,𝒀𝒀) and (𝑇𝑇𝑃𝑃,𝑇𝑇𝑇𝑇,𝑇𝑇𝐼𝐼) =
(𝑇𝑇𝑃𝑃1(𝑺𝑺),𝑇𝑇𝑇𝑇1(𝑺𝑺), 𝑇𝑇𝐼𝐼1(𝑺𝑺,𝒀𝒀)) for SoS-I, and 𝑺𝑺𝑺𝑺𝑺𝑺 = (𝑿𝑿,𝒀𝒀) and (𝑇𝑇𝑃𝑃,𝑇𝑇𝑇𝑇,𝑇𝑇𝐼𝐼) =
(𝑇𝑇𝑃𝑃2(𝑿𝑿),𝑇𝑇𝑇𝑇2(𝑿𝑿),𝑇𝑇𝐼𝐼2(𝑿𝑿,𝒀𝒀)) for SoS-F. Now suppose that a set of solutions 𝑅𝑅 is given and let 
𝑺𝑺𝑺𝑺𝑺𝑺𝒓𝒓 ∈ 𝑅𝑅be the 𝑚𝑚𝑡𝑡ℎ solution 𝑚𝑚 ≤ |𝑅𝑅|, such that (𝑇𝑇𝑃𝑃𝑟𝑟 ,𝑇𝑇𝑇𝑇𝑟𝑟 ,𝑇𝑇𝐼𝐼𝑟𝑟) defines the total performance, 
completion time and total cost of 𝑺𝑺𝑺𝑺𝑺𝑺𝒓𝒓. In fitness evaluation of EA-I and EA-F, the purpose is to 
select the best chromosomes out of a given population, i.e., the parent chromosomes that will 
be used in generating the next population. To do so, since both SoS-I or SoS-F are bi-objective 
optimization problems, we focus on generating the Pareto efficient solutions out of a given 
population. 

A solution is Pareto efficient if it is not Pareto dominated by another solution.  Unless 
 (𝑇𝑇𝑃𝑃𝑟𝑟1 ,𝑇𝑇𝑇𝑇𝑟𝑟1 ,𝑇𝑇𝐼𝐼𝑟𝑟1) = (𝑇𝑇𝑃𝑃𝑟𝑟2 ,𝑇𝑇𝑇𝑇𝑟𝑟2 ,𝑇𝑇𝐼𝐼𝑟𝑟2), 𝑺𝑺𝑺𝑺𝑺𝑺𝒓𝒓𝟏𝟏 Pareto dominates 𝑺𝑺𝑺𝑺𝑺𝑺𝒓𝒓𝟐𝟐if 𝑇𝑇𝑃𝑃𝑟𝑟1 ≥
𝑇𝑇𝑃𝑃𝑟𝑟2, 𝑇𝑇𝑇𝑇𝑟𝑟1 ≤ 𝑇𝑇𝑇𝑇𝑟𝑟2, and 𝑇𝑇𝐼𝐼𝑟𝑟1 ≤ 𝑇𝑇𝐼𝐼𝑟𝑟2 (Berube et al., 2009). Therefore, the following procedure 
can be used to generate all of the Pareto efficient solutions within a given set of solutions R, 
denoted by PF(R). 

Algorithm 1 Determining PF(R) 

Step 0 )      Set 𝑚𝑚 = 1 
Step 1 )      While 𝑚𝑚 ≤ |𝑅𝑅| − 1 
Step 2 )      Set 𝑤𝑤 = 𝑚𝑚 + 1 
Step 3 )      While 𝑤𝑤 ≤ |𝑅𝑅| 
Step 3.1 )      If  (𝑇𝑇𝑃𝑃𝑡𝑡 ,𝑇𝑇𝑇𝑇t,𝑇𝑇𝐼𝐼t) ≠ (𝑇𝑇𝑃𝑃𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑤𝑤 ,𝑇𝑇𝐼𝐼w),𝑇𝑇𝑃𝑃𝑡𝑡 ≥ 𝑇𝑇𝑃𝑃𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇𝑤𝑤 , 

and 𝑇𝑇𝐼𝐼𝑡𝑡 ≤ 𝑇𝑇𝐼𝐼𝑤𝑤 
Step  3.1.1 )      Set 𝑅𝑅: = 𝑅𝑅\{𝑺𝑺𝑺𝑺𝑺𝑺𝒘𝒘} and 𝑤𝑤: = 𝑤𝑤 − 1 
Step 3.2 )      If (𝑇𝑇𝑃𝑃𝑡𝑡 ,𝑇𝑇𝑇𝑇t,𝑇𝑇𝐼𝐼t) ≠ (𝑇𝑇𝑃𝑃𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑤𝑤,𝑇𝑇𝐼𝐼w),𝑇𝑇𝑃𝑃𝑡𝑡 ≥ 𝑇𝑇𝑃𝑃𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇𝑤𝑤 , 

and 𝑇𝑇𝐼𝐼𝑡𝑡 ≤ 𝑇𝑇𝐼𝐼𝑤𝑤 
Step  3.2.1 )      Set 𝑅𝑅: = 𝑅𝑅\{𝑺𝑺𝑺𝑺𝑺𝑺𝒕𝒕} and 𝑤𝑤 ≔ |𝑅𝑅| and 𝑚𝑚: = 𝑚𝑚 − 1 
Step 3.3 )      Set 𝑤𝑤: = 𝑤𝑤 + 1 
Step 3.4 )      Set 𝑚𝑚: = 𝑚𝑚 + 1 
Step 3.5 )      Return 𝑃𝑃𝐹𝐹(𝑅𝑅) = 𝑅𝑅 
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Given a population R, PF(R) is taken as the set of parent chromosomes for the next population. If 
PF(R) is not changing over a pre-specified number of populations, defined as K, in EA-I and EA-F, 
algorithms are terminated. The latest PF(R) is the set of solutions returned for the decision maker. 
Next, the details of steps (i) and (iii) for each algorithm are explained. 

EVOLUTIONARY ALGORITHM FOR SOS-I 

Recall that 𝑺𝑺 is the binary decision variables vector in SoS-I and given 𝑺𝑺, one can easily determine 
the corresponding 𝒀𝒀. Therefore, 𝑺𝑺 is sufficient for defining a SoS with inflexible systems. This 
suggests that 𝑺𝑺 can be used as a chromosome in EA-I. The details of the chromosome 
representation and initialization and mutation steps of EA-I are as follows. 

• Chromosome Representation and Initialization: As noted above, the chromosome is 
defined by 𝑺𝑺. Initially, we generate 𝑎𝑎𝑚𝑚 feasible chromosomes. Note that not every binary 
m-vector is feasible for SoS-I. As suggested by constraints (4), 𝑺𝑺 is feasible 
when ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 ≥ 1 ∀𝑚𝑚 ∈ 𝐼𝐼. Therefore, in generating the initial population of 
chromosomes, we first randomly generate a binary m-vector 𝑅𝑅 = [𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑚𝑚]. 
If ∑ 𝑅𝑅𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 = 0 for some 𝑚𝑚 ∈ 𝐼𝐼, 𝑅𝑅 is infeasible. In case 𝑅𝑅 is infeasible, for each 𝑚𝑚 ∈ 𝐼𝐼 such 
that ∑ 𝑅𝑅𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 = 0, a system 𝑗𝑗 such that 𝑚𝑚𝑖𝑖𝑗𝑗 = 1 is randomly selected and we set 𝑅𝑅𝑗𝑗 = 1. 
Then, the final 𝑅𝑅 is accepted as a feasible chromosome 𝑺𝑺. 

• Mutation: Given a set of parent chromosomes, which is achieved by applying Procedure 
PF on the current population, the next set of chromosomes consists of the parent 
chromosomes and the newly generated chromosomes through mutation. Including the 
parent chromosomes within the next population guarantees that the Pareto front is not 
worsening over populations. New chromosomes are generated by applying a neighbor 
mutation on each gene of every parent chromosome. The neighbor mutation works as 
follows. Consider a parent chromosome S and a gene 𝑐𝑐 ≤ 𝑚𝑚. If 𝑆𝑆𝑙𝑙 = 0, we set 𝑆𝑆𝑙𝑙 = 1. Note 
that with the addition of a new system into a feasible SoS, the SoS will continue to be 
feasible. Therefore, by setting 𝑆𝑆𝑙𝑙 = 1 when 𝑆𝑆𝑙𝑙 = 0, a new feasible chromosome is 
generated. On the other hand, when 𝑆𝑆𝑙𝑙 = 1, to avoid infeasibility of the mutant 
chromosome, we set 𝑆𝑆𝑙𝑙 = 0 if ∑ 𝑆𝑆𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽:𝑗𝑗≠𝑙𝑙 ≥ 1 ⩝ 𝑚𝑚 ∈ 𝐼𝐼. That is, we exclude system 𝑐𝑐 
from the SoS defined by the current parent chromosome as long as its exclusion does not 
cause infeasibility by making SoS incapable. Note that one can generate at most 𝑚𝑚 new 
chromosomes out of a given parent chromosome with the neighbor mutation. 
 

EVOLUTIONARY ALGORITHM FOR SOS-F 

Recall that 𝑿𝑿 is the binary decision variables vector in SoS-F. Given 𝑿𝑿, one can determine 𝒁𝒁 by 
setting 𝑍𝑍𝑗𝑗 = 1 if ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 ≥ 1 and 𝑍𝑍𝑗𝑗 = 0 otherwise. Then, using 𝒁𝒁, one can determine the 
corresponding 𝒀𝒀. That is, 𝑿𝑿 represents a SoS by itself; therefore, we construct EA-F such that it 
evolves with 𝑿𝑿. The details of the chromosome representation and initialization and mutation 
steps of EA-F are as follows. 

• Chromosome Representation and Initialization: We adopt the binary matrix 
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representation of 𝑿𝑿 as the chromosome. The jth column of 𝑿𝑿 defines the jth gene of the 
chromosome. We set the initial population size equal to 𝑎𝑎𝑚𝑚 and we generate a feasible 
chromosome as follows. Note that there are ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽  systems that can provide capability 
𝑚𝑚 and, as suggested by constraints (12), ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 𝑚𝑚𝑖𝑖𝑗𝑗 ≥ 1 in a feasible 𝑿𝑿. Therefore, in 
generating a feasible chromosome, we first randomly generate the number, 𝑝𝑝𝑖𝑖, between 
1 and ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽  to be the number of systems, from which capability 𝑚𝑚 will be requested. 
Then, for each capability 𝑚𝑚, we randomly select 𝑝𝑝𝑖𝑖  systems among the systems with 𝑚𝑚𝑖𝑖𝑗𝑗 =
1 and set 𝑚𝑚𝑖𝑖𝑗𝑗 = 1. Repeating this process for each capability, a feasible 𝑿𝑿 is generated.  

• Mutation: Similar to EA-I, given a set of parent chromosomes, the next set of 
chromosomes consists of the parent chromosomes and the newly generated 
chromosomes through mutation to have non-worsening Pareto fronts over populations. 
New chromosomes are generated by applying two mutations on each gene of every 
parent chromosome: adding request and dropping request. Consider a parent 
chromosome 𝑿𝑿, which defines a feasible SoS, and a gene 𝑐𝑐 ≤ 𝑚𝑚, representing the 𝑐𝑐 th 
system. Adding request aims at requesting one additional capability from system 𝑐𝑐, if 
possible. Specifically, adding request is executed by randomly selecting a capability 𝑚𝑚 from 
the set of capabilities that can be provided by system 𝑐𝑐, i.e., 𝑚𝑚𝑖𝑖𝑙𝑙 = 1, but currently not 
requested from system 𝑐𝑐, i.e., 𝑚𝑚𝑖𝑖𝑙𝑙 = 0. Then, in case there exists at least one such 
capability with 𝑚𝑚𝑖𝑖𝑙𝑙 = 0.  and 𝑚𝑚𝑖𝑖𝑙𝑙 = 1, we set 𝑚𝑚𝑖𝑖𝑙𝑙 = 1 for one of such capabilities, which is 
randomly selected. Dropping request aims at requesting one less capability from system 
𝑐𝑐, if possible. Specifically, dropping request is executed by randomly selecting a capability 
𝑚𝑚 from the set of capabilities that are currently requested from system 𝑐𝑐, i.e., 𝑚𝑚𝑖𝑖𝑙𝑙 = 1, such 
that the SoS remains capable if capability 𝑚𝑚 is not provided by system 𝑐𝑐. That is, we set 
𝑚𝑚𝑖𝑖𝑙𝑙 = 0 for a randomly selected capability 𝑚𝑚 from the set of capabilities such that 𝑚𝑚𝑖𝑖𝑙𝑙 = 1 
and ∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽:𝑗𝑗≠𝑙𝑙 ≥ 1 ⩝ 𝑚𝑚 ∈ 𝐼𝐼. One can generate at most 2𝑚𝑚 new chromosomes out of 
a given parent chromosome.  
 

SOS ARCHITECTING ANALYSES WITH INFLEXIBLE AND FLEXIBLE SYSTEMS 

In this section, we conduct a numerical study to analyze (i) the benefits of SoS architecting with 
flexible systems compared to SoS architecting with in inflexible systems and (ii) the effects of 
flexibility levels on the SoS architectures. To do so, we consider different problem sizes and 
different problem classes. In particular, we consider 9 different problem sizes, each of which 
corresponds to a combination of 𝑎𝑎 = {5,10,15} and 𝑚𝑚 = {5,10,15}. Given 𝑎𝑎 and 𝑚𝑚, we randomly 
generate 10 problem instances assuming that 𝑝𝑝𝑖𝑖𝑗𝑗~ 𝑈𝑈[10,20], 𝑎𝑎𝑖𝑖𝑗𝑗~ 𝑈𝑈[5,10], 𝑐𝑐𝑖𝑖𝑗𝑗~ 𝑈𝑈[20,40], and 
ℎ𝑟𝑟𝑟𝑟~ 𝑈𝑈[1,5], where 𝑈𝑈[𝑚𝑚, 𝑐𝑐] denotes the continuous uniform distribution with range [𝑚𝑚, 𝑐𝑐]. 
Furthermore, for each problem instance, we randomly generate the binary 𝑨𝑨 matrix such that 
∑ 𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽 ≥ 1 ⩝ 𝑚𝑚 ∈ 𝐼𝐼, i.e., there is at least on system who can provide each capability (this ensures 
that the problem instance is feasible). 

A given problem instance {A, P, D, C} is solved four times assuming inflexibility, low flexibility, 
medium flexibility, and high flexibility. When inflexibility is assumed, SoS-I is solved using EA-I 

34 
 



 

with the given {A, P, D, C}. In case of flexible systems, we define three levels of flexibility by 
considering the relation between 𝑐𝑐𝑖𝑖𝑗𝑗 and 𝑒𝑒𝑖𝑖𝑗𝑗 values. Recall that 𝑐𝑐𝑖𝑖𝑗𝑗 is system 𝑗𝑗's charge for 
providing capability 𝑚𝑚 and 𝑒𝑒𝑖𝑖𝑗𝑗 is the charge for asking system 𝑗𝑗 not to provide capability 𝑚𝑚. In 
generating 𝑒𝑒𝑖𝑖𝑗𝑗 values, we assume 𝑒𝑒𝑖𝑖𝑗𝑗 = 𝑐𝑐𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑗𝑗, where 𝑐𝑐𝑖𝑖𝑗𝑗 is used to define the level of flexibility. 
We assume that 𝑐𝑐𝑖𝑖𝑗𝑗~ 𝑈𝑈[0,1] as it is reasonable and practical to assume that 𝑐𝑐𝑖𝑖𝑗𝑗 ≤ 𝑒𝑒𝑖𝑖𝑗𝑗  since 𝑐𝑐𝑖𝑖𝑗𝑗 
includes the cost of the capability and its assembly to the system while 𝑒𝑒𝑖𝑖𝑗𝑗 is the cost of 
disassembly of the capability from the system. Note that when 𝑐𝑐𝑖𝑖𝑗𝑗values are low, system 𝑗𝑗 can 
be accepted as highly flexible. On the other hand, large 𝑐𝑐𝑖𝑖𝑗𝑗values indicate that system 𝑗𝑗 is less 
flexible. Then, for a given problem instance {A, P, D, C}, its flexible versions {A, P, D, C, E} with 
low, medium, and high flexibility are defined by assuming 𝑐𝑐𝑖𝑖𝑗𝑗~ 𝑈𝑈[0.6,0.8]  𝑐𝑐𝑖𝑖𝑗𝑗~ 𝑈𝑈[0.4,0.6], and  
𝑐𝑐𝑖𝑖𝑗𝑗~ 𝑈𝑈[0.2,0.4], respectively. When there is flexibility, SoS-F is solved using EA-F with the given 
{A, P, D, C, E}. Let 𝑃𝑃𝐹𝐹𝐼𝐼 denote the Pareto front returned by EA-I in case of inflexibility and let 
𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙  , 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 , and 𝑃𝑃𝐹𝐹𝐹𝐹ℎ denote the Pareto fronts returned by EA-F in cases of low, medium, and 
high flexibilities, respectively. 

We generate 10 problem instances for each problem size and solve it four times as explained 
above. All of the algorithms are coded in Matlab 2014 and executed on a personal computer with 
3Ghz processor and 8GB RAM. For different problem sizes and flexibility levels considered, Tables 
3.1, 3.2, 3.3, and 3.4 summarize the average values over all 10 problem instances solved for the 
following statistics of EA-I and EA-F: the number of populations evaluated (pop. #), the number 
of SoS's evaluated per population (i.e., the average population size, denoted as |R|), the number 
of Pareto efficient SoS's per population (i.e., the parent size, denoted as |PF(R)|), the number of 
Pareto efficient SoS's returned at termination (denoted as |𝑃𝑃𝐹𝐹𝐼𝐼|, |𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙| , |𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚| , and |𝑃𝑃𝐹𝐹𝐹𝐹ℎ| 
for inflexibility, low flexibility, medium flexibility, and high flexibility cases, respectively), and the 
computational time in seconds (CPU). 

As can be seen in the tables, on average, inflexible problem instances can be solved in less 
computational time with EA-I compared to the flexible problem instances solved with EA-F. 
Furthermore, one can note that flexible problem instances have more solutions within their 
Pareto fronts on average. These results are expected as the flexible problem instances have larger 
solution sets compared to the inflexible problem instances. In particular, while there are 2m 

possible SoS's (including feasible and infeasible solutions) for SoS-I, there are 2nm possible SoS's 
for SoS-F. Finally, as expected, as the problem size gets larger, the number of populations 
evaluated, the number of SoS's evaluated per population, the size of the Pareto front, and the 
computational time increase. 
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Table 2 Computational Statistics of EA-I for Inflexibility 

    Inflexibility   
n m pop. # |R| |PF (R)| |PFI| CPU 
5 5 6.5 4.9 2.6 3.0 0.00 

 10 11.4 71.0 16.2 20.3 0.09 
 15 16.7 576.9 72.7 96.7 3.21 

10 5 6.1 3.7 3.1 3.7 0.00 
 10 8.5 83.0 27.8 36.1 0.09 
 15 13.4 790.8 125.7 170.5 3.34 

15 5 6.0 3.3 3.3 3.9 0.00 
 10 8.5 85.4 37.8 49.0 0.10 
 15 11.8 813.3 145.0 195.3 3.03 

avg. 9.9 270.3 48.2 64.3 1.10 
 

Table 3 Computational Statistics of EA-F for Low Flexibility 

   Low Flexibility  
n m pop. # |R| |PF (R)| |PFFl| CPU 
5 5 4.4 7.0 5.1 5.2 0.02 

 10 8.2 63.8 25.9 28.4 1.32 
 15 11.1 244.0 64.4 78.3 21.19 

10 5 7.1 38.2 19.3 21.5 0.51 
 10 13.1 241.3 67.9 82.5 14.31 
 15 16.8 940.4 166.6 211.6 196.10 

15 5 8.5 39.8 19.5 21.2 0.28 
 10 16.2 594.1 126.4 157.3 68.17 
 15 23.5 2454.3 328.0 417.0 1539.03 

avg. 12.1 513.7 91.5 113.7 204.55 
 

Table 4 Computational Statistics of EA-F for Medium Flexibility 

   Medium Flexibility  
n m pop. # |R|   |PF (R)|      |PFFm| CPU 
5 5 4.8 8.7 6.4 6.7 0.04 

 10 7.0 53.2 24.3 27.6 0.76 
 15 10.0 242.9 65.4 81.2 12.22 

10 5 7.0 44.5 21.0 23.9 0.88 
 10 12.5 332.4 89.2 112.7 28.94 
 15 17.5 1073.8 193.1 251.0 251.60 

15 5 8.0 46.5 21.5 24.5 0.35 
 10 17.2 624.5 139.4 173.3 85.02 
 15 23.1 3499.7 458.1 610.1 3494.34 

avg. 11.9 658.5 113.1 145.7 430.46 
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Table 5 Computational Statistics of EA-F for High Flexibility 

   High Flexibility  
n m pop. # |R| |PF (R)| |PFFh| CPU 
5 5 4.9 8.5 6.3 6.5 0.04 

 10 7.7 59.5 26.2 30.0 1.36 
 15 10.5 298.7 78.0 97.3 21.57 

10 5 6.5 35.2 19.3 22.2 0.46 
 10 12.5 312.4 87.0 108.9 26.08 
 15 17.2 1312.1 226.4 298.7 423.28 

15 5 9.5 53.7 25.9 29.0 0.60 
 10 17.8 706.3 158.7 203.9 110.52 
 15 24.4 3236.3 423.8 565.7 2933.12 

avg. 12.3 669.2 116.8 151.4 390.78 
 

Next, we focus on analyzing the effects of flexibility and flexibility incentive charges on the SoS 
architectures. For each analysis, we quantitatively and qualitatively compare the Pareto fronts of 
the same problem instance with different flexibility levels as follows. Consider two Pareto fronts 
𝑃𝑃𝐹𝐹𝐼𝐼 and 𝑃𝑃𝐹𝐹𝐹𝐹. For quantitative comparison, we focus on the size of the Pareto fronts and the 
percentage of the problem instances where the Pareto fronts have the same size or one is greater 
than the other, i.e., the percentage of the problem instances where |𝑃𝑃𝐹𝐹𝐼𝐼| > |𝑃𝑃𝐹𝐹𝐹𝐹|, |𝑃𝑃𝐹𝐹𝐼𝐼| =
|𝑃𝑃𝐹𝐹𝐹𝐹|, and |𝑃𝑃𝐹𝐹𝐼𝐼| < |𝑃𝑃𝐹𝐹𝐹𝐹|. For qualitative comparison, we focus on comparing the solutions 
within the Pareto fronts. In particular, we determine whether 𝑃𝑃𝐹𝐹𝐼𝐼 dominates 𝑃𝑃𝐹𝐹𝐹𝐹 or vice versa. 
To determine the dominance between 𝑃𝑃𝐹𝐹𝐼𝐼 and 𝑃𝑃𝐹𝐹𝐹𝐹, we use the following definition: 

Unless 𝑃𝑃𝐹𝐹𝐼𝐼 ≡ 𝑃𝑃𝐹𝐹𝐹𝐹, 𝑃𝑃𝐹𝐹𝐼𝐼Pareto dominates 𝑃𝑃𝐹𝐹𝐹𝐹, denoted as  𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐹𝐹, if 𝑃𝑃𝐹𝐹𝑈𝑈 = 𝑃𝑃𝐹𝐹𝐼𝐼, where 
𝑃𝑃𝐹𝐹𝑈𝑈 = 𝑃𝑃𝐹𝐹(𝑃𝑃𝐹𝐹𝐼𝐼 ∪ 𝑃𝑃𝐹𝐹𝐹𝐹). That is, 𝑃𝑃𝐹𝐹𝐹𝐹 includes no solution that Pareto dominates any solution 
in 𝑃𝑃𝐹𝐹𝐼𝐼.  

Procedure PF can be used to determine the set of the Pareto efficient SoS architectures within 
the union set of the Pareto efficient SoS architectures with inflexibility and flexibility, i.e., 𝑃𝑃𝐹𝐹𝑈𝑈 =
𝑃𝑃𝐹𝐹(𝑃𝑃𝐹𝐹𝐼𝐼 ∪ 𝑃𝑃𝐹𝐹𝐹𝐹). For qualitative comparison, we document the percentage of the problem 
instances where 𝑃𝑃𝐹𝐹𝐼𝐼 ≡ 𝑃𝑃𝐹𝐹𝐹𝐹 (i.e., each solution in one set has a matching solution in the other in 
terms of objective function values), 𝑃𝑃𝐹𝐹𝐼𝐼~𝑃𝑃𝐹𝐹𝐹𝐹 (i.e., neither 𝑃𝑃𝐹𝐹𝐼𝐼 dominates 𝑃𝑃𝐹𝐹𝐹𝐹  nor 𝑃𝑃𝐹𝐹𝐹𝐹  

dominates 𝑃𝑃𝐹𝐹𝐼𝐼), 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐹𝐹  (i.e., 𝑃𝑃𝐹𝐹𝐼𝐼  dominates 𝑃𝑃𝐹𝐹𝐹𝐹  ), and 𝑃𝑃𝐹𝐹𝐼𝐼 ≪ 𝑃𝑃𝐹𝐹𝐹𝐹  (i.e., 𝑃𝑃𝐹𝐹𝐹𝐹  dominates 
𝑃𝑃𝐹𝐹𝐼𝐼). Furthermore, we compare the percentage of the Pareto efficient SoS architectures in 𝑃𝑃𝐹𝐹𝐼𝐼  

as well as in 𝑃𝑃𝐹𝐹𝑈𝑈  and the percentage of the Pareto efficient SoS architectures in 𝑃𝑃𝐹𝐹𝐹𝐹  as well as 
in 𝑃𝑃𝐹𝐹𝑈𝑈. 

EFFECTS OF FLEXIBILITY 

To analyze the effects of flexibility, we compare inflexibility to low, medium, and high flexibilities 
quantitatively and qualitatively. Table 6 summarizes the quantitative comparison results. Similar 
to Table 7, it can also be observed that flexibility results in more Pareto efficient SoS architectures 
compared to inflexibility on average. Furthermore, it can be observed that as the level of 
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flexibility increases, the percentage of the problem instances where flexibility results in more SoS 
architectures increases while the percentage of the problem instances where inflexibility results 
in more SoS architectures tends to decrease. In particular, one can note that, on average, for 
88%, 89%, and 90% of the problem instances, inflexibility results in less Pareto efficient SoS 
architectures compared to flexibility with low, medium, and high levels of flexibility, respectively, 
and, for 10%, 9%, and 9% of the problem instances, inflexibility results in more Pareto efficient 
SoS architectures compared to flexibility with low, medium, and high levels of flexibility, 
respectively. 

Table 6 Quantitative Comparison of Inflexibility to Flexibility 

   Inflexibility vs.   Inflexibility vs.   Inflexibility vs.  
   Low Flexibility  Medium Flexibility High Flexibility 

  
 |PFI|>            |PFI|=          |PFI|<        |PFI|>           |PFI|=          |PFI|<        |PFI|>           |PFI|=       
|PFI|<                             

n   m      |PFFL| |PFFL| |PFFL|    |PFFm|  |PFFm|        |PFFm| 
|PFFh

| |PFFh| |PFFh| 
5 5 0% 10% 90% 0% 10% 90% 0% 10% 90% 

 10 0% 0% 100% 0% 10% 90% 20% 0% 80% 
 15 50% 10% 40% 60% 0% 40% 50% 0% 50% 

10 5 0% 0% 100% 0% 0% 100% 0% 0% 100% 
 10 0% 0% 100% 0% 0% 100% 0% 0% 100% 
 15 30% 0% 70% 20% 0% 80% 10% 0% 90% 

15 5 0% 0% 100% 0% 0% 100% 0% 0% 100% 
 10 10% 0% 90% 0% 0% 100% 0% 0% 100% 
 15 0% 0% 100% 0% 0% 100% 0% 0% 100% 

avg. 10.0% 2.2% 87.8% 8.9% 2.2% 88.9% 8.9% 1.1% 90.0% 
 
As expected, flexibility of the systems results in more Pareto efficient SoS architectures. However, 
quantitative comparison does not indicate better SoS architectures due to flexibility. Therefore, 
we compare the Pareto fronts of the problem instances solved with inflexibility, and different 
levels of flexibilities qualitatively. Table 7 presents the results of the qualitative comparison of 
inflexibility to flexibility for different levels of flexibilities. 
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Table 7 Qualitative Comparison of Inflexibility to Flexibility 

    Inflexibility vs Low Flexibility  
  𝑃𝑃𝐹𝐹𝐼𝐼 ≡ 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐼𝐼 ≪ 𝑃𝑃𝐹𝐹𝐼𝐼~ 

|𝑃𝑃𝐹𝐹𝑈𝑈| 
% of 𝑃𝑃𝐹𝐹𝐼𝐼 % of 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙  

n m 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙  𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙  𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙  𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙  in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈 
5 5 0% 0% 10% 90% 6.3 40% 72% 

 10 0% 0% 0% 100% 37.8 53% 51% 
 15 0% 0% 0% 100% 150.9 63% 39% 

10 5 0% 0% 0% 100% 22.2 24% 80% 
 10 0% 0% 0% 100% 107.2 39% 62% 
 15 0% 0% 0% 100% 355.1 48% 52% 

15 5 0% 0% 0% 100% 21.6 18% 85% 
 10 0% 0% 0% 100% 198.3 27% 73% 
 15 0% 0% 0% 100% 586.5 34% 66% 

avg. 0% 0% 1% 99% 165.1 39% 64% 

    Inflexibility vs Medium Flexibility  
  𝑃𝑃𝐹𝐹𝐼𝐼 ≡ 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐼𝐼 ≪ 𝑃𝑃𝐹𝐹𝐼𝐼~ 

|𝑃𝑃𝐹𝐹𝑈𝑈| 
% of 𝑃𝑃𝐹𝐹𝐼𝐼 % of 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 

n m 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈 
5 5 0% 0% 10% 90% 7.6 36% 75% 

 10 0% 0% 0% 100% 37.9 52% 52% 
 15 0% 0% 0% 100% 151.4 60% 41% 

10 5 0% 0% 0% 100% 24.8 23% 81% 
 10 0% 0% 0% 100% 134.0 34% 67% 
 15 0% 0% 0% 100% 385.8 43% 57% 

15 5 0% 0% 0% 100% 23.9 17% 86% 
 10 0% 0% 0% 100% 208.8 25% 75% 
 15 0% 0% 0% 100% 759.7 28% 72% 

avg. 0% 0% 1% 99% 192.7 35% 67% 

    Inflexibility vs High Flexibility  
  𝑃𝑃𝐹𝐹𝐼𝐼 ≡ 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐼𝐼 ≪ 𝑃𝑃𝐹𝐹𝐼𝐼~ 

|𝑃𝑃𝐹𝐹𝑈𝑈| 
% of 𝑃𝑃𝐹𝐹𝐼𝐼 % of 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 

n m 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈 
5 5 0% 0% 10% 90% 7.8 36% 76% 

 10 0% 0% 0% 100% 40.8 51% 53% 
 15 0% 0% 0% 100% 165.8 56% 46% 

10 5 0% 0% 0% 100% 23.4 20% 83% 
 10 0% 0% 0% 100% 130.6 33% 68% 
 15 0% 0% 0% 100% 425.8 40% 60% 

15 5 0% 0% 0% 100% 30.2 14% 88% 
 10 0% 0% 0% 100% 240.1 21% 79% 
 15 0% 0% 0% 100% 714.6 28% 72% 

avg. 0% 0% 1% 99% 197.7 33% 69% 
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We have the following observations based on Table 7: 

• In all of the problem instances solved, there was no instance where 𝑃𝑃𝐹𝐹𝐼𝐼 ≫ 𝑃𝑃𝐹𝐹𝐹𝐹  . For one 
problem instance with n = 5, m = 5, 𝑃𝑃𝐹𝐹𝐼𝐼 ≪ 𝑃𝑃𝐹𝐹𝐹𝐹  . For most of the problem instances (99% 
on average), there was no clear dominance between the Pareto front of the inflexibility 
compared to the Pareto fronts of the flexibilities. This result is expected as the SoS 
architect regards three objectives in his/her SoS architecting problem. In particular, 
compared to flexibility, if inflexibility results in higher costs and/or higher completion 
times, it also results in higher performance of the SoS; therefore, Pareto fronts of the 
flexibilities cannot dominate the Pareto front of the inflexibility. 

• On the other hand, when the percentages of the Pareto efficient SoS architectures being 
included within the Pareto efficient SoS architectures of the union of the Pareto fronts 
are compared, one can observe that the flexibilities return more solutions than 
inflexibility, which are included in 𝑃𝑃𝐹𝐹𝑈𝑈. This suggests that flexibility of the systems is able 
to generate more Pareto dominating solutions compared to the Pareto efficient solutions 
with inflexibility. Furthermore, as the level of flexibility increases, SoS architecting with 
flexible (inflexible) systems results in more (less) Pareto efficient solutions that are still 
Pareto efficient compared to the Pareto efficient solutions of the SoS architecting with 
inflexible (flexible) systems. 

Figure 7 illustrates the Pareto front with inflexible systems to the Pareto front with flexible 
systems with low, medium, and high flexibilities for a problem instance with n = 15 and m = 15 
(similar figures are observed for all problem instances solved). As can be noted in Figure 1 as well, 
SoS architecting with inflexible systems results in higher completion times and costs for similar 
performance levels of SoS architecting with flexible systems; however, SoS architecting with 
inflexible systems can reduce costs further than SoS architecting with flexible systems at 
expenses of high completion times and low performances. These observations suggest that 
system flexibility offers benefits for SoS architecting by providing more and better SoS 
architectures. Nevertheless, this does not mean that SoS architecting with inflexible systems will 
be dominated by SoS architecting with flexible systems. 
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Figure 7 Comparison of the Pareto Fronts with Inflexibility and Flexibility: n = 15, m = 15 

 

EFFECTS OF FLEXIBILITY LEVELS 

To analyze the effects of flexibility levels, we compare different flexibility levels qualitatively. 
Table 8 summarizes the qualitative comparison results. In particular, Table 8 documents the 
qualitative comparison of SoS architecting with low flexibility to medium flexibility, SoS 
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architecting with low flexibility to high flexibility, and SoS architecting with medium flexibility to 
high flexibility. We have the following observations based on Table 8: 

• In all of the problem instances solved, there was no instance where Pareto front with a 
lower flexibility level dominated the Pareto front with a higher flexibility level. For one 
problem instance with n = 5, m = 5, Pareto front with higher flexibility level dominated 
the Pareto front with lower flexibility. For most of the problem instances (99% on 
average), there was no clear dominance between the Pareto fronts of different flexibility 
levels. These results follow from the fact that as flexibility increases, the SoS architect is 
able to lower costs and completion times at an expense of lower performances.  

• On the other hand, when the percentages of the Pareto efficient SoS architectures being 
included within the Pareto efficient SoS architectures of the union of the Pareto fronts 
are compared, one can observe that the higher flexibility levels return more solutions that 
lower flexibility levels, which are included in 𝑃𝑃𝐹𝐹𝑈𝑈. This suggests that higher flexibility of 
the systems is able to generate more Pareto dominating solutions compared to the Pareto 
efficient solutions with lower flexibility. Furthermore, as the level of flexibility increases, 
SoS architecting with higher flexibility results in more Pareto efficient solutions that are 
still Pareto efficient compared to the Pareto efficient solutions of the SoS architecting 
with lower flexibility systems. 

Figure 8 illustrates the Pareto fronts with different flexibilities for a problem instance with n = 15 
and m = 15 (similar figures are observed for all problem instances solved). As can be noted in 
Figure 8 as well, SoS architecting with higher flexibility improves completion times and 
performances with similar costs. Nevertheless, SoS architecting with lower flexibility can result 
in higher performance at an expense of increased costs and completion times. These 
observations suggest that higher system flexibility offers benefits for SoS architecting by 
providing more and better SoS architectures. Nevertheless, this does not mean that SoS 
architecting with lower flexibility will be dominated by SoS architecting with higher flexibilities. 

Table 8 Qualitative Comparison of Flexibility Levels 

    Low Flexibility vs. Medium Flexibility  
 

                                 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≡    𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≫    𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≪     𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙~ 
|𝑃𝑃𝐹𝐹𝑈𝑈| 

% of 𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙  % of 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 
 

n m 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈 
 

5 5 10% 0% 0% 90% 7.9 36.6% 99.1% 
 

 10 0% 0% 0% 100% 28.7 9.6% 99.5% 
 

 15 0% 0% 0% 100% 88.3 7.0% 96.5% 
 

10 5 0% 0% 0% 100% 25.1 15.2% 99.8% 
 

 10 0% 0% 0% 100% 116.5 4.3% 97.9% 
 

 15 0% 0% 0% 100% 258.2 3.6% 97.3% 
 

15 5 0% 0% 0% 100% 25.5 9.2% 100.0% 
 

 10 0% 0% 0% 100% 176.7 2.8% 98.6% 
 

 15 0% 0% 0% 100% 644.7 5.7% 94.7% 
 

avg. 1% 0% 0% 99% 152.4 10.4% 98.2% 
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    Low Flexibility vs. High Flexibility  
 

                             
𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≡      𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≫    𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙 ≪  
    𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙~ 

|𝑃𝑃𝐹𝐹𝑈𝑈| 
% of  𝑃𝑃𝐹𝐹𝐹𝐹𝑙𝑙  % of 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 

 

n m 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ  𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈 
 

5 5 10% 0% 0% 90% 7.5 36.2% 100.0% 
 

 10 0% 0% 0% 100% 31.0 9.5% 100.0% 
 

 15 0% 0% 0% 100% 102.7 6.1% 97.0% 
 

10 5 0% 0% 0% 100% 24.2 16.3% 98.8% 
 

 10 0% 0% 0% 100% 112.4 3.6% 98.7% 
 

 15 0% 0% 0% 100% 305.0 3.1% 97.6% 
 

15 5 0% 0% 0% 100% 30.0 8.3% 100.0% 
 

 10 0% 0% 0% 100% 208.8 2.8% 98.3% 
 

 15 0% 0% 0% 100% 601.9 5.5% 94.9% 
 

avg. 1% 0% 0% 99% 158.2 10.2% 98.4% 

    Medium Flexibility vs. High Flexibility  
 

                             
 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 ≡    𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 ≫  𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 ≪  
  𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚~ 

|𝑃𝑃𝐹𝐹𝑈𝑈| 
% of 𝑃𝑃𝐹𝐹𝐹𝐹𝑚𝑚 % of 𝑃𝑃𝐹𝐹𝐹𝐹ℎ 

 

n m 𝑃𝑃𝐹𝐹𝐹𝐹ℎ       𝑃𝑃𝐹𝐹𝐹𝐹       𝑃𝑃𝐹𝐹𝐹𝐹ℎ 𝑃𝑃𝐹𝐹𝐹𝐹ℎ in 𝑃𝑃𝐹𝐹𝑈𝑈 in 𝑃𝑃𝐹𝐹𝑈𝑈 
 

5 5 10% 0% 0% 90% 7.5 36.2% 100.0% 
 

 10 0% 0% 0% 100% 31.5 11.4% 97.8% 
 

 15 0% 0% 0% 100% 101.1 6.2% 96.9% 
 

10 5 0% 0% 0% 100% 24.0 16.1% 99.0% 
 

 10 0% 0% 0% 100% 116.0 8.2% 94.0% 
 

 15 0% 0% 0% 100% 315.4 8.3% 92.4% 
 

15 5 0% 0% 0% 100% 30.0 8.3% 100.0% 
 

 10 0% 0% 0% 100% 209.3 3.0% 98.1% 
 

 15 0% 0% 0% 100% 585.2 3.3% 97.1% 
 

avg. 1% 0% 0% 99% 157.8 11.2% 97.3% 
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Figure 8 Comparison of the Pareto Fronts with Different Flexibilities: n = 15, m = 15 

 

CONCLUDING REMARKS 

In this volume, operations research tools are used to analyze the effects of system flexibility in 
System of Systems (SoS) architecting. SoS architecting finds many practical applications, 
especially, in defense/military projects. We formulated multi-objective optimization models for 
SoS architecting problem with inflexible and flexible systems. Due to the complexity of the 
models, evolutionary algorithms are developed to generate a set of Pareto efficient solutions for 
the SoS architecting problems. The models and the solution methods proposed are generic in the 
sense that they can be easily modified to capture different SoS architecting settings. 

In particular, formulations and solution methods proposed for SoS architecting models with 
inflexible and flexible systems enable investigation of the potential benefits of system flexibility 
in SoS architecting. Flexibility is considered as the level of cooperativeness between the SoS 
architect and the systems as flexible systems can cooperate with the SoS architect since the SoS 
architect can guide flexible systems for modifying their systems. Through a numerical study, it is 
observed that system flexibility can provide the SoS architect with more alternative SoS 
architectures and most of these alternatives will be better compared to the alternative SoS 
architectures generated in case of inflexible systems. Nevertheless, due to the consideration of 
more than two objectives in the SoS architecting problem, one cannot clearly say that system 
flexibility will always improve all objectives considered. System flexibility can improve completion 
times and costs at an expense of reduced performance. This insight follows as flexible systems 
does not provide some of the capabilities they can, which reduces costs and the system's ready-
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time (and thereby overall costs and completion time of the SoS) as well as the overall 
performance since  the capability's cumulative performance decreases. Further numerical study 
suggests that higher flexibility levels may offer SoS architecting benefits. Similar to the 
comparison of inflexibility to flexibility, it is observed that when systems have higher flexibilities, 
the SoS architect can benefit from SoS architectures with lower costs and higher performances 
with similar costs (or one can equivalently say that lower completion times and costs with similar 
performances). 

This volume contributes to the literature by analyzing SoS architecting with different types of 
flexibility using operations research tools. Future research directions include SoS architecting 
with adjustable flexibility levels. In this study, we assumed that the incentive charges for flexibility 
are fixed; however, it is possible that incentive charges vary and depending on the incentive 
charges, the systems' flexibility levels can change. Another future research direction is to analyze 
the effects of flexible systems in case of stochastic SoS architecting problems. Specifically, robust 
SoS architecting with inflexible and flexible systems is an open research area. 
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