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Abstract Scientists must understand what machines do

(systems should not behave like a black box), because in

many cases how they predict is more important than what

they predict. In this work, we propose a new extension of

the fuzzy linguistic grammar and a mainly novel inter-

pretable linear extension for regression problems, together

with an enhanced new linguistic tree-based evolutionary

multiobjective learning approach. This allows the general

behavior of the data covered, as well as their specific

variability, to be expressed as a single rule. In order to

ensure the highest transparency and accuracy values, this

learning process maximizes two widely accepted semantic

metrics and also minimizes both the number of rules and

the model mean squared error. The results obtained in 23

regression datasets show the effectiveness of the proposed

method by applying statistical tests to the said metrics,

which cover the different aspects of the interpretability of

linguistic fuzzy models. This learning process has obtained

the preservation of high-level semantics and less than 5

rules on average, while it still clearly outperforms some of

the previous state-of-the-art linguistic fuzzy regression

methods for learning interpretable regression linguistic

fuzzy systems, and even to a competitive, pure accuracy-

oriented linguistic learning approach. Finally, we analyze a

case study in a real problem related to childhood obesity,

and a real expert carries out the analysis shown.

Keywords Regression � Linguistic modeling �
Evolutionary fuzzy Systems � eXplainable Artificial

Intelligence (XAI) � Interpretability � Transparency

1 Introduction

The era of Big Data, Deep Learning (DL) and the Internet

of Things (IoT), has been a breakthrough for Artificial

Intelligence (AI), making it one of the most revolutionary

technologies to date. However, the tremendous advances

that AI has experienced in recent years have caused a wave

of concern, since in most cases we do not know how the

software learns and makes decisions. While the term of

eXplainable Artificial Intelligence (XAI) is relatively new,

the problem of explaining AI techniques actually became a

challenge many years ago. In fact, as stated in1 [1], it dates

back to 1991, when Dr. Pomerleau studied how a neural

network thinks in an attempt to explain why an autono-

mous car decided to leave it’s lane on a bridge after

thousands of tests. More recent cases like the challenge of
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relying on autonomous systems for military operations

regarding weapons [2] or problems involving dilemmas of

life and death decisions, such as the most recent IBM

Watson at the National Hospital of Denmark [3], which

made a very serious mistake in recommending ‘‘deadly

treatment’’ for cancer patients, are generating quite a bit of

controversy regarding a real need to explain AI. One such

example is the case of the well-known DL that cannot

explain how it makes its decisions despite its impressive

results. This is known as the ‘‘black box problem,’’ which

has been recently discussed in the prestigious journal

Nature [1]. Today, it is an open problem that people are

being forced to work on at a fast pace [4].

For this reason, and in order to help AI use become a

widespread reality, researchers are taking into account all

aspects related to ethics [5], Law [6], and technology [7].

Recently, ACM issued a Declaration on ‘‘Algorithmic

Transparency and Accountability,’’ which establishes a set

of principles that are consistent with the ACM Code of

Ethics to support the benefits of algorithmic decision-

making while addressing ethical and legal issues [8].

Among such principles, the explanation is identified as

relevant. In addition, a new European General Data Pro-

tection Regulation (GDPR3) was applied on 25 May 2018

[6, 9], which replaced the previous 20-year-old Directive

95/46/EC. GDPR3 is concerned with transparency and

protection of the nature of people when personal data are

processed freely. For the first time, a highly discussed form

of a ‘‘right to explanation’’ is inferred by some experts [6]

based on the regulations for the automated decision-mak-

ing from Article 22, Recital 71: ‘‘... the right to obtain

human intervention, to express his or her point of view, to

obtain an explanation of the decision reached ...’’. In terms

of technological issues, the issue of explainability in AI is

also highlighted in the challenge established by the

Defense Advanced Research Projects Agency of the United

States (DARPA) [10]: ‘‘Although current AI systems offer

many benefits in many applications, their effectiveness is

limited by the lack of explanations when interacting with

humans.’’ Overall, all these give rise to what has recently

become known as XAI [10–13].

Machine learning (ML) is becoming ubiquitous in both

basic research and industry. Consequently, non-expert

users, that is, users without a strong base in AI, require a

new generation of explainable AI systems. Scientists must

also understand what machines do [1] (systems should not

behave like a black box), because in many cases how they

predict is more important than what they predict. These

systems should be directly interpretable, i.e., they should

explain their behavior in a way that they can be understood

[14, 15]. Clear examples can be found in problems in

healthcare [16] and in particular in bio-medicine [17],

banking advice, insurance [18], legal decision-making,

robotics, planning, and many others. Therefore, there is a

need to continue investigating the improvement of machine

learning techniques with an inherent high explanatory

power, as the most appropriate alternative ‘‘for high-stakes

prediction applications that deeply impact human lives’’

[14].

Recently, Barredo et. al. [13] have stated that ‘‘an

explainable Artificial Intelligence is one that produces

details or reasons to make its functioning clear or easy to

understand.’’ Based on the revised proposals and biblio-

graphic studies, in this contribution, the authors also pro-

pose two taxonomies of XAI techniques and clarify the real

meaning of the different concepts usually used in the

context of XAI. Interpretability is initially defined as ‘‘a

passive characteristic of a model referring to the level at

which a given model makes sense for a human observer’’

(which is ‘‘also expressed as transparency’’). However,

explainability is referred to ‘‘as an active characteristic of a

model, denoting any action or procedure taken by a model

with the intent of clarifying or detailing its internal func-

tions.’’ Based on this, they set a first main division in their

categorization [13]:

– Transparent ML models: Models that can be under-

stood by themselves. Some examples are Logistic /

Linear Regression, Decision Trees, Rule-Based Learn-

ers, Fuzzy Logic-Based models, etc.

– Post hoc explainability techniques for ML models:

Those that need a posterior engine or process to explain

the model decisions when they cannot be considered to

be transparent.

Furthermore, they also introduce the concept of ‘‘simu-

latability’’ as the most interpretable level within the

transparent ML models. According to their definition, it

‘‘denotes the ability of a model to be simulated or thought

about strictly by a human, hence complexity takes a

dominant place in this class.’’ For example, Linear

Regression must make use of human-readable predictors

with a minimum of interactions between them in order to

reach this level, while Rule-Based Learners must make use

of readable variables and obtain a number of rules that is

manageable for humans.

Our aim is to propose a new extension of the well-

known linguistic Fuzzy Rule-Based Systems (FRBS)

[19–21] that is specifically designed for regression prob-

lems. This is done by combining new linguistic fuzzy

grammar and a novel interpretable linear extension in order

to obtain the highest possible transparency level, as this is

our main objective, as well as a rule set of no more than 6

or 7 rules [22] for regression problems. A linguistic FRBS

[20] makes use of fuzzy rules composed of linguistic

variables [23] that take values in a term set with a real-

world meaning, i.e., a variable whose values are words
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drawn from a natural language that represent the basis for

the concept of linguistic if–then rules.

On the other hand, the evolutionary fuzzy system (a

fuzzy system designed by evolutionary algorithms [24]) is

one of the greatest advances in the area of Soft Computing

and subsequently, Computational Intelligence. Thus, the

application of evolutionary algorithms for learning [25] the

previously mentioned complex rule structures has been

identified as being very useful in the context of XAI, since

‘‘machine learning methods based on evolutionary fuzzy

systems preserve the original essence of comprehensibility

exposed by Zadeh, also boosting their modeling abilities’’

[11]. In this contribution, the application of multiobjective

evolutionary algorithms [26, 27] to learn understandable

regression linguistic models, i.e., linguistic evolutionary

fuzzy systems on regression problems, becomes a central

axis where other techniques are also combined in order to

enhance the learning process. However, even though lin-

guistic models present great potential for transparency, and

in particular simulatability, they still need to sacrifice part

of their potential as too many rules are usually needed to

obtain accurate predictions in real regression problems

involving complex interpolated surfaces (continuous output

variability in contrast to classification), large amounts of

data, and/or complex data dependencies.

In this work, we not only propose a new extension of the

fuzzy linguistic grammar, but also a novel inter-

pretable linear extension which is specifically proposed for

regression problems, together with an enhanced new lin-

guistic tree-based evolutionary multiobjective learning

approach in order to be able to describe a larger amount of

regression data in terms that are as close as possible to

those used by humans. The main aim is to allow the general

behavior of the regression data covered, as well as their

specific variability, to be expressed in a single rule. Thus,

generally fewer rules would be needed to reasonably learn

accurate regression linguistic models. Moreover, by being

able to better summarize the extracted information, we can

expect it to be richer and therefore more useful for human

experts trying to find some insights in data whose real

nature implies continuous variability. Even though there

are a few new proposals for the design of inter-

pretable models for classification problems, they are not

directly applicable to those regression problems where it is

quite difficult to model continuous complex surfaces with

only a few rules that aim to separate the different values of

the output variable. This is why our proposal actually aims

to find and separate ‘‘tendencies,’’ since they grasp the

continuous nature in regression problems better. To our

knowledge, there are no recent proposals that obtain really

simple and transparent linguistic FRBSs (with only a small

number of rules) for regression. More specifically, we aim

to obtain linguistic regression models with approximately 5

rules without problematic overlapping (so that semantics

are also preserved) and with competitive accuracy (so that

reliability is maintained to high levels).

In particular, a new proposal extending the basic lin-

guistic grammar usually used for predictive modeling (re-

gression in our case) is presented in this paper. Similarly to

the modified ‘‘OR’’ connector proposed in [28], it is based

on the composition of new, more general linguistic term

sets from single linguistic sets (strong fuzzy partitions or

expert defined), but extends or modifies its syntactic rep-

resentation in order to better resemble the way that humans

might explain something (and does not repeat ‘‘OR’’ ...

‘‘OR’’ ... ‘‘OR’’ ... and so on, when you express a wider

term). In this paper, this is referred to as a Composed Fuzzy

Linguistic Term Set (CFLTS). Additionally, and this is of

great importance for regression as it is key to maintaining

competitive (or even improved) accuracy, a novel inter-

pretable linear extension of the consequent rule structure

(and the specific process to learn it) is proposed here,

paying particular attention to interpretability criteria in

order to explain the specific continuous variability of a rule

that is possibly too general. It involves a new way of

learning two parameters to help linguistically explain

simple linear variations of the general behavior described

by each rule, but only when they involve relevant accuracy

improvements.

Moreover, we propose an enhanced multiobjective

evolutionary algorithm (MOEA) in two stages (learning

linguistic partitions and rules, plus tuning and rule selec-

tion) to optimize accuracy together with some well-known

interpretability measures from the specialized literature

that account for the number of rules and the overlap in the

linguistic terms and/or rule inconsistency (the GM3M and

RMI indexes [19, 21]). The main contribution in this algo-

rithmic part is the inclusion of a new linguistic tree-based

Rule Base (RB) learning algorithm that adapts perfectly to

the new type of rules and therefore enhances the said

evolutionary learning method, as node conditions can be

fuzzified and the linear extension can be obtained at the

tree leaves.

We have statistically tested the proposal in 23 regression

datasets with different complexities (from 2 to 60 vari-

ables). The results obtained show the proposed method’s

effectiveness (obtaining less than 5 rules on average and no

more than 7 for any of the 23 datasets) by applying

Friedman’s, Holm’s and Wilcoxon’s tests [29, 30] on all

the interpretability indexes, as well as the number of rules

and the accuracy, in order to compare them to some of the

previous state-of the-art methods used to obtain inter-

pretable pure linguistic FRBSs. Additionally, even though

our proposal was mainly designed with interpretability

purposes, it still presents highly competitive accuracy and

it also compares to a state-of-the-art pure linguistic
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accuracy-oriented method. Finally, we also analyze a case

study in a real problem related to childhood obesity, where

the analysis given of the obtained model is performed by a

real expert.

Finally, a web page associated with this paper (https://

www.ugr.es/*ralcala/papers/ijfs21) has been developed

that contains complementary material. It includes the fol-

lowing: the datasets collected and used in this study (the

5-fold cross-validation partitions); a brief description of the

semantic interpretability indexes used (GM3M and RMI); an

analysis of some representative examples of the linguistic

models obtained in two of the benchmark problems; and,

even though they are not comparable and are simply for

benchmarking purposes, a comparison, from an accuracy

point of view, between some representative highly accurate

state-of-the-art general purpose models (Random Forest,

etc.).

This contribution is organized as follows. The inter-

pretability metrics that are used in this paper are set out in

Sect. 2. Section 3 proposes the extension of the linguistic

rule structure (new grammar and linguistic consequent

extension). In Sect. 4, we present an effective MOEA to

learn comprehensible linguistic FRBSs for regression

problems together with a new linguistic tree-based learning

to effectively learn the new type of rules proposed. Sec-

tion 5 shows the experimental study on the proposed

method, including statistical comparisons with some of the

state-of-the-art interpretability and accuracy-oriented pure

linguistic methods. It also includes a case study of a real

problem related to obesity in children, where real experts

analyze the obtained rules. Finally, Sect. 6 draws some

conclusions.

2 Preliminaries: Interpretability Measures
Considered to Ensure the Model Transparency

In [20], Gacto et al. define interpretability as ‘‘the capacity

to express the behavior of the real system in an under-

standable way (comprehensibility).’’ According to this

definition, the authors determine four different aspects that

should be considered, and therefore measured, in order to

obtain simple and interpretable linguistic fuzzy systems:

Complexity and Semantics, at a linguistic label level or

Data Base (DB) level, and at a RB level. This also

resembles the definition in [31], where Magdalena defines

interpretability by stating that ‘‘A fuzzy system is said to be

interpretable if its reduced complexity and clear semantics

make it possible for us to understand and explain its

behavior by reading it.’’ In order to take the four previously

mentioned aspects into account, the following inter-

pretability measures will be used and optimized in our

proposal:

– Number of rules (Complexity at the RB level).

– Number of variables (Complexity at the DB level).

– GM3M [19, 21] (Semantic Interpretability at the DB

Level). From 0.0 to 1.0 and with values close to 1.0

represent a really high proximity to the equally

distributed strong linguistic partition.

– RMI [21] (Semantic Interpretability at the RB Level).

From 0.0 to 1.0 and with values close to 1.0 represent

the absence of inconsistent rules (i.e., high reliability

level).

Even though GM3M and RMI are well-known and public

descriptions are available (see [19, 21]), a brief description

can be found in the web page associated with this paper

(https://www.ugr.es/*ralcala/papers/ijfs21). In any case,

we only introduce them and their aim (what are they

measuring and why) so that their particular formulations

can be found in the corresponding papers in which they

were proposed.

3 New Grammar Proposal: Extending the Classic
Linguistic Rule Structure

In this paper, we propose a new extension of the classic

linguistic rule structure in order to allow more general

representations of certain parts of the data, as well as a

more specific explanation and follow-up for human beings.

The main aim is to simplify the regression model by

explaining the general behavior of the data and, at the same

time, explaining the variability of the data within the scope

of the general description provided.

Therefore, we can focus on understanding the different

general explanations and then see what happens, particu-

larly in the general continuous domain that the rule is

explaining. This way of describing the reality of continuous

numerical data is not very far from how humans explain

themselves, and in fact we rely on it to introduce a dialogue

to illustrate explanatory concepts throughout the article.

When a person explains something related to continuous

numerical values, they first tend to generalize, and then

explain, if needed, what happens more specifically in the

context of the fact that they have just mentioned. Fur-

thermore, in many cases, this is usually relativized with

respect to the explanation given initially.

For instance: If a person’s height is from ‘‘high

onwards,’’ then the amount of calories consumed will be

between high and very high (which is around 2600 kcal),

but... the amount of calories consumed should be reduced

by 7.3 kcal per year when subjects are over 25 years of age.

This does not only explain the differences between the

particular cases and the general rule, but also provides us

with additional and useful information since age is
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identified as an important factor related to calorie con-

sumption, and 7.3 would be its specific relationship to

people that have a ‘‘high onwards’’ height.

If we are able to come up with the formulation that

corresponds to this way of explaining the continuous

numerical reality, we should be able to obtain much more

explanatory and simpler models with a good level of pre-

cision, and thus make a leap toward Simplicity ? Semantic

Interpretability ? Precision, instead of the classical Sim-

plicity vs. Semantic Interpretability vs. Precision. In fact,

the fundamental trade-off between accuracy and inter-

pretability is identified by some authors as one of the

possible myths in machine learning [14], even though

improving both of them at the same time is actually a great

challenge and makes the trade-off almost impossible.

3.1 New Grammar to Learn More General

Linguistic Rules

Here, we propose how to combine and interpret new

broader linguistic expressions in the context of predictive

modeling, namely CFLTSs (composed fuzzy linguistic

term sets), and the operators required for modeling. Similar

to the modified ‘‘OR’’ connector proposed in [28], CFLTS

is a syntactic extension based on the composition of new

and more general linguistic term sets from single linguistic

sets (strong fuzzy partitions or expert defined), however, it

also modifies the ‘‘... OR ... OR ... OR ...’’ syntactic rep-

resentation in order to help it resemble the way that humans

explain. Thus, we can consider the proposal in [28] to be an

initial version of CFLTSs.

As such, and as we are trying to grasp and linguistically

explain the different and more general situations that

should be described in each particular data region, more

general or broader statements would be achieved. We

therefore define some new specific CFLTSs in an attempt

to provide the consistency of the inference system and

complete coverage of those aforementioned regions. Of

course, we will also take into account the fact that the new

grammar defined for the fuzzy rules should still resemble

the natural way in which people speak. For example: We

should be able to clearly indicate that the linguistic term of

one of the variables represents values from the average

onwards, e.g., a person has a height that is from medium

onwards (i.e., it is medium, high, or very high).

The basic form of a fuzzy rule is defined as follows: IF

antecedent THEN consequent. This type of rule must work

correctly with both equally distributed and free or tuned

membership functions (MFs). See an example of both types

in Fig. 1 by considering triangular MFs, where l and r de-

fine the corresponding domain [l, r] of the variable values.

In the case of linguistic FRBSs, the antecedent is a

linguistic fuzzy proposition composed of atomic linguistic

fuzzy propositions (or linguistic term sets) (AtLingFuzzy-

Prop) which are connected by the AND connective (using

the minimum as a t-norm operator). It has the following

form: AtLingFuzzyProp AND AtLingFuzzyProp ... AND

AtLingFuzzyProp. Each atomic fuzzy proposition is asso-

ciated with a single linguistic variable. We introduce or

propose the (classic or CFLTSs-based) linguistic proposi-

tions used by showing some graphical examples of the

example linguistic partitions from Fig. 1:

– X i is Lab3 in Fig. 2 (classic linguistic proposition).

The membership degree of values in Xi to the linguistic

term Lab3 determines the degree to which this atomic/

single fuzzy proposition is verified.

– X i is up to Lab2 in Fig. 3 (proposed new CFLTSs). It

is a composed term set or proposition which represents

Lab2 and all the smaller values. The main difference

between this set and the previous one is that it has a

membership degree that is equal to 1.0 from �1 to the

center of the label Lab2, where the center of the label is

the central point of the label core (i.e., the core itself

when we have triangular MFs).

– X i is from Lab3 in Fig. 4 (proposed new CFLTSs). It is

a composed term set or proposition that is similar to

‘‘up to’’ but representing Lab3 and all the greater

values. It has a membership degree equal to 1.0 from

the center of label Lab3 to þ1.

– Xi is from Lab2 to Lab4 in Fig. 5 (proposed new

CFLTSs). It represents Lab2, Lab4, and all their

intermediate values. It has a membership degree equal

to 1.0 from the center of label Lab2 to the center of

Lab4. It not only allows sets above or below a given

point, but also allows those in a linguistic intermediate

range. Example: If the temperature is from low to

medium, then do not activate the air conditioning

(considering a linguistic partition with five labels

starting in ‘‘very low’’ and ending in ‘‘very high’’).

Furthermore, considering that we use the First Infer

Then Aggregate (FITA) inference system, we also allow

the consequent proposition of a rule to be expressed as the

intermediate output between two adjacent labels (‘‘be-

tween’’ was proposed in [32]) as it is perfectly

Lab1 Lab2 Lab3 Lab4 Lab5 Lab1 Lab2 Lab3 Lab4 Lab5 

l r l                                     r

Fig. 1 Initial labels (equally distributed vs free/tuned MFs)

Lab3 Lab3 

l                                r l                                     r

Xi

Fig. 2 Associated MF for the single linguistic term Lab3
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comprehensible and commonly used by human beings. It

does so, however, in a different manner to the previous

CFLTSs. Y is betw. Lab2 and Lab3 directly represents the

mid-point between these two labels, which makes more

sense and allows for more flexible and accurate rules.

Figure 6 depicts this linguistic composition, which, as it

only makes sense for the rule consequent, is applied

exclusively to the Y output variable labels or term set.

Finally, we provide two examples of the final rule

structure, demonstrating the use of all these new types of

propositions:

IF X2 is up to Lab3 AND X5 is from Lab2 to Lab4

THEN Y is betw: Lab1 and Lab2

IF X2 is from Lab4 AND X5 is Lab3

THEN Y is Lab3

:

3.2 Rule Extension Proposal for Explaining Specificity

in Regression

Thanks to the new grammar, it is possible to learn more

general rules that fit perfectly with the generality of the

data. However, this would lead to very low accuracy

models that only represent generalities. The greatest diffi-

culty is to find a way for a rule that explains a more general

concept to also explain the relative specificity of each of

the data it describes.

In this section, we propose an extension of the linguistic

rule structure that can be also linguistically interpreted. It is

based on the ideas expressed at the beginning of Sect. 3

(see the calories example). In order to implement this new

way of expressing more specific concepts that are based on

(or relative to) more general ones, a rule with the following

structure is proposed:

IF Xi is from Med

THEN Y is betw: Low and Med

with � s per � unit in Xr from d

;

where ‘‘from Med’’ expresses that the Xi variable takes

values above Med and ‘‘betw. Low and Med’’ indicates that

variable Y takes values between the two adjacent labels

Low and Medium. The extended part of the rule is based on

obtaining a line whose abscissa values are centered on the

output of the general part of the rule, so that s is the amount

that we must add/subtract to the general output of the rule

(Cy) per unit above/below d at the Xr value of the input

example for which we are estimating the output.

Let us remember the example given at the beginning of

Sect. 3: If a person’s height is from high onwards, then the

amount of calories consumed will be between high and

very high (which is around 2600 kcal), but... the amount of

calories consumed should be reduced by 7.3 kcal per year

over the age of 25 years old, or be increased by 7.3 kcal per

year under the age of 25. It then could be expressed as:

IF Height is from High

THEN Y is betw: High and VeryHigh

with � 7:3kcal per � year in Age from 25

:

This rule is a formal representation of the explanations

given in the example, which is based on the use of the

proposed CFLTSs and the computation of the corre-

sponding straight line. However, it can still be read by

using the same linguistic expressions from the example.

As explained in the previous subsection, once the gen-

eral part of a rule that provides a general rule output (Cy) is

determined, the particular values of s (slope or coefficient

of Xr) and d (displacement in Xr that forces the intercept to

up to Lab2 up to Lab2 

Xi 

l                                r l                                     r

Fig. 3 Composed MF for the CFLTS ‘‘up to’’ Lab2 for input

variables (Xi)

from Lab3 from Lab3

Xi 

l r l r

Fig. 4 Composed MF for the CFLTS ‘‘from’’ Lab3 for input variables

(Xi)

from Lab2 to Lab4 from Lab2 to Lab4 

Xi 

l                                r l                             r

Fig. 5 Composed MF for the CFLTS ‘‘from’’ Lab2 ‘‘to’’ Lab4 for

input variables (Xi)

betw. Lab2 and Lab3 

Y

betw. Lab2 and Lab3 

Cy (CoG) Cy (CoG) 

l                                r l                                     r

Fig. 6 Intermediate output Center of Gravity (CoG) from the

composed MF for the CFLTS ‘‘betw.’’ Lab2 ‘‘and’’ Lab3 for the

output variables (Y)
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coincide with the central point of the general rule conse-

quent label, namely cy)
2 are obtained based on the least

squares estimation of the straight line in the examples

ðXr; YÞ. Let us consider the formula of the so obtained line:

Y 0 ¼ b0 þ b1Xr;

where b0 and b1 are the two unknown constants of the line

obtained by least squares. To obtain s and d, so that the

explained interpretation is correct (Y 0 ¼ s � ðXr � dÞ þ cy),

we must equate both equations. Taking into account that

both lines must have the same slope, s ¼ b1, the following
equalities can be established:

b1 � ðXr � dÞ þ cy ¼ b0 þ b1Xr:

So that the same slope can be set and this equality can be

solved, s and d can be obtained as:

s ¼ b1;

d ¼ ðcy � b0Þ=b1:

WhenXr is also used in the rule antecedents, dmust bewithin

the examples that the rule antecedent covers for that variable,

since it must explain the variability within its range.

4 Proposed Learning: A New Tree-Based Hybrid
Evolutionary Multiobjective Algorithm

In this section, we propose a new learning methodology

that adapts to the new type of rule structure explained in

Sect. 3.1. Our aim is to design an algorithm that uses the

new rule representation to obtain linguistic FRBSs as

comprehensively as possible, while also maintaining or

improving their accuracy (reliability). Likewise, it should

be able to minimize the number of rules, maximize the

linguistic interpretability (both GM3M and RMI), minimize

the error, and keep the length of the rules (number of

conditions) within a reasonable limit.

It is based on a two-stage tree-based hybrid evolutionary

multiobjective algorithm:

– First stage: Learning of the initial linguistic partitions

and the associated linguistic rules. This stage performs

an embedded multiobjective evolutionary DB learning,

minimizing both the number of rules and errors. This is

a multiobjective evolutionary process that learns the

DB and wraps a fast method to derive a set of rules for

each DB definition. In this paper, we have put forward

hybridization with a new linguistic tree-based rule

learning in order to profit from the newly proposed rule

structure. This is done by extending the well-known

M5 -prime [33, 34] as the method for deriving a set of

rules for each of the evolved DBs.

– Second stage: Post-processing stage to further refine the

learned solutions. This is a multiobjective evolutionary

algorithm that fine-tunes the MFs and rule selection,

which helps minimize the number of rules and max-

imize the linguistic interpretability of both GM3M and

RMI, and minimize the error of the simple global

structure obtained in the first stage (initially based on

strong fuzzy partitions).

First, we propose the new linguistic tree-based rule learn-

ing method to account for generality by briefly describing

the M5 -prime algorithm and how we have adapted it to

learn linguistic rules based on the use of CFLTS and the

consequent extension, which is proposed to account for

specificity. Finally, the main characteristics of both stages

of the proposed method are presented.

4.1 Proposed Linguistic Tree-Based Rule Learning

In this section, we propose a new linguistic tree-based

algorithm for learning the corresponding extended rule set,

considering the previously proposed extended grammar,

and based on the existence of a well-defined linguistic

partition. The proposed algorithm is based on the way the

well-known M5 -prime [33, 34] algorithm works.

In the following, we first briefly describe the M5 -prime

algorithm [33, 34], and then explain the modifications that

have been made.

4.1.1 Preliminaries: Brief Description of the M5-Prime

Algorithm

The M5-prime [33, 34] method is a regression tree

(specifically a model tree), which means that it is used to

learn a tree whose node leaves include local multivariate

linear models in order to predict the values of a numerical

response variable Y. That is, while the M5-prime tree uses

the same approach as the well-known CART tree to choose

the mean square error as a function of impurity, it does not

assign a constant to the leaf node but instead adjusts to a

multivariate linear regression model; the model tree is,

therefore, analogous to multivariate linear functions in

parts. The M5-prime tree can learn efficiently and can

handle very high dimensional problems—up to hundreds of

attributes, making it a fairly fast method. This capacity

differentiates M5-prime from other regression trees such as

MARS, whose costs grow very quickly when the number

of characteristics increases. In addition, the advantage of

M5-prime over CART is that the models are generally

much smaller than those obtained by the regression trees

and tend to be more accurate.
2 As mentioned, we are considering a FITA inference based approach

and Center of Gravity (CoG).
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Generation of the M5-Prime Tree.

The M5-prime method follows the same recursive node

division strategy as decision trees. Suppose that we have a

collection T of training examples. The set T is associated

with a leaf, or a split is chosen based on same test that

divides T into subsets corresponding to the best division on

the said test. Then, the same process is applied recursively

to the subsets. This process often produces overlearned

structures that must be subsequently pruned.

The information gain in the M5-prime tree is measured

by the reduction of the standard deviation before and after

the division. The first step is to calculate the standard

deviation of the output variable values of the example data

in T. Unless T contains very few cases or its values vary

only slightly, T will be divided according to the test results

for each possible cut point (for every value at each attri-

bute). Let Ti denote a subset of examples corresponding to

the i-th result according to a specific split. If the standard

deviation sdðTiÞ of the output variable values of example

data in Ti is treated as an error measure, the expected

reduction of the error can be written as follows:

Merror ¼ sdðTÞ �
X

i

jTij
jTj sdðTiÞ:

Then the M5-prime tree will choose the split that maxi-

mizes the expected error reduction. For comparison, CART

chooses a division to give the largest expected reduction,

either variance or absolute deviation.

M5-Prime Pruning.

Pruning is carried out from the leaves to the root node.

At each internal node, the M5-prime tree compares the

estimated error of that node and the estimated error of the

subtree below it. Thus, the subtree is pruned when it does

not improve the said node’s performance.

The model tree M5-prime uses a pruning method based

on estimated errors. The key factor of this method is how it

estimates the model error in unseen input data, since

overfitting directly depends on it. The M5-prime tree cal-

culates it by first averaging the absolute difference between

the output values of the training data and their predicted

values. This will generally underestimate the error in

unseen data, so M5 -prime multiplies it by ðnþ vÞ=ðn� vÞ
where n is the number of training cases and v is the number

of parameters in the model [33, 34]. The effect aims to

increase the estimated error of models with many param-

eters obtained from a small number of examples. More

efficiently, the estimated error of a node model is calcu-

lated as the sum of the estimated error of the left and the

right subtrees, multiplied by the proportion of samples

descending to each of them, respectively.

Linear Models.

A multivariate linear model fits to the training data in

each node of the tree using standard regression techniques.

After the full size tree is produced, a multivariate linear

regression model is fitted for each node on its associated

training examples by following a backward operation

mode. It starts with the leaf nodes, considering only the

variables used in the splits from the root to the leaf node.

However, in the case of an internal node, it is restricted to

those variables that are referenced by the splits or the linear

models in the subtrees below the node. M5-prime compares

the error estimates of a linear model with those of the

pruning subtrees, so it allows for fair competition condi-

tions where these models also use the same information.

After learning a linear model, M5-prime simplifies it by

greedily eliminating coefficients to minimize its estimated

error one by one. In general, this could result in an increase

in the average residue; however, it also reduces the pre-

vious multiplicative factors, so the estimated error may

decrease.

4.1.2 Proposal: Extension of M5-Prime to Generate

Linguistic Trees

In this article, we propose an adaptation of the M5-prime-

Rules method which generates a set of rules from the M5-

prime tree. Let us assume that we have a previously defined

DB, i.e., the linguistic partitions for all the variables

involved in the problem being solved, where lvj is the j-th

linguistic term of the v-th variable.

Proposed Modifications To generate linguistic trees

based on the extended grammar and rule structure pro-

posed, the following changes are made to M5-prime:

1. Changes in the tree construction:

• Calculate the standard deviation, sd(T) or sdðTiÞ3,
weighted by the pairing of the examples with the

rule built up to the node in question. That is, the

corresponding proposition for the path from the

root to the Ti split is built, and the pairing of each

example in Ti to this proposition is calculated and

considered as its corresponding weight. The stan-

dard deviation sdðTiÞ of the target/output values of
the example data in Ti is computed as the square

root of the weighted average of the differences of

each output value from its mean.

• Determine all the possible splitting points, j, so that

the left branch would be associated with ‘‘up to lvj ’’

and the right one with ‘‘from lvjþ1’’ for all the input

v variables from the existent linguistic partitions.

Take into account that, when v has been previously

3 T1 and T2, left and right, since we only have binary splits.
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used at any split in the path from the root to the

node, we should only try all the possible splits in

the form ‘‘from lvini to lvj ’’ (left branch) and ‘‘from

lvjþ1 to lvend’’ (right branch), where lvini and lvend are

extreme linguistic terms determined by the previ-

ous divisions of v on the said path.

• For each possible split, move the examples in T to

the corresponding Ti subsets by considering their

pairing with the composed statements/propositions

on the left and right3. Calculate their respective

standard deviations sdðTiÞ weighted by the pairing

of the examples with the corresponding

proposition.

• Choose the split by maximizing the expected error

reduction, Merror.

• Obtain the tentative specific parts (Sect. 3.2) of the

variable that best fits the data of the rule associated

with the node and the child nodes, and the

correlation coefficients, R2, for the straight lines

they represent.

• A branch node is considered to be a leaf if it has

less than 4 examples, or if the standard deviation of

the branch is less than a small fraction of the total

(ie, sdðTiÞ\ ¼ 0:05 � sdðCompleteDataSetÞ), or
if the R2 of the line represented in the parent’s

consequent is greater than that of the branch node.

• Additionally, the depth of the tree is limited to

three, since our main objective is to obtain the

simplest possible systems with the least number of

rules and minimum rule lengths.

• The algorithm would continue splitting this way

until the entire tree has been obtained.

2. Changes in the tree pruning. Pruning is performed as it

was in the original M5-prime for each non-leaf node,

starting near the bottom. However, in this case, it is

based on computing the Mean Square Errors (MSEs)

of a given node and its subtree. If the error of a node is

less than the error of its subtree plus a small percentage

(error becomes 5% worse), this subtree is pruned and

the node is set as a leaf. Thanks to this additional

percentage, the tree avoids the excessive adjustment to

the data. It continues until the pruning has been

completed.

3. Additionally, convert the tree into rules. Build a rule

for each possible path from the root to the leaves.

Specificity Component of the General Rules

Obtained.

For each rule learned, the algorithm can generate (or

not) its specific part about one of the variables available in

the dataset. To obtain the parameters involved in this part

of the rule, the procedure described in Sect. 3.2 is applied

to each of the input variables of the training dataset. The

chosen variable and the computed associated parameters

are those with the best R2 for the straight line they repre-

sent. This part, however, is not added to the rule if the best

R2 is below 0.25.

In addition, it has been taken into account that, when the

chosen variable is also a part of the rule antecedent, the

obtained parameter d must be within the range of the

examples covered by that rule in the said variable. There-

fore, the specific part of the rule will not be added when d

is out of this range. In this case, the associated R2 would be

set to zero.

Summarizing everything explained in this subsection,

Fig. 7 shows a flowchart of the linguistic tree-based rule

learning method in order to make its steps more

understandable.

4.2 Hybrid Multiobjective Evolutionary Learning

In this section, we present the proposed two-stage hybrid

multiobjective evolutionary algorithm. It is partially based

on the (FS-MOGFS) algorithm from [35], which applies a

modified version of the SPEA2 selection scheme [36]

including the corresponding external population. The basic

execution scheme of the proposed methodology (including

the objectives of each stage) is depicted in Fig. 8. Since the

whole algorithm is specifically designed to search for the

highest possible interpretability while always focusing on

the most accurate models, the most accurate solution is

considered to be the final output from both stages. Please

also take into account that Fig. 7 in the previous section

shows a flowchart that clarifies the operation of the process

for new linguistic tree-based rule learning.

As previously mentioned, this algorithm is made up of

two stages, which are described in the following.

4.2.1 First Stage: Learning the Knowledge Base

This stage performs an embedded multiobjective evolu-

tionary DB learning, which wraps the proposed linguistic

tree-based rule learning method. The components needed

to implement this stage are explained in depth below. They

are: coding, rule base derivation, objectives, population

initialization, crossing and mutation, incest prevention,

restarting, and stopping condition.

Coding of the DB.

123

C. Biedma-Rdguez et al.: Transparent but Accurate Evolutionary Regression Combining



A double coding scheme (C ¼ C1 þ C2) is applied to

represent both parts, granularity (number of simple lin-

guistic terms) and tuning of parameters (considering the

classic triangular-type MFs):

– Number of labels (C1): This part is a vector of integers

with size N (with N representing the number of

linguistic variables) in which the granularities of the

different variables are encoded,

C1 ¼ ðL1; . . .; LNÞ:

Each gene Li represents the number of labels used by

the variable i-th and takes values in f2; . . .; 7g. In [22],

cognitive psychologist George A. Miller proposed the

‘‘magic number,’’ stating that the number of different

objects (in our case labels) that can be handled in short-

term memory is 7� 2, which is the number of con-

ceptual entities a human being can handle at one time.

This number of maximum labels has been historically

assumed in the linguistic FRBSs area. As for the input

variables, they can also take a value equal to 1 to

determine that the corresponding variable is not used.

– Lateral displacements (C2): This part is a vector of real

numbers with size N in which the displacements of the

different variables are coded (see an explanation of the

lateral adjustment of fuzzy partitions in [35]). Thus, C2

contains the displacement values, where each gene is

the particular displacement value of the fuzzy partition

of the corresponding linguistic variable. It takes values

in ½�0:1; 0:1�,
C2 ¼ ða1; . . .; aNÞ:

Rule Base Derivation. To obtain a complete linguistic

model from a given chromosome (i.e., an evolved DB or

whole linguistic partition), we apply the proposed linguistic

tree-based rule learning method (see Sect. 4.1.2) to the DB

encoded by this chromosome.

Linguistic Model Tree Process  

Obtain consequent and rule extension
   with +/- s per +/- unit in v from d
s(slope), d(displacement), v(variable)

Tree pruning

Convert the tree into rules

Training examples and 
decoded linguistic partitions
from the chromosome coding 

Calculate SD weighted by the pairing of
examples with the rule built up to the node

Determine all the possible splitting pointsfalse

true

Interior node
For each possible split, calculate the SD 
weighted by the pairing of the examples 
for node.right and for node.left

Choose the split that maximizes the 
expected error reduction

Leaf node

Examples of the branch < 4, 
       OR the SD of the branch is less than 

      fraction of the total,OR R  of the 
parent is greater than R 

of branch node
2

2

Calculate the standard 
deviation (SD) of the root

SPLIT (root)

SPLIT (node.right)

SPLIT (node.left)

return

return

SPLIT (node) 

end

begin

Create root node

Fig. 7 Flowchart of linguistic tree-based rule learning
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To decode this DB before learning the rules, strong

fuzzy equally distributed partitions are defined with gran-

ularity values in C1. Secondly, the MFs of each variable

move slightly and uniformly to their new positions over the

displacement values in C2. The linguistic tree-based rule

learning algorithm is applied to this DB in order to obtain

its associated RB (see the type of rule structure and an

example in Sects. 3.1 and 3.2).

Objectives.

Once a complete linguistic model is obtained, the fol-

lowing two objectives are minimized: the number of rules

(simplicity) and the MSE (precision),

MSE ¼ 1

2 � jEj
XjEj

l¼1

ðFðxlÞ � ylÞ2;

where |E| is the dataset size, FðxlÞ is the output from the

FRBS obtained from a given chromosome when consid-

ering the example l-th, and yl is the known desired output.

The fuzzy inference system considered to obtain FðxlÞ is

the center of gravity weighted by the matching strategy as a

defuzzification operator and the minimum t-norm as

implication and conjunctive operators.

Initialize the Gene Population.

The initial population is composed of two different

subsets of individuals in order to ensure the inclusion of the

possible combinations between antecedent and consequent

granularity, while also including random maximum

diversity:

– In the first subset, each chromosome has the same

number of labels for all input variables in the system.

To provide diversity in C1, these solutions have been

generated considering all the possible combinations of

the antecedent part, that is, from 2 labels to 7 labels in

all the input variables (6 combinations). For each of

these combinations, all possible combinations are

generated in the corresponding consequent part (6

combinations for each input combination). In addition,

for each of the above combinations, two copies are

included with different values in the C2 part. The first is

included with random values in ½�0:1:0:0� and the

second with random values in [0.0, 0.1] . Therefore, a

total of 72 (6 � 6 � 2) different individuals are gener-

ated. If there is no space for these solutions, they will

range from the smallest granularities (the most inter-

esting combinations) to the highest possible

granularities.

– In the second subset, we generate random solutions in

order to complete the population (values in f2; . . .; 7g
for C1 and values in ½�0:1; 0:1� for C2).

Finally, except for problems with less than 3 input vari-

ables, an input variable v is eliminated at random, Lv ¼ 1,

in the first individual. This action is repeated until there are

no more than 5 variables in this individual. If the problem

does not have more than 5 variables, this action is not

repeated, so that only one variable is eliminated at random.

This process is applied to all individuals in the population

to avoid the generation of solutions with an excessive

number of rules.

Crossover and Mutation Operators.

The crossover operator depends on the part of the

chromosome to which it is applied. A crossing point is

randomly generated and the classic crossover operator is

applied to C1. The Parent Centric BLX (PCBLX) operator,

which is based on BLX-a, is applied to C2. PCBLX is

described more specifically below. Suppose that X ¼
ðx1. . .xnÞ and Y ¼ ðy1. . .ynÞ, with xi; yi 2 ½ai; bi� � R y

i ¼ 1. . .n, are two chromosomes with real coding that are

going to be crossed. PCBLX generates the following two

children:

– O1 ¼ ðo11. . .o1nÞ, where o1i is generated randomly

(uniformly) in the range ½l1i ; u1i �, with

l1i ¼ maxfai; xi � Iig, u1i ¼ minfbi; xi þ Iig, and

Ii ¼j xi � yi j �a. In our case, a has been set to 0.3.

– O2 ¼ ðo21. . .o2nÞ, where o2i is generated randomly

(uniformly) in the range ½l2i ; u2i �, with l2i ¼ maxfai; yi �
Iig and u2i ¼ minfbi; yi þ Iig.

As such, four new individuals are obtained by combining

the two children generated from C1 with the two children

from C2. The mutation operator is applied to each of them

with probability Pm. The mutation operator decreases the

granularity by 1 in a randomly selected gene g

(Lg ¼ Lg � 1), or randomly determines a greater granu-

larity in fLg þ 1; . . .; 7g with the same probability. No

decrease occurs when causing DBs with a single input

variable. The same gene is also changed randomly at C2.

Finally, after mutation, only the two most accurate indi-

viduals are used as descendants.

Incest Prevention.

An incest prevention mechanism has been included

following the concepts of CHC [37] and taking only C2

into account. Following the original CHC scheme (for

binary coding), two parents are crossed if their hamming

distance divided by 2 is above a predetermined threshold,

L. Since C2 makes use of a real coding scheme, we have to

transform each gene by considering a Gray Coding (binary

code) with a fixed number of bits per gene (BITSGENE),

which is determined by the system expert. In this way, the

threshold value is initialized as:

L ¼ ð#GenesC2 � BITSGENEÞ=4:0:

Typically, L is decreased by one when there are no new

individuals in the next generation. In our case, to accelerate
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convergence L will be reduced by two in each generation.

Incest prevention represents a way to provide a good bal-

ance between exploration and exploitation, avoiding

unnecessary crossings of very similar solutions in the early

stages of the algorithm.

Restarting and Stopping Condition.

In order to move away from local optima, a restarting

mechanism is applied by emptying the external population,

including the most precise individual in the new population

and generating the remaining individuals at random (taking

values between 1 and the granularity coded in the most

accurate individual for each gene in C1). This mechanism

is applied when the threshold value L is below zero (L is set

to its initial value).

The algorithm ends when a maximum number of eval-

uations is reached or when L is below zero for the second

time. This means that only two exploration/exploitation

stages are needed to achieve convergence.

4.2.2 Second Stage: Post-Processing Based

on Multiobjective Evolutionary Algorithms

Once a candidate linguistic model has been generated in

the learning stage, the next step is to apply a post-pro-

cessing performance tuning of the database and the

extended consequent parameters, and a rule selection. It is

based in part on the post-processing algorithm presented in

[35] and it once again applies a modified version of the

SPEA2 selection scheme [36] including the corresponding

external population. The new method is designed to adapt

to the type of rule generated in the first part that allows

some input variables, including CFLTSs, and thus making

use of the composed terms: ‘‘up to,’’ ‘‘from,’’ ‘‘from-to,’’

‘‘betw.-and,’’ and the parametric values of the extended

rule consequent. The components needed to implement this

stage of the algorithm are explained in depth below.

Objectives.

Since the main objective is to improve the inter-

pretability of linguistic FRBSs as well as their accuracy

(reliability), there are several metrics that will be used to

evaluate each FRBS. Again, the MSE and the number of

rules are used for both precision and complexity. Semantic

interpretability will be evaluated using one of the two

previously presented metrics, GM3M or RMI (see Sect. 2).

Therefore, each population chromosome, representing

an FRBS, will be evaluated according to the degree of

compliance in each of the following four objectives:

1. Maximize the value of the GM3M index: To preserve

the semantic interpretability of the initial MFs.

2. Maximize the value of the RMI index: To preserve or

improve the semantic interpretability of the rules.

3. Minimize the number of rules NR: To reduce the

complexity of the model.

4. Minimize the mean square error MSE: To reduce the

error of the system (improving its reliability).

Coding Scheme A triple coding scheme will be used,

one for the rule selection (CS), one for the tuning of MFs

(CT ) and another one for tuning of the extended consequent

linear parameters (s and d) (CL). A chromosome p has the

form Cp ¼ Cp
S þ Cp

T þ Cp
L .

The coding for Cp
S ¼ ðcS1; . . .; cSmÞ consists of a binary

vector with size m (number of initial rules). Depending on

whether a rule is selected or not, the corresponding gene

takes the values ‘1’ or ‘0,’ respectively.

For CT , we use a vector of real numbers that represents

the characteristic values of the MFs. That is, all the simple

MFs are adjusted, which also involves an indirect adapta-

tion of the CFLTSs used in the rules as they are based on

the simple MFs. The Coding of CT is:

Cp
T ¼ C1C2. . .Cn;

Ci ¼ ðai1; bi1; ci1; . . .; aimi ; bimi ; cimiÞ; i ¼ 1; . . .; n:
ð1Þ

CL is a vector of real numbers with size m � 2 that repre-

sents the extended consequent linear parameters (s and d)

for each of the m rules. See this type of rule structure and

an example in Sects. 3.1 and 3.2.

Cp
L ¼ ðcs1 ; . . .; csmÞ; ðcd1 ; . . .; cdmÞ.
In the learning phase, the range of acceptable values for

these parameters (which are used as gene domains) is

obtained, as well as the linear parametric part associated

with each rule consequent.. For example, the range of

possible acceptable values for s (slope) is obtained without

the line leaving the data range.

Initial Population

The initial population is obtained by following the rules

detailed below:

– CS: all the genes of all the individuals take value ‘1,’ so

that rule removal is carried out progressively at early

stages, mainly via mutation.

– CT of the first individual: the coding of the MFs of the

initial model is directly introduced.

– CT of the remaining individuals: it is initialized

randomly, taking into account the classic ranges of

variation established in the literature for triangular-

shaped MFs (see [35]).

– CL of the first individual: the parameters of the rule

lines (s and d) of the initial model are directly

introduced.

– CL of the remaining individuals: it is initialized

randomly, taking into account the range of variation

of the extended consequent linear parameters previ-

ously calculated in the first stage.
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Crossover and Mutation Operators.

The intelligent crossover operator and the mutation

operator used in this proposal have been selected based on

previous experiences [35] in dealing with the particular

problem of rule selection and MF tuning. When using two

different types of coding in a chromosome, it is necessary

to define specific operators for each of the parts of the

chromosome. The steps for obtaining each of the descen-

dants are shown in the following:

– The CT and CL parts of the descendant are fixed by

using the well-known BLX-0.5 [38] crossover operator.

– The CS part of the descendant is calculated by applying

the intelligent crossover operator to rule selection

problems in [35] once the real part CT of the

descendant has been obtained.

This process is repeated until the four descendants are

obtained. Once the descendants have been generated, the

mutation operator is applied. This operator is applied

independently to each of the chromosome parts. For the

real parts, CT and CL, the operator changes the value of a

randomly selected gene taking into account the ranges of

variation of the parameters. On the other hand, in the CS

part, the operator sets another selected randomly gene

directly to ‘0.’ After applying the mutation operator, only

the two descendants with the best precision are finally

selected.

Two problems are solved by applying these operators as

previously described. First, the result is more productive

when individuals that contain different rule configurations

are crossed. Second, rule extraction is favored from the

moment the mutation only focuses on eliminating unnec-

essary rules.

Special Mechanisms to Handle Balance Precision-

Interpretability.

The proposed algorithm uses the selection mechanism of

SPEA2 [36]. As we have previously mentioned, the fol-

lowing modifications have been included to improve its

search capabilities:

– An incest prevention mechanism based on the con-

cepts of CHC [37]. The method uses the mechanism as

described in [19]. However, in this case, we only

prevent a premature convergence in the CT part. It

performs as follows: only those parents whose Ham-

ming distance divided by 4 is greater than a threshold

are crossed. As a real coding scheme is used (only the

CT part is considered), it is necessary to transform each

gene to Gray code with a fixed number of bits per gene

(BGene), as determined by the expert. In this way, the

threshold value is initialized as L ¼ #CT�BGene
4

, where

#CT is the number of genes from the CT part of the

chromosome. In each generation of the algorithm, the

value of the threshold decreases by one unit, progres-

sively allowing closer solutions to be crossed with one

another.

– The restarting operator, which forces the external

population to be emptied, generates a new initial

population that contains some of the best solutions

already located by the algorithm. Specifically, the new

external population contains a copy of the individual

with the best accuracy and copies of the two individuals

with the best value in each of the other objectives

(GM3M, RMI and NR). In total, it keeps 7 of its

individuals, while the rest of the individuals reinitialize,

taking the same values as the individual with the best

precision in CS and random values in CT and CL. This

reinitialization process is applied when the threshold L

is below zero. In addition, this reinitialization process is

deactivated in the final evaluations of the algorithm,

and if it has never been applied before, then it is

deactivated in half the total number of evaluations.

5 Experimental Study

In this section, we will evaluate the goodness of the pro-

posed grammar and the rule structure extensions from an

interpretability point of view, while also paying special

attention to the accuracy (reliability). We also evaluate the

usefulness of the proposed method presented in this doc-

ument. This section is organized as follows:

1. Sect. 5.1 introduces the experimental setup.

2. Sect. 5.2 shows a statistical comparison with state-of-

the-art linguistic methods, which also optimize seman-

tic interpretability measures.

3. Sect. 5.3 presents a statistical comparison with a state-

of-the-art pure linguistic accuracy-oriented method in

order to show how the proposed method achieves a

good level of accuracy while it also obtains really

simple and semantically consistent models.

4. Sect. 5.4 presents a case study on a real problem

related to childhood obesity where real experts inter-

pret the obtained model.

5.1 Experimental Set-Up

In this subsection, we first show the experimental setup

used in this paper. The experiments are carried out with

several regression datasets. The main characteristics of

these datasets are presented in Table 1: name of the dataset

(NAME), short name or acronym of the dataset (ACRO),

number of variables (VAR), and number of examples

(CASES). The experimental study is carried out with 23

123

C. Biedma-Rdguez et al.: Transparent but Accurate Evolutionary Regression Combining



regression datasets with different numbers of instances and

variables (covering a range from 2 to 60 input variables and

from 43 to 4177 examples). These datasets have been

downloaded from the following web pages: UCI Machine

Learning Repository4, KEEL-dataset5, Dataset Collections

of Weka6, and Luis Torgo Repository7.

In all the experiments, we adopted a 5-fold cross-vali-

dation model, i.e., we randomly split the dataset into

5-folds, each of which contains 20% of the examples of the

dataset, and used four folds for training and one for testing.

For each of the five partitions, we executed six trials of the

algorithms (6 different seeds). The web page associated

with this paper includes the datasets used in this study (the

5-fold cross-validation partitions), which can be found in a

downloadable zip file (https://www.ugr.es/*ralcala/

papers/ijfs21/Datasets.zip).

Methods considered for the experiments are briefly

described and their main characteristics are summarized in

Table 2 referring some related methods8, 9,10. TS SP2�SI and

LING1 are two state-of-the-art methods used to obtain

interpretable, simple and accurate linguistic FRBSs, i.e.,

they also optimize the semantic and complexity inter-

pretability measures. Therefore, they are the most directly

related or comparable methods from the recent literature as

they were also designed to search for transparency.

FSmogfse?Tune is a MOEA used to embed the learning

of the DB with the wrapper RB generation plus a post-

processing stage to perform multiobjective evolutionary

MFs with tuning and rule selection. It is a state-of-the-art

pure linguistic accuracy-oriented method without further

interpretability restrictions. To the best of our knowledge,

this method obtains the most accurate pure linguistic

FRBSs to date. Even though it should not be directly

compared to interpretability oriented methods due to that

fact that it is free to fully focus on accuracy, we have

considered this method since it is actually representative of

the expected accuracy of linguistic FRBSs. For a more

detailed description of the methods, please refer to the

references in Table 2.

The values of the parameters used to execute the pro-

posed method at both stages are shown in Table 3. All of

them are general parameters and not specific to any dataset,

so that any user can set them (they are recommended

standard parameters) without needing to adapt them to new

problems. The values for the remaining algorithms are

those proposed by the authors in the corresponding papers.

We should note that all of them perform equitably in

100,000 evaluations.

In order to assess whether significant differences exist

among the results, we adopt statistical analysis based on

non-parametric tests, according to the recommendations

made in [29] and [30], where a set of simple, safe, and

robust non-parametric tests for statistical comparisons of

classifiers has been introduced. In particular, we will use

these non-parametric tests for a multiple comparison

[29, 30]: Friedman’s test and Holm’s method. Moreover,

we have applied Wilcoxon’s signed ranks test for pair-wise

comparison [29, 30]. A detailed description of these tests

can be seen in http://sci2s.ugr.es/sicidm/.

5.2 Comparison of Methods Considering Semantic

Interpretability Measures

In order to evaluate the effectiveness of the whole pro-

posal, two state-of-the-art methods for obtaining inter-

pretable, simple, and accurate linguistic FRBSs have been

Table 1 Regression datasets

NAME ACRO VAR CASES

Abalone ABA 8 4177

Anacalt ANA 7 4052

Baseball BAS 16 337

Boston housing BOS 13 506

Diabetes DIA 2 43

Machine CPU CPU 6 209

Electrical Maintenance ELE 4 1056

Body fat FAT 14 252

Forest Fires FOR 12 517

Friedman FRI 5 1200

Mortgage MOR 15 1049

Auto Mpg 6 MPG6 5 392

Auto Mpg 8 MPG8 7 392

AutoPrice PRI 15 159

Quake QUA 3 2178

Stocks domain STP 9 950

Strike STR 6 625

Treasury TRE 15 1049

Triazines TRI 60 186

Weather Ankara WAN 9 1609

Weather Izmir WIZ 9 1461

Wisconsin Breast Cancer WBC 32 194

Yacht Hydrodynamics YH 6 308

4 https://archive.ics.uci.edu/ml/index.php.
5 https://sci2s.ugr.es/keel/datasets.php.
6 https://cs.waikato.ac.nz/ml/Weka/datasets.html.
7 http://www.dcc.fc.up.pt/*ltorgo/Regression/DataSets.html.

8 IntMeas: indicates whether the algorithm includes and optimizes

interpretability measures.
9 WM: Wang and Mendel algorithm [39].
10 Tree-based RB generation: Proposed in Sect. 4.1.2.
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considered for comparisons, i.e., they also optimize the

semantic and complexity interpretability measures. They

are: TS SP2�SI proposed in [19] and LING1 proposed in

[21].

The results obtained by the studied methods are shown

in Table 4. This table is grouped in columns by algorithms

and it shows the average of the results obtained by each

algorithm in all the studied datasets. For each algorithm,

the first and second columns show both the average number

of used variables and rules. The third column shows the

average MSE in the test data (Tst.). The fourth and fifth

columns show the interpretability measures GM3M and RMI.

Finally, the last two rows of the table show the global

average values (Average) and the percentage of worsening

with respect to the proposed method (% worsen).

The results in this table show that the proposed method

obtains the best Average results in all the analyzed inter-

pretability measures. For all of them, the improvement with

respect to the previous proposals is quite significant.

Moreover, a significant number of datasets (in bold) can be

observed for which the proposed approach obtains more

accurate models.

Table 5 shows the rankings by carrying out Friedman’s

tests on the different methods considered in all the mea-

sures in this study (Var, NR, MSEtst, GM3M and RMI). The

best rankings are obtained by the proposed method in all

the measures considered.

Moreover, Table 6 shows the adjusted p-values (apv)

obtained using Holm’s test, comparing all the methods

versus the proposed method in all the measures. The results

show that the proposed method outperforms all the meth-

ods in all the measures..

Finally, the web page associated with this paper (https://

www.ugr.es/*ralcala/papers/ijfs21) shows some of the

obtained linguistic models including two known test

problems from the existent repositories, WAN (Weather in

Ankara) and WBC (Wisconsin Breast Cancer) datasets, and

analyses them from an interpretability point of view.

5.3 Comparison with a State-of-the-Art Pure

Linguistic ‘‘Accuracy-Oriented’’ Method

In this section, a study of the proposed method compared to

a method aimed at precision (FSmogfse?Tune) is carried

out. FSmogfse?Tune [35] is a MOEA used for embedded

learning of the DB with wrapper RB generation using

WM11, plus a post-processing stage to perform multiob-

jective evolutionary MF tuning and rule selection.

Although it has these two objetives (MSE and NR), it

actually uses them to try obtain more accurate solutions

without further interpretability restrictions. To our knowl-

edge, this method obtains the most accurate and pure lin-

guistic FRBSs in regression problems to date. Although

these problems are not comparable since our proposal is

assumed to lose accuracy at some level in favor of trans-

parency, we have included this comparison to show that it

is still possible to improve both together, obtaining higher

accuracy with much simple and more transparent models.

The results of the precision-oriented method are shown

in Table 7. These results also include the values in GM3M

and RMI measures (although the method does not originally

consider these measures, we have computed them on the

final models obtained by this method with comparative

purposes). In Table 7, we use the same terminology as in

the previous Table 4. The results in this table show how the

proposed method once again obtains the best global aver-

age values (Average) for all the interpretability measures,

where it also shows significant improvements. Moreover, it

Table 2 Methods considered in the comparisons

Method Refs. IntMeas Description Objectives

TSSP2�SI [19] Yes MOEA for Tuning and rule Selection (TS) MSE/NR/GM3M

LING1 [21] Yes MOEA TS with L-IRL MSE/NR/GM3M/RMI

FSmogfse?Tune [35] No MOEA for embedded learning of DB with wrapper MSE/NR

RB generation by WM ? TS MOEA

Proposed method – Yes CFLTS-based MOEA for embedded learning of DB with MSE/NR/GM3M/RMI

wrapper linguistic Tree-based RB generation ? TS MOEA

Table 3 Parameters

Parameter Value

Mutation probability Pm ¼ 0:2

Size of the population 200

Size of the external population 61

Number of evaluations 100000 (in total for both stages)

Bits per gen BGene ¼ 30

11 WM: Wang and Mendel algorithm [39].
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Table 4 Results for comparison to methods including and optimizing semantic interpretability measures (best results for each dataset and metric

in bold)

Datasets TSSP2�SI LING1

Var NR MSEtst GM3M RMI Var NR MSEtst GM3M RMI

ABA 8 16.27 2.513 0.450 0.692 8 13.00 2.780 0.470 0.660

ANA 7 88.17 0.006 0.204 0.154 7 155.27 0.006 0.470 0.000

BAS 16 83.37 389547 0.283 0.571 16 271.27 440395 0.411 0.584

BOS 13 173.33 13.957 0.325 0.384 13 13248.60 14.458 0.414 0.384

CPU 6 23.47 2246.11 0.395 0.564 6 31.60 2229.65 0.466 0.583

DIA 2 10.67 0.268 0.171 0.468 2 18.57 0.263 0.364 0.277

ELE 4 29.30 14851 0.528 0.504 4 32.50 18822 0.540 0.540

FAT 14 83.23 5.292 0.673 0.311 14 64.30 4.831 0.705 0.733

FOR 12 102.83 2211 0.215 0.734 12 507.47 4467 0.473 0.566

FRI 5 494.83 2.047 0.712 0.100 5 707.57 1.933 0.702 0.308

MOR 15 15.40 0.034 0.541 0.744 15 9.00 0.045 0.600 0.970

Mpg6 5 53.27 5.034 0.314 0.305 5 65.93 5.694 0.463 0.332

Mpg8 7 82.67 5.436 0.289 0.395 7 107.30 5.037 0.463 0.452

PRI 15 59.07 4104134 0.236 0.650 15 90.67 4816082 0.434 0.650

QUA 3 27.20 0.0182 0.275 0.512 3 96.73 0.0185 0.470 0.000

STP 9 32.87 0.775 0.365 0.513 9 14.10 1.640 0.470 0.760

STR 6 125.03 225851 0.644 0.332 6 174.17 248910 0.644 0.095

TRE 15 17.67 0.048 0.533 0.746 15 9.00 0.055 0.630 0.980

TRI 60 119.73 0.0133 0.119 0.568 60 170.37 0.0126 0.360 0.382

WAN 9 39.33 2.016 0.456 0.482 9 9.50 2.825 0.570 0.910

WIZ 9 29.20 1.095 0.493 0.487 9 13.00 1.525 0.610 0.930

WBC 32 142.73 948.41 0.218 0.754 32 246.567 928.64 0.397 0.710

YH 6 81.20 25.677 0.725 0.565 6 182.80 21.341 0.694 0.088

Average 12.09 83.95 – 0.398 0.502 12.09 140.84 – 0.514 0.517

% Worsen 510.10 1619.35 – 40.82 45.39 510.10 2784.48 – 23.67 43.69

Datasets Proposed method

Var NR MSEtst GM3M RMI

ABA 1.2 3.67 2.456 0.777 0.980

ANA 1.0 3.93 0.004 0.400 0.894

BAS 2.0 5.73 243569 0.606 0.954

BOS 3.1 6.93 8.276 0.619 0.805

CPU 2.2 4.93 1739.53 0.700 0.935

DIA 1.7 3.50 0.179 0.611 0.916

ELE 2.0 5.37 12184 0.679 0.928

FAT 1.6 3.83 1.292 0.862 0.973

FOR 1.0 2.07 2351 0.430 0.826

FRI 2.9 6.80 3.041 0.778 0.956

MOR 3.1 6.00 0.017 0.696 0.708

Mpg6 2.0 5.40 4.524 0.717 0.947

Mpg8 2.3 6.07 4.224 0.647 0.960

PRI 2.4 5.90 2700226 0.683 0.961

QUA 1.0 1.63 0.0179 0.547 0.890

STP 2.7 5.67 1.396 0.708 0.962

STR 1.4 3.70 172589 0.702 0.906

TRE 1.9 4.67 0.038 0.713 0.917

TRI 2.7 5.73 0.0116 0.735 0.964

WAN 2.0 5.67 1.506 0.699 0.959

WIZ 2.3 5.30 1.015 0.729 0.981

WBC 1.4 4.27 747.16 0.615 0.956

YH 1.6 5.53 0.895 0.829 0.843

Average 1.98 4.88 – 0.673 0.918

% Worsen
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also gives more accurate results (in bold) in a good number

of datasets..

Table 8 shows the results of the Wilcoxon’s test for the

proposed method and FSmogfse?Tune. The results show

that the proposed method outperforms FSmogfse?Tune on

Var, NR, GM3M, RMI, and Tst.

Additionally, on the web page associated with this paper

(https://www.ugr.es/*ralcala/papers/ijfs21), we have also

included an statistical comparison with some highly accu-

rate general purpose state-of-the-art algorithms (such as

Model Trees, Neural Networks, Random Forests, and

Support Vector Machines that are available in recognized

software tools) in order to create a simple benchmarking

Table 5 Rankings using

Friedman’s test on Var, NR,

GM3M, RMI, and Tst

Algorithm Rank. on Var Rank. on NR Rank. on GM3M Rank. on RMI Rank. on Tst

PROPOSED METHOD 1.0 1.00 1.09 1.13 1.17

TS SP2�SI 2.5 2.30 2.89 2.52 2.24

LING1 2.5 2.70 2.02 2.35 2.59

Table 6 Adjusted p-values

versus Proposed Method on

Var, NR, GM3M, RMI, and Tst

Algorithm apv on Var apv on NR apv on GM3M apv on RMI apv on Tst

TS SP2�SI 7.28E–7 9.72E–6 1.88E–9 4.76E–6 3.03E–4

LING1 7.28E–7 1.78E–8 1.52E–3 3.65E–5 3.30E–6

Table 7 Results for comparison

to a state-of-the-art pure

linguistic but only accuracy-

oriented method (best results for

each dataset and metric in bold)

Datasets FSmogfse?Tune Proposed method

Var NR MSEtst GM3M RMI Var NR MSEtst GM3M RMI

ABA 3.0 8.00 2.509 0.326 0.316 1.2 3.67 2.456 0.777 0.980

ANA 3.0 10.13 0.003 0.244 0.319 1.0 3.93 0.004 0.400 0.894

BAS 6.0 16.60 261323 0.212 0.450 2.0 5.73 243569 0.606 0.954

BOS 4.6 21.03 9.909 0.187 0.319 3.1 6.93 8.276 0.619 0.805

CPU 4.2 15.57 2390.30 0.281 0.576 2.2 4.93 1739.53 0.700 0.935

DIA 2 11.63 0.261 0.197 0.430 1.7 3.5 0.179 0.611 0.916

ELE 2.0 8.00 10548 0.436 0.559 2.0 5.37 12184 0.679 0.928

FAT 2.2 8.53 1.378 0.749 0.712 1.6 3.83 1.292 0.862 0.973

FOR 3.0 10.00 2628 0.166 0.728 1.0 2.07 2351 0.430 0.826

FRI 3.1 22.03 3.138 0.754 0.314 2.9 6.80 3.041 0.778 0.956

MOR 2.0 7.00 0.019 0.419 0.612 3.1 6.00 0.017 0.696 0.708

Mpg6 3.0 20.00 4.562 0.173 0.319 2.0 5.40 4.524 0.717 0.947

Mpg8 3.0 23.00 4.747 0.199 0.280 2.3 6.07 4.224 0.647 0.960

PRI 5.3 24.03 3344230 0.242 0.459 2.4 5.9 2700226 0.683 0.961

QUA 1.3 3.23 0.0178 0.091 0.668 1.0 1.63 0.0179 0.547 0.890

STP 3.0 23.00 0.912 0.197 0.307 2.7 5.67 1.396 0.708 0.962

STR 3.6 19.77 187917 0.667 0.422 1.4 3.70 172589 0.702 0.906

TRE 3.0 9.00 0.044 0.396 0.672 1.9 4.67 0.038 0.713 0.917

TRI 9.5 28.00 0.0119 0.179 0.393 2.7 5.73 0.0116 0.735 0.964

WAN 2.1 8.13 1.635 0.434 0.641 2.0 5.67 1.506 0.699 0.959

WIZ 2.0 10.00 1.011 0.370 0.607 2.3 5.30 1.015 0.729 0.981

WBC 5.5 25.50 766.89 0.180 0.185 1.4 4.27 747.16 0.615 0.956

YH 2.2 11.40 1.500 0.750 0.392 1.6 5.53 0.895 0.829 0.843

Average 3.42 14.94 – 0.341 0.464 2.0 4.88 – 0.673 0.918

% Worsen 72.71 205.97 49.29 49.44
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reference. Even though accuracy is not the main focus of

the paper and that, of course, these approaches are defi-

nitely more accurate than our proposal, we just would like

to show that we also achieve a really competitive perfor-

mance from an accuracy point of view, while we usually

get less than 5 linguistic rules.

5.4 A Case Study of a Real Problem Related

to Childhood Obesity

This section includes a real example of the application of

the proposed algorithm. This is a case study related to

childhood obesity, where the analysis of the obtained

model shown below has been provided by a real expert.

Children being overweight and obese is a serious world-

wide issue and one of the major health challenges in the

twenty-first century [40]. Many children who are over-

weight/obese before puberty become obese in early

adulthood.

Insulin resistance (IR), a reduced physiological response

of the peripheral tissues to normal levels of insulin, is a

growing concern that can result from childhood obesity

[41]. Among all childhood obesity comorbidities, IR is the

one that better correlates with the appearance of adverse

cardiometabolic events in later life, including in particular,

type 2 diabetes mellitus (T2DM) and cardiovascular dis-

ease (CVD) [42]. Several risk factors for IR in children

have been suggested, e.g., body mass index (BMI) [43],

central and peripheral adiposity, dietary factors, and

physical activity (PA) [44].

Here, we present a dataset derived from a cohort of 1014

Spanish children ranging from 5 to 15 years, grouped in

three experimental conditions (normal-weight, overweight

and children with obesity). The study population is com-

posed of 525 subjects in the obesity group, 201 in the

overweight group, and 288 in the normal-weight group. For

each group, a wide range of clinical and molecular data is

available, including up to 850.000 genetic and epigenetic

markers, more than 50 anthropometric and biochemical

measurements, as well as lifestyle and physical activity

(PA) data (obtained by means of food frequency ques-

tionnaires (FFQs) and accelerometers). As a particular case

of study, we aimed to investigate the relationship between

anthropometry, PA and IR status in the presented dataset of

the children, which is representative of the typical complex

biological records usually faced in life sciences. For this

purpose, we selected a subsample of the aforementioned

population consisting of 460 individuals presenting PA

data of sufficient quality. The HOMA-IR index

(Homeostasis Model Assessment for Insulin Resistance)

was modeled as the outcome variable since it has been

extensively validated as a good indicator of the IR status in

children and adults [45, 46]. As predictor variables in the

model, we employed clinical and anthropometric data

(such as sex, age, puberty, height, waist circumference, and

BMI), the main PA measurements (e.g., sedentary time

(ST) and light, moderate, and vigorous PA), as well as

biochemical indicators of cardiometabolic dysfunction that

differ from HOMA-IR in obese children (e.g., HDL and

LDL-cholesterol, triglycerides and two types of blood

pressure). Unlike other datasets that suffer limitations due

to the use of self-reported PA and ST measures, we used

more objective PA measures like accelerometry, which

allowed us to reduce study bias.

The results in Table 9 were obtained using a 5-fold

cross-validation and show the good performance of the

proposed method in this real problem. It obtains better

results in all measures as compared with the remaining

methods. Figure 9 includes an example of the linguistic

models obtained. Unlike the examples shown on the web

page (https://www.ugr.es/*ralcala/papers/ijfs21) associ-

ated with this work, which was analyzed without real

knowledge of the problems, the analysis shown below of

the model obtained has been provided by a real expert. The

variables in this figure are ordered to represent the same

order of splits in the tree generated when learning the rules.

In this way, we can consider each split as a way to rec-

ognize the different divisions in the data from more general

Table 8 Wilcoxon’s test to

compare PROPOSED METHOD

(Prop.) and FSMOGFS
e?TUN

e

( [35]) (Rþ) on Var, NR, GM3M,

RMI, and MSEtst

Methods

analyzed

Comparison Rþ R� Hypothesis

(a ¼ 0:05)
p-value % Improv.

Prop. vs. [35] Var 262 14 Rejected 1.72E–4 72.71

Prop. vs. [35] NR 276 0 Rejected 2.38E–7 205.97

Prop. vs. [35] GM3M 276 0 Rejected 2.38E–7 49.29

Prop. vs. [35] RMI 276 0 Rejected 2.89E–5 49.44

Prop. vs. [35] Tst 220 56 Rejected 0.011 –

Table 9 Results in the childhood obesity problem (best results for

each metric in bold)

Methods Var NR MSEtst GM3M RMI

Proposed method 1.83 4.37 0.911 0.716 0.956

FSmogfse?Tune 3.73 12.30 0.950 0.242 0.425

TSSP2�SI 15.00 320.37 1.430 0.314 0.649

LING1 15.00 590.97 1.450 0.377 0.641
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to more specific. We have used colors to ease the recog-

nition of the different cases represented by the rules (same

color per variable and split). Gray texts are included only to

provide additional information, but this information is

actually not a part of the rule structure proposed (and

therefore, it is not needed for inference or for under-

standing). This is the same for the percentage of covered

instances, for the GM3M and for the RMI values, since they

are purely informative and refer to the semantic quality of

each partition and rule, respectively.

As we previously explained, RMI goes from 1.0 (which

represents that what a single rule asserts in its main cov-

erage region is equal to what the model produces) to 0.0.

We can see that all the rules are qualified with RMI equal to

1.0 and the variables with GM3M values over 0.8 (i.e.,

almost all of them can be considered to be strong

equidistant linguistic partitions), so that the semantics are

fully preserved. Therefore, in this case, the proposed

method was able to properly describe the general behavior

of the dataset and to identify the main relationships

between predictor variables. In addition, the cut-off values

proposed by the method for variable binning (or fuzzy

discretization) were not only representative of the real

variable domains but also from the clinical point of view.

The main relationship detected by the model was

between the HOMA-IR and the BMI status. The method

first suggested dividing the population into two groups of

children according to their BMI values (	 [ or 	\
than 31). In this regard, rules generated in Fig. 9 show how

children with a BMI of approximately less than 31 also

have lower HOMA-IR values (and vice versa). Interest-

ingly, and in agreement with this result, BMI has been

previously presented as a risk factor for IR in child popu-

lations [43]. Within the group of children with a medium to

low BMI, in turn, the method proposed additional divisions

(rules) based on the level of vigorous PA. Children with

higher levels of vigorous PA per day have the lowest

HOMA-IR values. Interestingly, this finding is in line with

previous studies, in which moderate-to-vigorous intensity

PA has been inversely associated with cardiometabolic risk

in children [47]. On the other hand, although it may be

surprising that the method has not identified the ST vari-

able as an important predictor of HOMA-IR, this fact is

also in line with previous reports in which sedentary time

has not been related as a risk factor when moderate-to-

vigorous PA is taken into account [47]. In conclusion, the

method proposes a set of easily understandable and clini-

cally and biologically consistent rules, thus demonstrating

a good performance on complex biological datasets. The

rules generated also reveal behaviors and relationships

between variables that are in line with previous findings

reported with traditional statistics. Applying the method to

genetics and environmental data together in future case

studies could reveal new insights and point the way toward

novel therapeutic targets for more precise interventions in

childhood obesity.

6 Conclusions

This contribution is focused on the ability of the models

obtained to explain regression problem with two main

motivations:

– Understand and analyze a part of the underlying

available data in order to check that we have coherent

data that support information that is already known.

– Understand and analyze another part of the underlying

data available to also explain unknown behaviors and

relationships between variables, or to discover

unknown, interesting and useful information.

In this study, in order to describe this information in a way

that most resembles human expressions, we proposed an

extension of the grammar (based on the composition of

simple linguistic terms, including linguistic terms that are

more general and resemble the way that humans speak,

namely CFLTSs) and the fuzzy linguistic rule structure. It

Body Mass Index (BMI) - GM3M:0.8 
 7.4, 14.6, 19.3   ExtremLow (ExtLow) 
14.1, 19.5, 24.9   VeryLow 
21.4, 26.4, 31.3   Low 
27.6, 31.5, 36.6   Medium (Med) 
32.0, 37.0, 40.5   High 
35.7, 41.1, 46.5   VeryHigh 
39.9, 46.2, 51.1   ExtremHigh (ExtHigh) 

Triglycerides mg/dL (Trig) - 
GM3M:0.8 
-21.0,  16.5,  59.7   ExtLow
 31.1,  73.8, 109.3   VeryLow 
 45.4,  97.4, 146.0   Low 
115.2, 152.2, 175.9   Med 
140.0, 179.0, 218.0   High
179.0, 218.0, 257.0   VeryHigh 
221.1, 254.2, 291.2   ExtHigh 

Vigorous - GM3M:0.8 
-4.1, 18.5, 36.9   Low
10.7, 31.3, 59.6   Med 
29.6, 49.7, 68.7   High 

HOMA-IR - GM3M:0.9 
-3.0, 2.3,  7.5   Low
2.8, 8.0, 12.9   High

Height cm
Range: 
[100, 181] 

Variable labels and defini�on points of the membership func�ons: 

R1RMI:1.0 (3.5% of the instances):
IF BMI from Med AND Trig from Med 

THEN HOMA-IR betw. Low and High (centered on 5.2)
+/- 0.18 per +/- unit inHeight from 155 cm (moving in [Low,High])

R2RMI:1.0 (6.4% of the instances)
IF BMI from Med AND Trig up to Low 

THEN HOMA-IR betw. Low and High (centered on 5.2)
+/- 0.24 per +/- unit inBMI from 41.0 (moving in [Low,High])

R3RMI:1.0 (26.5% of the instances)
IF BMI up to Low AND Vigorous  up to Med AND Trig from Low 

THEN HOMA-IR is Low (centered on 2.3)
+/- 0.04 per +/- unit in Height from 155 cm (moving in[Low,High])

R4RMI:1.0 (61.0% of the instances)
IF BMI up to Low AND Vigorous up to Med AND Trig up to VeryLow 

THEN HOMA-IR is Low (centered on 2.3)
+/- 0.04 per +/- unit in Height from 166 cm(moving in[Low,High]))

R5RMI:1.0 (2.6% of the instances)
IF BMI up to Low AND Vigorous is High

THEN HOMA-IR is Low (centered on 2.3)
+/- 0.22 per +/- unit inBMI from 19.6 (moving in [Low])

t )

Fig. 9 KB obtained in the obesity problem (MSEtst=0.706)
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allows both the general behavior of the data and its specific

variability to be expressed in the same rule, so that in

general fewer rules are needed to learn accurate linguistic

models. However, the major contribution of this paper is

the proposal of a novel interpretable linear extension of the

consequent rule structure. This is of great importance for

regression as it is a key point to maintain competitive (or

even improved) accuracy. The consequent rule structure

has been extended to explain the specific variability of the

rule by means of two parameters that explain simple linear

relations that can still be interpreted linguistically. Fur-

thermore, we have proposed a method in two stages

(learning DB?RB and tuning with rule selection) to opti-

mize accuracy together with some interpretability mea-

sures. The main contribution in this part is the use of a new

linguistic RB tree-based learning that adapts perfectly to

the new type of rules.

We have statistically tested the proposal on 23 regres-

sion datasets with different complexities. The results

obtained show the effectiveness of the proposed method by

applying the Holm’s, Friedman, and Wilcoxon tests to all

the interpretability indexes, including accuracy, as it out-

performs some of the previous state-of-the-art methods for

obtaining interpretable pure linguistic FRBSs and also

outperforms (even in accuracy) a state-of-art accuracy-

oriented method. One of the most remarkable advantages is

that it usually obtains very simple models, with only 4 or 5

rules, while still improving accuracy with respect to much

more complex linguistic models. Furthermore, additional

and useful information has been obtained that has never

been seen before in previous linguistic fuzzy proposals,

such as relatively simple linear relations with linguistic

interpretations.

Finally, we have included a representative example of

the linguistic model obtained in a case study on a real

problem related to childhood obesity, where the analysis

shown on the obtained model is provided by a real expert.

The descriptions obtained seem to be clear and coherent, as

we have been able to interpret them easily and as indicated

to us by the expert.

Acknowledgements This paper has been supported by the Andalu-

sian Government under Grant P18-RT-2248, the Health Institute

Carlos III/Spanish Ministry of Science, Innovation and Universities

under Grant PI20/00711, and the Spanish Ministry of Economy and

Competitiveness under Grant PID2019-107793GB-I00 and Grant

PID2020-119478GB-I00.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Castelvecchi, D.: Can we open the black box of AI? Nature 538,
20–23 (2016)

2. Knight, W.: The U.S. military wants its autonomous machines to

explain themselves. MIT Technol. Rev. 1, 16 (2017)

3. Gadd, S.: Computer system could kill rather than cure, doctors

warn, The Copenhagen Post (2017). http://cphpost.dk/?p=92249

4. Montavon, G., Samek, W., Müller, K.-R.: Methods for inter-

preting and understanding deep neural networks. Digital Signal

Process. 73, 1–15 (2018). https://doi.org/10.1016/j.dsp.2017.10.

011

5. Greene, D., Lauren Hoffmann, A., Stark, L.: Better, nicer,

clearer, fairer: a critical assessment of the movement for ethical

artificial intelligence and machine learning. In: Proceedings of the

52nd Hawaii International Conference on System Sciences,

Grand Wailea, Maui, Hawaii, 2019, pp. 2122–2131. https://doi.

org/10.24251/HICSS.2019.258

6. Goodman, B., Flaxman, S.: European union regulations on

algorithmic decision-making and a ‘‘right to explanation’’. AI

Mag. 38(3), 50–57 (2017). https://doi.org/10.1609/aimag.v38i3.

2741

7. Goodman, B., Flaxman, S.: European union regulations on

algorithmic decision making and a ‘‘right to explanation’’. In:

ICMLWorkshop on Human Interpretability in Machine Learning

(WHI), New York, NY, 2016, pp. 1–9

8. Council, A.U.P.P.: Statement on algorithmic transparency and

accountability (2017). https://www.acm.org/binaries/content/

assets/public-policy/2017_joint_statement_algorithms.pdf

9. European Union Agency for Fundamental Rights: Handbook on

European Data Protection Law, FRA. Publications Office of the

European Union, Luxembourg (2018)

10. Gunning, D.: Explainable articial intelligence (XAI). tech. report,

defen-se advanced research projects agency, Tech. rep., Arling-

ton, DARPA-BAA-16-53 (2016)

11. Fernandez, A., Herrera, F., Cordon, O., Jose del Jesus, M.,

Marcelloni, F.: Evolutionary fuzzy systems for explainable arti-

ficial intelligence: why, when, what for, and where to? IEEE

Comput. Intell. Mag. 14(1), 69–81 (2019). https://doi.org/10.

1109/MCI.2018.2881645

12. Alonso, J.M., Casalino, G.: Explainable artificial intelligence for

human-centric data analysis in virtual learning environments. In:

Burgos, D., Cimitile, M., Ducange, P., Pecori, R., Picerno, P.,

Raviolo, P., Stracke, C.M. (eds.) Higher Education Learning

Methodologies and Technologies Online, pp. 125–138. Springer

International Publishing, Cham (2019). https://doi.org/10.1007/

978-3-030-31284-8_10

13. Barredo Arrieta, A., Dı́az-Rodrı́guez, N., Del Ser, J., Bennetot,

A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D.,

Benjamins, R., Chatila, R., Herrera, F.: Explainable artificial

intelligence (xai): concepts, taxonomies, opportunities and chal-

lenges toward responsible ai. Inform. Fusion 58, 82–115 (2020).

https://doi.org/10.1016/j.inffus.2019.12.012

14. Rudin, C.: Stop explaining black box machine learning models

for high stakes decisions and use interpretable models instead.

Nat. Mach. Intell. 1, 206–215 (2019). https://doi.org/10.1038/

s42256-019-0048-x

123

International Journal of Fuzzy Systems

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://cphpost.dk/?p=92249
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.24251/HICSS.2019.258
https://doi.org/10.24251/HICSS.2019.258
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1609/aimag.v38i3.2741
https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
https://doi.org/10.1109/MCI.2018.2881645
https://doi.org/10.1109/MCI.2018.2881645
https://doi.org/10.1007/978-3-030-31284-8_10
https://doi.org/10.1007/978-3-030-31284-8_10
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x


15. Watson, D.S., Krutzinna, J., Bruce, I.N., Griffiths, C.E., McInnes,

I.B., Barnes, M.R., Floridi, L.: Clinical applications of machine

learning algorithms: beyond the black box. BMJ 364, 32 (2019).

https://doi.org/10.1136/bmj.l886

16. El-Sappagh, S., Alonso, J.M., Ali, F., Ali, A., Jang, J., Kwak, K.:

An ontology-based interpretable fuzzy decision support system

for diabetes diagnosis. IEEE Access 6, 37371–37394 (2018)

17. Song, X., Qin, B., Xiao, F.: FR-KDE: a hybrid fuzzy rule-based

information fusion method with its application in biomedical

classification. Int. J. Fuzzy Syst. 23, 392–404 (2021). https://doi.

org/10.1007/s40815-020-00957-z

18. Xu, C., Qian, G., Wang, H.: Stochastic multiple criteria com-

prehensive evaluation based on probabilistic linguistic preference

relations: a case study of healthcare insurance audits in china. Int.

J. Fuzzy Syst. 22, 1607–1623 (2020). https://doi.org/10.1007/

s40815-020-00865-2
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