9 research outputs found

    HELIX-RC

    Get PDF
    Data dependences in sequential programs limit parallelization because extracted threads cannot run independently. Although thread-level speculation can avoid the need for precise dependence analysis, communication overheads required to synchronize actual dependences counteract the benefits of parallelization. To address these challenges, we propose a lightweight architectural enhancement co-designed with a parallelizing compiler, which together can decouple communication from thread execution. Simulations of these approaches, applied to a processor with 16 Intel Atom-like cores, show an average of 6.85x performance speedup for six SPEC CINT2000 benchmarksThis work was possible thanks to the sponsorship of the Royal Academy of Engineering, EPSRC and the National Science Foundation (award number IIS-0926148).This is the accepted manuscript. The final version is available from IEEE and ACM at http://dl.acm.org/citation.cfm?doid=2678373.2665705

    Unified Polyhedral Modeling of Temporal and Spatial Locality

    Get PDF
    Despite decades of work in this area, the construction of effective loop nest optimizers and parallelizers continues to be challenging due to the increasing diversity of both loop-intensive application workloads and complex memory/computation hierarchies in modern processors. The lack of a systematic approach to optimizing locality and parallelism, with a well-founded data locality model, is a major obstacle to the design of optimizing compilers coping with the variety of software and hardware. Acknowledging the conflicting demands on loop nest optimization, we propose a new unified algorithm for optimizing parallelism and locality in loop nests, that is capable of modeling temporal and spatial effects of multiprocessors and accelerators with deep memory hierarchies and multiple levels of parallelism. It orchestrates a collection of parameterizable optimization problems for locality and parallelism objectives over a polyhedral space of semantics-preserving transformations. The overall problem is not convex and is only constrained by semantics preservation. We discuss the rationale for this unified algorithm, and validate it on a collection of representative computational kernels/benchmarks.Malgré les décennies de travail dans ce domaine, la construction de compilateurs capables de paraléliser et optimiser les nids de boucle reste un problème difficile, dans le contexte d’une augmentation de la diversité des applications calculatoires et de la complexité de la hiérarchie de calcul et de stockage des processeurs modernes. L’absence d’une méthode systématique pour optimiser la localité et le parallélisme, fondée sur un modèle de localité des données pertinent, constitue un obstacle majeur pour prendre en charge la variété des besoins en optimisation de boucles issus du logiciel et du matériel. Dans ce contexte, nous proposons un nouvel algorithme unifié pour l’optimisation du parallélisme et de la localité dans les nids de boucles, capable de modéliser les effets temporels et spatiaux des multiprocesseurs et accélérateurs comportant des hiérarchies profondes de parallélisme et de mémoire. Cet algorithme coordonne la résolution d’une collection de problèmes d’optimisation paramètrés, portant sur des objectifs de localité ou et de parallélisme, dans un espace polyédrique de transformations préservant la sémantique du programme. La conception de cet algorithme fait l’objet d’une discussion systématique, ainsi que d’une validation expérimentale sur des noyaux calculatoires et benchmarks représentatifs

    Compiler-Driven Software Speculation for Thread-Level Parallelism

    Get PDF
    Current parallelizing compilers can tackle applications exercising regular access patterns on arrays or affine indices, where data dependencies can be expressed in a linear form. Unfortunately, there are cases that independence between statements of code cannot be guaranteed and thus the compiler conservatively produces sequential code. Programs that involve extensive pointer use, irregular access patterns, and loops with unknown number of iterations are examples of such cases. This limits the extraction of parallelism in cases where dependencies are rarely or never triggered at runtime. Speculative parallelism refers to methods employed during program execution that aim to produce a valid parallel execution schedule for programs immune to static parallelization. The motivation for this article is to review recent developments in the area of compiler-driven software speculation for thread-level parallelism and how they came about. The article is divided into two parts. In the first part the fundamentals of speculative parallelization for thread-level parallelism are explained along with a design choice categorization for implementing such systems. Design choices include the ways speculative data is handled, how data dependence violations are detected and resolved, how the correct data are made visible to other threads, or how speculative threads are scheduled. The second part is structured around those design choices providing the advances and trends in the literature with reference to key developments in the area. Although the focus of the article is in software speculative parallelization, a section is dedicated for providing the interested reader with pointers and references for exploring similar topics such as hardware thread-level speculation, transactional memory, and automatic parallelization

    Advances in the Automatic Detection of Optimization Opportunities in Computer Programs

    Get PDF
    Massively parallel and heterogeneous systems together with their APIs have been used for various applications. To achieve high-performance software, the programmer should develop optimized algorithms to maximize the system’s resource utilization. However, designing such algorithms is challenging and time-consuming. Therefore, optimizing compilers are developed to take part in the programmer’s optimization burden. Developing effective optimizing compilers is an active area of research. Specifically, because loop nests are usually the hot spots in a program, their optimization has been the main subject of many optimization algorithms. This thesis aims to improve the scope and applicability of performance optimization algorithms used in the compiler optimization phase. In the first two chapters, we focus on the parts of the programs with for-loop nests. We take advantage of the polyhedral model and the scalar evolution to develop algorithms that can automatically discover new optimization opportunities in computer programs. Our functions operate at the intermediate representation level and are implemented as part of the LLVM infrastructure. In the final chapter, we improve the performance of the Fourier-Motzkin elimination method, which is an underlying algorithm in the polyhedral theory

    Structured parallelism discovery with hybrid static-dynamic analysis and evaluation technique

    Get PDF
    Parallel computer architectures have dominated the computing landscape for the past two decades; a trend that is only expected to continue and intensify, with increasing specialization and heterogeneity. This creates huge pressure across the software stack to produce programming languages, libraries, frameworks and tools which will efficiently exploit the capabilities of parallel computers, not only for new software, but also revitalizing existing sequential code. Automatic parallelization, despite decades of research, has had limited success in transforming sequential software to take advantage of efficient parallel execution. This thesis investigates three approaches that use commutativity analysis as the enabler for parallelization. This has the potential to overcome limitations of traditional techniques. We introduce the concept of liveness-based commutativity for sequential loops. We examine the use of a practical analysis utilizing liveness-based commutativity in a symbolic execution framework. Symbolic execution represents input values as groups of constraints, consequently deriving the output as a function of the input and enabling the identification of further program properties. We employ this feature to develop an analysis and discern commutativity properties between loop iterations. We study the application of this approach on loops taken from real-world programs in the OLDEN and NAS Parallel Benchmark (NPB) suites, and identify its limitations and related overheads. Informed by these findings, we develop Dynamic Commutativity Analysis (DCA), a new technique that leverages profiling information from program execution with specific input sets. Using profiling information, we track liveness information and detect loop commutativity by examining the code’s live-out values. We evaluate DCA against almost 1400 loops of the NPB suite, discovering 86% of them as parallelizable. Comparing our results against dependence-based methods, we match the detection efficacy of two dynamic and outperform three static approaches, respectively. Additionally, DCA is able to automatically detect parallelism in loops which iterate over Pointer-Linked Data Structures (PLDSs), taken from wide range of benchmarks used in the literature, where all other techniques we considered failed. Parallelizing the discovered loops, our methodology achieves an average speedup of 3.6× across NPB (and up to 55×) and up to 36.9× for the PLDS-based loops on a 72-core host. We also demonstrate that our methodology, despite relying on specific input values for profiling each program, is able to correctly identify parallelism that is valid for all potential input sets. Lastly, we develop a methodology to utilize liveness-based commutativity, as implemented in DCA, to detect latent loop parallelism in the shape of patterns. Our approach applies a series of transformations which subsequently enable multiple applications of DCA over the generated multi-loop code section and match its loop commutativity outcomes against the expected criteria for each pattern. Applying our methodology on sets of sequential loops, we are able to identify well-known parallel patterns (i.e., maps, reduction and scans). This extends the scope of parallelism detection to loops, such as those performing scan operations, which cannot be determined as parallelizable by simply evaluating liveness-based commutativity conditions on their original form

    Profile-driven parallelisation of sequential programs

    Get PDF
    Traditional parallelism detection in compilers is performed by means of static analysis and more specifically data and control dependence analysis. The information that is available at compile time, however, is inherently limited and therefore restricts the parallelisation opportunities. Furthermore, applications written in C – which represent the majority of today’s scientific, embedded and system software – utilise many lowlevel features and an intricate programming style that forces the compiler to even more conservative assumptions. Despite the numerous proposals to handle this uncertainty at compile time using speculative optimisation and parallelisation, the software industry still lacks any pragmatic approaches that extracts coarse-grain parallelism to exploit the multiple processing units of modern commodity hardware. This thesis introduces a novel approach for extracting and exploiting multiple forms of coarse-grain parallelism from sequential applications written in C. We utilise profiling information to overcome the limitations of static data and control-flow analysis enabling more aggressive parallelisation. Profiling is performed using an instrumentation scheme operating at the Intermediate Representation (Ir) level of the compiler. In contrast to existing approaches that depend on low-level binary tools and debugging information, Ir-profiling provides precise and direct correlation of profiling information back to the Ir structures of the compiler. Additionally, our approach is orthogonal to existing automatic parallelisation approaches and additional fine-grain parallelism may be exploited. We demonstrate the applicability and versatility of the proposed methodology using two studies that target different forms of parallelism. First, we focus on the exploitation of loop-level parallelism that is abundant in many scientific and embedded applications. We evaluate our parallelisation strategy against the Nas and Spec Fp benchmarks and two different multi-core platforms (a shared-memory Intel Xeon Smp and a heterogeneous distributed-memory Ibm Cell blade). Empirical evaluation shows that our approach not only yields significant improvements when compared with state-of- the-art parallelising compilers, but comes close to and sometimes exceeds the performance of manually parallelised codes. On average, our methodology achieves 96% of the performance of the hand-tuned parallel benchmarks on the Intel Xeon platform, and a significant speedup for the Cell platform. The second study, addresses the problem of partially sequential loops, typically found in implementations of multimedia codecs. We develop a more powerful whole-program representation based on the Program Dependence Graph (Pdg) that supports profiling, partitioning and codegeneration for pipeline parallelism. In addition we demonstrate how this enhances conventional pipeline parallelisation by incorporating support for multi-level loops and pipeline stage replication in a uniform and automatic way. Experimental results using a set of complex multimedia and stream processing benchmarks confirm the effectiveness of the proposed methodology that yields speedups up to 4.7 on a eight-core Intel Xeon machine

    Design of robust scheduling methodologies for high performance computing

    Get PDF
    Scientific applications are often large, complex, computationally-intensive, and irregular. Loops are often an abundant source of parallelism in scientific applications. Due to the ever-increasing computational needs of scientific applications, high performance computing (HPC) systems have become larger and more complex, offering increased parallelism at multiple hardware levels. Load imbalance, caused by irregular computational load per task and unpredictable computing system characteristics (system variability), often degrades the performance of applications. Besides, perturbations, such as reduced computing power, network latency availability, or failures, can severely impact the performance of the applications. System variability and perturbations are only expected to increase in future extreme-scale computing systems. Extrapolating the current failure rate to Exascale would result in a failure every 20 minutes. Such failure rate and perturbations would render the computing systems unusable. This doctoral thesis improves the performance of computationally-intensive scientific applications on HPC systems via robust load balancing. Robust scheduling ensures and maintains improved load balanced execution under unpredictable application and system characteristics. A number of dynamic loop self-scheduling (DLS) techniques have been introduced and successfully used in scientific applications between the 1980s and 2000s. These DLS techniques are not fault-tolerant as they were originally introduced. In this thesis, we identify three major research questions to achieve robust scheduling (1) How to ensure that the DLS techniques employed in scientific applications today adhere to their original design goals and specifications? (2) How to select a DLS technique that will achieve improved performance under perturbations? (3) How to tolerate perturbations during execution and maintain a load balanced execution on HPC systems? To answer the first question, we reproduced the original experiments that introduced the DLS techniques to verify their present implementation. Simulation is used to reproduce experiments on systems from the past. Realistic simulation induces a similar analysis and conclusions to the analysis of the native results. To this end, we devised an approach for bridging the native and simulative executions of parallel applications on HPC systems. This simulation approach is used to reproduce scheduling experiments on past and present systems to verify the implementation of DLS techniques. Given the multiple levels of parallelism offered by the present HPC systems, we analyzed the load imbalance in scientific applications, from computer vision, astrophysics, and mathematical kernels, at both thread and process levels. This analysis revealed a significant interplay between thread level and process level load balancing. We found that dynamic load balancing at the thread level propagates to the process level and vice versa. However, the best application performance is only achieved by two-level dynamic load balancing. Next, we examined the performance of applications under perturbations. We found that the most robust DLS technique does not deliver the best performance under various perturbations. The most efficient DLS technique changes by changing the application, the system, or perturbations during execution. This signifies the algorithm selection problem in the DLS. We leveraged realistic simulations to address the algorithm selection problem of scheduling under perturbations via a simulation assisted approach (SimAS), which answers the second question. SimAS dynamically selects DLS techniques that improve the performance depending on the application, system, and perturbations during the execution. To answer the third question, we introduced a robust dynamic load balancing (rDLB) approach for the robust self-scheduling of scientific applications under failures (question 3). rDLB proactively reschedules already allocated tasks and requires no detection of perturbations. rDLB tolerates up to P −1 processor failures (P is the number of processors allocated to the application) and boosts the flexibility of applications against nonfatal perturbations, such as reduced availability of resources. This thesis is the first to provide insights into the interplay between thread and process level dynamic load balancing in scientific applications. Verified DLS techniques, SimAS, and rDLB are integrated into an MPI-based dynamic load balancing library (DLS4LB), which supports thirteen DLS techniques, for robust dynamic load balancing of scientific applications on HPC systems. Using the methods devised in this thesis, we improved the performance of scientific applications by up to 21% via two-level dynamic load balancing. Under perturbations, we enhanced their performance by a factor of 7 and their flexibility by a factor of 30. This thesis opens up the horizons into understanding the interplay of load balancing between various levels of software parallelism and lays the ground for robust multilevel scheduling for the upcoming Exascale HPC systems and beyond

    Language and compiler support for stream programs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 153-166).Stream programs represent an important class of high-performance computations. Defined by their regular processing of sequences of data, stream programs appear most commonly in the context of audio, video, and digital signal processing, though also in networking, encryption, and other areas. Stream programs can be naturally represented as a graph of independent actors that communicate explicitly over data channels. In this work we focus on programs where the input and output rates of actors are known at compile time, enabling aggressive transformations by the compiler; this model is known as synchronous dataflow. We develop a new programming language, StreamIt, that empowers both programmers and compiler writers to leverage the unique properties of the streaming domain. StreamIt offers several new abstractions, including hierarchical single-input single-output streams, composable primitives for data reordering, and a mechanism called teleport messaging that enables precise event handling in a distributed environment. We demonstrate the feasibility of developing applications in StreamIt via a detailed characterization of our 34,000-line benchmark suite, which spans from MPEG-2 encoding/decoding to GMTI radar processing. We also present a novel dynamic analysis for migrating legacy C programs into a streaming representation. The central premise of stream programming is that it enables the compiler to perform powerful optimizations. We support this premise by presenting a suite of new transformations. We describe the first translation of stream programs into the compressed domain, enabling programs written for uncompressed data formats to automatically operate directly on compressed data formats (based on LZ77). This technique offers a median speedup of 15x on common video editing operations.(cont.) We also review other optimizations developed in the StreamIt group, including automatic parallelization (offering an 11x mean speedup on the 16-core Raw machine), optimization of linear computations (offering a 5.5x average speedup on a Pentium 4), and cache-aware scheduling (offering a 3.5x mean speedup on a StrongARM 1100). While these transformations are beyond the reach of compilers for traditional languages such as C, they become tractable given the abundant parallelism and regular communication patterns exposed by the stream programming model.by William Thies.Ph.D

    Applications Development for the Computational Grid

    Get PDF
    corecore