
Language and Compiler Support for Stream Programs
by

William Thies

Bachelor of Science, Computer Science and Engineering
Massachusetts Institute of Technology, 2001

Bachelor of Science, Mathematics
Massachusetts Institute of Technology, 2002

Master of Engineering, Computer Science and Engineering
Massachusetts Institute of Technology, 2002

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2009

c© Massachusetts Institute of Technology 2009. All rights reserved.

Author .. .
Department of Electrical Engineering and Computer Science

January 30, 2009

Certified by .. .
Saman Amarasinghe
Associate Professor

Thesis Supervisor

Accepted by .. .
Terry P. Orlando

Chair, Department Committee on Graduate Students

2

Language and Compiler Support for Stream Programs
by

William Thies

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2009, in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy

Abstract

Stream programs represent an important class of high-performance computations. Defined by their
regular processing of sequences of data, stream programs appear most commonly in the context of
audio, video, and digital signal processing, though also innetworking, encryption, and other areas.
Stream programs can be naturally represented as a graph of independent actors that communicate
explicitly over data channels. In this work we focus on programs where the input and output rates
of actors are known at compile time, enabling aggressive transformations by the compiler; this
model is known as synchronous dataflow.

We develop a new programming language, StreamIt, that empowers both programmers and
compiler writers to leverage the unique properties of the streaming domain. StreamIt offers several
new abstractions, including hierarchical single-input single-output streams, composable primitives
for data reordering, and a mechanism calledteleport messagingthat enables precise event han-
dling in a distributed environment. We demonstrate the feasibility of developing applications in
StreamIt via a detailed characterization of our 34,000-line benchmark suite, which spans from
MPEG-2 encoding/decoding to GMTI radar processing. We alsopresent a novel dynamic analysis
for migrating legacy C programs into a streaming representation.

The central premise of stream programming is that it enablesthe compiler to perform powerful
optimizations. We support this premise by presenting a suite of new transformations. We describe
the first translation of stream programs into the compresseddomain, enabling programs written for
uncompressed data formats to automatically operate directly on compressed data formats (based
on LZ77). This technique offers a median speedup of 15x on common video editing operations.
We also review other optimizations developed in the StreamIt group, including automatic paral-
lelization (offering an 11x mean speedup on the 16-core Raw machine), optimization of linear
computations (offering a 5.5x average speedup on a Pentium 4), and cache-aware scheduling (of-
fering a 3.5x mean speedup on a StrongARM 1100). While these transformations are beyond the
reach of compilers for traditional languages such as C, theybecome tractable given the abundant
parallelism and regular communication patterns exposed bythe stream programming model.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

I would like to start by expressing my deepest gratitude to myadvisor, colleague and friend, Saman
Amarasinghe. From 4am phone calls in Boston to weeks of one-on-one time in Sri Lanka and
India, Saman investedunfathomabletime and energy into my development as a researcher and as
a person. His extreme creativity, energy, and optimism (notto mention mad PowerPoint skills!)
have been a constant source of inspiration, and whenever I amat my best, it is usually because I am
asking myself:What would Saman do? Saman offered unprecedented freedom for me to pursue
diverse interests in graduate school – including weeks at a time working with other groups – and
served as a fierce champion on my behalf in every possible way.I will forever treasure our deep
sense of shared purpose and can only aspire to impact others as much as he has impacted me.

Contributors to this dissertation Many people made direct contributions to the content of this
dissertation. The StreamIt project was a fundamentally collaborative undertaking, involving the
extended efforts of over 27 people. I feel very lucky to have been part of such an insightful, ded-
icated, and fun team. Section1.4 provides a technical overview of the entire project, including
the division of labor. In what follows I am listing only a subset of each person’s actual contribu-
tions. Michael Gordon, my kindred Ph.D. student throughoutthe entire StreamIt project, led the
development of the parallelization algorithms (summarized in Chapter 4), the Raw backend and
countless other aspects of the compiler. Rodric Rabbah championed the project in many capaci-
ties, including contributions to cache optimizations (summarized in Chapter 4), teleport messaging
(Chapter 3), the MPEG2 benchmarks, an Eclipse interface, and the Cell backend. Michal Karcz-
marek was instrumental in the original language design (Chapter 2) and teleport messaging, and
also implemented the StreamIt scheduler and runtime library. David Maze, Jasper Lin, and Allyn
Dimock made sweeping contributions to the compiler infrastructure; I will forever admire their
skills and tenacity in making everything work.

Central to the StreamIt project is an exceptional array of M.Eng. students, who I feel very priv-
ileged to have interacted with over the years. Andrew Lamb, Sitij Agrawal, and Janis Sermulins led
the respective development of linear optimizations, linear statespace optimizations, and cache opti-
mizations (all summarized in Chapter 4). Janis also implemented the cluster backend, with support
for teleport messaging (providing results for Chapter 3). Matthew Drake implemented the MPEG2
codec in StreamIt, while Jiawen Chen implemented a flexible graphics pipeline and Basier Aziz
implemented mosaic imaging. Daviz Zhang developed a lightweight streaming layer for the Cell
processor; Kimberly Kuo developed an Eclipse user interface for StreamIt; Juan Reyes developed
a graphical editor for stream graphs; and Jeremy Wong modeled the scalability of stream pro-
grams. Kunal Agrawal investigated bit-level optimizations in StreamIt. Ceryen Tan is improving
StreamIt’s multicore backend.

The StreamIt project also benefited from an outstanding set of undergraduate researchers, who
taught me many things. Ali Meli, Chris Leger, Satish Ramaswamy, Matt Brown, and Shirley Fung
made important contributions to the StreamIt benchmark suite (detailed in Chapter 2). Steve Hall
integrated compressed-domain transformations into the StreamIt compiler (providing results for
Chapter 5). Qiuyuan Li worked on a StreamIt backends for Cell, while Phil Sung targeted a GPU.

Individuals from other research groups also impacted the StreamIt project. Members of the
Raw group offered incredible support for our experiments, including Anant Agarwal, Michael
Taylor, Walter Lee, Jason Miller, Ian Bratt, Jonathan Eastep, David Wentzlaff, Ben Greenwald,
Hank Hoffmann, Paul Johnson, Jason Kim, Jim Psota, Nathan Schnidman, and Matthew Frank.

5

Hank Hoffmann, Nathan Schnidman, and Stephanie Seneff alsoprovided valuable expertise on
designing and parallelizing signal processing applications. External contributors to the StreamIt
benchmark suite include Ola Johnsson, Mani Narayanan, Magnus Stenemo, Jinwoo Suh, Zain
ul-Abdin, and Amy Williams. Fabrice Rastello offered key insights for improving our cache op-
timizations. Weng-Fai Wong offered guidance on several projects during his visit to the group.
StreamIt also benefited immensely from regular and insightful conversations with stakeholders
from industry, including Peter Mattson, Richard Lethin, John Chapin, Vanu Bose, and Andy Ong.

Outside of the StreamIt project, additional individuals made direct contributions to this dis-
sertation. In developing our tool for extracting stream parallelism (Chapter 6), I am indebted to
Vikram Chandrasekhar for months of tenacious hacking and toStephen McCamant for help with
Valgrind. I thank Jason Ansel, Chen Ding, Ronny Krashinsky,Viktor Kuncak, and Alex Salcianu,
who provided valuable feedback on manuscripts that were incorporated into this dissertation. I am
also grateful to Arvind and Srini Devadas for serving on my committee on very short notice, and
to Marek Olszewski for serving as my remote agent of thesis submission!

The rest of the story Throughout my life, I have been extremely fortunate to have had an amaz-
ing set of mentors who invested a lot of themselves in my personal growth. I thank Thomas “Doc”
Arnold for taking an interest in a nerdy high school kid, and for setting him loose with chemistry
equipment in a Norwegian glacier valley – a tactic which cemented my interest in science, espe-
cially the kind you can do while remaining dry. I thank Scott Camazine for taking a chance on
a high school programmer in my first taste of academic research, an enriching experience which
opened up many doors for me in the future. I thank Vanessa Colella and Mitchel Resnick for
making my first UROP experience a very special one, as evidenced by my subsequent addiction to
the UROP program. I thank Andrew Begel for teaching me many things, not least of which is by
demonstration of his staggering commitment, capacity, andall-around coolness in mentoring un-
dergraduates. I’m especially grateful to Brian Silverman,a mentor and valued friend whose unique
perspectives on everything from Life in StarLogo to life on Mars have impacted me more than he
might know. I thank Markus Zahn for excellent advice and guidance, both as my undergraduate ad-
visor and UROP supervisor. Finally, I’m very grateful to Kath Knobe, who provided unparalleled
mentorship during my summers at Compaq and stimulated my first interest in compilers research.

Graduate school brought a new set of mentors. I learned a great deal from authoring papers
or proposals with Anant Agarwal, Srini Devadas, Fredo Durand, Michael Ernst, Todd Thorsen,
and Frédéric Vivien, each of whom exemplifies the role of a faculty member in nurturing student
talent. I am also very grateful to Srini Devadas, Martin Rinard, Michael Ernst, and Arvind for being
especially accessible as counselors, showing interest in my work and well-being even in spite of
very busy schedules. I could not have imagined a more supportive environment for graduate study.

I thank Charles Leiserson and Piotr Indyk for teaching me about teaching itself. I will always
remember riding the T with Charles when a car full of Red Sox fans asked him what he does for
a living. Imagining the impressive spectrum of possible replies, I should not have been surprised
when Charles said simply, “I teach”. Nothing could be more true, and I feel very privileged to have
been a TA in his class.

I’d like to thank my collaborators on projects other than StreamIt, for enabling fulfilling and
fun pursuits outside of this dissertation. In the microfluidics lab, I thank J.P. Urbanski for many late
nights “chilling at the lab”, his euphemism for a recurring process whereby he manufactures chips
and I destroy them. His knowledge, determination, and overall good nature are truly inspiring. I
also learned a great deal from David Craig, Mats Cooper, ToddThorsen, and Jeremy Gunawardena,

6

who were extremely supportive of our foray into microfluidics. I thank Nada Amin for her insights,
skills, and drive in developing our CAD tool, and for being anabsolute pleasure to work with.

I’m very thankful to my collaborators in applying technology towards problems in socio-
economic development, from whom I’ve drawn much support. First and foremost is Manish
Bhardwaj, whose rare combination of brilliance, determination, and selflessness has been a deep
inspiration to me. I also thank Emma Brunskill, who has been atremendous collaborator on many
fronts, as well as Sara Cinnamon, Goutam Reddy, Somani Patnaik and Pallavi Kaushik for being
incredibly talented, dedicated, and fun teammates. I am very grateful to Libby Levison for in-
volving me in my first project at the intersection of technology and development, without which
I might have gone down a very different path. I also thank Samidh Chakrabarti for being a great
officemate and friend, and my first peer with whom I could investigate this space together.

I am indebted to the many students and staff who worked with meon the TEK project, includ-
ing Marjorie Cheng, Tazeen Mahtab, Genevieve Cuevas, DamonBerry, Saad Shakhshir, Janelle
Prevost, Hongfei Tian, Mark Halsey, and Libby Levison. I also thank Pratik Kotkar, Jonathan
Birnbaum, and Matt Aasted for their work on the Audio Wiki. I would not have been able to
accomplish nearly as much without the insights, dedication, and hard work of all these individuals.

Graduate school would be nothing if not for paper deadlines,and I feel very lucky to have
been down in the trenches with such bright, dependable, and entertaining co-authors. Of people
not already cited as such, I thank Marten van Dijk, Blaise Gassend, Andrew Lee, Charles W.
O’Donnell, Kari Pulli, Christopher Rhodes, Jeffrey Sheldon, David Wentzlaff, Amy Williams, and
Matthias Zwicker for some of the best end-to-end research experiences I could imagine.

Many people made the office a very special place to be. Mary McDavitt is an amazing force
for good, serving as my rock and foundation throughout many administrative hurricanes; I can’t
thank her enough for all of her help, advice, and good cheer over the years. I’m also very grateful to
Shireen Yadollahpour, Cornelia Colyer, and Jennifer Tucker, whose helpfulness I will never forget.
Special thanks to Michael Vezza, system administrator extraordinaire, for his extreme patience and
helpfulness in tending to my every question, and fixing everything that I broke.

I thank all the talented members of the Commit group, and especially the Ph.D. students
and staff – Jason Ansel, Derek Bruening, Vikram Chandrasekhar, Gleb Chuvpilo, Allyn Dimock,
Michael Gordon, David Maze, Michal Karczmarek, Sam Larsen,Marek Olszewski, Diego Puppin,
Rodric Rabbah, Mark Stephenson, Jean Yang, and Qin Zhao. On top of toleratingwaymore than
their fair share of StreamIt talks, they offered the best meeting, eating, and traveling company ever.
I especially thank Michael Gordon, my officemate and trustedfriend, for making 32-G890 one of
my favorite places – I’m really going to miss our conversations (and productive silences!)

I’d like to extend special thanks to those who supported me inmy job search last spring. I feel
very grateful for the thoughtful counsel of dozens of peopleon the interview trail, and especially to
a few individuals (you know who you are) who spent many hours talking to me and advocating on
my behalf. This meant a great deal to me. I also thank Kentaro Toyama and others at MSR India
for being very flexible with my start date, as the submission of this thesis was gradually postponed!

I am extremely fortunate to have had a wonderful support network to sustain me throughout
graduate school. To the handful of close friends who joined me for food, walks around town, or
kept in touch from a distance: thank you for seeing me throughthe thick and thin. I’d like to
especially call out to David Wentzlaff, Kunal Agrawal, Michael Gordon and Cat Biddle, who held
front-row season tickets to my little world and made it so much better by virtue of being there.

Finally, I would like to thank my amazingly loving and supportive parents, who have always
been 100% behind me no matter where I am in life. I dedicate this thesis to them.

7

Relation to Prior Publications

This dissertation alternately extends and summarizes prior publications by the author. Chapters
1 and 2 are significantly more detailed than prior descriptions of the StreamIt language [TKA02,
TKG+02, AGK+05] and include an in-depth study of the StreamIt benchmark suite that has yet to
be published elsewhere. Chapter 3 subsumes the prior description of teleport messaging [TKS+05],
including key changes to the semantics and the first uniprocessor scheduling algorithm. Chap-
ter 4 is a condensed summary of prior publications [GTK+02, LTA03, ATA05, STRA05, GTA06],
though with new text that often improves the exposition. Chapter 5 subsumes the prior report on
compressed-domain processing [THA07], offering enhanced functionality, performance, and read-
ability. Chapter 6 is very similar to a recent publication [TCA07]. Some aspects of the author’s
work on StreamIt are not discussed in this dissertation [KTA03, CGT+05].

Independent publications by other members of the StreamIt group are not covered in this dis-
sertation [KRA05, MDH+06, ZLRA08]. In particular, the case study of implementing MPEG2 in
StreamIt provides a nice example-driven exposition of the entire language [MDH+06].

Funding Acknowledgment

This work was funded in part by the National Science Foundation (grants EIA-0071841, CNS-
0305453, ACI-0325297), DARPA (grants F29601-01-2-0166, F29601-03-2-0065), the DARPA
HPCS program, the MIT Oxygen Alliance, the Gigascale Systems Research Center, Nokia, and a
Siebel Scholarship.

8

Contents

1 My Thesis 17
1.1 Introduction. 17
1.2 Streaming Application Domain. 19
1.3 Brief History of Streaming. 20
1.4 The StreamIt Project. 24
1.5 Contributions . 26

2 The StreamIt Language 29
2.1 Model of Computation. 29
2.2 Filters . 30
2.3 Stream Graphs. 31
2.4 Data Reordering. 33
2.5 Experience Report. 36
2.6 Related Work. 52
2.7 Future Work. 53
2.8 Chapter Summary. 55

3 Teleport Messaging 57
3.1 Introduction. 57
3.2 Stream Dependence Function. 61
3.3 Semantics of Messaging. 65
3.4 Case Study . 70
3.5 Related Work. 76
3.6 Future Work. 77
3.7 Chapter Summary. 78

4 Optimizing Stream Programs 79
4.1 Parallelization. 80
4.2 Optimizing Linear Computations. 86
4.3 Cache Optimizations. 95
4.4 Related Work. 99
4.5 Future Work. 102
4.6 Chapter Summary. 104

9

5 Translating Stream Programs into the Compressed Domain 107
5.1 Introduction. 107
5.2 Mapping into the Compressed Domain. 109
5.3 Supported File Formats. 118
5.4 Experimental Evaluation. 120
5.5 Related Work. 128
5.6 Future Work. 129
5.7 Chapter Summary. 129

6 Migrating Legacy C Programs to a Streaming Representation 131
6.1 Introduction. 131
6.2 Stability of Stream Programs. 133
6.3 Migration Methodology. 136
6.4 Implementation. 139
6.5 Case Studies. 140
6.6 Related Work. 145
6.7 Future Work. 147
6.8 Chapter Summary. 148

7 Conclusions 149

Bibliography 152

A Example StreamIt Program 167

B Graphs of StreamIt Benchmarks 173

10

List of Figures

1 My Thesis . 17
1-1 Stream programming is motivated by architecture and application trends.. 18
1-2 Example stream graph for a software radio with equalizer. 19
1-3 Timeline of computer science efforts that have incorporated notions of streams.. . 21
1-4 Space of behaviors allowable by different models of computation. 22
1-5 Key properties of streaming models of computation.. 22

2 The StreamIt Language . 29
2-1 FIR filter in StreamIt.. 31
2-2 FIR filter in C.. 31
2-3 Hierarchical stream structures in StreamIt.. 32
2-4 Example pipeline with FIR filter.. 32
2-5 Example of a software radio with equalizer.. 33
2-6 Matrix transpose in StreamIt.. 34
2-7 Data movement in a 3-digit bit-reversed ordering.. 35
2-8 Bit-reversed ordering in an imperative language.. 35
2-9 Bit-reversed ordering in StreamIt.. 35
2-10 Overview of the StreamIt benchmark suite.. 37
2-11 Parameterization and scheduling statistics for StreamIt benchmarks. 38
2-12 Properties of filters and other constructs in StreamIt benchmarks.. 39
2-13 Stateless version of a difference encoder, using peeking and prework.. 40
2-14 Stateful version of a difference encoder, using internal state. 40
2-15 Use of teleport messaging in StreamIt benchmarks.. 44
2-16 CD-DAT, an example of mismatched I/O rates.. 46
2-17 JPEG transcoder excerpt, an example of matched I/O rates. 46
2-18 Refactoring a stream graph to fit a structured programming model. 47
2-19 Use of Identity filters is illustrated by the 3GPP benchmark. 48
2-20 A communication pattern unsuitable for structured streams.. 49
2-21 Accidental introduction of filter state (pedantic example). 50
2-22 Accidental introduction of filter state (real example). 51

3 Teleport Messaging . 57
3-1 Example code without event handling.. 61
3-2 Example code with manual event handling.. 61
3-3 Example code with teleport messaging.. 61
3-4 Stream graph for example code.. 61

11

3-5 Execution snapshots illustrating manual embedding of control messages.. 61
3-6 Execution snapshots illustrating teleport messaging.. 61
3-7 Example stream graph for calculation of stream dependence function. 62
3-8 Example calculation of stream dependence function.. 62
3-9 Pull scheduling algorithm.. 63
3-10 Scheduling constraints imposed by messages.. 68
3-11 Example of unsatisfiable message constraints.. 69
3-12 Constrained scheduling algorithm.. 70
3-13 Stream graph of frequency hopping radio with teleport messaging.. 71
3-14 Code for frequency hopping radio with teleport messaging. 72
3-15 Stream graph of frequency hopping radio with manual control messages.. 73
3-16 Code for frequency hopping radio with manual control messages.. 74
3-17 Parallel performance of teleport messaging and manualevent handling. 76

4 Optimizing Stream Programs . 79
4-1 Types of parallelism in stream programs.. 80
4-2 Exploiting data parallelism in the FilterBank benchmark. 82
4-3 Simplified subset of the Vocoder benchmark.. 83
4-4 Coarse-grained data parallelism applied to Vocoder.. 84
4-5 Coarse-grained software pipelining applied to Vocoder. 84
4-6 Parallelization results.. 85
4-7 Example optimization of linear filters.. 87
4-8 Extracting a linear representation.. 88
4-9 Algebraic simplification of adjacent linear filters.. 88
4-10 Example simplification of an IIR filter and a decimator.. 89
4-11 Mapping linear filters into the frequency domain.. 90
4-12 Example of state removal and parameter reduction.. 91
4-13 Optimization selection for the Radar benchmark.. 93
4-14 Elimination of floating point operations due to linear optimizations. 94
4-15 Speedup due to linear optimizations.. 94
4-16 Overview of cache optimizations. 96
4-17 Effect of execution scaling on performance.. 97
4-18 Performance of cache optimizations on the StrongARM.. 98
4-19 Summary of cache optimizations on the StrongARM, Pentium 3 and Itanium 2.. . 99

5 Translating Stream Programs into the Compressed Domain. 107
5-1 Example of LZ77 decompression.. 109
5-2 Translation of filters into the compressed domain.. 110
5-3 Example StreamIt code to be mapped into the compressed domain. 111
5-4 Example execution of a filter in the uncompressed and compressed domains.. . . . 111
5-5 Translation of splitters into the compressed domain.. 113
5-6 SPLIT-TO-BOTH-STREAMS function for compressed splitter execution.. 114
5-7 SPLIT-TO-ONE-STREAM function for compressed splitter execution.. 115
5-8 Example execution of splitters and joiners in the compressed domain. 115
5-9 Translation of joiners into the compressed domain.. 116

12

5-10 JOIN-FROM-BOTH-STREAMS function for compressed joiner execution.. 117
5-11 JOIN-FROM-ONE-STREAM function for compressed joiner execution.. 118
5-12 Characteristics of the video workloads.. 121
5-13 Table of results for pixel transformations.. 123
5-14 Speedup graph for pixel transformations.. 124
5-15 Speedup vs. compression factor for all transformations. 125
5-16 Examples of video compositing operations.. 126
5-17 Table of results for composite transformations.. 127
5-18 Speedup graph for composite transformations.. 127

6 Migrating Legacy C Programs to a Streaming Representation 131
6-1 Overview of our approach.. 133
6-2 Stability of streaming communication patterns for MPEG-2 decoding. 135
6-3 Stability of streaming communication patterns for MP3 decoding. 135
6-4 Training needed for correct parallelization of MPEG-2.. 135
6-5 Training needed for correct parallelization of MP3.. 135
6-6 Stream graph for GMTI, as extracted using our tool.. 137
6-7 Stream graph for GMTI, as it appears in the GMTI specification. 137
6-8 Specifying data parallelism.. 138
6-9 Benchmark characteristics.. 140
6-10 Extracted stream graphs for MPEG-2 and MP3 decoding.. 142
6-11 Extracted stream graphs for parser, bzip2, and hmmer.. 143
6-12 Steps taken by programmer to assist with parallelization. 144
6-13 Performance results.. 145

7 Conclusions. 149

A Example StreamIt Program . 167

B Graphs of StreamIt Benchmarks . 173
B-1 Stream graph for 3GPP.. 174
B-2 Stream graph for 802.11a.. 175
B-3 Stream graph for Audiobeam.. 176
B-4 Stream graph for Autocor.. 177
B-5 Stream graph for BitonicSort (coarse).. 178
B-6 Stream graph for BitonicSort (fine, iterative).. 179
B-7 Stream graph for BitonicSort (fine, recursive).. 180
B-8 Stream graph for BubbleSort.. 181
B-9 Stream graph for ChannelVocoder.. 182
B-10 Stream graph for Cholesky.. 183
B-11 Stream graph for ComparisonCounting.. 184
B-12 Stream graph for CRC.. 185
B-13 Stream graph for DCT (float).. 186
B-14 Stream graph for DCT2D (NxM, float).. 187
B-15 Stream graph for DCT2D (NxN, int, reference).. 188
B-16 Stream graph for DES.. 189

13

B-17 Stream graph for DToA. 190
B-18 Stream graph for FAT.. 191
B-19 Stream graph for FFT (coarse, default).. 192
B-20 Stream graph for FFT (fine 1).. 193
B-21 Stream graph for FFT (fine 2).. 194
B-22 Stream graph for FFT (medium).. 195
B-23 Stream graph for FHR (feedback loop).. 196
B-24 Stream graph for FHR (teleport messaging).. 197
B-25 Stream graph for FMRadio.. 198
B-26 Stream graph for Fib.. 199
B-27 Stream graph for FilterBank.. 200
B-28 Stream graph for GMTI. 201
B-29 Stream graph for GP - particle-system.. 202
B-30 Stream graph for GP - phong-shading.. 203
B-31 Stream graph for GP - reference-version.. 204
B-32 Stream graph for GP - shadow-volumes.. 205
B-33 Stream graph for GSM.. 206
B-34 Stream graph for H264 subset.. 207
B-35 Stream graph for HDTV.. 208
B-36 Stream graph for IDCT (float).. 209
B-37 Stream graph for IDCT2D (NxM-float).. 210
B-38 Stream graph for IDCT2D (NxN, int, reference).. 211
B-39 Stream graph for IDCT2D (8x8, int, coarse).. 212
B-40 Stream graph for IDCT2D (8x8, int, fine).. 213
B-41 Stream graph for InsertionSort.. 214
B-42 Stream graph for JPEG decoder.. 215
B-43 Stream graph for JPEG transcoder.. 216
B-44 Stream graph for Lattice.. 217
B-45 Stream graph for MatrixMult (coarse).. 218
B-46 Stream graph for MatrixMult (fine).. 219
B-47 Stream graph for MergeSort.. 220
B-48 Stream graph for Mosaic. 221
B-49 Stream graph for MP3.. 222
B-50 Stream graph for MPD.. 223
B-51 Stream graph for MPEG2 decoder. 224
B-52 Stream graph for MPEG2 encoder. 225
B-53 Stream graph for OFDM.. 226
B-54 Stream graph for Oversampler.. 227
B-55 Stream graph for Radar (coarse).. 228
B-56 Stream graph for Radar (fine).. 229
B-57 Stream graph for RadixSort.. 230
B-58 Stream graph for RateConvert.. 231
B-59 Stream graph for Raytracer1.. 232
B-60 Stream graph for RayTracer2.. 233
B-61 Stream graph for SAR.. 234

14

B-62 Stream graph for SampleTrellis.. 235
B-63 Stream graph for Serpent.. 236
B-64 Stream graph for TDE.. 237
B-65 Stream graph for TargetDetect.. 238
B-66 Stream graph for VectAdd.. 239
B-67 Stream graph for Vocoder.. 240

15

16

Chapter 1

My Thesis

Incorporating streaming abstractions into the programming language can simultaneously improve
both programmability and performance. Programmers are unburdened from providing low-level
implementation details, while compilers can perform parallelization and optimization tasks that
were previously beyond the reach of automation.

1.1 Introduction

A long-term goal of the computer science community has been to automate the optimization of
programs via systematic transformations in the compiler. However, even after decades of research,
there often remains a large gap between the performance of compiled code and the performance
that an expert can achieve by hand. One of the central difficulties is that humans have more in-
formation than the compiler, and can thus perform more aggressive transformations. For example,
a performance expert may re-write large sections of the application, employing alternative algo-
rithms, data structures, or task decompositions, to produce a version that is functionally equivalent
to (but structurally very different from) the original program. In addition, a performance expert
may leverage detailed knowledge of the target architecture– such as the type and extent of parallel
resources, the communication substrate, and the cache sizes – to match the structure and granular-
ity of the application to that of the underlying machine. To overcome this long-standing problem
and make high-performance programming accessible to non-experts, it will likely be necessary to
empower the compiler with new information that is not currently embedded in general-purpose
programming languages.

One promising approach to automating performance optimization is to embed specific domain
knowledge into the language and compiler. By restricting attention to a specific class of programs,
common patterns in the applications can be embedded in the language, allowing the compiler to
easily recognize and optimize them, rather than having to infer the patterns from complex, general-
purpose code. In addition, key transformations that are known only to experts in the domain can be
embedded in the compiler, enabling robust performance for agiven application class. Tailoring the
language to a specific domain can also improve programmers’ lives, as functionality that is tedious
or unnatural to express in a general-purpose language can besuccinctly expressed in a new one.
Such “domain-specific” languages and compilers have achieved broad success in the past. Exam-
ples include Lex for generating scanners; YACC for generating parsers; SQL for database queries;
Verilog and VHDL for hardware design; MATLAB for scientific codes and signal processing;

17

:dnert erutcetihcrA

dna detubirtsid

erocitlum

:dnert noitacilppA

 dna deddebme

cirtnec-atad

maertS

gnimmargorp Figure inspired by Mattson & Lethin [ML03]

Figure 1-1: Stream programming is motivated by two prominent trends: the trend towards parallel
computer architectures, and the trend towards embedded, data-centric computations.

GraphViz for generating graph layouts [EGK+02]; and PADS for processing ad-hoc data [FG05].
If we are taking a domain-specific approach to program optimization, what domain should we

focus on to have a long-term impact? We approached this question by considering two prominent
trends in computer architectures and applications:

1. Computer architectures are becoming multicore.Because single-threaded performance has
finally plateaued, computer vendors are investing excess transistors in building more cores on
a single chip rather than increasing the performance of a single core. While Moore’s Law
previously implied a transparent doubling of computer performance every 18 months, in the
future it will imply only a doubling of the number of cores on chip. To support this trend, a
high-performance programming model needs to expose all of the parallelism in the application,
supporting explicit communication between potentially-distributed memories.

2. Computer applications are becoming embedded and data-centric. While desktop comput-
ers have been a traditional focus of the software industry, the explosion of cell phones is shifting
this focus to the embedded space. There are almost four billion cell phones globally, compared
to 800 million PCs [Med08]. Also, the compute-intensive nature of scientific and simulation
codes is giving way to the data-intensive nature of audio andvideo processing. Since 2006,
YouTube has been streaming over 250 terabytes of video daily[Wat06], and many potential
“killer apps” of the future encompass the space of multimedia editing, computer vision, and
real-time audio enhancement [ABC+06, CCD+08].

At the intersection of these trends is a broad and interesting space of applications that we
term stream programs. A stream program is any program that is based around a regular stream
of dataflow, as in audio, video, and signal processing applications (see Figure1-2). Examples
include radar tracking, software radios, communication protocols, speech coders, audio beam-
forming, video processing, cryptographic kernels, and network processing. These programs are
rich in parallelism and can be naturally targeted to distributed and multicore architectures. At the
same time, they also share common patterns of processing that makes them an ideal target for
domain-specific optimizations.

In this dissertation, we develop language support for stream programs that enables non-expert
programmers to harness both avenues: parallelism and domain-specific optimizations. Either set

18

Adder

Speaker

AtoD

FMDemod

Duplicate

RoundRobin

LowPass2 LowPass3LowPass1

HighPass2 HighPass3HighPass1

Figure 1-2: Example stream graph for a software radio with equalizer.

of optimizations can yield order-of-magnitude performance improvements. While the techniques
used were previously accessible to experts during manual performance tuning, we provide the
first general and automatic formulation. This greatly lowers the entry barrier to high-performance
stream programming.

In the rest of this chapter, we describe the detailed properties of stream programs, provide a
brief history of streaming, give an overview of the StreamItproject, and state the contributions of
this dissertation.

1.2 Streaming Application Domain

Based on the examples cited previously, we have observed that stream programs share a number of
characteristics. Taken together, they define our conception of the streaming application domain:

1. Large streams of data. Perhaps the most fundamental aspect of a stream program is that it
operates on a large (or virtually infinite) sequence of data items, hereafter referred to as adata
stream. Data streams generally enter the program from some external source, and each data
item is processed for a limited time before being discarded.This is in contrast to scientific
codes, which manipulate a fixed input set with a large degree of data reuse.

2. Independent stream filters. Conceptually, a streaming computation represents a sequence
of transformations on the data streams in the program. We will refer to the basic unit of this
transformation as afilter: an operation that – on each execution step – reads one or more
items from an input stream, performs some computation, and writes one or more items to
an output stream. Filters are generally independent and self-contained, without references to

19

global variables or other filters. A stream program is the composition of filters into astream
graph, in which the outputs of some filters are connected to the inputs of others.

3. A stable computation pattern. The structure of the stream graph is generally constant during
the steady-state operation of the program. That is, a certain set of filters are repeatedly applied
in a regular, predictable order to produce an output stream that is a given function of the input
stream.

4. Sliding window computations. Each value in a data stream is often inspected by consecutive
execution steps of the same filter, a pattern referred to as asliding window. Examples of
sliding windows include FIR and IIR filters; moving averagesand differences; error correcting
codes; biosequence analysis; natural language processing; image processing (sharpen, blur,
etc.); motion estimation; and network packet inspection.

5. Occasional modification of stream structure. Even though each arrangement of filters is
executed for a long time, there are still dynamic modifications to the stream graph that occur
on occasion. For instance, if a wireless network interface is experiencing high noise on an input
channel, it might react by adding some filters to clean up the signal; or it might re-initialize a
sub-graph when the network protocol changes from 802.11 to Bluetooth1.

6. Occasional out-of-stream communication.In addition to the high-volume data streams pass-
ing from one filter to another, filters also communicate smallamounts of control information
on an infrequent and irregular basis. Examples include changing the volume on a cell phone,
printing an error message to a screen, or changing a coefficient in an adaptive FIR filter. These
messages are often synchronized with some data in the stream–for instance, when a frequency-
hopping radio changes frequencies at a specific point of the transmission.

7. High performance expectations.Often there are real-time constraints that must be satisfied
by stream programs; thus, efficiency (in terms of both latency and throughput) is of primary
concern. Additionally, many embedded applications are intended for mobile environments
where power consumption, memory requirements, and code size are also important.

While our discussion thus far has emphasized the embedded context for streaming applications,
the stream abstraction is equally important in desktop and server-based computing. Examples in-
clude XML processing [BCG+03], digital filmmaking, cell phone base stations, and hyperspectral
imaging.

1.3 Brief History of Streaming

The concept of a stream has a long history in computer science; see Stephens [Ste97] for a review
of its role in programming languages. Figure1-3depicts some of the notable events on a timeline,
including models of computation and prototyping environments that relate to streams.

The fundamental properties of streaming systems transcendthe details of any particular lan-
guage, and have been explored most deeply as abstract modelsof computation. These models can

1In this dissertation, we do not explore the implications of dynamically modifying the stream structure. As detailed
in Chapter 2, we operate on a single stream graph at a time; users may transition between graphs using wrapper code.

20

1960 1970 1980 1990 2000

Languages / Compilers

Modeling Environments

Sisal

Occam

Lucid Id

VALlazy

Gabriel

LUSTRE

Ptolemy

Esterel

C

Grape-II

Matlab/Simulink

etc.

Erlang

pH

Models of Computation

Petri Nets

Comp. Graphs

Kahn Proc. Nets

Communicating Sequential Processes

Synchronous Dataflow

Actors

StreamIt

Cg StreamC

Brook

“Stream
Programming”

Figure 1-3: Timeline of computer science efforts that have incorporated notions of streams.

generally be considered as graphs, where nodes represent units of computation and edges repre-
sent FIFO communication channels. The models differ in the regularity and determinism of the
communication pattern, as well as the amount of buffering allowed on the channels. Three of the
most prevalent models are Kahn Process Networks [Kah74], Synchronous Dataflow [LM87], and
Communicating Sequential Processes [Hoa78]. They are compared in Figure1-4 and Table1-5
and are detailed below:

1. Kahn Process Networks, also known asprocess networks, are a simple model in which nodes
can always enqueue items onto their output channels, but attempts to read from an input channel
will block until data is ready (it is not possible to test for the presence or absence of data
on input channels). Assuming that each node performs a deterministic computation, these
properties imply that the entire network is deterministic;that is, the sequence of data items
observed on the output channels is a deterministic functionof those submitted to the input
channels. However, it is undecidable to statically determine the amount of buffering needed
on the channels, or to check whether the computation might deadlock. Process networks is the
model of computation adopted by UNIX pipes.

2. Synchronous Dataflow (SDF)is a restricted form of process network in which nodes exe-
cute atomic steps, and the numbers of data items produced andconsumed during each step
are constant and known at compile time. Because the input andoutput rates are known, the
compiler can statically check whether a deadlock-free execution exists and, if so, can derive
a valid schedule of node executions. The amount of bufferingneeded can also be determined
statically. Many variations of synchronous dataflow have been defined, including cyclo-static
dataflow [BELP95, PPL95] and multidimensional synchronous dataflow [ML02]. Due to its
potential for static scheduling and optimization, synchronous dataflow provides the starting
point for our work.

3. Communicating Sequential Processes (CSP)is in some ways more restrictive, and in others
more flexible than process networks. The restriction is rendezvous communication: there is
no buffering on the communication channels, which means that each send statement blocks

21

Synchronous Dataflow

Kahn

Process

Networks

Communicating

Sequential

Processes

Figure 1-4: Space of behaviors allowed by Kahn process networks, synchronous dataflow (SDF),
and communicating sequential processes (CSP). The set of behaviors considered are: buffering
data items on a communication channel, making a non-deterministic choice, and deviating from a
fixed I/O rate. While these behaviors could always be emulated inside a single Turing-complete
node, we focus on the behavior of the overall graph.

None

(Rendezvous)

Fixed by
compiler

Conceptually
unbounded

Buffering

- Rich synchronization
primitives

- Occam language

- Static scheduling

- Deadlock freedom

- UNIX pipes

Notes

Data-dependent,
allows non-
determinism

Communicating

Sequential

Processes

StaticSynchronous

dataflow

Data-dependent,
but deterministic

Kahn process

networks

Communication

Pattern

Table 1-5: Key properties of streaming models of computation.

until being paired with a receive statement (and vice-versa). The flexibility is in the synchro-
nization: a node may make a non-deterministic choice, for example, in reading from any input
channel that has data available under the current schedule.This property leads to possibly non-
deterministic outputs, and deadlock freedom is undecidable. While CSP itself is an even richer
algebra for describing the evolution of concurrent systems, this graph-based interpretation of its
capabilities applies to many of its practical instantiations, including the Occam programming
language.

While long-running (or infinite) computations are often described using one of the models
above, the descriptions of finite systems also rely on other models of computation.Computation
graphs[KM66] are a generalization of SDF graphs; nodes may stipulate that, in order to execute a
step, a threshold number of data items must be available on aninput channel (possibly exceeding
the number of items consumed by the node). While SDF scheduling results can be adapted to the
infinite execution of computation graphs, the original theory of computation graphs focuses on de-
terminacy and termination properties when some of the inputs are finite.Actorsare a more general

22

model providing asynchronous and unordered message passing between composable, dynamically-
created nodes [HBS73, Gre75, Cli81, Agh85]. Petri nets are also a general formalism for modeling
many classes of concurrent transition systems [Pet62, Mur89].

In addition to models of computation, prototyping environments have been influential in the
history of streaming systems. The role of a prototyping environment is to simulate and validate
the design of a complex system. While it has been a long-standing goal to automatically generate
efficient and deployable code from the prototype design, in practice most models are re-written
by hand in a low-level language such as C in order to gain the full performance and functional-
ity needed. Still, many graph-level optimizations, such asscheduling [BML95, BML96, BSL96,
ZTB00, SGB06] and buffer management [ALP97, MB01, GGD02, MB04, GBS05], have been
pioneered in the context of prototyping environments. One of the most long-running efforts is
Ptolemy, a rich heterogeneous modeling environment that supports diverse models of computa-
tion, including the dataflow models described previously aswell as continuous- and discrete-event
systems [BHLM91, EJL+03]. Other academic environments include Gabriel [LHG+89],Grape-
II [LEAP95], and El Greco [BV00], while commercial environments include MATLAB/Simulink
(from The MathWorks, Inc.), Cocentric System Studio (from Synposis, Inc.), and System Canvas
(from Angeles Design Systems [MCR01]).

The notion of streams has also permeated several programming paradigms over the past half-
century. Dataflow languages such as Lucid [AW77], Id [AGP78, Nik91], and VAL [AD79] aim
to eliminate traditional control flow in favor of a schedulerthat is driven only by data depen-
dences. To expose these dependences, each variable is assigned only once, and each statement is
devoid of non-local side effects. These properties overlapstreaming in two ways. First, the pro-
ducer/consumer relationships exposed by dataflow are similar to those in a stream graph, except
at a much finer level of granularity. Second, to preserve the single-assignment property within
loops, these languages use anextkeyword to indicate the value of a variable in the succeeding
iteration. This construct can be viewed as a regular data stream of values flowing through the
loop. Subsequent dataflow languages include Sisal [MSA+85] (“streams and iteration in a single
assignment language”) and pH [NA01]. More details on dataflow languages are available in review
articles [Ste97, JHM04].

Functional languages also have notions of streams, for example, as part of the lazy evaluation
of lists [HM76]. It bears noting that there seems to be no fundamental difference between a “func-
tional language” and a “dataflow language”. The terminologyindicates mainly a difference of
community, as dataflow languages were mapped to dataflow machines. In addition, dataflow lan-
guages may be more inclined toward an imperative syntax [JHM04]. We do not survey functional
languages further in their own right.

Another class of languages is synchronous languages, whichoffer the abstraction of respond-
ing instantly (in synchrony) with their environment [Hal98]. Interpreted as a stream graph, a
synchronous program can be thought of as a circuit, where nodes are state machines and edges
are wires that carry a single value; in some languages, nodesmay specify the logical times at
which values are present on the wires. Synchronous programstarget the class of reactive systems,
such as control circuits, embedded devices, and communication protocols, where the computa-
tion is akin to a complex automaton that continually responds to real-time events. Compared to
stream programs, which have regular, computation-intensive processing, synchronous programs
process irregular events and demand complex control flow. Key synchronous languages include
Signal [GBBG86], LUSTRE [CPHP87, HCRP91], Esterel [BG92], Argos [MR01], and Lucid Syn-

23

chrone [CP95, CHP07]. These languages offer determinism and safety properties, spurring their
adoption in industry; Esterel Technologies offers SCADE (based on LUSTRE) as well as Esterel
Studio.

There have also been general-purpose languages with built-in support for streams, including
Occam [Inm88] and Erlang [AVW93, Arm07]. Occam is an imperative procedural language that is
based on communicating sequential processes; it was originally developed for the INMOS trans-
puter, an early multiprocessor. Erlang is a functional language that is based on the actors model;
originally developed by Ericsson for distributed applications, it supports very lightweight processes
and has found broad application in industry.

Shortcomings of previous languages.It should be evident that previous languages have pro-
vided many variations on streams, including many elegant and general ways of expressing the
functional essence of streaming computations. However, there remains a critical disconnect in the
design flow for streaming systems: while prototyping environments provide rich, high-level analy-
sis and optimization of stream graphs [BML95, BML96, BSL96, ALP97, ZTB00, MB01, GGD02,
MB04, GBS05, SGB06], these optimizations have not been automated in any programming lan-
guage environment and thus remain out-of-reach for the vastmajority of developers. The root
of the disconnect is the model of computation: previous languages have opted for the flexibility
of process networks or communication sequential processes, rather than embracing the restrictive
yet widely-applicable model of synchronous dataflow. By focusing attention on a very common
case – an unchanging stream graph with fixed communication rates – synchronous dataflow is the
only model of computation that exposes the information needed to perform static scheduling and
optimization.

Herein lies a unique opportunity to create a language that exposes the inherent regularity in
stream programs, and to exploit that regularity to perform deep optimizations. This is the opportu-
nity that we pursue in the StreamIt project.

1.4 The StreamIt Project

StreamIt is a language and compiler for high-performance stream programs. The principal goals
of the StreamIt project are three-fold:

1. To expose and exploit the inherent parallelism in stream programs on multicore architectures.

2. To automate domain-specific optimizations known to streaming application specialists.

3. To improve programmer productivity in the streaming domain.

While the first two goals are related to performance improvements, the third relates to improv-
ing programmability. We contend that these goals are not in conflict, as high-level programming
models contain more information and can be easier to optimize while also being easier to use.
However, many languages are designed only from the standpoint of programmability, and often
make needless sacrifices in terms of analyzability. Compared to previous efforts, the key leverage
of the StreamIt project is acompiler-conscious language designthat maximizes both analyzability
and programmability.

24

StreamIt is a large systems project, incorporating over 27 people (up to 12 at a given time).
The group has made several contributions to the goals highlighted above. In exploiting par-
allelism, Michael Gordon led the development of the first general algorithm that exploits the
task, data, and pipeline parallelism in stream programs [GTA06]. On the 16-core Raw archi-
tecture, it achieves an 11x mean speedup for our benchmark suite; this is a 1.8x improvement
over our previous approach [GTK+02, Gor02], the performance of which had been modeled by
Jeremy Wong [Won04]. Also on the Raw machine, Jiawen Chen led the development ofa flexible
graphics rendering pipeline in StreamIt, demonstrating that a reconfigurable pipeline can achieve
up to twice the throughput of a static one [CGT+05, Che05]. Moving beyond Raw, Janis Ser-
mulins ported StreamIt to multicores and clusters of workstations, and also led the development
of cache optimizations that offer a 3.5x improvement over unoptimized StreamIt on embedded
processors [STRA05, Ser05]. David Zhang and Qiuyuan Li led the development of a lightweight
streaming execution layer that achieves over 88% utilization (ignoring SIMD potential) on the Cell
processor [ZLRA08, Zha07]. Michal Karczmarek led the development of phased scheduling, the
first hierarchical scheduler for cyclo-static dataflow thatalso enables a flexible tradeoff between
latency, code size and buffer size [KTA03, Kar02]. Phil Sung and Weng-Fai Wong explored the
execution of StreamIt on graphics processors.

In the area of domain-specific optimizations, Andrew Lamb automated the optimization of
linear nodes, performing coarse-grained algebraic simplification or automatic conversion to the
frequency domain [LTA03, Lam03]. These inter-node optimizations eliminate 87% of the float-
ing point operations from code written in a modular style. Sitij Agrawal generalized the analysis
to handle linear computations with state, performing optimizations such as algebraic simplifica-
tion, removal of redundant states, and reducing the number of parameters [ATA05, Agr04]. I led
the development of domain-specific optimizations for compressed data formats, allowing certain
computations to operate in place on the compressed data without requiring decompression and
re-compression [THA07]. This transformation accelerates lossless video editingoperations by a
median of 15x.

In the area of programmability, I led the definition of the StreamIt language, incorporating
the first notions of structured streams as well as language support for hierarchical data reorder-
ing [TKA02, TKG+02, AGK+05]. With Michal Karczmarek and Janis Sermulins, I led the devel-
opment of teleport messaging, a new language construct thatuses the flow of data in the stream
to provide a deterministic and meaningful timeframe for delivering events between decoupled
nodes [TKS+05]. Kimberly Kuo developed an Eclipse development environment and debug-
ger for StreamIt and, with Rodric Rabbah, demonstrated improved programming outcomes in a
user study [KRA05, Kuo04]. Juan Reyes also developed a graphical editor for StreamIt[Rey04].
Matthew Drake evaluated StreamIt’s suitability for video codecs by implementing an MPEG-2
encoder and decoder [MDH+06, Dra06]. Basier Aziz evaluated StreamIt by implementing image-
based motion estimation, including the RANSAC algorithm [Azi07]. I also led the development
of dynamic analysis tools to ease the translation of legacy Ccode into a streaming representa-
tion [TCA07].

The StreamIt benchmark suite consists of 67 programs and 34,000 (non-comment, non-blank)
lines of code. I provide the first rigorous characterizationof the benchmarks as part of this disserta-
tion. In addition to MPEG-2 and image-based motion estimation, the suite includes a ground mov-
ing target indicator (GMTI), a feature-aided tracker (FAT), synthetic aperture radar (SAR), a radar
array front-end, part of the 3GPP physical layer, a vocoder with speech transformation, a subset

25

of an MP3 decoder, a subset of MPEG-4 decoder, a JPEG encoder and decoder, a GSM decoder,
an FM software radio, DES and serpent encryption, matrix multiplication, graphics shaders and
rendering algorithms, and various DCTs, FFTs, filterbanks,and sorting algorithms. The StreamIt
benchmark suite has been used by outside researchers [KM08]. Some programs are currently
restricted for internal use.

Contributors to the benchmark suite include Sitij Agrawal,Basier Aziz, Matt Brown, Jiawen
Chen, Matthew Drake, Shirley Fung, Michael Gordon, Hank Hoffmann, Ola Johnsson, Michal
Karczmarek, Andrew Lamb, Chris Leger, David Maze, Ali Meli,Mani Narayanan, Rodric Rab-
bah, Satish Ramaswamy, Janis Sermulins, Magnus Stenemo, Jinwoo Suh, Zain ul-Abdin, Amy
Williams, Jeremy Wong, and myself. Individual contributions are detailed in Table2-10.

While this section was not intended to serve as the acknowledgments, it would be incomplete
without noting the deep involvement, guidance, and supervision of Rodric Rabbah and Saman
Amarasinghe throughout many of the efforts listed above. The StreamIt infrastructure was also
made possible by the tenacious and tireless efforts of DavidMaze, Jasper Lin, and Allyn Dimock.
Additional contributors that were not mentioned previously include Kunal Agrawal (who devel-
oped bit-level analyses), Steve Hall (who automated compressed-domain transformations), and
Ceryen Tan (who is improving the multicore backend).

The StreamIt compiler (targeting shared-memory multicores, clusters of workstations, and the
MIT Raw machine) is publicly available [Stra] and has logged over 850 unique, registered down-
loads from 300 institutions (as of December, 2008). Researchers at other universities have used
StreamIt as a basis for their own work [NY04, Duc04, SLRBE05, JSuA05, And07, So07].

This dissertation does not mark the culmination of the StreamIt project; please consult the
StreamIt website [Stra] for subsequent updates.

1.5 Contributions

My role in the StreamIt project has been very collaborative,contributing ideas and implementation
support to many aspects of the project. This dissertation focuses on ideas that have not been
presented previously in theses by other group members. However, to provide a self-contained view
of the breadth and applications of StreamIt, Chapter4 also provides a survey of others’ experience
in optimizing the language.

The specific contributions of this dissertation are as follows:

1. A design rationale and experience report for the StreamIt language, which contains novel
constructs to simultaneously improve the programmabilityand analyzability of stream
programs (Chapter 2). StreamIt is the first language to introduce structured streams, as well
as hierarchical, parameterized data reordering. We evaluate the language via a detailed charac-
terization of our 34,000-line benchmark suite, illustrating the impact of each language feature
as well as the lessons learned.

2. A new language construct, termed teleport messaging, that enables precise event handling
in a distributed environment (Chapter 3). Teleport messaging is a general approach that uses
the flow of data in the stream to provide a deterministic and meaningful timeframe for deliver-
ing events between decoupled nodes. Teleport messaging allows irregular control messages to
be integrated into a synchronous dataflow program while preserving static scheduling.

26

3. A review of the key results in optimizing StreamIt, spanningparallelization and domain-
specific optimization (Chapter 4). This chapter validates key concepts of the StreamIt lan-
guage by highlighting the gains in performance and programmability that have been achieved,
including the work of others in the StreamIt group. We focus on automatic parallelization (pro-
viding an 11x mean speedup on a 16-core machine), domain-specific optimization of linear
computations (providing a 5.5x average speedup on a uniprocessor), and cache optimizations
(providing a 3.5x average speedup on an embedded processor).

4. The first translation of stream programs into the lossless-compressed domain (Chapter 5).
This domain-specific optimization allows stream programs to operate directly on compressed
data formats, rather than requiring conversion to an uncompressed format prior to process-
ing. While previous researchers have focused on compressed-domain techniques for lossy data
formats, there are few techniques that apply to lossless formats. We focus on applications in
video editing, where our technique supports color adjustment, video compositing, and other
operations directly on the Apple Animation format (a variant of LZ77). Speedups are roughly
proportional to the compression factor, with a median of 15xand a maximum of 471x.

5. The first dynamic analysis tool that detects and exploits likely coarse-grained parallelism
in C programs (Chapter 6). To assist programmers in migrating legacy C code into a stream-
ing representation, this tool generates a stream graph depicting dynamic communication be-
tween programmer-annotated sections of code. The tool can also generate a parallel version
of the program based on the memory dependences observed during training runs. In our ex-
perience with six case studies, the extracted stream graphsprove useful and the parallelized
versions offer a 2.78x speedup on a 4-core machine.

Related work and future work are presented on a per-chapter basis. We conclude in Chapter 7.

27

28

Chapter 2

The StreamIt Language

This chapter provides an overview and experience report on the basics of the StreamIt language.
An advanced feature, teleport messaging, is reserved for Chapter3. For more details on the
StreamIt language, please consult the StreamIt language specification [Strc] or the StreamIt cook-
book [Strb]. A case study on MPEG-2 also provides excellent examples ofthe language’s capabil-
ities [MDH+06].

2.1 Model of Computation

The model of computation in StreamIt is rooted in (but not equivalent to) synchronous dataflow [LM87].
As described in Chapter 1, synchronous dataflow represents aprogram as a graph of independent
nodes, oractors, that communicate over FIFO data channels. Each actor has anatomic execution
step that is called repeatedly by the runtime system. The keyaspect of synchronous dataflow, as
opposed to other models of computation, is that the number ofitems produced and consumed by an
actor on each execution is fixed and known at compile-time. This allows the compiler to perform
static scheduling and optimization of the stream graph.

StreamIt differs from synchronous dataflow in five respects:

1. Multiple execution steps.Certain pre-defined actors have more than one execution step; the
steps are called repeatedly, in a cyclic fashion, by the runtime system. This execution model
mirrors cyclo-static dataflow [BELP95, PPL95]. The actors that follow this model aresplitters
and joiners, which scatter and gather data across multiple streams. (While the language once
supported multiple execution steps for user-programmableactors as well, the benefits did not
merit the corresponding confusion experienced by programmers.)

2. Dynamic rates.The input and output rates of actors may optionally be declared to be dynamic.
A dynamic rate indicates that the actor will produce or consume an unpredictable number of
data items that is known only at runtime. Dynamic rates are declared as a range (min, max, and
a hint at the average), with any or all of the elements designated as “unknown”. While most
of our optimizations in StreamIt have focused on groups of static-rate actors, we have runtime
support for dynamic rates (as demanded by applications suchas MPEG-2 [MDH+06]).

3. Teleport messaging.Our support for irregular, out-of-band control messaging falls outside of
the traditional synchronous dataflow model. However, it does not impede static scheduling.
See Chapter3 for details.

29

4. Peeking. StreamIt allows actors to “peek” at data items on their inputtapes, reading a value
without dequeuing it from the channel. Peeking is importantfor expressing sliding window
computations. To support peeking, two stages of schedulingare required: an initialization
schedule that grows buffers until they accumulate a threshold number of peeked items, and a
steady-state schedule that preserves the size of the buffers over time. While peeking can be rep-
resented as edge-wise “delays” in the original nomenclature of synchronous dataflow [LM87],
most of the scheduling and optimization research on synchronous dataflow does not consider
the implications of these delays.

5. Communication during initialization. StreamIt allows actors to input and output a known
number of data items during their initialization (as part ofthepreworkfunction). This commu-
nication is also incorporated into the initialization schedule.

With the basic computational model in hand, the rest of this section describes how StreamIt
specifies the computation within actors as well as the connectivity of the stream graph.

2.2 Filters

The basic programmable unit in StreamIt is called afilter. It represents a user-defined actor with
a single input channel and single output channel. Each filterhas a private and independent ad-
dress space; all communication between filters is via the input and output channels (and teleport
messaging). Filters are also granted read-only access to global constants.

An example filter appears in Figure2-1. It performs an FIR filter, which is parameterized
by a lengthN. Each filter has two stages of execution: initialization andsteady state. During
initialization, the parameters to a filter are resolved to constants and theinit function is called.
In the case of FIR, the init function initializes an array of weights, which is maintained as state
within the filter. During steady state execution, thework function is called repeatedly. Inside of
work, filters canpushitems to the output channel,pop items from the input channel, orpeekat a
given position on the input channel. Filters requiring different behavior on their first execution can
declare apreworkfunction, which is called once betweeninit andwork.

The work and prework functions declare how many items they will push and pop, and the
maximum number of items they might peek, as part of their declarations. To benefit from static
scheduling, these expressions must be resolvable to constants at compile time (dynamic rates are
declared using a different syntax [Strc]). While a static analysis can infer the input and output
rates in most cases, in general the problem is undecidable. Our experience has been that rate
declarations provide valuable documentation on the behavior of the filter. In cases where the rates
can be inferred, the declarations can be checked by the compiler.

The StreamIt version of the FIR filter is easy to parallelize and optimize. Because there is no
mutable state within the filter (that is, theweightsarray is modified only during initialization), the
compiler can exploit data parallelism and instantiate manycopies of the FIR filter, each operating
on different sections of the input tape. Also, due to a lack ofpointers in the language, values can
easily be traced through arrays from their initialization to their use. This allows the compiler to
infer that the FIR filter computes a linear function, subjectto aggressive optimization [LTA03].
Also, using a transformation called scalar replacement [STRA05], theweightsarray can be elimi-
nated completely by unrolling loops and propagating constants from the init function to the work
function.

30

float->float filter FIR(int N) {

float[N] weights;

init {

for (int i=0; i<N; i++) {

weights[i] = calcWeight(i, N);

}

}

work push 1 pop 1 peek N {

float sum = 0;

for (int i=0; i<N; i++) {

sum += weights[i] * peek(i);

}

push(sum);

pop();

}

}

void init_FIR(float* weights, int N) {

int i;

for (i=0; i<N; i++) {

weights[i] = calc_weight(i, N);

}

}

void do_FIR(float* weights, int N,

int* src, int* dest,

int* srcIndex, int* destIndex,

int srcBufferSize, int destBufferSize) {

float sum = 0.0;

for (int i = 0; i < N; i++) {

sum += weights[i] *
src[(*srcIndex + i) % srcBufferSize];

}

dest[*destIndex] = sum;

*srcIndex = (*srcIndex + 1) % srcBufferSize;

*destIndex = (*destIndex + 1) % destBufferSize;

}

Figure 2-1: FIR filter in StreamIt. Figure 2-2: FIR filter in C.

A traditional C implementation of an FIR filter (shown in Figure 2-2) resists parallelization
and optimization. The sliding-window nature of the FIR computation results in a circular buffer,
where elements are addressed using a modulo operation. Modulo operations are very difficult to
analyze in a compiler; rather than recognizing the underlying FIFO queue, conservative compilers
will regard each read and write as falling anywhere in an array. The problems are confounded by
the presence of pointers. To parallelize calls to do_FIR, compilers would need to prove that the
weightsandsrc arrays did not overlap withdest, srcIndex, or destIndex. Similar analysis would
be needed to track the values ofweightsfrom their initialization to their use (in two different
procedures). Such precise alias analyses are usually beyond reach. Worse still, it might not even
be legal to calldo_FIRin parallel, depending on the buffer sizes chosen by the programmer. The
underlying cause of all these obstacles is that the programmer has over-specified the computation,
imposing a scheduling and buffer management policy that is better decided by the compiler.

Despite its simplicity, this example illustrates the potential of improving both the programma-
bility and analyzability of stream programs via a domain-specific language design. In addition to
exposing the right information to the compiler, the StreamIt version is also shorter and easier to
maintain, representing a win/win situation for both man andmachine.

2.3 Stream Graphs

One of the new and experimental ideas in StreamIt is to enforce astructuredprogramming model
when building stream graphs. Rather than allowing programmers to connect filters into arbitrary
graphs, the language provides three hierarchical primitives for building larger graphs out of smaller
ones. As illustrated in Figure2-3, these structures are a pipeline, a splitjoin, and a feedbackloop.
Like a filter, each stream structure has a single input channel and single output channel, allowing
them to be composed and interchanged freely. We collectively refer to filters and stream structures
asstreams.

31

stream

stream

stream

stream

splitter

stream stream

joiner

joiner

stream

splitter

stream

(a) A pipeline. (b) A splitjoin. (c) A feedbackloop.

Figure 2-3: Hierarchical stream structures in StreamIt.

float -> float pipeline Main() {

 add Source(); // code for Source not shown

 add FIR();

 add Output(); // code for Output not shown

}

Source

FIR

Output

Figure 2-4: Example pipeline with FIR filter.

The pipeline structure represents a serial composition of streams, with the output of one stream
flowing to the input of the next. Figure2-4 illustrates the syntax for pipelines; theaddkeyword
indicates that a new stream should be instantiated and appended to the current pipeline. A splitjoin
represents a set of parallel and independent streams; asplitterdistributes data from the input chan-
nel to the parallel components, while ajoiner interleaves the streams’ results onto the output chan-
nel. In this case, each call toaddspecifies a separate parallel stream (see Figure2-5). The language
provides a fixed set of pre-defined splitters and joiners, encompassing duplication and round-robin
behavior (detailed in the next section). Finally, the feedbackloop structure provides a way to induce
cycles in the stream graph.

The motivations for introducing structured dataflow in a stream language are analogous to
those for introducing structured control flow in an imperative language. While there was once a
debate [Dij68] between unstructured control flow (using GOTO statements)and structured con-
trol flow (using if/then/else and for loops), in the end structured control flow came to dominate
because it allows the programmer to reason locally. Rather than being lost in a sea of “spaghetti
code”, programmers can recognize common patterns because the language enforces a canonical
and hierarchical expression of the control. While skepticsonce argued that certain patterns would
be more naturally expressed using GOTO statements, over time there emerged structured idioms
that were equally recognizable. For example, while a state machine can be written using a GOTO
statement for each state transition, it can also be written as a dispatch loop. Structured control flow
also benefited compilers, because non-sensical control flowgraphs could be ruled out in favor of
the common case. The field of loop optimizations would have been much more difficult to develop
if researchers had to cope with the full complexity of an unstructured programming model.

32

void->void pipeline FMRadio(int N, float lo, float hi) {

add AtoD();

add FMDemod();

add splitjoin {
split duplicate;
for (int i=0; i<N; i++) {

add pipeline {

add LowPassFilter(lo + i*(hi - lo)/N);

add HighPassFilter(lo + i*(hi - lo)/N);
}

}
join roundrobin;

}
add Adder();

add Speaker();

}

Adder

Speaker

AtoD

FMDemod

Duplicate

RoundRobin

LowPass2

HighPass2

LowPass3

HighPass3

LowPass1

HighPass1

Figure 2-5: Example of a software radio with equalizer. There is a natural correspondence between
the structure of the code and the structure of the graph. In the code, stream structures can be
lexically nested to provide a concise description of the application.

We believe that imposing structure on a stream graph can offer similar benefits. From the
programmer’s perspective, structured streams offer a disciplined and readable way to describe,
parameterize, and compose stream graphs. For example, Figure 2-5 shows the StreamIt code
corresponding to a software radio program. There are three things to notice about the figure.
First, there is a natural correspondence between the structure of the code and the structure of the
stream graph. Rather than reasoning about an ad-hoc set of nodes and edges, the programmer can
visualize the graph while reading the code. Second, the graph description is parameterized. The
number of parallel streams in the equalizer is dictated by a parameterN. Thus, the programmer
can easily describe a broad family of stream graphs; the compiler evaluates the values of the
parameters to spatially unroll the actual stream structure. Finally, imposing a single-input, single-
output discipline on stream programs enables modularity and compositionality. The LowPassFilter
and HighPassFilter can be drawn from a common library, without knowing the details of their
internal representations.

Enforcing structure in the language can also benefit the compiler. Rather than dealing with the
complexity of full graphs, the compiler can focus on a few simple cases. This property helped
us to formulate phased scheduling [Kar02, KTA03], linear optimizations [LTA03, Lam03, Agr04,
ATA05], and mapping to the compressed domain [THA07].

We give more details on our experience with structure in Section 2.5.

2.4 Data Reordering

Another novelty of the StreamIt language is the provision offlexible, composable, and parameter-
ized language primitives for scattering, gathering, and reordering data. These primitives take the
form of pre-defined splitter and joiner nodes, which appear in both splitjoins and feedbackloops.

33

M

N

N

M

float->float splitjoin Transpose (int M, int N)
{

split roundrobin(1);
for (int i = 0; i<N; i++) {

add Identity<float>;
}
join roundrobin(M);

}

N

roundrobin(M)

roundrobin(1)

Figure 2-6: Matrix transpose in StreamIt.

There are two types of splitters. The first splitter,duplicate, copies each input item to all of the
output channels. The second splitter,roundrobin, is parameterized with a set of weights,w1 . . . wn,
wheren is the number of output channels. It sends the firstw1 input items to the first stream, the
nextw2 items to the second stream, and so on, repeating in a cyclic fashion. If all of the outputs
have the same weightw, the splitter can be written asroundrobin(w); similarly, if all the outputs
have weight 1, the programmer can write simplyroundrobin. Roundrobin is also the only type of
joiner available.

By composing these simple primitives – roundrobin splitters, roundrobin joiners, and duplicate
splitters – a large number of data distribution and reordering patterns can be elegantly expressed.
For example, Figure2-6 illustrates StreamIt code for a matrix transpose. The reordering needed
can be expressed by a single splitjoin. The splitjoin has an empty stream (called anIdentity) for
every column in the matrix; a roundrobin(1) splitter moves the columns into the splitjoin, while a
roundrobin(M) joiner moves the rows to the output channel.

Another example is bit-reversed ordering. As illustrated in Figure2-7, a k-digit bit-reversed
ordering is a permutation in which the element at indexn (wheren has binary digitsb0b1 . . . bk) is
reordered to appear at indexbkbk−1 . . . b0. For example, in a 3-digit bit reversal, the item at index
one (001) is reordered to index four (100). In a traditional language such as C, the code to perform
bit-reversal is very complex; see Figure2-8 for a standard algorithm [PFTV92]. Given the doubly-
nested loops, conditionals, shift expressions, and swap operations, it is unlikely that any compiler
will arrive at a sensical representation for the logical reordering performed by this computation. It
is equally difficult for humans to comprehend the code.

However, the StreamIt version (Figure2-9) of bit reversal is far simpler1. It represents bit re-
versal as a recursive reordering. In the base case, there areonly two elements and no reordering

1Satish Ramaswamy in our group discovered this representation of bit-reversal.

34

00001111

00110011

01010101

00001111

00110011

01010101

j=1;
for (i=1; i<n; i+=2) {

if (j > i) {
SWAP(data[j], data[i]);
SWAP(data[j+1], data[i+1]);

}
m=nn;
while (m >= 2 && j > m) {

j -= n;
m >>= 1;

}
j += m;

}

Figure 2-7: Data movement in a 3-
digit bit-reversed ordering.

Figure 2-8: Bit-reversed ordering in an im-
perative language.

complex->complex pipeline BitReverse (int N) {

if (N==2) {

add Identity<complex>;

} else {

add splitjoin {

split roundrobin(1);

add BitReverse(N/2);

add BitReverse(N/2);

join roundrobin(N/2);

} } }

RR(1)

RR(1) RR(1)

RR(2)RR(2)

RR(4)

Figure 2-9: Bit-reversed ordering in StreamIt.

is needed (a 1-digit bit reversal is the identity operation). Otherwise, the reordering consists of
separating elements into two groups based on the lowest-order bit of the input position, reorder-
ing both groups independently, and then joining the groups based on the highest-order bit of the
output position. This pattern can be expressed with a roundrobin(1) splitter, a recursive call to
BitReverse(N/2), and a roundrobin(N/2) joiner. The intuition is: bit reversal is equivalent to a tree
of fine-grained splitting and coarse-grained joining. A graphical depiction of this tree appears in
Figure2-9.

Why bother to represent distribution and reordering operations in an elegant and analyzable
way? The reason is that stream programming centers on data movement, and preserving infor-
mation about exactly where each data item is going enables the compiler to perform more ag-
gressive optimizations. For example, standardized splitters and joiners have enabled us to map
reordering operations to a programmable on-chip network [GTK+02] and have enabled certain
domain-specific optimizations [LTA03, ATA05, THA07]. Other researchers have also leveraged
this representation to automatically generate vector permutation instructions [NY04] and to facili-
tate program sketching [SLRBE05].

35

While the reordering primitives we have defined are quite expressive, it should be noted that
they are not complete. Because splitters always distributetheir first input item to the first output
channel (and likewise with joiners), it is impossible to express a general permutation in which
the first item is reordered to a different position of the stream. However, this behavior can be
emulated by introducing simple computational nodes, such as a filter that decimates some of its
inputs. Of course, it could also be rectified by adding programming language support for adjusting
the order of items output. To our knowledge, the only benchmark in our suite that could leverage
such a primitive is synthetic aperture radar (SAR), in whichfour matrix quadrants are re-shuffled
in preparation for an FFT. We have not found this functionality to be broadly needed.

2.5 Experience Report

Over the past eight years, we have gained considerable experience in developing applications in
StreamIt. We reflect on this experience first via a quantitative analysis of our benchmark suite, and
then via qualitative impressions from StreamIt programmers.

An overview of the StreamIt benchmark suite appears in Table2-10. At the time of this writ-
ing, the suite consists of 67 programs, including 29 realistic applications, 4 graphics rendering
pipelines, 19 libraries and kernels, 8 sorting routines, and 7 toy examples. Benchmarks range in
size from 21 lines (Fibonacci) to over 4,000 lines (MPEG2 encoder), with a total of 33,800 non-
comment, non-blank lines in the suite2. Over 20 people contributed to the suite, including 6 from
outside our group; median-pulse compression doppler radarwas developed at Halmstad Univer-
sity [JSuA05], TDE was developed at the Information Sciences Insittute,an FFT and bitonic sort
were developed at UC Berkeley [NY04], and the graphics pipelines were implemented primarily
by the graphics group at MIT [CGT+05]. OFDM was adapted from an internal performance test of
Spectrumware [TB96], while Vocoder was implemented with support from Seneff [Sen80]. Other
benchmarks were often adapted from a reference implementation in C, Java, or MATLAB.

Graphical depictions of the stream graphs for each benchmark can be found in AppendixB,
while the complete source code for a small benchmark (ChannelVocoder) can be found in Ap-
pendixA. A subset of the benchmarks have also been prepared for public release on the StreamIt
website [Stra]. At the time of this writing, some of the larger benchmarks (MPEG2, GMTI, Mo-
saic, FAT, HDTV) are not fully supported by the compiler. However, their functional correctness
has been verified in the Java runtime for the StreamIt language.

It is important to recognize that most of the benchmarks are parameterized, and we study only
one assignment of those parameters in our quantitative evaluation. Table2-11details the param-
eterization of the StreamIt benchmarks (in addition to scheduling statistics, which are discussed
later). In two-thirds (44) of the benchmarks, the parameters affect the structure of the stream
graph, often by influencing the length of pipelines, the width of splitjoins, the depth of recursion
hierarchies, or the absence or presence of given filters. Thesame number of benchmarks contain
parameters that affect the I/O rates of filters (e.g., the length of an FIR filter), but do not necessarily
affect the structure of the graph. Changes to the I/O rates also imply changes to the schedule and
possibly the balance of work across filters. In selecting values for these parameters, our primary
goal was to faithfully represent a real-life application ofthe algorithm. In some cases we also
decreased the sizes of the parameters (e.g., sorting 16 elements at a time) to improve the com-

2Counting commented lines (8,000) and blank lines (7,300), the benchmark suite comes to 49,300 lines.

36

Benchmark Description Author Libraries Used

MPEG2 encoder MPEG2 video encoder (Drake, 2006) Matthew Drake DCT2D, IDCT2D 4041

MPEG2 decoder MPEG2 vivdeo decoder (Drake, 2006) Matthew Drake IDCT2D 3961

GMTI Ground moving target indicator Sitij Agrawal -- 2707

Mosaic Mosaic imaging with RANSAC algorithm (Aziz, 2007) Basier Aziz FFT 2367

MP3 subset MP3 decoder (excluding parsing + huffman coding) Michal Karczmarek -- 1209

MPD Median pulse compression doppler radar (Johnsson et al., 2005) Johnsson et al.
2

FFT 1027

Lines of

Code
1

Realistic apps (29):

JPEG decoder JPEG decoder Matthew Drake IDCT2D 1021

JPEG transcoder JPEG transcoder (decode, then re-encode at higher compression) Matthew Drake DCT2D, IDCT2D 978

FAT Feature-aided tracker
3

Ali Meli FFT 865

HDTV HDTV encoder/decoder
3

Andrew Lamb -- 845

H264 subset 16x16 intra-prediction stage of H264 encoding Shirley Fung -- 788

SAR Synthetic aperture radar Rodric Rabbah -- 698

GSM GSM decoder Jeremy Wong -- 691

802.11a 802.11a transmitter Sitij Agrawal FFT 690

DES DES encryption Rodric Rabbah -- 567

Serpent Serpent encryption Rodric Rabbah -- 550

Vocoder Phase vocoder, offers independent control over pitch and speed (Seneff, 1980) Chris Leger -- 513

3GPP 3GPP radio access protocol - physical layer Ali Meli -- 387

Radar (coarse) Radar array front end (coarse-grained filters, equivalent functionality) multiple -- 203

Radar (fine) Radar array front end (fine-grained filters, equivalent functionality) multiple -- 201

Audiobeam Audio beamformer, steers channels into a single beam Rodric Rabbah -- 167

FHR (feedback loop) Frequency hopping radio (using feedback loop for hop signal) Rodric Rabbah FFT 161

OFDM Orthogonal frequency division multiplexer (Tennenhouse and Bose, 1996) Michael Gordon -- 148

ChannelVocoder Channel voice coder Andrew Lamb -- 135

Filterbank Filter bank for multi-rate signal processing Andrew Lamb -- 134

TargetDetect Target detection using matched filters and threshold Andrew Lamb -- 127

FMRadio FM radio with equalizer multiple -- 121

FHR (teleport messaging) Frequency hopping radio (using teleport messaging for hop signal) Rodric Rabbah FFT 110

DToA Audio post-processing and 1-bit D/A converter Andrew Lamb Oversampler 100

Graphics Pipelines (4):

GP - reference version General-purpose rendering pipeline: 6 vertex shaders, 15 pixel pipes
4

Jiawen Chen -- 641

GP - phong shading Phong shading rendering pipeline: 1 vertex shader, 12 two-part pixel pipelines Jiawen Chen -- 649

GP shadow volumes Shadow volumes rendering pipeline: 1 vertex shader 20 rasterizers Jiawen Chen 460GP - shadow volumes Shadow volumes rendering pipeline: 1 vertex shader, 20 rasterizers Jiawen Chen -- 460

GP - particle system Particle system pipeline: 9 vertex shaders, 12 pixel pipelines, split triangle setup Jiawen Chen -- 631

Libraries / Kernels (19):

Cholesky NxN cholesky decomposition Ali Meli -- 85

CRC CRC encoder using 32-bit generator polynomial Jeremy Wong -- 131

DCT (float) N-point, one-dimensional DCT (floating point) Ali Meli -- 105

DCT2D (NxM, float) NxM DCT (floating point) Ali Meli -- 115

DCT2D (NxN, int, reference) NxN DCT (IEEE-compliant integral transform, reference version) Matthew Drake -- 59

IDCT (float) N-point one-dimensional IDCT (floating point) Ali Meli -- 105IDCT (float) N-point, one-dimensional IDCT (floating point) Ali Meli -- 105

IDCT2D (NxM, float) NxM IDCT (floating point) Ali Meli -- 115

IDCT2D (NxN, int, reference) NxN IDCT (IEEE-compliant integral transform, reference version) Matthew Drake -- 60

IDCT2D (8x8, int, coarse) 8x8 IDCT (IEEE-compliant integral transform, optimized version, coarse-grained) Matthew Drake -- 139

IDCT2D (8x8, int, fine) 8x8 IDCT (IEEE-compliant integral transform, optimized version, fine-grained) Matthew Drake -- 146

FFT (coarse - default) N-point FFT (coarse-grained) Michal Karczmarek -- 116

FFT (medium) N-point FFT (medium-grained butterfly, no bit-reverse) multiple -- 53

FFT (fine 1) N-point FFT (fine-grained butterfly, coarse-grained bit-reverse) Mani Narayanan -- 139

FFT (fine 2) N-point FFT (fine-grained butterfly, fine-grained bit-reverse Satish Ramaswamy -- 90

MatrixMult (fine) Fine-grained matrix multiply Michal Karczmarek -- 79MatrixMult (fine) Fine-grained matrix multiply Michal Karczmarek -- 79

MatrixMult (coarse) Blocked matrix multiply Michal Karczmarek -- 120

Oversampler 16x oversampler (found in many CD players) Andrew Lamb - 69

RateConvert Audio down-sampler, converts rate by 2/3 Andrew Lamb -- 58

TDE Time-delay equalization (convolution in frequency domain) Jinwoo Suh FFT 102

Sorting Examples (8):

BitonicSort (coarse) Bitonic sort (coarse-grained) Chris Leger -- 73

BitonicSort (fine, iterative) Bitonic sort (fine-grained, iterative) Mani Narayanan -- 121

BitonicSort (fine, recursive) Bitonic sort (fine-grained, recursive) Mani Narayanan -- 80(,) (g ,) y

BubbleSort Bubble sort Chris Leger -- 61

ComparisonCounting Compares each element to every other to determine n'th output Chris Leger -- 67

InsertionSort Insertion sort Chris Leger -- 61

MergeSort Merge sort Bill Thies -- 66

RadixSort Radix sort Chris Leger -- 52

Toy Examples (7):

Autocor Produce auto-correlation series Bill Thies -- 29

Fib Fibonacci number generator David Maze -- 21

Lattice Ten-stage lattice filter Ali Meli -- 58

RayTracer1 Raytracer (ported from Intel) Janis Sermulins -- 407

RayTracer2 Raytracer (rudimentary skeleton) Amy Williams -- 154

SampleTrellis Trellis encoder/decoder system, decodes blocks of 8 bytes Andrew Lamb -- 162

VectAdd Vector-vector addition unknown -- 31

 3
 Some helper functions in FAT, HDTV, and SampleTrellis remain untranslated from the Java-based StreamIt syntax.

 4
The graphics pipelines are described in more detail in Chen et al 2005

 1
 Only non-comment, non-blank lines of code are counted. Line counts do not include libraries used.

 2
 The authors of MPD are Ola Johnsson, Magnus Stenemo, and Zain ul-Abdin.

The graphics pipelines are described in more detail in Chen et al., 2005.

Table 2-10: Overview of the StreamIt benchmark suite.

37

Benchmark Parameters and default values

Graph I/O Rates Min Mode

MPEG2 encoder
3

image size (320x240) 7 1 960 17%

MPEG2 decoder3
image size (320x240) 1 1 990 19%

GMTI over 50 parameters - 1 1 56%

Mosaic frame size (320x240) 5 2 2 27%

MP3 subset -- - 1 18 52%

MPD FFT size (32); rows (104); cols (32) - 1 416 25%

JPEG decoder image size (640x480) 2 1 4800 72%

JPEG transcoder image size (640x480) 2 1 1 85%

FAT 15 parameters, mostly matrix dimensions - 1 1 24%

HDTV trellis encoders (12); interleave depth (5) - 20 1380 38%

H264 subset image size (352x288) - 17 396 26%

SAR over 30 parameters - 1 1 95%

GSM -- - 1 1 65%

802.11a -- - 1 1 14%

DES number of rounds (16) - 1 1 62%

Serpent number of rounds (32); length of text (128) - 1 1 40%

Vocoder pitch & speed adjustments, window sizes - 1 1 88%

3GPP matrix dimensions Q, W, N, K (2, 2, 4, 8) - 1 9 48%

Radar (coarse) channels (12); beams (4); decimation rates; window sizes - 1 1 38%

Radar (fine) channels (12); beams (4); decimation rates; window sizes - 1 1 49%

Audiobeam channels (15) - 1 1 94%

FHR (feedback loop) window size (256) - 1 1 26%

OFDM decimation rates (825, 5); window size (20); demod rate (5) - 1 1 57%

ChannelVocoder number of filters (16); pitch window (100); decimation (50) - 1 50 66%

Filterbank bands (8); window size (128) - 1 8 64%

TargetDetect window size (300) - 1 1 90%

FM Radio bands (7); window size (128); decimation (4) - 1 1 97%

FHR (teleport messaging) window size (256) - 1 1 23%

DToA window size (256) - 1 16 43%

Graphics Pipelines (4):

GP - reference version -- 15 1 2 85%

GP - phong shading -- 12 1 1 94%

GP - shadow volumes -- 20 1 1 93%

GP - particle system -- 12 1 36 70%

Libraries / Kernels (19):

Cholesky matrix size (16x16) - 1 1 70%

CRC -- - 1 1 98%

DCT (float) window size (16) - 1 1 79%

DCT2D (NxM, float) window size (4x4) - 1 1 84%

DCT2D (NxN, int, reference) window size (8x8) - 1 1 80%

IDCT (float) window size (16) - 1 1 85%

IDCT2D (NxM, float) window size (4x4) - 1 1 83%

IDCT2D (NxN, int, reference) window size (8x8) - 1 1 80%

IDCT2D (8x8, int, coarse) -- - 1 64 50%

IDCT2D (8x8, int, fine) -- - 1 1 89%

FFT (coarse - default) window size (64) - 1 1 23%

FFT (medium) window size (64) - 32 32 92%

FFT (fine 1) window size (64) - 1 1 99%

FFT (fine 2) window size (64) - 1 1 98%

MatrixMult (fine) matrix dimensions NxM, MxP (12x12, 9x12) - 9 108 30%

MatrixMult (coarse) matrix dimensions NxM, MxP (12x12, 9x12); block cuts (4) - 9 12 31%

Oversampler window size (64) - 1 1 20%

RateConvert expansion and contraction rates (2, 3); window size (300) - 2 2 40%

TDE number of samples (36); FFT size is next power of two - 1 15 24%

Sorting Examples (8): -

BitonicSort (coarse) number of values to sort (16) - 1 1 67%

BitonicSort (fine, iterative) number of values to sort (16) - 1 1 100%

BitonicSort (fine, recursive) number of values to sort (16) - 1 1 95%

BubbleSort number of values to sort (16) - 1 1 100%

ComparisonCounting number of values to sort (16) - 1 1 85%

InsertionSort number of values to sort (16) - 1 1 67%

MergeSort number of values to sort (16) - 1 1 88%

RadixSort number of values to sort (16) - 1 1 85%

Toy Examples (7): -

Autocor length of vector (32); length of autocor series (8) - 1 1 80%

Fib -- - 1 1 100%

Lattice number of stages (10) - 1 1 100%

RayTracer1 no parameters, though data read from file - 1 1 100%

RayTracer2 implicitly parameterized by scene (simple circle) - 1 1 100%

SampleTrellis frame size (5) - 1 40 46%

VectAdd -- - 1 1 100%

Realistic apps (29):

 *
 Statistics represent properties of complete programs, in which libraries have been inlined into caller.

 3
 Due to the large size of the MPEG2 application, splitjoins replicating a single filter were automatically collapsed by the compiler prior to gathering statistics.

 2 Figures represent the number of runtime instances of dynamic-rate filters. Number of corresponding static filter types are provided in the text.

Parameterized:

 1
 Dynamic rate filters are replaced with push 1, pop 1 filters for calculation of the steady state schedule. Splitters and joiners are not included in the counts.

Dynamic

Rate Filters
2

Mode

Freq.

Filter Execs per Steady State
1

Table 2-11: Parameterization and scheduling statistics for StreamIt benchmarks.

38

Benchmark

MPEG2 encoder3
35 113 30 - - - 9 11 N/A 15 - -

MPEG2 decoder3
25 49 13 - - - 7 10 N/A 8 - -

GMTI 95 1111 1757 - - - - - - 764 - -

Mosaic 62 176 17 2 2 N/A 7 7 N/A 20 1 N/A

MP3 subset 10 98 36 2 4 8.6% - - - 23 - -

MPD 42 110 33 1 11 1.9% 5 7 2.0% 11 - -

JPEG decoder 17 66 13 1 3 0.00% - - - 11 - -

JPEG transcoder 12 126 8 2 6 0.00% - - - 20 - -

FAT 27 143 4 - - - - - - 5 - -

HDTV 20 94 - 1 12 <0.01% 4 38 N/A 28 - -

H264 subset 28 33 20 - - - - - - 16 1 97%

SAR 22 42 - - - - - - - 1 - -

GSM 17 40 3 1 1 4.7% 3 3 42.4% 6 1 25%

802.11a 28 61 35 1 2 7.6% - - - 18 - -

DES 21 117 16 - - - - - - 32 - -

Serpent 13 135 33 - - - - - - 33 - -

Vocoder 30 96 4 4 32 8.0% 3 45 0.3% 8 - -

3GPP 13 60 72 1 8 0.1% - - - 41 - -

Radar (coarse) 6 73 - - - - - - - 2 - -

Radar (fine) 6 49 - - - - 1 28 3.9% 2 - -

Audiobeam 3 18 - 1 15 4.4% - - - 1 - -

FHR (feedback loop) 9 26 1 - - - 1 1 5.1% 1 1 80%

OFDM 6 14 - 1 4 0.1% 1 4 12.2% 1 - -

ChannelVocoder 5 53 - 3 34 5.2% - - - 1 - -

Filterbank 9 67 - 2 32 3.1% - - - 9 - -

TargetDetect 7 10 - 4 4 25% - - - 1 - -

FM Radio 7 29 - 2 14 7.6% - - - 7 - -

FHR (teleport messaging) 7 23 3 - - - 1 1 4.2% 1 - -

DToA 7 14 - 1 5 67% - - - - 1 0.7%

Graphics Pipelines (4):

GP - reference version 6 54 - - - - 1 15 N/A 2 - -

GP - phong shading 7 52 - - - - 1 12 N/A 1 - -

GP - shadow volumes 5 44 - - - - 1 20 N/A 1 - -

GP - particle system 7 37 - - - - 1 12 N/A 2 - -

Libraries / Kernels (19):

Cholesky 5 35 15 - - - - - - 15 - -

CRC 4 48 2 - - - - - - - 1 99%

DCT (float) 6 31 7 - - - - - - 14 - -

DCT2D (NxM, float) 6 42 8 - - - - - - 18 - -

DCT2D (NxN, int, reference) 3 20 - - - - - - - 2 - -

IDCT (float) 6 48 7 - - - - - - 21 - -

IDCT2D (NxM, float) 6 50 8 - - - - - - 26 - -

IDCT2D (NxN, int, reference) 3 20 - - - - - - - 2 - -

IDCT2D (8x8, int, coarse) 2 4 - - - - - - - - - -

IDCT2D (8x8, int, fine) 2 18 - - - - - - - 2 - -

FFT (coarse - default) 4 13 - - - - - - - - - -

FFT (medium) 5 20 6 - - - - - - 12 - -

FFT (fine 1) 4 195 - - - - - - - 44 - -

FFT (fine 2) 4 99 64 - - - - - - 96 - -

MatrixMult (fine) 4 14 30 - - - - - - 5 - -

MatrixMult (coarse) 4 4 25 - - - - - - 7 - -

Oversampler 5 10 - 1 4 52.7% - - - - - -

RateConvert 5 5 - 1 1 97.6% - - - - - -

TDE 7 29 - - - - - - - - - -

Sorting Examples (8):

BitonicSort (coarse) 4 6 - - - - - - - - - -

BitonicSort (fine, iterative) 3 82 - - - - - - - 44 - -

BitonicSort (fine, recursive) 3 62 16 - - - - - - 37 - -

BubbleSort 3 18 - 1 16 5.9% 1 16 5.9% - - -

ComparisonCounting 4 19 1 - - - - - - 1 - -

InsertionSort 3 6 - - - - - - - - - -

MergeSort 3 17 - - - - - - - 7 - -

RadixSort 3 13 - - - - - - - - - -

Toy Examples (7):

Autocor 3 10 - - - - - - - 1 - -

Fib 2 2 1 1 1 45.5% - - - - 1 73%

Lattice 4 18 10 - - - - - - 9 - -

RayTracer1 4 4 - - - - - - - - - -

RayTracer2 5 5 - - - - - - - - - -

SampleTrellis 14 12 1 1 1 N/A 2 2 N/A 1 - -

VectAdd 3 4 - - - - - - - 1 - -

3 Due to the large size of the MPEG2 applications, splitjoins replicating a single filter were automatically collapsed by the compiler prior to gathering statistics.

PEEKING FILTERS

Types Instances Max

Work
2

Instances

(Identity)

Types Max

Work
2

OTHER CONSTRUCTS

Feedback

Loops

Splitjoins

Realistic apps (29):

1 Source and sink nodes that generate synthetic input, check program output, or perform file I/O are not counted as stateful.

TOTAL FILTERS

Instances

(non-Iden.)

 * Statistics represent properties of complete programs, in which libraries have been inlined into caller.

Work in

F. Loop
2

STATEFUL FILTERS
1

Types Instances

2 Work is given as an estimated fraction of the overall program, as calculated by a static analysis. Actual runtimes may differ by 2x or more. Work estimates are not

 available (N/A) for programs containing dynamic rates (MPEG2, Mosaic, Graphics pipelines) or external Java routines (HDTV, SampleTrellis).

Table 2-12: Properties of filters and other constructs in StreamIt benchmarks.

39

int->int filter DifferenceEncoder_Stateless {

prework push 1 peek 1 {

push(peek(0));

}

work pop 1 peek 2 push 1 {

push(peek(1)-peek(0));

pop();

}

}

int->int filter DifferenceEncoder_Stateful {

int state = 0;

work pop 1 push 1 {

push(peek(0)-state);

state = pop();

}

}

Figure 2-13: Stateless version of a differ-
ence encoder, using peeking and prework.

Figure 2-14: Stateful version of a difference
encoder, using internal state.

prehensibility of the stream graph. For benchmarking purposes, researchers may wish to scale up
the parameters to yield larger graphs, or to vary the ratio between parameters to obtain graphs of
varying shapes and work distributions.

More detailed properties of the filters and streams within each benchmark are given in Ta-
ble2-12. In terms of size, benchmarks declare (on average) 11 filter types and instantiate them 63
times in the stream graph. GMTI contains the most filters, with 95 static types and 1,111 dynamic
instances; it also contains 1,757 instances of the Identityfilter, to assist with data reordering.

We organize further discussion of the benchmark suite according to the key outcomes of our
survey. We use the term “stateful” to refer to filters that retain mutable state from one execution
to the next; filters containing only read-only state are classified as “stateless”. Stateless filters are
amenable to data parallelism, as they can be replicated any number of times to work on different
parts of the input stream. However, stateful filters must be run in a serial fashion, as there is a
dependence from one iteration to the next. While separate stateful filters can be run in a task-
parallel or pipeline-parallel mode, the serial nature of each individual filter represents an eventual
bottleneck to the parallel computation.

1. Peeking is widely used for a variety of sliding window computations. Without peeking,
such computations would often introduce a stateful bottleneck in the program. Twenty
two benchmarks – and more than half of the realistic applications – contain at least one filter
that peeks. (That is, these filters declare a peek rate largerthan their pop rate, examining
some items that are not dequeued from the input channel untila later execution. We do not
count filters that merely call the peek primitive, as those items may be popped during the same
execution.) Benchmarks contain up to 4 filter types that peek; in programs with any peeking,
an average of 10 peeking filters are instantiated.

While peeking is used for many purposes, there are a few common patterns. The most common
is that of an FIR filter, where a filter peeks at N items, pops oneitem from the input, and pushes
a weighted sum to the output. FIR filters account for slightlyless than half (15 out of 35) of the
peeking filter declarations. They are responsible for all ofthe peeking in 7 benchmarks (3GPP,
OFDM, Filterbank, TargetDetect, DtoA, Oversampler, RateConvert) and some of the peeking
in 3 others (Vocoder, ChannelVocoder, FMRadio).

40

A second pattern of peeking is when a filter peeks at exactly one item beyond its pop win-
dow. An example of this filter is a difference encoder, as usedin the JPEG transcoder and
Vocoder benchmarks. On its first execution, this filter’s output is the same as its first input; on
subsequent executions, it is the difference between neighboring inputs. As illustrated in Fig-
ure2-13, a difference encoder can be written as a stateless filter using peeking (and prework,
as described later). Otherwise, the filter is forced to maintain internal state, as illustrated in
Figure2-14. Across our benchmark suite, this pattern accounts for morethan one quarter (10
out of 35) of the peeking filter declarations. It accounts forall of the peeking in 4 benchmarks
(Mosaic, JPEG decode, JPEG transcode, HDTV, BubbleSort) and some of the peeking in 2
others (Vocoder, FMRadio). It should be noted that the operation performed on the two items
is sometimes non-linear; for example, Mosaic determines the correlation between successive
frames; FMRadio performs an FM demodulation and HDTV performs an XOR.

The remaining peeking filters (10 out of 35) perform various sliding-window functions. For
example, MP3 reorders and adds data across large (>1000 item) sliding windows; 802.11
and SampleTrellis do short (3-7 item) bit-wise operations as part of an error-correcting code;
Vocoder and Audiobeam use peeking to skip N items (by default1-14), analogous to an in-
verse delay; ChannelVocoder performs a sliding autocorrelation and threshold across N items
(by default 100).

Without peeking, the filters described above would have to bewritten in a stateful manner,
as the locations peeked would be converted to internal states of the filter. This inhibits par-
allelization, as there is a dependence between successive filter executions. To estimate the
resulting performance impact, Table2-12 lists the approximate amount of work in the most
computationally-heavy peeking filter in each benchmark. For 11 benchmarks, this work repre-
sents a significant fraction of the program load (minimum 3.1%, median 8%, maximum 97.6%)
and would represent a new bottleneck in a parallel computation. For 8 benchmarks, the state
that would be introduced by peeking is dwarfed by state already present for other reasons. For
the remaining 3 benchmarks, the peeking filters represent a negligible (0.1%) fraction of work.

2. Prework functions are useful for expressing startup conditions, and for eliminating asso-
ciated state.The prework function allows a filter to have different behavior on its first invoca-
tion. This capability is utilized by 15 benchmarks, in 20 distinct filter declarations (results not
shown in table).

The most common use of prework is for implementing a delay; onthe first execution, the filter
pushes N placeholder items, while on subsequent executionsit acts like an Identity filter. A
delay is used in 8 benchmarks (MPD, HDTV, Vocoder, 3GPP, Filterbank, DToA, Lattice, and
SampleTrellis). Without prework, the delayed items would need to be buffered internally to the
filter, introducing state into the computation.

Other benchmarks use prework for miscellaneous startup conditions. As mentioned previously,
the difference encoder in Figure2-13relies on prework (used in JPEG transcoder and Vocoder),
as does the analogous difference decoder (used in JPEG decoder). The MPEG2 encoder and
decoder use prework in filters relating to picture reordering, while GSM and CRC use prework
for functions analogous to delays. Prework is also used for initialization in MPD, HDTV, and
802.11.

41

3. Stateful filters are less common than we expected, though arenonetheless required for
complete expression of many algorithms. Further state could be eliminated via new lan-
guage constructs, compiler analyses, or programmer interventions.

After effective use of peeking and prework primitives, one quarter (17 out of 67) of the bench-
marks still contain one or more filters with mutable state. There are 49 stateful filter types
in the StreamIt benchmark suite, representing approximately 6% of the total filters. While
other researchers have noted that stream programs are rich in data parallelism [KRD+03], we
nonetheless expected to see a greater proportion of filters that retained mutable state between
execution steps. The heaviest stateful filter in each benchmark ranges from 0.3% to 42.4%
(median 4.7%) of the overall work, representing an eventualbottleneck to parallelization.

Of the stateful filters, at least 22 (about 45%) represent fundamental feedback loops that are
an intrinsic part of the underlying algorithm. Filters in this category include the bit-alignment
stage of MPEG encoding, which performs data-dependent updates to the current position; ref-
erence frame encoding in MPEG encoder, which sometimes stores information about a previ-
ous frame; the parser in MPEG decoder, which suspends and restores its current control flow
position in order to maintain a constant output rate; the motion prediction, motion vector de-
code, and picture reordering stages of MPEG decoder, which contain data-dependent updates
of various buffers; the pre-coding and Ungerboeck encodingstages of HDTV, which are simple
feedback loops; the Ungerboeck decoding stage of HDTV (and analogously in SampleTrellis)
which mutates a persistent lookup table; multiple feedbackloops in GSM; an accumulator,
adaptive filter, and feedback loop in Vocoder; incremental phase correction in OFDM; and
persistent screen buffers in the graphics pipelines.

The remaining filters classified as stateful may be amenable to additional analyses that either
eliminate the state, or allow restricted parallelism even in the presence of state. The largest
category of such filters are those in which the state variables are modified only by message
handlers (messaging is described in the next chapter). Whether such messages represent a
genuine feedback loop depends on whether the filter sending the message is data-dependent on
the outcome of the filter receiving the message. Even if a feedback loop does exist, it may be
possible to exploit bounded parallelism due to the intrinsic delay in that loop, or speculative
parallelism due to the infrequent arrival of most teleport messages. In our benchmarks, there
are 16 filters in which the state is mutated only by message handlers; they originate from MPEG
encoder, MPEG decoder, Mosaic, and both versions of FHR. There are also 4 additional filters
(drawn from MPEG encoder, MPEG decoder, and Mosaic) in whichmessage handlers account
for some, but not all, of the state.

A second category of state which could potentially be removed is that of induction variables.
Several filters keep track of how many times they have been invoked, in order to perform a
special action every N iterations. For example, MPEG encoder counts the frame number in
assigning the picture type; MPD and Radar (fine grained version) count the position within
a logical vector while performing FIR filtering; and SampleTrellis includes a noise source
that flips a bit every N items. Other filters keep track of a logical two-dimensional position,
incrementing a column counter on every iteration and only incrementing the row counter when
a column is complete. Filters in this category include motion estimation from MPEG encoder,
and two filters from MPD. Other filters in MPD contain more complex induction variables; an

42

accumulator is reset when a different counter wraps-aroundto zero. Taken together, there are
a total of 9 filters that could become stateless if all induction variables could be converted to a
closed form.

There are two approaches for eliminating induction variables from filter state. The first ap-
proach is to recognize them automatically in the compiler. While this is straightforward for
simple counters, it may prove difficult for nested counters (tracking both row and column) or
co-induction variables (periodically reseting one variable based on the value of another). The
second approach is to provide a new language primitive that automatically returns the current
iteration number of a given filter. This information can easily be maintained by the runtime sys-
tem without inhibiting parallelization; shifting the burden from the programmer to the compiler
would improve both programmability and performance.

The third and final category of state that could potentially be removed is that which results from
writing a logically coarse-grained filter at a fine level of granularity. This can result in a filter in
which state variables are reset every N executions, corresponding to one coarse-grained execu-
tion boundaries. Such filters can be re-written in a stateless manner by moving state variables
to local variables in the work function, and scaling up the execution of the work function to
represent N fine-grained iterations. Such coarsening wouldeliminate the state in bubble sort,
which is reset at boundaries between data sets, as well as a complex periodic filter (LMaxCalc)
in MPD. It would also eliminate many of the induction variables described previously, as they
are also periodic. This approach provides a practical solution for eliminating state, and was
employed in translating Radar from the original fine-grained version to a coarse-grained alter-
native (both of which appear in our benchmark suite). The drawbacks of this transformation
are the effort required from the programmer and also the increased size of the resulting filter.
Coarse-grained filters often incur a larger code footprint,a longer compile time, and a less
natural mapping to fine-grained architectures such as FPGAs. While the StreamIt language
aims to be agnostic with respect to the granularity of filters, in some cases the tradeoff between
writing stateless filters and writing fine-grained filters may need to be iteratively explored to
achieve the best performance.

4. Feedback loops are uncommon in our benchmarks, but represent significant bottlenecks
when present.While our discussion thus far has focused on stateful filters, seven benchmarks
also contain explicit feedback loops in the graph structure. Four of these loops (Fib, FHR feed-
back, H264 subset, CRC) represent significant bottlenecks to parallelization, with workloads
ranging from 73% to 99% of the overall execution. The loop in GSM is shadowed by a stateful
filter; the loop in DToA represents only 0.7% of the runtime; and the loop in Mosaic, while
likely a bottleneck, is difficult to quantify due to dynamic rates. Unlike some of the stateful
filters, these feedback loops are all intrinsic to the algorithm and are not subject to automatic
removal. However, feedback loops can nonetheless afford opportunities for parallelism due to
the delay in the loop – that is, if items are enqueued along thefeedback path at the start of
execution, then they can be processed in parallel. Further analysis of these delays is needed to
assess the potential parallelism of feedback loops in our benchmark suite.

5. Splitjoins and Identity filters are very common in the benchmarks. These two language
constructs found broad application across our benchmark suite. Splitjoins appear in over three
quarters (53 out of 67) of the benchmarks, with a median of 8 instantiations per benchmark.

43

Benchmark Sender(s) Receiver(s) Direction Latency Purpose

MPEG2 encoder 1 2 Upstream 0 Send back reference frame to forward and backward motion predictors

1 4 Downstream 0 Send picture number and picture type to processing filters

1 4 Downstream 0 Broadcast common parameter to adjacent filters, across splitters/joiners

MPEG2 decoder 1 7 Downstream 0 Send video parameters from file parser to decoding stages

Mosaic 1 3 Upstream and Downstream 0 Indicate if RANSAC algorithm should continue to iterate

1 3 Downstream 0 Broadcast common result (number of inliers) to pipeline of filters

1 1 Downstream 0 Send result across joiner, with different type than data stream

FHR (teleport messaging) 4 1 Upstream 6 Indicate detection of signal to switch frontend to given frequency

Table 2-15: Use of teleport messaging in StreamIt benchmarks.

Roundrobin splitters accounted for 65% of the instantiations, while the other splitters are of
duplicate type. (All joiners are of roundrobin type.) Identity filters were used in half (33 of
67) of the benchmarks, with a median of 13 instantiations perbenchmark. Identity filters are
recognized by the compiler as a pass-through operation, allowing it to map communication
instructions directly to a network fabric.

6. Teleport messaging and dynamic rates are uncommon in the benchmarks, but provide
critical functionality when utilized. These language features were not fully specified until
years after the initial release of the compiler, which contributes to their smaller representation
in the benchmark suite.

As detailed in Table2-15, teleport messages are utilized by four of the benchmarks (MPEG2
encoder, MPEG2 decoder, Mosaic, and FHR). There are a total of 8 logical messages, often
between multiple senders or multiple receivers. Both upstream and downstream messages are
utilized; all messages are sent with a latency of zero. Whilerelatively few of the benchmarks
use teleport messaging, the functionality provided is essential. As described in the next chapter
for the case of FHR, and elsewhere for MPEG2 [Dra06] and Mosaic [Azi07], messaging greatly
simplifies and improves the expression of these algorithms in a streaming context.

Similarly, as illustrated in Table2-11, dynamic rates are utilized by only 9 benchmarks, but are
absolutely necessary to express these benchmarks in StreamIt. Though there are a total of 76
dynamic-rate filters instantiated across the benchmarks, these instantiations correspond to only
14 filter types that perform a set of related functions. In JPEG and MPEG2, dynamic-rate filters
are needed to parse and also create both the BMP and MPEG formats. MPEG2 encoder also
requires a dynamic-rate filter to reorder pictures (puttingB frames in the appropriate place).
All of these filters have unbounded push, pop, and peek rates,though in JPEG and MPEG2
decoder there is a minimum rate specified.

In Mosaic, dynamic rates are used to implement a feedback loop (in the RANSAC algorithm)
that iterates an unpredictable number of times; the signal to stop iteration is driven by a teleport
message. The entry to the loop pops either 0 or 1 items, while the exit from the loop pushes
either zero or one items. Mosaic also contains three parameterized filters, in which the input and
output rates are governed by the number of points of interestas determined by the algorithm.
The count is established via a teleport message, thus fixing the input and output rates prior to a
given iteration.

In the graphics pipelines, the only dynamic-rate filters arethe rasterizers, which expand each
triangle into an unknown number of pixels.

44

7. Neighboring filters often have matched I/O rates.Many of the advanced scheduling strate-
gies for synchronous dataflow graphs have the highest payoffwhen the input and output rates
of neighboring filters are mismatched. For example, the CD-DAT benchmark (shown in Fig-
ure2-16) is used in many studies [MBL94, BML95, TZB99, BB00, CBL01, MB04, KSB06];
it converts compact disk auto (sampled at 44.1 khz) to digital audio tape (sampled at 48 khz).
Performing this conversion in stages improves efficiency [MBL94]. However, neighboring fil-
ters have different communication rates which share no common factors, resulting in a large
steady-state schedule.

In our benchmark suite, mismatched communication rates as seen in CD-DAT are rare. The
common case is that the entire benchmark is operating on a logical frame of data which is
passed through the entire application. Sometimes there aredifference in the input and output
rates for filters that operate at different levels of granularity; for example, processing one frame
at a time, one macroblock at a time, or one pixel at a time. However, these rates have a small
common multiple (i.e., the frame size) and can be accommodated without growing the steady
state schedule. The JPEG transcoder provides an example of this; Figure2-17 illustrates part
of the stream graph that operates on a single 8x8 macroblock.

To provide a quantitative assessment of the number of matched rates in our benchmark suite,
Table2-11summarizes the key properties of the steady state schedule derived for each program.
We consider the minimal steady state schedule, which executes each filter the minimum number
of times so as to consume all of the items produced by other filters in the graph. We count the
number of times that each filter executes in this schedule, which we refer to as themultiplicity
for the filter. The table illustrates, for each benchmark, the minimum multiplicity, the mode
multiplicity, and the percentage of filters that have the mode multiplicity (the mode frequency).

The most striking result from the table is that 90% (60 out of 67) of the benchmarks have a
minimum filter multiplicity of 1. That is, there exists at least one filter in the program that
executes only once in the steady state schedule. This filter defines the logical frame size for the
execution; all other filters are simply scaled up to satisfy the input or output requirements of
the filter.

The second highlight from the table is that, on average, 66% of the filters in a program share
the same multiplicity. For over two-thirds of the benchmarks (46 out of 67), the most common
multiplicity is 1; in these benchmarks, an average of 75% of the filters also have a multiplicity
of 1. The mode multiplicity can grow higher than 1 in cases where one filter operates at a
coarse granularity (e.g., a frame), but the majority of filters operate at a fine granularity (e.g., a
pixel). In these benchmarks, 46% of the filters still share the same multiplicity.

The prevalance of matched rates in our benchmark suite also led to unexpected results in some
of our papers. For example, in our work on phased scheduling,we developed a new schedul-
ing algorithm that reduces the buffer requirements needed to execute a synchronous dataflow
graph [KTA03]. The space saved on CD-DAT is over 14x. However, the median savings across
our benchmark suite at the time (a subset of the suite presented here) is less than 1.2x. The
reason is that the potential savings on most benchmarks was extremely small due to matched
input and output rates; simply executing each node once would often give the minimal possible
buffering. This result emphasizes the importance of optimizing the common case in realistic
programs, rather than restricting attention to small examples.

45

Stage1 Stage2 Stage3 Stage4

1 2 3 2 7 8 7 5

 147 98 28 32

Figure 2-16: The CD-DAT benchmark [MB04] exhibits unusually mis-matched I/O rates. Nodes
are annotated with the number of items pushed and popped per execution, as well as their execution
multiplicity in the steady state. Since neighboring filtersproduce different numbers of items, each
filter has a large multiplicity in the steady state. This demands clever scheduling strategies to avoid
extremely large buffer sizes.

Adder

ZigZag
Unorder

 1

64

64

1 63
11

1 63

Int. Diff.
Decoder

Identity

De-
Quantizer

 1

64

64

 63 1

11

iDCT iDCT iDCT iDCT iDCT iDCT iDCT iDCT 1 1 1 1 1 1 1 1

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

1 1

1

1 1

1

iDCT iDCT iDCT iDCT iDCT iDCT iDCT iDCT 1 1 1 1 1 1 1 1

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8 8

8

8 8

8

1

1

 64

Figure 2-17: This excerpt from the JPEG transcoder illustrates matched I/O rates, as found in many
benchmarks. The graph is transforming pixels from an 8x8 macroblock. Nodes are annotated with
the number of items pushed and popped per execution, as well as their execution multiplicity in the
steady state. Since neighboring filters often produce the same number of items on each execution,
all filters except for Identity and Adder execute exactly once in the steady state. This offers less
flexibility to optimize the schedule, and affords less benefit from doing so.

46

C D

1 1

B

A

1 1

1

1
1

1

rr

C D

1 1

B

1

2

A

rr

rr

1

Identity

2 1

1 2
2

12

3

3

1

2

(a) Unstructured (b) Structured

Figure 2-18: Example of refactoring a stream graph to fit a structured programming model. Both
graphs achieve equivalent communication between filters.

In addition to our observations about the benchmark characteristics, we also offer some lessons
learned from developers’ experiences in implementing stream programs. As noted in Table2-10,
the StreamIt benchmarks were developed by 22 different people; all but one of them were students,
and half of them were undergraduates or M.Eng students at MIT. As the developers were newcom-
ers to the StreamIt language, we expect that their experience would reflect that of a broader user
population; their coding style was not influenced by the intent of the original language designers.
We summarize their experience as follows:

1. Structured streams are a useful and tractable means of writing programs. However, they
are occasionally unnatural and, in rare cases, insufficient. Overall, we found structured
streams – the hierarchical composition of pipelines, splitjoins, and feedbackloops – to be a
good match for the applications in our benchmark suite. While the developer sometimes had to
refactor an unstructured block diagram into structured components, the result was nonetheless
a viable way to represent the application.

One shortcoming of structure is that it can force programmers to multiplex and demultiplex
conceptually-distinct data streams into a single channel.The underlying cause of this hazard is
illustrated in Figure2-18. Because filters C and D are running in parallel, their input streams
must converge at a common splitter under a structured programming model. However, this
implies that the auxiliary communication from A to D must also pass through the splitter, in a
manner that is interleaved with the output of B. An extra splitjoin (at the top of Figure2-18b)
is needed to perform this interleaving. A more realistic example of the same hazard is shown
in Figure2-19, which corresponds to our 3GPP benchmark.

Needless to say, this pattern of multiplexing and demultiplexing adds considerable complexity
to the development process. It requires the programmer to maintain an unwritten contract

47

dcalc

SourceAHL

GenA

ConvMat

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

SplitMat

DelMat DelMat DelMat DelMat DelMat DelMat DelMat DelMat

AandL

GenL

RowCol

choldAha

AhrdAhA

Ahrd

AhrL

multvectdoub

sourcerSplit

vectdouble

vectdouble

split_ahrd

vectdouble

dsolve

LrL

Ahrchold

Lest

error_split

vectdouble

LrL

Sourceh

roundrobin(2,2,2,2,2,2,2,2)

roundrobin(0,2) roundrobin(0,2) roundrobin(0,2) roundrobin(0,2) roundrobin(0,2) roundrobin(0,2) roundrobin(0,2) roundrobin(0,2)

roundrobin(9,9,9,9,9,9,9,9)

roundrobin(9,9,9,9,9,9,9,9)

ZeroGen Identity

roundrobin(1,2)

FirFilter

roundrobin(3,0)

Identity ZeroGen

roundrobin(3,6)

ZeroGen Identity

roundrobin(1,2)

FirFilter

roundrobin(3,0)

Identity ZeroGen

roundrobin(3,6)

ZeroGen Identity

roundrobin(1,2)

FirFilter

roundrobin(3,0)

Identity ZeroGen

roundrobin(3,6)

ZeroGen Identity

roundrobin(1,2)

FirFilter

roundrobin(3,0)

Identity ZeroGen

roundrobin(3,6)

ZeroGen Identity

roundrobin(1,2)

FirFilter

roundrobin(3,0)

Identity ZeroGen

roundrobin(3,6)

ZeroGen Identity

roundrobin(1,2)

FirFilter

roundrobin(3,0)

Identity ZeroGen

roundrobin(3,6)

ZeroGen Identity

roundrobin(1,2)

FirFilter

roundrobin(3,0)

Identity ZeroGen

roundrobin(3,6)

ZeroGen Identity

roundrobin(1,2)

FirFilter

roundrobin(3,0)

Identity ZeroGen

roundrobin(3,6)

duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1)

roundrobin(4,4,4,4,4,4,4,4)

duplicate(1,1)

Identity Delay Delay Delay

roundrobin(1,1,1,1)

Identity Delay Delay Delay

roundrobin(1,1,1,1)

Identity Delay Delay Delay

roundrobin(1,1,1,1)

Identity Delay Delay Delay

roundrobin(1,1,1,1)

Identity Delay Delay Delay

roundrobin(1,1,1,1)

Identity Delay Delay Delay

roundrobin(1,1,1,1)

Identity Delay Delay Delay

roundrobin(1,1,1,1)

Identity Delay Delay Delay

roundrobin(1,1,1,1)

Identity

roundrobin(1,1)

roundrobin(288,1056)

roundrobin(816,528)

Identity Identity

roundrobin(9,9)

SelfProd

duplicate(1,1)

chold Identity

roundrobin(528,528)

roundrobin(288,528)

Identity

roundrobin(96,528)

roundrobin(32,592)

roundrobin(0,288) duplicate(1,1)

roundrobin(64,1056)

roundrobin(32,1088)

Sourcer Identity

roundrobin(9,288)

multvect

duplicate(1,1)

Identity Identity

roundrobin(32,32)

Identity Identity

roundrobin(528,528)

duplicate(1,1) roundrobin(560,528)

roundrobin(64,32)

Identity Identity

roundrobin(32,32)

forw Identity

roundrobin(32,528)

backs

Identity

roundrobin(64,528)

roundrobin(32,1056)

roundrobin(560,528)

error_est Identity

roundrobin(1,528)

choldsigma

duplicate(1,1)

Identity Identity

roundrobin(528,528)

forw Identity

roundrobin(32,528)

backs

SinkD

Figure 2-19: Stream graph of a 3GPP Radio Access Protocol
application. Shaded filters indicate Identity nodes that are
used to bypass data items around intermediate filters. They
are also used in splitjoins for data duplication and reordering.

48

Figure 2-20: A communication pattern unsuitable for structured streams. This pattern can arise
in video compression, where each block informs its neighbors of its motion prediction before the
next processing step.

.

regarding the logical interleaving of data streams on each physical channel. Moreover, the
addition of a new communication edge in the stream graph may require modification to many
intermediate stages.

While there is no perfect solution to this problem, we have sometimes embraced two imperfect
workarounds. First, the data items in the multiplexed streams can be changed from a primitive
type to a structure type, allowing each logical stream to carry its own name. This approach
would benefit from a new kind of splitter and joiner which automatically packages and un-
packages structures from adjoining data channels. The second approach is to employ teleport
messaging; as described in the next chapter, it allows point-to-point communication and avoids
interleaving stream data. However, since it is designed forirregular control messages, it does
not expose information about the steady-state dataflow to the compiler.

In practice, we have chosen to tolerate the occasional complexity of stream multiplexing rather
than to fall back on an unstructured programming model. However, it may be valuable to
consider a natural syntax for unstructured components of the stream graph – the analog of
break and continue statements (or even a rare GOTO statement) in structured control flow. It is
important to note, however, that there is no overhead introduced by adding splitters and joiners
to the stream graph; the StreamIt compiler analyzes the communication (via an analysis known
assynchronization removal) to recover the original unstructured communication.

Finally, there are rare cases in which the structured primitives in StreamIt have been inade-
quate for representing a streaming communication pattern.Figure2-20illustrates an example
from video compression, where each parallel filter performsa motion prediction for a fixed
area of the screen. Between successive frames, each filters shares its prediction with its neigh-
bors on either side. While this could be represented with a feedback loop around the entire
computation, there would be complicated interleaving involved. This case reflects a broader
shortcoming, discussed in Section2.7, that StreamIt is not designed for multidimensional data
processing.

2. Programmers can accidentally introduce unnecessary mutable state in filters. Filters that
have no mutable state are attractive because they can be run in a data-parallel fashion. Un-
fortunately, the performance cost of introducing state is not exposed in the current StreamIt
language. Thus, we found that several programmers, when faced with two alternative im-

49

void->int filter SquareWave() {

work push 2 {

push(0);

push(1);

}

}

void->int filter SquareWave() {

int x = 0;

work push 1 {

push(x);

x = 1 - x;

}

}

(a) Stateless (b) Stateful

Figure 2-21: Programmers can accidentally introduce unnecessary filter state when writing pro-
grams. In this example, the intended output is a square wave,emitting alternate values of 0 and
1. Both implementations shown are functionally equivalent. However, the stateless version (a)
appears data-parallel to the compiler, while the stateful version (b) appears sequential.

plementations of an algorithm, would sometimes choose the one that includes mutable state.
Figure2-21gives a pedantic example of this problem, while Figure2-22illustrates a realistic
case from MPD. Prior to conducting our performance evaluations, we examined all stateful
filters in the benchmarks and rewrote them as stateless filters when it was natural to do so. In
future stream languages, it may be desirable to require an extra type modifier on stateful filters,
such as astatefulkeyword in their declaration, to force programmers to be cognizant of any
added state and to avoid it when possible.

3. Multi-phase filters confuse programmers and are not necessary. At one point in the StreamIt
project, we embraced the cyclo-static dataflow model [BELP95, PPL95] for all filters. Under
this model, the programmer can define multiple work functions that are executed under a speci-
fied pattern. By dividing execution into more fine-grained units, cyclo-static dataflow can offer
lower latency than synchronous dataflow, and can also avoid deadlock in tightly constrained
loops.

However, our experience is that having the option of multiple execution steps is confusing to
beginning StreamIt programmers. There is a tendency to interpret multiple execution steps as
belonging to multiple distinct filters. It is also difficult to explain to a non-expert why one
method should be designated as an execution step, rather than as a plain subroutine call.

Multiple execution steps did prove to be important to the semantics of splitters and joiners,
which would have an unreasonably large granularity if they were forced to transfer a full cycle
of data at a single time. However, because StreamIt relies ona few built-in primitives for split-
ting and joining, the subtlety of this execution semantics could be hidden from the programmer.
Apart from splitters and joiners, we did not encounter any scenarios (in our limited benchmark
suite) that demanded multiple execution steps in filters.

Thus, after making a significant investment to support the full generality of cyclo-static dataflow
in the StreamIt compiler, we eventually changed course and removed the capability from the
language.

4. Input and output rates can typically be inferred from the code inside a filter. However,
it is still worthwhile for the programmer to declare them. We were surprised how many
StreamIt benchmarks contained completely static control flow inside the body of filters. That is,

50

float->float splitjoin

CFARDelayToLMax_Stateless(int rows) {

split roundrobin;

add Delay(rows-1);

add Delay(rows-1);

add Identity<float>();

add Delay(rows-1);

add Delay(rows-1);

join roundrobin;

}

float->float filter Delay(int N) {

prework push N {

for (int i=0; i<N; i++) {

push(0.0);

}

}

work push 1 pop 1 {

push(pop());

}

}

float->float filter

CFARDelayToLMax_Stateful(int rows) {

float[rows] guardNoise;

float[rows] thresh;

float[rows] sumDb;

float[rows] guardDb;

int popPos = 0;

int pushPos = 1;

work pop 5 push 5 {

guardNoise[popPos] = pop();

push(guardNoise[pushPos]);

thresh[popPos] = pop();

push(thresh[pushPos]);

push(pop());

sumDb[popPos] = pop();

push(sumDb[pushPos]);

guardDb[popPos] = pop();

push(guardDb[pushPos]);

popPos++;

pushPos++;

if(popPos >= rows) {

popPos = 0;

}

if(pushPos >= rows) {

pushPos = 0;

}

}

}

(a) Stateless (b) Stateful

Figure 2-22: A second example, drawn from MPD, in which a stateless computation was written in
a stateful style in the original implementation. The original version (b) performs a complex delay
and reordering of interleaved vectors on the input stream, and appears stateful to the compiler. It
can be rewritten as a stateless construct (a), which separates the logical streams using a splitjoin
and applies a stateless delay to each one.

the path of control taken through thework function is often independent of the data values input
to the filter. Exceptions to this pattern include sorting algorithms, compression algorithms, and
parsing algorithms (e.g., the MPEG-2 bitstream parser).

When the control flow is static, it is often feasible for the compiler to infer the number of
items pushed and popped via a static analysis. Such an analysis could save the programmer the
trouble of annotating each work function with its input and output rates.

However, we did find that it is valuable for programmers to annotate the input and output
rates even when they can be inferred. As is commonly the case with type declarations, these
annotations provided documentation to other users regarding the intended behavior of the filter,
making it easier to understand and maintain. They also provided a level of redundancy, so that,
when possible, the compiler could check the consistency between the declared rates and the
actual implementation.

51

2.6 Related Work

As described in Chapter 1 and elsewhere [Ste97], there is a long history of programming language
support for streams in the dataflow, functional, and synchronous language domains. Here we
compare to StreamIt’s more immediate contemporaries.

The Brook language is architecture-independent and focuses on data parallelism [BFH+04].
Stream kernels are required to be stateless, though there isspecial support for reducing streams
to a single value. Sliding windows are supported via stencils, which indicate how data elements
should be replicated across multiple processing instances. While StreamIt supports a single stream
graph operating a conceptually infinite stream, Brook supports multiple graphs, embedded in a C
program, that operate on finite-length streams. An independent comparison of the two languages
by Mattson and Lethin [ML03] aptly summarizes the philosophical difference, in that StreamIt
was designed by compiler writers (it is “clean but more constrained”) while Brook was driven by
application developers and architects, and is “rough but more expressive”.

Brook is one of several stream-oriented languages that evolved out of the graphics commu-
nity. Cg exploits pipeline parallelism and data parallelism, though the programmer must write
algorithms to exactly match the two pipeline stages of a graphics processor [MGAK03]. The
sH language, subsequently commercialized by RapidMind, isembedded within C++ as a set of
macros [MQP02, MTP+04]. Like StreamIt, sH specializes stream kernels to their constant ar-
guments, and fuses pipelined kernels in order to increase their granularity. Unlike StreamIt, sH
performs these optimizations dynamically in a Just-In-Time (JIT) compiler, offering increased
flexibility. However, StreamIt offers increased expressiveness in that 1) StreamIt can express ar-
bitrary stream graphs, while sH appears to be limited to pipelines, and 2) StreamIt can express
kernels with state, while sH kernels must be stateless. Accelerator [TPO06] also employs a Just-
In-Time strategy to target GPUs from C#; the system derives parallelism from data-parallel array
types rather than explicit stream kernels.

StreamC/KernelC preceded Brook and operates at a lower level of abstraction; kernels writ-
ten in KernelC are stitched together in StreamC and mapped tothe data-parallel Imagine proces-
sor [KRD+03]. SPUR adopts a similar decomposition between “microcode”stream kernels and
skeleton programs to expose data parallelism [ZLSL05].

StreamIt is not the first language to incorporate the notion of a sliding window. In the Warp
project, the AL language [Tse89] had a window operation for use with arrays, and Printz’s “signal
flow graphs” included nodes that performed a sliding window [Pri91]. The ECOS graphs language
allows actors to specify how many items are read but not consumed [HMWZ92]; the Signal lan-
guage allows access to the window of values that a variable assumed in the past [GBBG86]; and
the SA-C language contains a two-dimensional windowing operation [DBH+01]. However, to the
best of our knowledge, we are the first to demonstrate the utility of sliding windows in improving
parallelism and programmability across a large benchmark suite.

To summarize the differences to other stream languages, StreamIt places more emphasis on ex-
posing task and pipeline parallelism (all the languages expose data parallelism). By adopting the
synchronous dataflow model of execution, StreamIt focuses on well-structured and long-running
programs that can be aggressively optimized. We are not aware of structured streams or hierarchi-
cal mechanisms for data reordering in other stream languages. Spidle [CHR+03] is also a recent
stream language that was influenced by StreamIt.

52

2.7 Future Work

There are many directions in which to expand and refine the StreamIt language. Based on his
study of MPEG-2 in StreamIt, Matthew Drake makes a sound casefor adding support for pro-
grammable splitters and joiners, re-initialization of streams, draining of streams, and dispatch
splitjoins [Dra06]. He also discusses extensions to teleport messaging, described in the next chap-
ter. We endorse his recommendations and also highlight the following research directions:

1. Dynamic changes to stream structure.A long-time goal of the StreamIt group has been to de-
fine and implement support for dynamic changes to the stream graph. For example, an adaptive
channel decoder may decide to add or remove filtering stages;an FIR filter may dynamically
scale the size of the window it considers; a network router may add or remove streams to rep-
resent new logical flows; or an AMPS cellular base station mayadd and remove streams to
support new clients.

There are several challenges and opportunities in supporting dynamic stream graphs. As de-
scribed in the next chapter, our basic model for runtime adaptation is to re-evaluate the initial-
ization code for stream structures by sending a teleport message to that stream. The difficulty
comes in timing the re-initialization, migrating filter state and buffered data items to the new
graph, and maintaining as much static information as possible about the possible configurations
of graphs that will be adopted at runtime. Many of these issues arise not from dynamism, but
from incorporating a notion of finite streams into the language; as the current language views
all streams are conceptually infinite, it does not have to deal with boundary conditions or ter-
mination procedures, both of which are prerequisites for dynamic reconfiguration. While we
have developed extensive internal notes and proposals on language support for dynamism, we
omit them from this dissertation because we have yet to reachconsensus on many aspects of
the design.

As an intermediate step towards supporting a fully-reconfigurable stream graph, it would also
be interesting to introduce primitives that allow programmers to indicate which parts of code
should be evaluated at compile time, versus being evaluatedat load time or runtime. The cur-
rent StreamIt compiler requires the structure and communication rates in the stream graph to
be evaluated at compile time, though the StreamIt language could also be interpreted as bind-
ing these values at load time (during program initialization). While compile-time evaluation
improves optimization opportunities, it is not always permissible by the application. For ex-
ample, if an external file is used to drive the structure or parameters of the stream graph, then
compile-time evaluation is safe if that file is fixed across all executions (e.g., a simulator for a
specific processor architecture) but unsafe if it may vary from one execution to the next (e.g.,
a scene description for a rendering engine). We envision that a simple type modifier, such as a
“dynamic” keyword, could be used to distinguish these cases. The type system would guaran-
tee that everything that depends on dynamic data is also declared dynamic. This would allow
the compiler to maximally evaluate other sections of the stream graph at compile time.

53

2. Multidimensional data. The current version of StreamIt is a natural fit for handling one-
dimensional sequences of data, but falls short in exposing the dependences and flexibility in-
herent in manipulating multi-dimensional data. When handling sequences of multidimensional
data (such as video frames), the programmer is currently left with two alternatives. One op-
tion is to take a coarse-grained approach in which filters push and pop entire arrays at a time.
However, this results in nested loops within filter code, reducing the problem to a traditional
loop analysis without gaining any leverage from the streaming domain. The second option is to
take a fine-grained approach, in which individual arrays aresplit up into columns or blocks and
distributed over many filters. However, this mapping forcesthe programmer to specify a fixed
decomposition of the data in the array (row-major, column-major, blocked, etc.) and makes it
more difficult for the compiler to infer the underlying dependences and adjust the schedule as
needed.

One possibility for handling multidimensional data could be to add iterators that apply a filter
(or entire stream graph) to all of the elements of an array. The Brook language [BFH+04]
adopts a similar approach in a construct termedstencils. However, stencils generally operate
on a single array at a time and are not integrated into a largerstream graph. An opportunity for
future work would be to create a unified environment for processing sequences of arrays and
data items within arrays, including compiler-friendly “bridge” operators that decompose arrays
into data streams and assemble data streams into arrays. Research challenges arise in the spec-
ification of boundary conditions on the sides of an array, thedependences and reuse between
different parts of an array, and the possibility for carriedstate across separate arrays. Many
of these issues are again rooted in StreamIt’s ties to an infinite stream abstraction. Integrated
support for finite streams will be needed to effectively handle multidimensional data.

3. External interfaces. In practice, it is important for any domain-specific language to have well-
defined interfaces for interacting with languages and systems that fall outside of the domain.
In the case of streaming, this encompasses interfaces for embedding stream graphs within
general purpose languages, as well as for embedding general-purpose computations within
stream graphs. While we have developed an internal, ad-hoc interface for interfacing between
StreamIt and C, there are interesting research questions inrigorously defining the semantics of
such hybrid computational models.

For example, one characteristic of synchronous dataflow is that data streams are virtually infi-
nite; however, from a general-purpose language, streamingcomputations can also be gainfully
applied to large arrays. Thus, it will be valuable to developformal notions of draining the
stream graph, and perhaps mechanisms to maintain the state of a stream graph from one instan-
tiation to another.

There are also interesting questions that relate to the memory model of hybrid systems. Syn-
chronous dataflow represents a fully distributed model withno access to shared state; however,
other general-purpose programming models often embrace a shared-memory abstraction. As
described in the next chapter, one approach to unifying these abstractions could be to allow
streaming updates to shared memory so long as they are committed according to a determinis-
tic static schedule.

54

2.8 Chapter Summary

This chapter describes the design rationale and experienced gained from the StreamIt language,
one of the first programming languages that exposes and exploits the inherent regularity of stream
programs. StreamIt is rooted in the synchronous dataflow model, with added support for multiple
execution steps, dynamic communication rates, teleport messaging, peeking, and communication
during initialization. Key novelties of the language are the notion of structured streams – akin
to structured control flow in an imperative language – as wellas hierarchical and parameterized
splitjoins for data reordering. The design of the basic computational node in StreamIt, the filter,
also exposes inherent parallelism that is masked by pointermanipulation and modulo operations
in a traditional C implementation.

The development of a large-scale benchmark suite in StreamIt led to several insights and sur-
prises. Language support for sliding windows and communication during the initialization stage
enabled many filters to be written in a stateless manner, exposing parallelism that would have
been masked without these features. We were surprised how few filters contained mutable state;
this suggests that many programs can leverage data parallelism, rather than relying on task and
pipeline parallelism, to achieve parallel performance. Our benchmarks often contain matched in-
put and output rates, where filters need to execute only a small number of times before satisfying
the steady-state data requirements of their neighbors. This property reduces the space of scheduling
alternatives as well as the benefit derived (e.g., in buffer space) from complex filter interleavings.

Continuous feedback from StreamIt developers also provided a valuable critique of the StreamIt
language. While structured streams were a natural way to represent common programs, in some
cases the programmer needed to refactor an unstructured stream graph into a more complex struc-
tured representation. An optional mechanism for infrequent unstructured communication may be
valuable in future languages. Programmers were also prone to accidentally introduce mutable fil-
ter state, impeding parallelization. Future languages should expose this performance cost to the
programmer so that they avoid unnecessary serialization. We found that multi-phase filters (as in
cyclo-static dataflow) are likely to confuse programmers and are not necessary to express compu-
tations in our benchmark suite. Finally, while the input andoutput rates of most filters could be
inferred, it was still worthwhile to declare them from a software engineering standpoint.

There is rich potential for future work in stream languages,including support for dynamically
changing the stream structure, support for multidimensional data, and support for external inter-
faces.

55

56

Chapter 3

Teleport Messaging

In this chapter, we develop a new language construct to address one of the pitfalls of parallel pro-
gramming: precise handling of events across parallel components. The construct, termedteleport
messaging, uses data dependences between components to provide a common notion of time in a
parallel system. We leverage the static properties of synchronous dataflow to compute a stream
dependence function,SDEP, that compactly describes the ordering constraints between actor exe-
cutions.

Teleport messaging utilizesSDEPto provide powerful and precise event handling. For example,
an actorA can specify that an event should be processed by a downstreamactorB as soon as
B sees the “effects” of the current execution ofA. We argue that teleport messaging improves
readability and robustness over existing practices. We have implemented messaging as part of the
StreamIt compiler, with a backend for a cluster of workstations. As teleport messaging exposes
optimization opportunities to the compiler, it also results in a 49% performance improvement for
a software radio benchmark.

3.1 Introduction

One difficult aspect of stream programming, from both a performance and programmability stand-
point, is reconciling regular streaming dataflow with irregular control messages. While the high-
bandwidth flow of data is very predictable, realistic applications also include unpredictable, low-
bandwidth control messages for adjusting system parameters (e.g., filtering coefficients, frame size,
compression ratio, network protocol, etc.). Control messages often have strict timing constraints
that are difficult to reason about on parallel systems.

For example, consider a frequency hopping radio (FHR), which mirrors how CDMA-based cell
phone technology works. In FHR, a transmitter and a receiverswitch between a set of known radio
frequencies, and they do so in synchrony with respect to a stream boundary. That is, a receiver
must switch its frequency at an exact point in the stream (as indicated by the transmitter) in order
to follow the incoming signal. Such a receiver is challenging to implement in a distributed environ-
ment because different processors might be responsible forthe radio frontend and the frequency
hop detection. When a hop is detected, the detector must senda message to the frontend that is
timed precisely with respect to the data stream, even thoughthe two components are running on
different processors with independent clocks.

Other instances of control messaging have a similar flavor. Acomponent in a communications

57

frontend might detect an invalid checksum for a packet, and send a precisely-timed message down-
stream to invalidate the effects of what has been processed.Or, a downstream component might
detect a high signal-to-noise ratio and send a message to thefrontend to increase the amplifica-
tion. In an adaptive beamformer, a set of filtering coefficients is periodically updated to focus the
amplification in the direction of a moving target. Additional examples include: periodic channel
characterization; initiating a handoff (e.g., to a new network protocol); marking the end of a large
data segment; and responding to user inputs, environmentalstimuli, or runtime exceptions.

There are two common implementation strategies for controlmessages using today’s languages
and compilers. First, the message can be embedded in the high-bandwidth data flow, perhaps as
an extra field in a data structure. Application components check for the presence of messages
on every iteration, processing any that are found. This scheme offers precise timing across dis-
tributed components, as the control message has a well-defined position with respect to the other
data. However, the timing is inflexible: it is impossible forthe sender to synchronize the message
delivery with a data item that has already been sent, or to send messages upstream, against the
flow of data. This approach also adds runtime overhead, as most of the data sent are placeholders
to indicate the absence of an infrequent control message. The stream graph may also grow more
complex as dedicated channels are added to handle only control messages.

A second implementation strategy is to perform control messaging “out-of-band”, via a new
low-bandwidth connection or a remote procedure call. Whilethis avoids the complexity of em-
bedding messages in a high-bandwidth data stream, it falls short in terms of timing guarantees. In
a distributed environment, each processor has its own clockand is making independent progress
on its part of the application. The only common notion of timebetween processors is the data
stream itself. Though extra synchronization can be imposedto keep processors in check, such syn-
chronization is costly and can needlessly suppress parallelism. For example, if the compiler un-
derstands the latency of messages between pipelined components, then it can derive the maximal
buffering between those components that nonetheless respects the message delivery constraints.
This buffering enables aggressive execution reordering, decreased synchronization, and amortized
communication overhead. However, with opaque message timing, the runtime must eliminate
buffering to maintain a consistent view for all possible schedule of messages, eliminating the opti-
mization potential.

This chapter presents a new language construct and supporting compiler analysis that allows the
programmer to declaratively specify control messages. Termed “teleport messaging”, this feature
offers the simplicity of a method call while maintaining theprecision of embedding messages in
the data stream. The idea is to treat control messages as an asynchronous method call with no
return value. When the sender calls the method, it has the semantics of embedding a placeholder
in the sender’s output stream. The method is invoked in the receiver when the receiver would
have processed the placeholder. We generalize this conceptto allow variable latency, in which
messages are received at an offset from the placeholder. By using a negative latency, messages can
be retroactively attached to data that was previously emitted from a node. We extend this concept
further to enable messages to travel opposite the flow of data, timed relative to data that will
later be received by the message sender. By exposing the truetiming constraints to the compiler,
messages can be delivered using whatever mechanism is appropriate for a given architecture. The
declarative mechanism also enables the compiler to safely derive whatever buffering is needed and
to parallelize and reorder application components so long as messages are delivered on time.

Our formulation of teleport messaging relies on the static input and output rates inherent in

58

the synchronous dataflow model [LM87]. Because the rates are statically known, we can compute
the dependences between actors and automatically calculate when a message should be delivered.
We develop a stream dependence function,SDEP, that provides an exact, complete, and compact
representation of this dependence information; we useSDEP to specify the semantics of teleport
messaging.

Teleport messaging is supported in some parts of the StreamIt compiler. The implementation
computesSDEP information and automatically targets a cluster of workstations. Based on a case
study of a frequency hopping radio, we demonstrate a 49% performance improvement of teleport
messaging relative to an explicit feedback loop.

Illustrating Example

Figure3-1 illustrates a StreamIt version of an FIR (Finite Impulse Response) filter. A common
component of digital signal processing applications, FIR filters represent sliding window compu-
tations in which a set of coefficients is convolved with the input data. This FIR implementation
is very fine-grained; as depicted in Figure3-4, the stream graph consists of a single pipeline with
a Source, aPrinter, and 64Multiply stages – each of which contains a single coefficient (or
weight) of the FIR filter. EachMultiply actor inputs aPacket consisting of an input item and a
partial sum; the actor increments the sum by the product of a weight and thepreviousinput to the
actor. Delaying the inputs by one step ensures that each actor adds a different input to the sum.
While we typically advocate a more coarse-grained implementation of FIR filters, this formulation
provides a simple illustration of our analysis.

The problem addressed in this chapter is as follows. Supposethat the actors in FIR are running
in parallel and theSource detects that the weights should be adjusted (e.g., to suite the current
operating conditions). Further, to guarantee stability, every output from the system must be ob-
tained using either the old weights or the new ones, but not a mixture of the two. This constraint
precludes updating all of the weights at the same instant, asthe partial sums within the pipeline
would retain evidence of the old weights. Rather, the weights must be changed one actor at a time,
mirroring the flow of data through the pipeline. What is a simple and efficient way to implement
this behavior?

One way to implement this functionality is by manually tagging each data item with a flag,
indicating whether or not it marks the transition to a new setof weights. If it does, then the new set
of weights is included with the item itself. While this strategy (shown in Figures3-2 and3-5) is
functional, it complicates thePacket structure with two additional fields – anewWeights flag and
aweights array – the latter of which is meaningful only whennewWeights is true. This scheme
muddles steady-state dataflow with event handling by checking the flag on every invocation of
Multiply (line 41 of Figure3-2). It is also very inefficient in StreamIt because arrays are passed
by value; though it might be possible to compress eachPacket when theweights field is unused,
this would require an aggressive compiler analysis and would also jeopardize other optimizations
by introducing an unanalyzable communication rate in the stream graph.

This chapter proposes an alternate solution: teleport messaging. The idea behind teleport mes-
saging is for theSource to change the weights via an asynchronous method call, wheremethod
invocations in the target actors are timed relative to the flow of data in the stream. As shown in Fig-
ure3-3, theMultiply actor declares a message handler that adjusts its own weight(lines 40-42).
TheSource actor calls this handler through aportal (line 25), which provides a clean interface for

59

 1 struct Packet {
 2 float sum;
 3 float val;
 4 }
 5
 6 void->void pipeline FIR {
 7 int N = 64;
 8
 9 add Source(N);
10 for (int i=0; i<N; i++)
11 add Multiply(i);
12 add Printer();
13 }
14
15 void->Packet filter Source(int N) {
16 work push 1 {
17 Packet p;
18 p.sum = 0;
19 p.val = readNewData();
20 push(p);
21 }
22 }
23
24 Packet->Packet filter Multiply(int i,
25 int N) {
26 float W = initWeight(i, N);
27 Packet last;
28
29 work pop 1 push 1 {
30 Packet in = pop();
31 last.sum = in.sum + last.val * W;
32 push(last);
33 last = in;
34 }
35 }
36
37 Packet->void filter Printer {
38 work pop 1 { print(pop().sum); }
39 }

 1 struct Packet<N> {
 2 * boolean newWeights;
 3 * float[N] weights;
 4 float sum;
 5 float val;
 6 }
 7
 8 void->void pipeline FIR {
 9 int N = 64;
10
11 add Source(N);
12 for (int i=0; i<N; i++)
13 add Multiply(i, N);
14 add Printer();
15 }
16
17 void->Packet<N> filter Source(int N) {
18 work push 1 {
19 Packet p;
20 p.sum = 0;
21 p.val = readNewData();
22
23 * if (newConditions()) {
24 * p.newWeights = true;
25 * p.weights = calcWeights();
26 * } else {
27 * p.newWeights = false;
28 * }
29
30 push(p);
31 }
32 }
33
34 Packet<N>->
35 Packet<N> filter Multiply(int i, int N) {
36 float W = initWeight(i, N);
37 Packet<N> last;
38
39 work pop 1 push 1 {
40 Packet<N> in = pop();
41 * if (in.newWeights) {
42 * W = in.weights[i];
43 * }
44 last.sum = in.sum + last.val * W;
45 push(last);
46 last = in;
47 }
48 }
49
50 Packet<N>->void filter Printer {
51 work pop 1 { print(pop().sum); }
52 }

 1 struct Packet {
 2 float sum;
 3 float val;
 4 }
 5
 6 void->void pipeline FIR {
 7 int N = 64;
 8 * portal<Multiply> teleport;
 9
10 * add Source(N, teleport);
11 for (int i=0; i<N; i++)
12 * add Multiply(i, N) to teleport;
13 add Printer();
14 }
15
16 void->Packet filter
17 Source(int N, portal<Multiply> teleport) {
18 work push 1 {
19 Packet p;
20 p.sum = 0;
21 p.val = readNewData();
22 push(p);
23
24 * if (newConditions())
25 * teleport.setWeights(calcWeights());
26 * }
27 }
28
29 Packet->Packet filter Multiply(int i, int N) {
30 float W = initWeight(i, N);
31 Packet last;
32
33 work pop 1 push 1 {
34 Packet in = pop();
35 last.sum = in.sum + last.val * W;
36 push(last);
37 last = in;
38 }
39
40 * handler setWeights(float[N] weights) {
41 * W = weights[i]
42 * }
43 }
44
45 Packet->void filter Printer {
46 work pop 1 { print(pop().sum); }
47 }

Figure 3.1: FIR code. Figure 3.2: FIR code with manual
event handling. Modified lines
are marked with an asterisk.

Figure 3.3: FIR code with tele-
port messaging. Modified lines
are marked with an asterisk.

64

Source

Multiply

Multiply

Printer

Source

1

2

3

Multiply

Multiply

Multiply

4

Source

1

2

3

4

5

Multiply

Multiply

Multiply

Source

2

3

4

6

Multiply

Multiply

Multiply

Source

3

4

6

7

Multiply

Multiply

Multiply

Source

4

6

7

8

Multiply

Multiply

Multiply

new weightsExecution time old weights message

5

5

5

new weightsExecution time old weights message

Source

1

2

3

Multiply

Multiply

Multiply

4

Source

2

3

4

6

5

Multiply

Multiply

Multiply

Source

3

4

6

5

7

Multiply

Multiply

Multiply

Source

4

6

7

8

5

Multiply

Multiply

Multiply

Source

1

2

3

4

5

Multiply

Multiply

Multiply

Figure 3.4:
FIR stream
graph.

(a) (b) (c) (d) (e)

Figure 3.5: Execution snapshots illustrat-
ing manual embedding of control messages in
FIR. Channels are annotated with data items
present on one possible execution; items are
numbered in order of production. (a) Source
initiates change of weights, (b) weights are
attached to data item #5 and embedded in
stream, (c)-(e), actors check each input item,
adjusting their own weight when they find a
tagged item.

(a) (b) (c) (d) (e)

Figure 3.6: Execution snapshots illustrating
teleport messaging in FIR. Channels are an-
notated with data items present on one pos-
sible execution; items are numbered in order
of production. (a) Source calls a message
handler, passing new weights as argument,
(b) message boundary is maintained by com-
piler, (c)-(e), message handler is automati-
cally invoked in actors immediately before
the arrival of affected items.

60

messaging (see Section3.3). As depicted in Figure3-6, teleport messaging gives the same result
as the manual version, but without corrupting the data structures or control flow used in the steady-
state. It also exposes the true information flow, allowing the compiler to deliver the message in
the most efficient way for a given architecture. Finally, teleport messaging offers powerful control
over timing and latency beyond what is utilized in this example.

The rest of this chapter is devoted to making the above notions more general and more precise.
In particular, it is natural to use teleport messaging to send messages upstream – against the flow
of data – which is hard to achieve manually. We start by describing a stream dependence function
which provides a common timeframe for pairs of dependent actors in the stream graph.

3.2 Stream Dependence Function

This section defines a stream dependence function,SDEP, that describes how one actor depends
on the execution of another actor in the stream graph.SDEP is meaningful only for pairs of actors
that are connected by a directed path in the stream graph. We say that theupstreamactor is at the
start of the path, while thedownstreamactor is at the end. Dependences between parallel actors
(e.g., parallel branches of a splitjoin) currently fall outside the scope of this model but could be
addressed in future work (see Section3.6).

An executionφ of a dataflow graph is an ordered sequence of actor firings. Each firing rep-
resents the execution of a single phase of the actor. Letφ[i] denote theith actor appearing in
executionφ, and let|φ ∧ A| denote the number of times that actorA appears inφ. An execution
is legal if the dataflow requirements are respected; that is,for all i, the sequential firing of actors
φ[0] throughφ[i − 1] leaves enough items on the communication channels forφ[i] to fire its next
phase atomically. LetΦ denote the set of legal executions. Note that whileΦ is an infinite set, each
φ ∈ Φ is a finite sequence.

Informally, SDEPA←B(n) represents the minimum number of times that actorA must execute
to make it possible for actorB to executen times. This dependence is meaningful only ifA is
upstream ofB; otherwise,SDEPassumes a value of zero. Because the I/O rates of each actor are
known at compile time,SDEP is a static mapping.

A formal definition ofSDEPusing the notations introduced above is as follows:

Definition 1. (SDEP)
SDEPA←B(n) = min |φ ∧ A|

φ∈Φ,

|φ∧B|=n

This equation reads: over all legal executions in whichB fires n times,SDEPA←B(n) is the
minimum number of times thatA fires. Figure3-8 illustrates an example ofSDEP for the stream
graph in Figure3-7.

Calculating SDEP

It is straightforward to calculateSDEPA←B(n) via a fine-grained simulation of the stream graph.
Our approach is to construct an executionφ that provides the minimum value of|φ ∧ A| that is
selected in Definition1. We constructφ by simulating the stream graph’s execution of apull
schedulewith respect to actorB.

61

A
1,0 0,1

E
1,0 0,1

D
3

2

1

3

2

1

C

B

Figure 3-7: Example stream graph. Nodes are annotated with their I/O rates. For example, node
C consumes 3 items and produces 2 items on each execution. Node A is a round-robin splitter
that produces one item on its left channel during the first phase, and one item on its right channel
during the second phase (similarly for Node E).

Pull schedule for E

Count executions of A in schedule;

compute SDEP AfE at each firing of E

Count executions of B in schedule;

compute SDEP BfE at each firing of E

A A A A A C E B B D E E

1

0

0

0

0

C
B

A

E

D

1

0

0

1

0

C
B

A

E

D

2

0

0

1

0

C
B

A

E

D

2

0

0

2

0

C
B

A

E

D

3

0

0

2

0

C
B

A

E

D

0

2

0

2

0

C
B

A

E

D

0

1

0

2

0

C
B

A

E

D

0

1

2

1

0

C
B

A

E

D

0

1

4

0

0

C
B

A

E

D

0

1

1

0

1

C
B

A

E

D

0

1

1

0

0

C
B

A

E

D

0

0

1

0

0

C
B

A

E

D

0

0

1

1

0

C
B

A

E

D

0

0

3

0

0

C
B

A

E

D

0

0

0

0

1

C
B

A

E

D

0

0

0

0

0

C
B

A

E

D

EDBA

1 2 3 4 5 5 5 5 5 5 5 5 6666

0 0 0 0 0 0 0 1 2 2 2 2 3332

SDEP
AfE

SDEP (2) = 5
AfE

SDEP (4) = 6
AfE

SDEP (3) = 5
AfE

SDEP (1) = 5
AfE

SDEP
BfE

SDEP (2) = 2
BfE

SDEP (4) = 3
BfE

SDEP (3) = 2
BfE

SDEP (1) = 0
BfE

Figure 3-8: ExampleSDEPcalculation for stream graph in Figure3-7. The stream graphs illustrate
a steady state cycle of a “pull schedule”; execution proceeds from left to right, and channels are
annotated with the number of items present. The second line lists the actors that fire in a pull
schedule forE. The third line counts the number of times thatA executes in the pull schedule, and
the fourth line illustrates the computation ofSDEPA←E(n): the number of times thatA executes
before thenth execution ofE. The last two lines illustrate the computation ofSDEPB←E.

62

// Returns a pull schedule forn executions ofX
pullSchedule(X, n) {

φ = {}
for i = 1 ton {

// execute predecessors ofX until X can execute
for all input channelsci of X

while X needs more items onci in order to fire
// extend schedule (◦ denotes concatenation)
φ = φ ◦ pullSchedule(source(ci), 1)

// addX to schedule
φ = φ ◦ X
// update number of items on I/O channels ofX
simulateExecution(X)

}
returnφ

}

Figure 3-9: Pull scheduling algorithm.

Pull scheduling is defined in Figure3-9. Intuitively, a pull schedule forX is one that executes
other nodes as few times as possible for each firing ofX. This is achieved by calculating the
demand for data items on the input channels ofX, and then propagating the demand back through
the stream graph via pull scheduling of the actors connectedto X. Pull scheduling results in a
fine-grained interleaving of actor firings. Some stream graphs admit multiple pull schedules, as
actors might be connected to multiple inputs that can be scheduled in any order; however, the set
of actor executions remains constant even as the order changes. The following theorem allows us
to use a pull schedule to calculate theSDEPfunction.

Theorem 1.
SDEPA←B(n) = |pullSchedule(B, n) ∧ A|

Proof. By construction,pullSchedule(B, n) executes each node in the graph as few times as
possible forB to fire n times. Thus, there is no execution containingn executions ofB whereA
executes fewer times. The theorem follows from the definition of SDEP.

Some exampleSDEP calculations appear in Figure3-8. The results are summarized in the
following table.

n SDEPA←E(n) SDEPB←E(n)

1 5 0
2 5 2
3 5 2
4 6 3

Note thatSDEP is non-linear due to mis-matching I/O rates in the stream graph. However, for
longer execution traces, there is a pattern in the marginal growth of SDEP (i.e., in SDEP(n) −
SDEP(n−1)); this quantity follows a cyclic pattern and has the same periodicity as the steady state

63

of the stream graph. A steady stateS ∈ Φ is an execution that does not change the buffering in
the channels – that is, the number of items on each channel after the execution is the same as it
was before the execution. Calculating a steady state is well-understood [LM87]. The execution
simulated in Figure3-8 is a steady state, and in this particular example, additional entries of the
pull schedule repeat the pattern given in the figure. This means thatSDEPalso grows in the same
pattern, and we can calculateSDEPA←E(n) for n > 4 as follows1:

SDEPA←E(n) = p(n) ∗ |S ∧ A| + (1)

SDEPA←E(n − p(n) ∗ |S ∧ E|)

p(n) = b n
|S∧E|

c (2)

whereS is a steady state andp(n) represents the number of steady states thatE has completed by
iterationn. The first term of Equation 1 gives the total number of times thatA has fired in previous
steady states, while the second term counts firings ofA in the current steady state.

While Equation 1 works for actorsA andE, it fails for certain corner cases in stream graphs.
For example, forSDEPA←C(3) it detects exactly 3 steady state executions(p(3) = 3) and concludes
that each requires6 executions ofA (|S ∧A| = 6). However, as shown in Figure3-8, the last firing
of C requires only5 executions ofA. C is unusual in that it finishes its steady state before the
upstream actorA.

To handle the general case, we need to change the base case in two ways. First, we include the
initialization scheduleI, which fires prework functions and fills buffers needed by peeking filters;
SDEPduring initialization is different thanSDEP in the steady state. Second, to solve the problem
above, we simulatetwo executions of the steady state (rather than one) for the basecase ofSDEP:

SDEPY←X(n) = (3)

|pullSchedule(X, n) ∧ Y | if n ≤ |I ∧ X| + 2 ∗ |S ∧ X|

q(n) ∗ |S ∧ Y |+ otherwise
SDEPY←X(n − q(n) ∗ |S ∧ X|)

q(n) = bn−|I∧X|
|S∧X|

c − 1 (4)

In this formulation, the last complete steady state is counted as part of the “current” iteration rather
than a “completed” iteration. For example, Equation 3 evaluatesSDEPA←C(3) usingq(3) = 2,
yielding SDEPA←C(3) = 2 ∗ 6 + SDEPA←C(3 − 2 ∗ 1) = 17 as desired. Moreover, in complex
cases2, the last steady state adds important context to the SDEP lookup for a given execution.

Thus, to calculateSDEPY←X(n), it is not necessary to simulate a pull schedule forn iterations
of X as described in Figure3-9. Instead, one can simulate|I ∧ X| + 2 ∗ |S ∧ X| iterations as
a pre-processing step and answer all futureSDEP queries in constant time, using Equation 3. In
addition, the pull schedule forX can be reused to calculateSDEP from X to any other actor (e.g.,
SDEPW←X in addition toSDEPY←X).

1Note that for any two actorsX andY , SDEPY←X(0) = 0.
2For example, if within each steady state, the first firing ofX does not depend on the first firing ofY , and the last

firing of X does not depend on the last firing ofY .

64

However, note that the pull schedule forX cannot be used to calculateSDEP from any actor
other thanX (e.g., SDEPW←Y). The guarantee provided bypullSchedule(X, n) is only with
respect to the base actorX. For other pairs of actors in the graph, one actor might execute more
than necessary forn executions of the other. For example, consider what happensif one calculates
SDEPA←B using the schedule in Figure3-8 (which is a pull schedule forE). In the schedule,
A executes 5 times before the first firing ofB, so one would conclude thatSDEPA←B(1) = 5.
However, this is incorrect; sinceB could have fired after only 2 executions ofA, the correct value is
SDEPA←B(1) = 2. Thus, to calculateSDEPY←X , it is essential to calculatepullSchedule(X, |S ∧
X|), that is, a steady state cycle of a pull schedule with respectto X.

It is also possible to calculateSDEPusing a compositional approach. For example,SDEPA←E

from Figure3-8can be expressed as follows:

SDEPA←E(n) = max

{

SDEPA←B(SDEPB←E(n))
SDEPA←C(SDEPC←E(n))

That is, to determine the minimum number of times thatA must execute to enablen executions
of E, first calculate the minimum number of times each ofA’s successors in the stream graph
must execute forn executions ofE. ThenA must execute enough to enable all of these children
to complete the given number of executions, which translates to themax operation shown above.
Our implementation exploits this compositional property to tabulateSDEPin a hierarchical manner,
rather than simulating a pull schedule.

3.3 Semantics of Messaging

Teleport messaging is a language construct that makes use ofSDEP to achieve precise timing of
control messages. Teleport messaging represents out-of-band communication between two actors,
distinct from the high-bandwidth dataflow in the stream graph. Messages are currently supported
between any pair of actors with a meaningfulSDEP relationship, i.e., wherever there is a directed
path in the stream graph from one actor to the other. We say that adownstreammessage travels in
the same direction as the steady-state data flow, whereas anupstreammessage travels against it.

Syntax

In order for actor of typeA to send a message to actor of typeB, the following steps need to be
taken:

• B declares a message handler that is invoked when a message arrives. For example:

handler increaseGain(float amount) {

this.gain += amount;

}

Message handlers are akin to normal functions, except that they cannot access the input/output
channels and they do not return values.

For another example, see line 40 of Figure3-3.

65

• A parent stream containing instances ofA andB declares a variable of typeportal
that can forward messages to one or more actors of typeB. The parent adds an instance of
B to the portal and passes the portal to an instance ofA during initialization.

For example, see lines 8, 10 and 12 of Figure3-3.

• To send a message,A invokes the handler method on the portal from within its steady-state
work function. The handler invocation includes a latencyk specifying when the message
should be delivered; if no latency is specified, then a default latency of 0 is used. The
following illustrates an example.

work pop 1 {

float val = pop();

if (val < THRESHOLD) {

portalToB.increaseGain(0.1) @ 2;

}

}

This code sends anincreaseGain message toportalToB with latency 2.

For another example, see line 25 of Figure3-3.

Informal Semantics

The most interesting aspect of teleport messaging is the semantics for the message latency. Because
there are many legal orderings of actor executions, there does not exist a notion of “global time”
in a stream graph. The only common frame of reference betweenconcurrently executing actors is
the series of data items that is passed between them.

Intuitively, the message semantics can be thought of in terms of attaching tags to data items.
If A sends a message to downstream actorB with a latencyk, then this could be implemented by
tagging the items thatA outputsk iterations later. These tags propagate through the stream graph;
whenever an actor inputs an item that is tagged, all of its subsequent outputs are tagged. Then, the
message handler ofB is invoked immediately before the first invocation ofB that inputs a tagged
item. In this sense, the message has the semantics of traveling “with the data” through the stream
graph, even though it is not necessarily implemented this way.

The intuition for upstream messages is similar. Consider that B is sending a message with
latencyk to upstream actorA in the stream graph. This means thatA will receive the message
immediately after its last invocation that produces an itemaffecting the output ofB’s kth firing,
counting the current firing as 0. As before, we can also think of this in terms ofA tagging items
andB observing the tags. In this case, the latency constraint says thatB must input a tagged item
before it finishesk additional executions. The message is delivered immediately after the latest
firing in A during which tagging could start without violating this constraint.

Formal Semantics

The SDEP function captures the data dependences in the graph and provides a natural means of
defining a rendezvous point between two actors. The following definition leveragesSDEP to give
a precise meaning to message timing.

66

Definition 2. (Message delivery) Consider thatS sends a message to receiverR with latencyk.
There are two cases3:

1. If R is downstream ofS, then the message handler is invoked inR immediately before its
mth execution, wherem is determined as follows:

m = min m′ s.t. SDEPS←R(m′) ≥ n + k

2. If R is upstream ofS, then the message handler is invoked inR immediately after itsmth
execution, wherem is determined as follows:

m = SDEPR←S(n + k)

The first case reads differently than the second case becausetheSDEPfunction is neither injec-
tive nor surjective. That is, for given values ofn andk, there may exist either zero, one, or many
values ofm for whichSDEPS←R(m) = n+k. This property is illustrated by example in Figure3-8.
If there does not exist anm for which SDEPS←R(m) = n + k, then the message is delivered at
the smallest value ofm for which SDEPS←R(m) ≥ n + k. Similarly, if there exist multiple values
of m for which SDEPS←R(m) = n + k, then the message is delivered before the first satisfying
iteration. The formula for upstream message delivery is more simple, because theSDEP function
directly provides the unique, latest iteration of the upstream actor that affected iterationn + k of
the downstream actor.

As an example of message timing, consider the FIR code in Figure3-3. On line 25, theSource
sends a message to theMultiply actors with latency zero. Consider that, as illustrated in Fig-
ure3-6, a message is sent during the fifth execution ofSource (n = 5). Because eachMultiply
is downstream ofSource, we can calculate the delivery time as follows:

m = min m′ s.t. SDEPSource←Multiply(m
′) ≥ n + k

m = min m′ s.t. SDEPSource←Multiply(m
′) ≥ 5

m = min m′ s.t. m′ ≥ 5

m = 5

To calculateSDEPSource←Multiply, observe thatSource produces one item per iteration, while each
Multiply produces one item and consumes one item. Thus, theSource must firem times before
any givenMultiply can executem times, andSDEPSource←Multiply(m) = m. Substituting into the
above equation yieldsm = 5. That is, the message is delivered to eachMultiply immediately
before its fifth execution. This is illustrated in Figures3-6(c) and3-6(d) for the first and second
Multiply in the pipeline, respectively. The message arrives immediately before the fifth data item
(which corresponds to the fifth execution).

Constraints on the Schedule

It is important to recognize that messaging can place constraints on the execution schedule. The
different categories of constraints are illustrated in Figure 3-10. A negative-latency downstream

3In a feedback path, both cases might apply. In this event, we assume the message is being sent upstream.

67

Latency < 0 Latency > 0

 Message

 travels

 upstream

illegal

buffering and latency

in schedule must

not be too large

 Message

 travels

 downstream

buffering and latency

in schedule must

not be too small

no constraint

Figure 3-10: Scheduling constraints imposed by messages.

message has the effect of synchronizing the arrival of the message with some data that was previ-
ously output by the sender (e.g., for the checksum example mentioned in the introduction). The
latency requires the downstream receiver not to execute toofar ahead (i.e., too close to the sender),
or else it might process the data before the message arrives.This translates to a constraint on the
minimum allowable latency between the sender and receiver actors in the schedule for the pro-
gram. Intuitively, it also constrains the buffering of data: the data buffers must not grow too small,
as otherwise the receiver would be too far ahead.

Similarly, a non-negative-latency upstream message places a constraint on the maximum al-
lowable latency between the sender and receiver. This time the upstream actor must be throttled
so that it does not get too far ahead before the message arrives. Intuitively, the amount of data
buffered between the actors must not grow too large.

For upstream messages with negative latency, there always exist iterations of the sender during
which any messages sent are impossible to deliver. Consideran iteration of the sender that is the
first to depend on data propagating from thenth execution of the receiver. A negative-latency mes-
sage would be delivered immediately after apreviousiteration of the receiver, but since iteration
n has already fired, the message is impossible to deliver. Conversely, a downstream message with
positive or zero latency imposes no constraint on the schedule, as the sender has not yet produced
the data that is synchronized with the message.

Unsatisfiable Constraints

Messaging constraints can be unsatisfiable – that is, assuming a message is sent on every iteration
of the sender’s work function, there does not exist a schedule that delivers all of the messages
within the desired latency range. Such constraints should result in a compile-time error.

Figure3-11 illustrates an example of unsatisfiable constraints. Though each messaging con-
straint is feasible in isolation, the set of constraints together is unsatisfiable. The unsatisfiability
is caused by conflicting demands on the buffering between B and C. The message from B to C
constrains this buffer to contain at least 10 items, while the message from D to A constrains it to
be empty.

It should be noted that downstream messages with negative latency are always unsatisfiable at
the beginning of execution, because no buffering has been established in the data channels. Any
messages sent during this period are suspended and re-sent as soon as the graph is initialized with
buffers that satisfy the message constraints.

68

A
1

B
1

1

C
1

1

D
1

-100

Figure 3-11: Example of unsatisfiable message constraints.Each node is annotated with its input
and output rate. Messages are shown by dotted arrows, drawn from sender to receiver with a given
latency. The constraints are satisfiable in isolation, but unsatisfiable in combination.

Finding a Schedule

To schedule a stream graph in the presence of messaging constraints, a simple greedy algorithm
can be used. As shown in Figure3-12, thisconstrained schedulingalgorithm is a variation on pull
scheduling. Like pull scheduling, constrained schedulingalso derives a fine-grained schedule with
minimal latency. To incorporate the presence of message constraints, two extensions are made.
First, before firing an actor, the algorithm ensures that this firing will not cause the actor to miss
any messages that were intended for it prior to the given execution. This is done by considering all
message senders that target the given actor, and recursively scheduling them until they complete all
executions that may send messages with receipt at the current time. Second, at the beginning of the
procedure, there is a check for an infinite loop (whereby the current actor is also being scheduled
higher on the call stack). This indicates a case of unsatisfiable constraints, as an actor’s execution
depends on itself.

This algorithm is guaranteed to find a valid schedule if one exists. A filter is fired if and only
if that firing is needed to satisfy a data or message dependence. If this fine-grained execution is
still too coarse-grained to satisfy message constraints, then there is a cyclic dependence and the
constraints are unsatisfiable.

While the algorithm presented derives a single sequence of filter executions, in practice it is
desirable to separate that sequence into two parts: an initialization schedule (executed once) and a
steady-state schedule (executed repeatedly). This can be achieved by using a standard algorithm to
detect a periodicity in the constrained schedule; any repeated pattern of filter firings that preserves
the number of items on each data channel is a valid steady state. The initialization schedule consists
of whatever is leftover before the first steady-state execution.

In practice, it is also worthwhile to compress the schedule before generating code. Such com-
pression can be achieved easily once the full initialization schedule and steady-state multiplicities
have been derived via the above technique. Following initialization, a compressed schedule con-
siders filters in order from top to bottom and executes each filter as long as possible, until either
1) the filter runs out of input items, 2) further execution would violate a message constraint, or 3)
the filter meets its steady-state execution multiplicity. This strategy is valid because it is already
known that there exists a sequence of filer firings with the given multiplicities (and with the given
starting configuration) that satisfies the constraints. Thus execution will be able to make forward
progress until all filters have completed their steady state.

69

// Returns a modified pull schedule for 1 execution ofX, never
// firing a node that would further violate a message constraint.
constrainedSchedule(X) {

// check for infinite loop, which indicates unsatisfiable constraints
if call stack contains call toconstrainedSchedule(X) then

report that message constraints are unsatisfiable

φ = {}
// execute predecessors ofX, based on data dependences
for all input channelsci of X

while X needs more items onci in order to fire
// extend schedule (◦ denotes concatenation)
φ = φ ◦ constrainedSchedule(source(ci))

// execute predecessors ofX, based on message dependences
for all filtersF that might, on a future execution, send a

message toX for delivery prior to next firing ofX
φ = φ ◦ constrainedSchedule(F)

// addX to schedule
φ = φ ◦ X
// update number of items on I/O channels ofX
simulateExecution(X)
returnφ

}

Figure 3-12: Constrained scheduling algorithm.

Despite its simplicity, we have yet to evaluate this scheduling algorithm in the StreamIt com-
piler. As described in Section3.4, our compiler targets a parallel machine in which each sender
and receiver executes in its own thread and waits for possible messages at appropriate iterations.
This approach does not depend on producing a serial orderingof the actors at compile time.

3.4 Case Study

To illustrate the pros and cons of teleport messaging, we implemented a spread-spectrum frequency
hopping radio frontend [HP02] as shown in Figure3-13. (Matthew Drake also describes the im-
plications of messaging in a case study of MPEG-2 [MDH+06, Dra06].) A frequency hopping
radio is one in which the receiver switches between a set of known frequencies whenever it detects
certain tones from the transmitter. The frequency hopping is a good match for control messages
because the hopping interval is dynamic (based on data in thestream); it spans a large section of
the stream graph (there is a Fast Fourier Transform (FFT) with 15 child actors, not shown, between
the demodulator and the hop detector); and it requires precise message delivery. The delivery must

70

RFtoIF

AtoD
1

Output
1

1

1

FFT
portal<RFtoIF>512

512

Magnitude
1

2

CheckFreqHop

roundrobin
256

latency = 6

62,1,1,128,1,1,62

identity
1

1

detector
1

1

detector
1

1

identity
1

1

identity
1

1

detector
1

1

detector
1

1

roundrobin
256

62,1,1,128,1,1,62

Figure 3-13: Stream graph of frequency hopping radio with teleport messaging. A portal delivers
point-to-point latency-constrained messages from the detectors to the RFtoIF stage.

be precise both to meet real-time requirements (as the transmitter will leave the current frequency
soon), and to ensure that the message falls at a logical frameboundary; if the frequency change
is out of sync with the FFT, then the FFT will muddle the spectrum of the old and new frequency
bands.

A StreamIt version of the radio frontend with teleport messaging appears in Figure3-14. The
FreqHoppingRadio pipeline creates a portal and adds the RFtoIF actor as a receiver (lines 45 and
48 respectively). The portal is passed to the CheckFreqHop stage, where four parallel detectors
send messages into the portal if they detect a hop in the frequency they are monitoring (lines 32-
35). The messages are sent with a latency of 6 to ensure a timely transition. To make sense of
the latency, note thatSDEPRFtoIF←D(n) = 512 ∗ n for each of the detector actorsD. This comes
about because the FFT stage consumes and produces 512 items4; each detector fires once per set
of outputs from the FFT, but RFtoIF fires 512 times to fill the FFT input. Because of thisSDEP

relationship, messages sent from the detectors to RFtoIF are guaranteed to arrive only at iterations
that are a multiple of 512. This satisfies the design criterion that a given FFT stage will not operate
on data that were demodulated at two separate frequencies.

Another version of the frequency hopping radio appears in Figures3-15and3-16. This version
is functionally equivalent to the first, except that the control messages are implemented manually
by embedding them in the data stream and introducing a feedback loop. Because the number of
items transfered around the loop must be constant from one iteration to the next, a data item is sent
whether or not there is a message as part of the algorithm. TheRFtoIF filter checks the values from
the loop on every iteration; if the value is non-zero, it is treated as a message (the new frequency),

4Though the FFT is 256-way, the real and imaginary parts are interleaved on the tape, leading to an I/O rate of 512.

71

 1 float->float filter RFtoIF(int N, float START_FREQ) {
 2 float[N] weights;
 3 int size, count;
 4
 5 init { setFrequency(START_FREQ); }
 6
 7 work pop 1 push 1 {
 8 push(pop() * weights[count++]);
 9 count = count % size;
 10 }
 11
 12 handler setFrequency(float freq) {
 13 count = 0;
 14 size = (int) (N * START_FREQ / freq);
 15 for (int i = 0; i < size; i++)
 16 weights[i] = sin(i * pi / size);
 17 }
 18 }
 19
 20 float->float splitjoin CheckFreqHop(int N,
 21 float START_FREQ,
 22 portal<RFtoIF> port) {
 23 split roundrobin(N/4-2, 1, 1, N/2, 1, 1, N/4-2);
 24 for (int i=1; i<=7; i++) {
 25 if (i==1 || i==4 || i==7) {
 26 add Identity<float>;
 27 } else {
 28 add float->float filter { // detector filter
 29 work pop 1 push 1 {
 30 float val = pop();
 31 push(val);
 32 if (val > Constants.HOP_THRESHOLD)
 33 port.setFrequency(START_FREQ +
 34 i/7*Constants.BANDWIDTH) @ 6;
 35 }
 36 }
 37 }
 38 }
 39 join roundrobin(N/4-2, 1, 1, N/2, 1, 1, N/4-2);
 40 }
 41
 42 void->void pipeline FreqHoppingRadio {
 43 int N = 256;
 44 float START_FREQ = 2402000000;
 45 portal <RFtoIF> port;
 46
 47 add AtoD(N);
 48 add RFtoIF(N, START_FREQ) to port;
 49 add FFT(N);
 50 add Magnitude();
 51 add CheckFreqHop(N, START_FREQ, port);
 52 add Output()
 53 }

Figure 3-14: Frequency hopping radio with teleport messaging. Arrows depict the path of mes-
sages from the sender to the receiver, via a portal declared in the top-level stream.

while a value of zero is ignored (no message). The I/O rate of the RFtoIF filter has been scaled up
to ensure that the messaging information is received at intervals of 512 iterations (as in the version
with portals). To achieve the desired messaging latency of 6frames,6 ∗ 256 = 1536 items are
enqueued on the feedback path prior to execution.

Discussion

Teleport messaging offers several benefits compared to a manual implementation of equivalent
functionality. While embedding messages in the data streamis equally precise, it involves several
tedious and error-prone changes, not only to the stream graph but also to the steady-state execution
code within the actors. In particular, the manual derivation of the loop delay, adjustment of the
actor I/O rates, and implicit interleaving of data items with control messages has a negative impact
on the readability and maintainability of the code. Teleport messaging provides the same level of
precision, but with the simplicity of a method call.

Teleport messaging also has advantages from a compiler standpoint. By separating the data-

72

RFtoIF

AtoD
1

512

768

FFT

roundrobin

roundrobin

1

512

256

512

512

Magnitude
1

2

roundrobin
CheckFreqHop

feedback loop

256

roundrobin
512

Output
1

filter
2

1

detector
2

1

detector
2

1

filter
2

1

filter
2

1

detector
2

1

detector
2

1

124, 2, 2, 256, 2, 2, 124

1

2
1

62,1,1,128,1,1,62

1536 items enqueued

Figure 3-15: Stream graph of frequency hopping radio with control messages implemented man-
ually. A feedback loop connects the detectors with the RFtoIF stage, and an item is sent on every
invocation to indicate whether or not a message is present. The latency and periodicity of message
delivery are governed by the data rates and the number of items on the feedback path.

intensive code from the control-oriented code, the common case of steady-state execution is not
sacrificed for the uncommon case of message processing. There are no “dummy items” serving
as placeholders in the static-rate channels. In addition, by exposing the message latency as part
of the language, the compiler can infer the true dependencesbetween actor firings and reorder the
execution so long as the message constraints are respected.The actual message delivery can be
implemented in the most efficient way for a given architecture.

A final benefit of teleport messaging is the clean interface provided by the portals. Since a
portal can have multiple receivers, it is straightforward to send a message that is delivered syn-
chronously to two actors in parallel streams. For example, consider a vocoder (an encoder for
voice signals) that is separately manipulating the magnitude and phase components of a signal. If
something triggers an adjustment to the speech transformation (e.g., the speaker requests a change
of pitch) then the mask needs to be updated at the same time relative to data in both parallel
streams. A portal that contains both components seamlesslyprovides this functionality. Finally,
portals are useful as an external programming interface; anapplication can export a portal based
on an interface type without exposing the underlying actor implementation.

73

 1 float->float filter RFtoIF(int N, float START_FREQ) {
 2 float[N] weights;
 3 int size, count;
 4
 5 init { setFrequency(START_FREQ); }
 6
 7 * work pop 3*N push 2*N {
 8 * // manual loop to 2*N. Factor of N because messages
 9 * // for given time slice come in groups of N; factor
 10 * // of 2 for data-rate conversion of Magnitude filter
 11 * for (int i=0; i<2*N; i++) {
 12 * push(pop() * weights[count++]);
 13 * count = count % size;
 14 * }
 15 * // manually check for messages;
 16 * // special value of 0 encodes no message
 17 * for (int i=0; i<N; i++) {
 18 * float freqHop = pop();
 19 * if (freqHop!=0)
 20 * setFrequency(freqHop);
 21 * }
 22 * }
 23
 24 handler setFrequency(float freq) {
 25 count = 0;
 26 size = (int) (N * START_FREQ / freq);
 27 for (int i = 0; i < size; i++)
 28 weights[i] = sin(i * pi / size);
 29 }
 30 }
 31
 32 float->float splitjoin CheckFreqHop(int N,
 33 float START_FREQ) {
 34 split roundrobin(N/4-2, 1, 1, N/2, 1, 1, N/4-2);
 35 for (int i=1; i<=7; i++) {
 36 if (i==1 || i==4 || i==7) {
 37 add float->float filter {
 38 * work pop 1 push 2 {
 39 push(pop());
 40 * push(0);
 41 }
 42 }
 43 } else {
 44 add float->float filter { // detector filter
 45 * work pop 1 push 2 {
 46 float val = pop();
 47 push(val);
 48 * if (val > Constants.HOP_THRESHOLD) {
 49 * push(START_FREQ + i/7*Constants.BANDWIDTH);
 50 * } else {
 51 * push(0);
 52 * }
 53 }
 54 }
 55 }
 56 }
 57 * join roundrobin(2*(N/4-2), 2, 2, 2*(N/2), 2, 2, 2*(N/4-2));
 58 }
 59
 60 void->void pipeline FreqHoppingRadio {
 61 int N = 256;
 62 float START_FREQ = 2402000000;
 63
 64 add AtoD(N);
 65 * add float->float feedbackloop {
 66 * // adjust joiner rates to match data rates in loop
 67 * join roundrobin(2*N,N);
 68 * body pipeline {
 69 * add RFtoIF(N, START_FREQ);
 70 * add FFT(N);
 71 * add Magnitude();
 72 * add CheckFreqHop(N, START_FREQ);
 73 * }
 74 * split roundrobin();
 75 * // number of items on loop path = latency * N
 76 * for (int i=0; i<6*N; i++)
 77 * enqueue(0);
 78 * }
 79 add Output()
 80 }

Figure 3-16: Frequency hopping radio with manual feedback loop for event handling. Lines that
differ from Figure3-14are marked with an asterisk.

74

One aspect of teleport messaging might be considered unusual: the granularity of message
delivery can be affected by changes in granularity elsewhere in the stream graph. This is evident
in the frequency hopping radio, as the I/O rate of 512 on the FFT implies that the RFToIF stage
will receive messages from CheckFreqHop at most once every 512 iterations. (If the FFT were
coarsened to 1024-way, the granularity of messages in RFToIF would increase accordingly.) In
this case the behavior is desirable, as messages should not interrupt frame boundaries. It seems
that in many cases, the I/O rates are meaningful aspects of the program and their influence on
message granularity is appropriate. Nonetheless, this non-local influence might come as a surprise
to programmers. If the FFT granularity is scaled up for a different reason (e.g., caching behavior),
the effects on message granularity might be unwanted.

This suggests that it might be worthwhile, in future work, toinvestigate additional mechanisms
for programmers to specify the messaging contract independently of the declared I/O rates. For
example, a parent stream could override the I/O rates of a child for the sake of a givenSDEP

calculation. The scheduler would deliver messages according to the parent’s expectation ofSDEP,
or report an error if such delivery is incompatible with the actual I/O rates.

Experimental Evaluation

We have implemented teleport messaging in the StreamIt compiler infrastructure, with a backend
that targets a cluster of workstations. A StreamIt program is compiled to a set of parallel threads;
if two threads are allocated to different machines, they communicate via dedicated TCP/IP con-
nections. Messages are supported via auxiliary communication channels that transmit two kinds of
signals from senders to receivers: 1) the contents of a control message, or 2) acredit that indicates
the receiver can execute some number of iterations before checking for a message again.

Each actor alternates between normal execution and checking for the exchange of credits. This
serves to throttle the message receiver in accordance with the constraints (Section3.3), as an actor
will block waiting for credits until the sender has reached agiven point in its execution. The
compiler calculates theSDEP information and schedules the exchange of credits to make sure that
the timing constraints are respected. When a message is sent, it is tagged with the iteration number
during which the receiver should process it; this is also calculated usingSDEP in the compiler.

We chose a cluster-based evaluation for two reasons. First,many streaming applications run
on the server side (e.g., cell phone base stations, radar processing, HDTV editing) and require
large computational resources. Second, clusters provide asimple abstraction for distributed and
parallel computing – multiple program counters, and distributed memories – which is at the heart
of emerging multicore architectures for embedded, desktop, and server computing.

The teleport implementation of the frequency hopping radiowas compiled into 29 threads
whereas the alternate version using a feedback loop resultsin 33 threads. Each thread corresponds
to a single actor (there are more threads than appear in Figures3-13 and3-15 because the FFT
stage is a pipeline composed of several actors). The thread mapping is done using a dynamic
programming algorithm that aims to reduce the overall bottleneck, thereby maximizing throughput
(outputs per unit time). Threads are assigned to one of sixteen 750Mhz Pentium III workstations,
each with a 256Kb cache. The machines are interconnected using a fully switched 100Mb network.

Figure3-17 shows the measured throughput (y-axis) for various cluster sizes. Note that due
to the limited parallelism in the two implementations of thefrequency hopper, cluster configura-
tions with more than five workstations lead to negligible performance gains. From the data, we

75

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Workstations

T
h

ro
u

g
h

p
u

t

Teleport Messaging

Manual Feedback

Figure 3-17: Parallel performance of teleport messaging and manual event handling.

can observe that teleport messaging achieves a maximal throughput that is 49% better than its
counterpart. We attribute this speedup primarily to reduced communication overhead. A detailed
analysis of the results indicates that teleport messaging reduces the number of items communicated
by 35%. While the feedback loop version sends a message placeholder on every iteration, teleport
messaging uses credits to allow the receiver to execute several iterations at a time without checking
for messages. The amount of communications savings is dictated by the message latency, as larger
latencies allow for a less frequent exchange of credits.

3.5 Related Work

The work most closely related to teleport messaging comes from the fields of heterogeneous mod-
eling, program slicing, and domain-specific languages.

As part of the Ptolemy project [EJL+03], Lee et al. have developed hybrid models that
incorporate dynamic dataflow (in which the I/O rates of actors are fully dynamic). Boolean
dataflow [HL97] is a compromise between these two extremes; it computes a parameterized sched-
ule of the graph at compile time, and substitutes runtime conditions to decide which paths are taken.
The performance is nearly that of synchronous dataflow whilekeeping some flexibility of dynamic
dataflow.

Teleport messaging shares the motivation of boolean dataflow, but is different in its approach.
We believe that control messages represent a distinct and well-behaved class of dynamic communi-
cation in which a parameter is “pushed” into the receiving actor in an asynchronous way. Because
the message handlers do not access the I/O channels of the receiving actor, their irregular invo-
cations do not interfere with a given static schedule. Instead, the schedule is constrained only by
the latency of control messages; if a message does not show upin the allotted window, then the
receiving actor can go ahead with its high-bandwidth schedule. This is the distinction in the com-
putational model. In addition, the static/dynamic integration offered by our system is integrated
with language features that support the model.

Program slicing identifies the set of statements in a programthat a given statement might de-
pend on. There is a rich history of work in program slicing; see Tip [Tip95] for a comprehensive
review. Many program slicing techniques rely on the ProgramDependence Graph as described by
Horwitz et al. [HRB88]. Program slicing has been applied for debugging, testing,and program

76

analysis. In many respects,SDEPanalysis can be thought of as a slicing technique for synchronous
dataflow graphs. Because the input domain is restricted (in particular, because of the absence
of control flow and recursion), theSDEP calculation can make stronger guarantees than slicing
analyses for general procedural languages;SDEP is decidable, exact, and admits a compact repre-
sentation in terms of the steady state schedule.

Pugh and Rosser present an iteration-based slicing algorithm [PR97] to identify the dynamic
instances of statements (in terms of their loop iteration) that effect a given value. This bears some
similarity to stream dependence analysis, asSDEPA←B(n) represents the last iteration of actorA
that affected thenth iteration of actorB. However, [PR97] focuses on the problem of computing
the transitive closure of dependences in loops, in which some iterations do not depend on others.
We are not interested in this question, as we assume that all actor invocations depend on their
previous invocations;SDEPaddresses the question of finding only the most recent invocation that
is relevant. Moreover, our motivation differs from the slicing community, as we applySDEP to
enrich the semantics of language features. To the best of ourknowledge, slicing has not been
applied in this way before.

3.6 Future Work

There are some limitations in the current study that are fertile grounds for future research. First,
our formulation ofSDEP requires a directed path in the stream graph between the actors in ques-
tion. We are generalizingSDEP to actors that run in parallel by leveraging their data dependences
with common predecessors (upstream) or successors (downstream). Second, in the current model
only actors can send and receive messages. We are extending this into a hierarchical model where
stream containers (such as pipelines) can also receive events and dispatch them precisely to other
streams. This capability is critical for enabling dynamic modifications to the stream graph, as mes-
sages will indicate to stream containers that they should re-initialize their part of the stream graph.
Finally, our approach relies on the static communication rates present in synchronous dataflow. It
is interesting to consider teleport messaging in a more dynamic context; for example, downstream
non-negative latency messages could be supported by embedding messages in data items, while
other messages might require speculative delivery or modified timing contracts.

Our basic approach to all of the above questions is to reframeSDEP in terms of a more general
and intuitive concept called acanonical schedule. The abstraction presented to the programmer is
that filters donotexecute in parallel, but rather in a predefined order called the canonical schedule.
A pull schedule will serve as the basis of the canonical schedule, though the canonical schedule
will also impose a strict ordering on parallel branches of a splitjoin (e.g., always executing from
left to right). Given this abstraction, teleport messages with latency zero can be considered to
be delivered immediately to the receiver. Messages sent on iterationn with latencyk are simply
equivalent to messages sent on iterationn + k with latency0. This model becomes powerful when
stream containers are also incorporated in the canonical schedule; for example, a pipeline could
be considered to execute whenever one of its children executes, or, for “atomic” pipelines, when
all of its children have executed. This provides a precise timeframe for delivering re-initialization
events, as well as for flexible forwarding and delegation of messages throughout multiple layers of
the stream hierarchy. Of course, just like teleport messaging, the key benefit of the approach is that
the canonical schedule is not actually implemented at runtime; rather, the compiler analyzes the

77

dependences inherent in the messages and orchestrates a parallel execution that is indistinguishable
from the canonical schedule with respect to message delivery.

Another interesting direction is to leverage the timing properties of teleport messaging to ex-
change information other than control messages. For example, while StreamIt currently prohibits
filters from writing to a global address space, this decisionwas motivated by the desire to elimi-
nate problematic dependences and aliasing relationships between parallel components. If all reads
and writes to shared memory were made via teleport messages to named scalar variables, the
compiler could again understand the exact dependences and orchestrate a parallel execution that
respects them. Interestingly, such an execution would remain deterministic even though paral-
lel components are writing to shared memory; this determinism comes because the steady-state
dataflow provides a canonical ordering for their memory accesses. The compiler could convert
shared-memory locations to queues, thereby decoupling theprogress of communicating filters. In
addition to this application, Matthew Drake proposes a compelling scenario in which messages are
used to simultaneously switch the routing behavior at opposite ends of a splitjoin while maintaining
analyzability by the compiler [Dra06].

3.7 Chapter Summary

This chapter makes two contributions. First, it introducesteleport messaging: a powerful language
construct enabling precise message delivery between nodesof a distributed stream program. In
comparison with other methods to implement messaging functionality in a synchronous dataflow
model, teleport messaging is arguably more readable, more robust, and easier to maintain. In
addition, our implementation of teleport messaging in the StreamIt compiler results in a 49%
performance improvement for a frequency hopping radio running on a cluster of workstations.
Like several other declarative language constructs, teleport messaging improves performance by
exposing the true dependences to the compiler and allowing it to optimize the communication.

Second, this chapter formulatesSDEP, a natural and useful dependence representation for the
streaming domain. While we applySDEP to a new language construct, we envision other applica-
tions as well. For example,SDEPcould be used in a debugger to identify which iterations of one
actor are affecting a given iteration of another. In a software-based speculation system [Fra03a],
SDEP could be applied to trace the effects of a failed prediction and to roll back the appropriate
actor executions. Analogous to representations such as dependence levels [AK82], direction vec-
tors [Wol82], and dependence polyhedra [IT88] for scientific programs,SDEPprovides dependence
information that could be used to test or verify program transformations. Also,SDEPoffers a new
method for measuring latency in a stream graph.

Our work can be viewed as integrating dynamic behavior into astatic dataflow language. Our
insight is that there is a class of control messages that onlyadjust parameters in the target actor;
they do not otherwise affect the input or output channels upon delivery. This model enables a
hybrid scheduling scheme in which the steady-state dataflowis exactly orchestrated at compile
time, but there are windows in which a message could adjust aninternal field of an actor between
its execution steps. We consider this to be a promising avenue for creating a unified development
environment that captures all aspects of stream application development without sacrificing either
performance or programmability.

78

Chapter 4

Optimizing Stream Programs

This chapter validates the premise that stream programmingenables new and powerful optimiza-
tions that are outside the reach of a traditional compiler. To do so, we summarize three opti-
mization projects conducted in collaboration with many others in the StreamIt group. Unlike the
other chapters in this thesis, the primary description of each of these projects appears in a different
thesis [Lam03, Agr04, Ser05] or paper [GTA06].

The key results are as follows:

1. Parallelization. We demonstrate an end-to-end stream compiler that attains robust multicore
performance in the face of varying application characteristics. As benchmarks exhibit different
amounts of task, data, and pipeline parallelism, we exploitall types of parallelism in a uni-
fied manner in order to achieve this generality. Our compiler, which maps from the StreamIt
language to the 16-core Raw architecture, attains an 11x mean speedup and an 18x maximum
speedup over a single-core baseline.

2. Optimizing Linear Computations . We demonstrate that several algorithmic transformations,
traditionally hand-tuned by DSP experts, can be completelyautomated by the compiler. We
focus on linear filters, where each output is an affine combination of the inputs. We present
several optimizations of linear filters, including algebraic simplification of adjacent filters and
automatic translation to the frequency domain. These transformations offer an average speedup
of 5.5x and a maximum speedup of 8.0x over unoptimized StreamIt on a Pentium 4.

3. Cache Optimizations. We formulate a set of cache aware optimizations that automatically
improve instruction and data locality. We highlight two techniques: 1) cache aware fusion,
which combines adjacent filters while respecting instruction cache constraints, and 2) cache
aware scaling, which improves instruction locality while respecting data cache constraints. Our
implementation of cache aware optimizations in the StreamIt compiler yields a 3.49x average
speedup and an 88x maximum speedup over unoptimized StreamIt on a StrongARM 1110
processor.

These projects are described in more detail in each of the following sections.

79

Stateless

Filter

Task

P
ip

e
lin

e
Data

Figure 4-1: Types of parallelism in stream programs. Task parallelism exists between filters in a
common splitjoin; pipeline parallelism exists between filters in a producer/consumer relationship;
and data parallelism exists between separate instances of astateless filter.

4.1 Parallelization

Despite the abundance of parallelism in stream programs, itis nonetheless a challenging problem
to obtain an efficient mapping to a multicore architecture. Often the gains from parallel execution
can be overshadowed by the costs of communication and synchronization. In addition, not all par-
allelism has equal benefits, as there is sometimes a criticalpath that can only be reduced by running
certain actors in parallel. Due to these concerns, it is critical to leverage the right combination of
task, data, and pipeline parallelism while avoiding the hazards associated with each.

Task parallelism refers to pairs of actors that are on different parallel branches of the original
stream graph, as written by the programmer. That is, the output of each actor never reaches the
input of the other (see Figure4-1). In stream programs, task parallelism reflects logical parallelism
in the underlying algorithm. It is easy to exploit by mappingeach task to an independent processor
and splitting or joining the data stream at the endpoints. The hazards associated with task paral-
lelism are the communication and synchronization associated with the splits and joins. Also, as the
granularity of task parallelism depends on the application(and the programmer), it is not sufficient
as the only source of parallelism.

Data parallelism refers to any actor that has no dependencesbetween one execution and the
next. Such “stateless” actors1 offer unlimited data parallelism, as different instances of the actor
can be spread across any number of computation units. However, while data parallelism is well-
suited to vector machines, on coarse-grained multicore architectures it can introduce excessive
communication overhead. Previous data-parallel streaming architectures have focused on design-
ing a special memory hierarchy to support this communication [KRD+03]. However, data par-
allelism has the hazard of increasing buffering and latency, and the limitation of being unable to
parallelize actors with state.

1A stateless actor may still have read-only state.

80

Pipeline parallelism applies to chains of producers and consumers that are directly connected in
the stream graph. In our previous work [GTK+02], we exploited pipeline parallelism by mapping
clusters of producers and consumers to different cores and using an on-chip network for direct
communication between actors. Compared to data parallelism, this approach offers reduced la-
tency, reduced buffering, and good locality. It does not introduce any extraneous communication,
and it provides the ability to execute any pair of stateful actors in parallel. However, this form of
pipelining introduces extra synchronization, as producers and consumers must stay tightly coupled
in their execution. In addition, effective load balancing is critical, as the throughput of the stream
graph is equal to the minimum throughput across all of the processors.

In this section, we describe a robust compiler system that leverages the right combination of
task, data, and pipeline parallelism to achieve good multicore performance across a wide range of
input programs. Because no single type of parallelism is a perfect fit for all situations, a unified
approach is needed to obtain consistent results. Using StreamIt as our input and targeting the
16-core Raw architecture, our compiler demonstrates a meanspeedup of 11.2x over a single-core
baseline. This also represents a 1.84x improvement over ouroriginal approach [GTK+02].

Parallelization Algorithm

We illustrate our technique by way of an example: we discuss how to map a simplified version of
our FilterBank benchmark (see Figure4-2a) to a four-core machine. The complete details of our
algorithm are available elsewhere [GTA06].

Previous Practice: Fine-Grained Data Parallelism Perhaps the most common approach to
parallelization is to identify loops that can be run in a data-parallel (DOALL) style. Such loops can
be annotated by the programmer using OpenMP; they are also the most common parallelization
target of production compilers. For example, the Intel C Compiler includes an optional flag to
detect and parallelize data-parallel loops. In the case of FilterBank, this may seem like a promising
approach, as all the filters are stateless and the implicit loops surrounding them can be run in a
data-parallel manner. Figure4-2b illustrates such a mapping.

Unfortunately, on a coarse-grained multicore architecture, it is hardly profitable to parallelize
each individual filter due to the communication and synchronization overheads incurred. When we
target the 16-core Raw architecture, this approach offers only a 1.4x mean speedup over a single
core. This represents an upper bound on the speedups attainable using standard techniques. In
practice, for reasons explained in Section2.2, a production C compiler would achieve even smaller
speedups due to the inherent difficulties of proving that filters are data-parallel.

First Innovation: Coarse-Grained Data Parallelism The overheads of fine-grained data par-
allelism can be drastically reduced by performing two noveltransformations. First, the granularity
of the stream graph is coarsened via filterfusion, a transformation in which two neighboring filters
are statically scheduled and inlined into a single filter [GTK+02, STRA05]. We fuse neighboring
stateless filters as much as possible so long as the resultingfilter remains stateless, ensuring that it
is still amenable to data parallelism.

Second, we data-parallelize the coarsened filters, but onlyby the amount necessary to comple-
ment existing task parallelism in the stream graph. That is,for filters that are already embedded

81

Expand

BandStop

Process

BandPass

Compress

Expand

BandStop

Process

BandPass

Compress

Adder
Adder
BandStopBandStopBandStopAdder

ExpandExpandExpand

ProcessProcessProcess

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Process

BandPass

Compress

ExpandExpandExpand

ProcessProcessProcess

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Process

BandPass

Compress

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Adder

AdderAdderAdderAdder

(a) Original (b) Fine-grained data parallelism (c) Coarse-grained data parallelism

Figure 4-2: Mapping a simplified version of the FilterBank benchmark for execution on four cores.
The original stream graph is shown in (a), while a conventional mapping is shown in (b). Our
technique coarsens the graph and introduces the minimal parallelism needed, as shown in (c).

in a splitjoin, we parallelize each filter so that the total splitjoin width covers all of the cores,
rather than data-parallelizing each branch of the splitjoin to cover all of the cores. By reducing the
width of the scatter and gather stages, we reduce the communication and synchronization overhead
incurred by data parallelism.

Figure4-2c shows an example of our transformations on the FilterBank benchmark. The coars-
ening stage fuses all of the pipelines together with the exception of the BandStop filter, which is
not fused because it performs peeking on its input channel. Communication with peeking repre-
sents a case where some data items are reused between successive firings of a filter, which would
translate to internal state if the buffer were to be inlined into a fused filter. Following coarsening,
the parallelization stage replicates the Adder filter across all four of the target cores. However,
the other filters are split only two ways, due to the presence of task parallelism between alternate
branches of the splitjoin. Applying this strategy across our benchmark suite offers a speedup of
9.9x relative to a single core.

These transformations are out-of-reach of traditional compilers. In an imperative language, the
analog of graph coarsening is to selectively fuse loops so long as no new loop-carried dependences
are introduced. The analog of task-conscious data parallelism is to analyze the entire program for
other threads that might be running concurrently, and to introduce only as much parallelism as is
needed to complement the other threads. We rely on the properties of the stream programming
model to make these transformations tractable.

Second Innovation: Coarse-Grained Software Pipelining While coarse-grained data paral-
lelism is effective for parallelizing stateless computations, it does nothing to help with compu-
tations that retain state, either within filters or within feedbackloops. For example, the Vocoder

82

Stateless

StatelessRectPolar

AdaptDFT AdaptDFT

Amplify

Diff

UnWrap

Accum

Amplify

Diff

Unwrap

Accum

PolarRect

66

20

2

1

1

1

2

1

1

1

20

Figure 4-3: Simplified subset of the Vocoder benchmark. Nodes are annotated with the amount of
work that they perform per steady state.

benchmark (simplified subset shown in Figure4-3) contains a significant fraction of stateful filters.
While two of the filters can be data-parallelized, there remain large gaps in the execution schedule
(see Figure4-4).

To run stateful computations in parallel with each other, weexploit pipeline parallelism. We
take the concept of software pipelining, well-understood in the context of instruction scheduling,
and apply it in the context of an entire stream graph. As illustrated in Figure4-5, this technique
involves unrolling the execution of the graph into two stages. In the first stage, a prologue schedule
establishes buffering in the data channels. Then, in the steady state, the filters are decoupled and
can execute in any order, writing intermediate results to the buffers. Compared to exploiting only
coarse-grained data parallelism, this technique offers large gains for our stateful benchmarks (1.7x
for Vocoder, 1.9x for Radar). Together with coarse-graineddata parallelism, it offers an 11.2x
speedup over a single core across our benchmark suite.

Coarse-grained software pipelining is also beyond the reach of traditional compilers. Rather
than pipelining individual instructions, it represents the pipelining of entire procedures. This in-
volves reordering large pieces of the program. The stream programming model makes such a
transformation feasible by exposing the stable flows of databetween long-running actors.

Experimental Evaluation

We target the Raw microprocessor [TKM+02, WTS+97], a tiled array of 16 cores with a pro-
grammable mesh interconnect. Though Raw has been implemented in silicon, we generate results
with the btl simulator, augmented with 16 streaming DRAM controllers (providing enough band-

83

Time

Cores

21

5
RectPolar

66

5

2

1

1

1

2

1

1

1

Figure 4-4: Simplified vocoder mapped with data parallelism. In the stream graph (left), stateless
nodes are replicated but stateful nodes remain untouched. An execution trace (right) requires 21
units per steady state.

Time

Cores

16
RectPolar

RectPolar

RectPolar

RectPolar

Prologue

New

Steady

State

Figure 4-5: Simplified vocoder mapped with coarse-grained software pipelining. By unrolling
multiple executions of the stream graph (left), stateful nodes can run in parallel with other nodes
during the steady state. An execution trace (right) requires 16 units per steady state, an improve-
ment over plain data parallelism.

84

0

2

4

6

8

10

12

14

16

18

Bito
ni

cS
or

t

C
ha

nn
el
Voc

od
er

D
C
T

D
ES

FFT

Filt
er

ba
nk

FM
R
ad

io

Ser
pe

nt
TD

E

M
PEG

2-
su

bs
et

Voc
od

er

R
ad

ar

G
eo

m
et

ric
 M

ea
nT

h
ro

u
g

h
p

u
t

N
o

rm
a
li

z
e
d

 t
o

 S
in

g
le

 C
o

re
 S

tr
e
a
m

It
Fine-Grained Data
Coarse-Grained Task + Data
Coarse-Grained Task + Data + Software Pipeline

Figure 4-6: Parallelization results on the 16-core Raw processor1.

width to saturate both directions of a Raw port). In this configuration, one can obtain higher
throughput in streaming data from the off-chip memory than from a core’s local data cache. Thus,
our implementation elects to buffer all streaming data off-chip. However, when targeting an archi-
tecture with more modest off-chip memory bandwidth, the stream buffers could reside completely
in on-chip memory.

A summary of our results appears in Figure4-6. We show the speedup offered by the three
techniques mentioned: fine-grained data parallelism, the previous standard; coarse-grained data
parallelism, which also leverages the existing task parallelism in the stream graph; and coarse-
grained software pipelining, which runs as a post-pass to coarse-grained data parallelism. Our
baseline is StreamIt executing on a single core, which (in the case of Raw) has been shown to
outperform hand-written C implementations on a single core[TLM+04]. While coarse-grained
data parallelism performs well (attaining a mean speedup of9.9x), the most robust performance
comes by adding coarse-grained software pipelining (whichattains a mean speedup of 11.2x). As
expected, software pipelining mostly benefits the statefulbenchmarks, Vocoder and Radar. There
is a super-linear speedup in Radar because reordering operations are moved from the compute core
to the network.

1The benchmarks used here were sometimes parameterized differently than the ones described in Chapter2. Details
on the benchmark configurations are available elsewhere [GTA06].

85

4.2 Optimizing Linear Computations

The design flow for digital signal processing applications typically contains three steps. First,
application designers specify a block diagram of the computation, drawing on rich software li-
braries to prototype its behavior in an environment such as MATLAB. Once the the functionality
has been fixed, the second step is performed by digital signalprocessing (DSP) experts, who in-
spect the global structure of application and perform many domain-specific optimizations to reduce
the overall processing requirements while preserving the basic input/output relationship. Finally,
once the mathematical algorithms have been determined, a software engineer implements those
algorithms in a low-level language such as C to obtain the final product.

In order to reduce the cost of this development process, a long-term goal of the computer
science community has been to generate efficient and deployable code from a high-level, functional
specification of the program. In order to achieve this goal, the expertise of DSP experts must be
encapsulated into the tool. While library generators such as Spiral [PMJ+05], FFTW [FJ05],
and ATLAS [WPD01, DDE+05] can automatically derive and optimize specific classes of DSP
kernels, programmers must integrate these libraries into their development process rather than
having the compiler automatically recognize and transformthe original code. Our goal is to invent
and adapt domain-specific optimizations in the context of the StreamIt language, so as to provide
a unified development environment that can express the full functionality of the application while
automatically applying deep optimizations to the specific code sections where they apply.

Our focus in the current work is the optimization oflinear computations, which are the most
common target of DSP experts. Linear filters are those in which each output is an affine combina-
tion of the inputs. Examples include finite impulse response(FIR) filters, compressors, expanders
and signal processing transforms such as the discrete Fourier transform (DFT) and discrete cosine
transformation (DCT). We also describe the optimization oflinear statespace filters, a generaliza-
tion of linear filters that maintain internal states. In a linear statespace filter, each each output is an
affine combination of the states and the inputs, and each state is also updated in an affine fashion.
An infinite impulse response (IIR) filter is an example of a linear statespace filter.

Figure4-7illustrates an example of linear optimizations as applied to our software radio bench-
mark. The radio contains an equalizer, which was specified bythe designer in a simple but ineffi-
cient manner. Each frequency band is processed in a separatebranch of a splitjoin, and each branch
contains a successive high-pass and low-pass filter to accomplish a band-pass functionality. While
this representation of the algorithm allows it to be easily understood and maintained, it performs
many redundant computations. In practice, because all of the components of the equalizer are lin-
ear, they can be collapsed into a single filter that performs far fewer computations. Furthermore,
as that filter is performing a sliding window computation, itcan be converted into the frequency
domain to reduce the asymptotic processing requirements fromO(n2) to O(n logn). Both of these
transformations require deep inter-procedural analysis and are far beyond the reach of traditional
compilers. However, using a stream programming model, we can robustly automate both steps of
the optimization process.

In the rest of this section, we provide an overview of our linear optimization techniques. We de-
scribe how to extract a linear representation from the code in a StreamIt filter, how to algebraically
simplify adjacent linear filters, and how to translate linear filters into the frequency domain. We
also describe optimizations for linear statespace filters,including removal of redundant states and
reduction of the number of parameters. We give a procedure for determining which optimizations

86

Speaker

AtoD

FMDemod

Equalizer
(time domain)Adder

Speaker

AtoD

FMDemod

Duplicate

RoundRobin

LowPass2 LowPass3LowPass1

HighPass2 HighPass3HighPass1

AtoD

FMDemod

FFT

Speaker

IFFT

Equalizer
(freq domain)

Linear

(a) Software FM radio with Equalizer (b) After linear combination (c) After translation to
the frequency domain

Figure 4-7: Example optimization of linear filters. Our software FM radio benchmark contains an
equalizer in which all filters are linear. These filters can bealgebraically simplified into a single
filter and then translated into the frequency domain.

to apply to a given program, and we evaluate the optimizations in the StreamIt compiler. The
average speedup obtained is 4.5x, with a maximum of 8.0x.

Extracting a Linear Representation

Rather than directly manipulating the code inside a filter’swork function, our linear optimiza-
tions rely on an abstract representation in which linear filters are represented by a set of matrices.
Figure4-8 gives an example of this representation for an IIR filter. TheStreamIt compiler au-
tomatically extracts this representation using a symbolicexecution of the filter’s work function.
The basic idea is to execute a complete invocation of the function just like a normal interpreter,
except that instead of assigning values to the states and input items, these quantities are left as
free variables and tracked throughout the execution. If theinterpreter encounters any branches or
conditionals that depend on free variables, then the analysis is aborted and the node is deemed
non-linear. Otherwise, when execution completes, a symbolic expression has been established for
every state variable and every value pushed to the output tape. If all of these expressions are an
affine function of the free variables, then linear analysis has succeeded and the linear representa-
tion is built. A more precise description of this analysis, including support for innocuous branches
that do not affect the linear representation, is described elsewhere [LTA03].

Of course, it would also be possible for programmers to specify the linear representation di-
rectly rather than relying on the compiler to extract it fromthe code. If programmers prefer this
approach, then they could develop a generic linear filter in StreamIt and call it as a library. How-
ever, we believe that it is valuable to support automatic recognition of optimization targets, as
otherwise the programmer needs to be knowledgeable of everypotential optimization and annotate
the code accordingly.

87

float->float filter IIR {
float x1, x2;
work push 1 pop 1 {
float u = pop();
push(2*(x1+x2+u));
x1 = 0.9*x1 + 0.3*u;
x2 = 0.9*x2 + 0.2*u;

} }

0.9 0
0 0.9

B =A =
0.3
0.2

u

2 2C = 2

x’ = Ax + Bu

D =

y = Cx + Du

Linear

dataflow

analysis

inputs

states

outputs

Figure 4-8: Extracting a linear representation from the code inside a filter’s work function.

Filter 1

Filter 2

y = Du

z = Ey

y

u

z

G

z = EDu
Combined

Filter

u

z

z = Gu

Figure 4-9: Algebraic simplification of adjacent linear filters. For simplicity, we omit filter states
from this diagram.

Algebraic Simplification of Adjacent Linear Filters

If neighboring filters in the stream graph both perform a linear computation, then that section of the
stream graph can be collapsed into a single linear filter. Themost simple case of this transformation
is illustrated in Figure4-9, where two stateless filters are communicating in a pipeline. Given the
computation matrix for each filter, the output of the entire pipeline can be represented as a matrix
product. Because each of the matrices is known at compile time, the matrix product can also be
evaluated at compile time. This offers the potential for large performance gains. For example, if
both matrices are square (representing filters that read thesame number of items as they write)
and there is no peeking involved, then the output matrix willbe the same size as each of the
input matrices, reducing the computation by a factor of two.Larger gains are possible if the
communication rate between the filters is larger than that ofthe end-to-end pipeline. Conversely,
if the communication rate between the filters is lower than the overall pipeline, it is possible for
this transformation to to increase the computation requirements; as described later, this hazard
is avoided by our automatic selection algorithm. In our experimental evaluation, combining filers
wherever possible (even when detrimental) leads to a 2.1x average performance improvement, with
a maximum improvement of 5.0x.

We have extended the simple idea of algebraic simplificationto handle the general case, hiding
many complexities from the user [ATA05]. To perform the matrix multiplication in Figure4-9,

88

IIR Filter

x’ = 0.9x + u
y = x + 2u

Decimator

y = [1 0] u1

u2

IIR / Decimator

x’ = 0.81x + [0.9 1]

y = x + [2 0]

u1

u2

u1

u2

Figure 4-10: Example simplification of an IIR filter and a decimator. The original pair of filters
requires 6 FLOPs per output, while the combined version requires only 4 FLOPs per output.

the output rate of the first filter must match the input rate of the second filter. In cases where this
is not true in the program, the analysis expands each linear representation to encompass multi-
ple executions of the original filter. In addition to collapsing pipelines, we have also developed
complete combination rules to handle the other StreamIt language constructs: splitjoins and feed-
backloops. Splitjoins introduce complexity due to the reordering in the splitters and joiners, as well
as implicit buffering that may be involved due to mis-matched I/O rates along alternate branches.
Feedbackloops introduce complexity because of the initialitems enqueued on the backward path
of the feedback loop; in addition, the periodicity of the entire feedbackloop may be coarser than
the periodicity of its components, requiring further expansion and analysis by the compiler. The
presence of sliding window operations (or peeking) also adds complexity to all of the combination
rules; in our general formulation, the peeked data items areconverted into states in the filter.

By automating the combination of linear filters, we allow theprogrammer to maintain a natural
expression of the algorithm. Figure4-10illustrates an example combination of an IIR filter with a
decimator, reducing the total number of operations by 25%. This optimization opportunity is not
obvious to non-experts due to the state retained by the IIR filter. Also, even when the programmer
understands that linear combination is possible, it may be intractable to manage of all of the details
and to maintain the code following the transformation. Thiseffect is especially important in the
context of software libraries, where the final application may contain filters that were authored
by many different developers. The compiler can perform thisanalysis across module boundaries,
synthesizing an efficient implementation while preservinga modular development style.

Optimization of a Single Linear Filter

In addition to optimizing groups of linear filters, it is possible to improve the execution of a single
linear filter at a time. Stateless filters can be mapped into the frequency domain, while stateful
filters are subject to state removal and parameter reduction. These transformations are generally
applied after algebraic simplification.

Mapping into the Frequency Domain Filters that perform a sliding window computation, such
as FIR filters, are equivalent to a convolution of the filter coefficients with the input tape. This

89

ui*Wn-i

U F(u)

Y U .* H

y F -1(Y)

FFT

VVM

IFFT

u

U

Y

y

u

y

Figure 4-11: Mapping linear filters into the frequency domain.

means that they are amenable to a classic transformation in single processing, whereby the com-
putation is mapped from the time domain into the frequency domain. As illustrated in Figure4-11,
this consists of wrapping the filter in an FFT and inverse FFT,and changing the convolution into
a vector-vector multiply. Asymptotically, this reduces the computation requirements fromO(n2)
to O(n logn), wheren is the size of FFT (which can be set by the compiler). In our experi-
ments, translating each filter into the frequency domain (even when detrimental) leads to an aver-
age speedup of 3.8x and a maximum speedup of 8.0x.

While this transformation is well-understood and can also be done by hand, there are benefits
to automating it in the compiler. The size of the FFT can be automatically selected and complex
startup conditions can be handled automatically. Also, there are cases where it is not profitable
to translate to the frequency domain (for example, if the peek window is too small, or if the filter
decimates items in addition to peeking), or where conversion is profitable only following linear
combination. By coupling the translation algorithm with our optimization selection algorithm
(described later), the programmer does not need to worry about when to apply the transformation.

Removing States Linear statespace filters maintain and update a set of internal states on each
time step. However, especially following combination withadjacent nodes, it is possible that some
of these states could be redundant; that is, their values could be fully derived from other states in
the filter. It is beneficial to remove any redundant states, both for memory savings and to eliminate
redundant computations that update the states.

We have adapted a simple algorithm that guarantees to identify and remove all of the redundant
states in a filter [May73]. While this algorithm was previously known by the signal processing
community, to our knowledge this is its first application in an optimizing compiler. The algorithm
works by constructing augmented matrices from the filter’s representation (Figure4-8), and by
reducing these matrices to a special row-echelon form.

An example of state removal appears in Figure4-12. The analysis detects that the two states
x1 andx2 are always scaled proportionately, so they can be combined into a single statex. This
reduced the computational requirements of the filter from 9 FLOPs per execution to 5 FLOPs per
execution.

90

float->float filter IIR {
float x1, x2;
work push 1 pop 1 {
float u = pop();
push(2*(x1+x2+u));
x1 = 0.9*x1 + 0.3*u;
x2 = 0.9*x2 + 0.2*u;

} }

float->float filter IIR {
float x;
work push 1 pop 1 {
float u = pop();
push(2*x+2*u);
x = 0.9*x + 0.5*u;

} }

float->float filter IIR {
float x;
work push 1 pop 1 {
float u = pop();
push(x+2*u);
x = 0.9*x + u;

} }

0.9 0
0 0.9

x + x’ =
0.3
0.2

2 2y = x + 2u

u x’ = 0.9x + 0.5u

y = 2x + 2u

x’ = 0.9x + 1u

y = 1x + 2u

State

Removal

Parameter

Reduction

Extraction Codegen Codegen

(a) Original filter:

9 FLOPs per output

(b) After state removal:

6 FLOPs per output

(c) After parameter reduction:

4 FLOPs per output

Figure 4-12: Example of state removal and parameter reduction.

Reducing the Number of Parameters After removing as many states as possible, additional
computations can be eliminated by transforming the filter’slinear representation into one with
fewer non-zero, non-one entries (termed parameters). Eachcoefficient that is converted to a zero
serves to eliminate a multiplication and addition operation per execution of the filter, while each
coefficient that is converted to a one serves to eliminate a multiplication.

We automated parameter reduction by starting with a known signal processing technique [AB71]
and reformulating it in the context of StreamIt. As with the state removal algorithm, the number
of parameters in a linear statespace filter can be reduced using a systematic sequence of matrix
operations. However, compared to state removal, there are looser guarantees on the optimality of
the final system [ATA05].

An example of parameter reduction is illustrated in Figure4-12. Following the transformation,
the state variablex assumes a value that is twice as large as the original (at any given point of
execution). However, this change does not affect the outputof the filter, as the other coefficients
are compensated accordingly. The transformation enables two coefficients two change to a value
of 1, thereby eliminating two multiplication operations and reducing the total cost to 4 FLOPs per
execution.

Optimization Selection

As mentioned previously, many of the described transformations have the potential to decrease the
performance of the program. Linear combination can bloat the processing requirements depending
on the communication rates of the filters, and translation tothe frequency domain can introduce
overhead for filters with high pop rates or low peek rates. Instead of applying the transformations
blindly, they should be guided by a selection algorithm thatmatches the behavior of DSP experts.

We have developed a general and robust optimization selection algorithm that considers a large
space of candidate transformations. To prevent an exponential explosion of candidate transforma-

91

tions on different parts of the stream graph, the algorithm leverages overlapping sub-problems and
uses dynamic programming to arrive at an efficient solution.

The algorithm works by estimating the minimum cost for each structure (filter, pipeline, splitjoin,
and feedbackloop) in the stream graph. The minimum cost represents the best of three configu-
rations: 1) collapsed and implemented in the time domain, 2)collapsed and implemented in the
frequency domain, and 3) uncollapsed and implemented as a hierarchical unit. (This algorithm
does not consider state removal and parameter reduction, which were invented subsequently.) The
cost functions for the collapsed cases are guided by profilerfeedback, performed once during the
development of the compiler. For the uncollapsed case, the cost is the sum of each child’s minimum
cost.

A key aspect of the algorithm is that it considers many possible boundaries for the structures
in the stream graph. For example, while the programmer mighthave constructed the graph as
a specific hierarchy of pipelines, the compiler flattens the hierarchy into a single pipeline and
then considers linear optimizations for each contiguous region within that pipeline. A similar
decomposition applies to splitjoins, where any number of adjacent branches and any contiguous
sequence of streams in those branches is considered for transformation. In this sense, the algorithm
determines not only the best transformations to apply, but also the best way to refactor the stream
graph into a form that is amenable to optimization.

An example of optimization selection for the Radar benchmark is shown in Figure4-13. Radar2

contains many linear filters. However, performing maximal linear combination results in a 3.2x
slowdown, and translating to the frequency domain worsens performance by an additional 12x.
The problem with linear combination is due to a vector-vector multiply filter named “Beamform”
at the top of a pipeline construct. The Beamform filter pushes2 items, but pops and peeks 24;
thus, when the replacement algorithms combine it with a downstream FIR filter, much of its work
is duplicated. Moreover, the frequency replacement optionsuffers from the large pop rates in
the application (as high as 128 for some filters). The optimization selection algorithm avoids
combining BeamForm with its successor, and avoids the costly frequency translation. Applying
only selective transformations causes 55% of the FLOPs to beeliminated. However, the final
speedup is only 5%, mostly due to unrelated data and code sizeissues that could be addressed
independently (each filter is very coarse-grained).

Experimental Evaluation

We have implemented linear optimizations in the StreamIt compiler. Here we present results
for stateless linear nodes, though we have also shown that linear statespace analysis offers im-
proved generality [ATA05]. For more detailed results, stream graphs, and source code, please visit
http://cag.lcs.mit.edu/linear/ or see the accompanying thesis [Lam03].

We evaluate linear optimizations on a uniprocessor. Our measurement platform is a Dual Intel
Pentium 4 Xeon system with 2GB of memory running GNU/Linux. To measure the number of
floating point operations, we use an instruction counting DynamoRIO [BDB99] client.

Figure4-14indicates the number of floating point operations (FLOPs) removed from the pro-
gram. The removal of FLOPs represents fundamental computation savings that is independent of
the streaming runtime system and other (FLOPs-preserving)optimizations in the compiler. We

2This version of the Radar benchmark is different from the oneused in the parallelization section. It is rewritten to
be extremely coarse-grained, eliminating the internal state and exposing the linear relationships.

92

h

Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec

FIR1 FIR1 FIR1 FIR1 FIR1 FIR FIR1 FIR1 FIR1 FIR1 FIR1 FIR1

Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec

RR

FIR2 FIR2 FIR2 FIR2 FIR2 FIR FIR2 FIR2 FIR2 FIR2 FIR2

Detect Detect Detect

BeamForm BeamForm BeamForm BeamForm

Filter Filter Filter Filter

Detect

Splitter(null)

Sink

RR

Magnitude

Duplicate

Magnitude Magnitude Magnitude

Input Input Input Input Input Input Input Input Input Input Input Input

FIR2

KEY

Linear

Translated to
Frequency
Domain

Non-linear

(a) Radar application

(b) Radar after maximal linear combination

and translation to the frequency domain

(33x more FLOPs; 40x slowdown)

(c) Radar after optimization selection

(55% fewer FLOPs; 5% speedup)

Figure 4-13: Optimization selection for the Radar benchmark. Performing maximal linear combi-
nation and translation to the frequency domain results in a large slowdown. The selection procedure
avoids this hazard by blocking the vertical combination of the BeamForm filter and by preventing
translation to the frequency domain.

93

-20%

0%

20%

40%

60%

80%

100%

FIR

R
at

eC
on

ve
rte

r

Tar
ge

tD
et

ec
t

FM
R
ad

io

R
ad

ar

Filt
er

Ban
k

Voc
od

er

O
ve

rs
am

pl
er

D
ToA

Benchmark

F
L

O
P

S
 r

e
m

o
v
e
d

linear

freq

autosel

-3
2
0
0
%

Figure 4-14: Elimination of floating point operations by maximal linear replacement, maximal
frequency replacement, and automatic optimization selection1.

-200%

0%

200%

400%

600%

800%

1000%

FIR

R
at

eC
on

ve
rte

r

Tar
ge

tD
et

ec
t

FM
R
ad

io

R
ad

ar

Filt
er

Ban
k

Voc
od

er

O
ve

rs
am

pl
er

D
ToA

Benchmark

S
p

e
e
d

u
p linear

freq

autosel

5%

Figure 4-15: Execution speedup for maximal linear replacement, maximal frequency replacement,
and automatic optimization selection1.

evaluate three strategies: maximal combination of linear nodes, maximal translation to the fre-
quency domain (following maximal combination), and automatic optimization selection. The au-
tomatic selection routing removes an average of 87% of the FLOPs from our benchmarks, with a
maximum of 96% (Vocoder). The automatic selection option eliminates more FLOPS than either
of the other options for TargetDetect, FMRadio, Radar, and Vocoder. Automatic selection always
performs at least as well as the other two options.

1The benchmarks used here were sometimes parameterized differently than the ones described in Chapter2. Details
on the benchmark configurations are available elsewhere [Lam03].

94

Execution speedups are shown in Figure4-15. With automatic selection, our benchmarks speed
up an average factor of 5.5x and by a factor of 8.0x in the best case (FilterBank). While the graph
suggests that frequency replacement almost always performs better than linear replacement, this is
not strictly the case; in FMRadio, Radar, and Vocoder, the automatic selection algorithm obtains its
speedup by using linear replacement instead of frequency replacement for part of the stream graph.
However, linear replacement does reduce performance for FIR, TargetDetect, and DToA despite
reducing the number of FLOPS. We believe that this is due to inefficiencies in our implementation
of the matrix multiplication routine, as well as auxiliary effects on the runtime overhead in the
StreamIt library.

While these results represent radical improvements relative to most compiler optimizations,
we emphasize that the same transformations would likely be done by hand in a production system.
Our contribution is to enable a modular programming environment by automatically performing
the transformations from a high-level description.

4.3 Cache Optimizations

An important part of achieving high performance is to maximize the utilization of the cache. This
is especially important on embedded processors, which often lack an L2 cache. In tandem with
this need for high cache utilization, there is also a unique opportunity in the streaming domain
to reorder filter executions so as to improve the cache behavior. Memory accesses are extremely
regular due to the explicit producer-consumer relationships between filters, allowing the compiler
to anticipate and optimize the cache usage.

We have developed a set of cache optimizations that simultaneously consider data and instruc-
tion locality while scheduling stream programs. An overview of our optimizations are illustrated
in Figure4-16. In scheduling a pipeline of filters, the executions can be interleaved in any order so
long as data is produced before it is consumed. In the baseline configuration, there is a fine-grained
interleaving of filters; each filter fires once per execution of the outer loop. While this results in a
very small data working set (data is consumed immediately following its production), the instruc-
tion working set is large because all filters are accessed frequently. The opposite of this scheduling
strategy, termed “full scaling”, wraps each filter in its ownloop, buffering all of the data before
the next filter executes. While this shrinks the instructionworking set size (since only one actor is
accessed at a time), the data working set could grow very large due to the buffering between actors.

Our optimized scheduling strategy, illustrated on the right of Figure4-16, can be considered
as a tradeoff between these two extremes. First, we employ a heuristic calledcache aware fusion
that fuses executions of the inner loop as much as possible without overflowing the instruction
cache. In this case, filters A and B can be fused, but filter C remains separate. Then, we employ
a technique calledcache aware scalingthat sets the inner loop bounds as high as possible without
overflowing the data cache. In this case, a bound of 64 ensuresthat the communication between
B and C stays within the cache. This technique offers joint improvement of instruction and data
locality without risking the penalty of cache overflow.

In the rest of this section, we provide more details on cache aware fusion, cache aware scaling,
and present an experimental evaluation. Our full report on this subject contains further details,
including optimized buffer management strategies [STRA05, Ser05].

95

for i = 1 to N/64

end

A

B

C

for i = 1 to N

A();

B();

C();

end

for i = 1 to N

A();

for i = 1 to N

B();

for i = 1 to N

C();

Working

Set Size

cache
size

inst

A B C

datainst data

A

B

C

+

+

inst data

C

A

B
+

C

B

C

B

B

A

B

A

B

A

Full ScalingBaseline Cache Opt

for j = 1 to N

A();

B();

end

for j = 1 to N

C();

64

64

C

B

Figure 4-16: Overview of cache optimizations. While execution scaling can improve instruction
locality relative to the baseline, it loses the benefits of filter fusion and has the hazard of overflowing
the data cache. Our cache optimizations fuse filters as much as possible without exceeding the
instruction cache, then scale as much as possible without exceeding the data cache.

Cache Aware Fusion

As mentioned previously, filter fusion is a transformation in which two filters are tightly scheduled
and inlined into the same filter. Fusion offers many benefits,including reduced method call over-
head and improved producer-consumer locality. It also allows traditional compiler optimizations
to span across filter boundaries; in particular, results that were previously buffered in memory can
now be allocated to registers in an optimization known as scalar replacement. For our benchmark
suite, fusing all of the filters in the program improves performance by an average of 1.3x on an
embedded processor.

However, the hazard of excessive fusion is that the combinedinstruction and data footprint
of the filters will overflow the caches, thereby hampering performance. The scalar replacement
optimization also benefits from aggressive loop unrolling,which causes code bloat and increases
the risk of cache overflow. To address this hazard, our cache aware fusion algorithm greedily fuses
neighboring filters so long as the instruction and data working sets fit within the respective caches.
In addition, a fraction of the data cache is reserved for input and output items. Compared to a full
fusion strategy, cache aware fusion improves performance by an additional 1.4x on an embedded
processor.

Cache Aware Scaling

It is advantageous to execute a filter multiple times at once,because the first execution will incur
cache misses that can be amortized over subsequent executions. We user the termscalingto refer to
the process of increasing a filter’s execution multiplicity. While scaling can improve performance
by amortizing cold misses of the filter’s instructions and state, excessive scaling will worsen per-
formance because the filter’s input and output buffers will eventually overflow the cache. This
effect is illustrated empirically in Figure4-17. To achieve the highest performance, the compiler

96

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40

Scaling factor

N
o

rm
a
li
z
e
d

 e
x
e
c
u

ti
o

n
 t

im
e

Figure 4-17: Effect of execution scaling on performance. Moderate scaling improves performance
by improving the locality of instructions and local filter data. However, excessive scaling worsens
performance as the input and output buffers overflow the cache.

needs to select an intermediate scaling factor that represents a tradeoff between the filter’s static
footprint (instructions and local data) and its dynamic footprint (input and output items).

We have developed a cache aware scaling heuristic that is effective in addressing this problem.
The heuristic scales the execution of every filter in the graph by the same amount. The scaling
factor is set as high as possible so long as 90% of the filters can fit both their static and dynamic
footprints in the cache. This means that 10% of the filters mayoverflow the cache with their
dynamic data, but these overflows are compensated by improved reuse of static data in other filters.
In the case of FFT (characterized in Figure4-17, the heuristic arrives at a scaling factor of 5, which
yields performance that is within 5% of the optimum. For our benchmark suite, cache aware
scaling gives a further improvement of 1.9x over cache awarefusion alone.

Experimental Evaluation

We implemented cache aware fusion and cache aware scaling inthe StreamIt compiler, and eval-
uate its performance on three different architectures: a 137 MHz StrongARM 1110, a 600 MHz
Pentium 3 and a 1.3 GHz Itanium 2. The StrongARM results reflect performance for an embedded
target; it has a 16 Kb L1 instruction cache, an 8 Kb L1 data cache, and no L2 cache. The Stron-
gARM also has a separate 512-byte minicache (not targeted byour optimizations). The Pentium 3
and Itanium 2 reflect desktop performance; they have a 16 Kb L1instruction cache, 16 Kb L1 data
cache, and 256 Kb shared L2 cache.

In addition to cache optimizations, we enable aggressive loop unrolling (by a factor of 128) to
facilitate scalar replacement. The StreamIt compiler outputs a functionally equivalent C program
that is compiled withgcc (v3.4, -O3) for the StrongARM and for the Pentium 3 and withecc

(v7.0, -O3) for the Itanium 2.

97

Figure 4-18: Performance of cache optimizations on the StrongARM processor (CAF stands for
cache aware fusion)1.

The performance of our techniques on the StrongARM processor is illustrated in Figure4-18.
The graph illustrates the performance of full fusion, cacheaware fusion, and cache aware fusion
with cache aware scaling. Performance is normalized to unoptimized StreamIt, in which no actors
are fused (but there is still unrolling by 128). On average, our cache optimizations offer a 3.49x
speedup over the baseline and a 2.62x average speedup over full fusion. Cache optimizations
always perform better than the baseline, and they perform better than full fusion in all cases except
for 3gpp, where they yield a 45% slowdown. This slowdown is due to conservative code size
estimation: the compiler predicts that the fused version of3gpp will not fit into the instruction
cache, thereby preventing fusion. However, due to optimizations bygcc, the final code size is
smaller than expected and does fit within the cache. While such inaccuracies could be improved by
adding feedback between the output ofgcc and our code estimation, each fusion possibility would
need to be evaluated separately as the fusion boundary affects the impact of low-level optimizations
(and thus the final code size).

The speedups offered by cache optimizations over a full fusion strategy are more modest for
the desktop processors: 1.34x average speedup on Pentium 3 and essentially zero speedup (6%
by the arithmetic mean, -8% by the geometric mean) on Itanium2 (Figure4-19). Performance on

1The benchmarks used here were sometimes parameterized differently than the ones described in Chapter2. Details
on the benchmark configurations are available elsewhere [Ser05].

98

Figure 4-19: Summary of cache optimizations on the StrongARM, Pentium 3 and Itanium 2 pro-
cessors (CAF stands for cache aware fusion).

any architecture is a tradeoff between two factors: 1) the benefit of data and instruction locality,
and 2) the benefit of fusion, which reduces memory accesses due to improved register allocation
across actor boundaries. Compared to the StrongARM, the Pentium 3 and Itanium 2 offer an L2
cache (as well as a larger L1 data cache), thereby lessening the impact of locality-enhancing cache
optimizations. However, the fusion benefit remains a significant factor; for example, using Intel
VTune on the Pentium 3, we measured that full fusion offers a 50% reduction in memory accesses
over the cache-optimized version. This effect may be pronounced on the Itanium 2 due to the larger
number of registers on that architecture (128 general, 128 floating point). While fusion benefits
are also present on the StrongARM, cache optimizations are more important on that processor due
to the large penalty for cache misses.

In summary, cache optimizations prove to be a valuable assetto the compiler, especially when
targeting embedded processors. Via simple scheduling heuristics, they improve performance by
3.49x. These gains are out of the reach of compilers for traditional languages such as C, in which it
is intractable to infer the buffers between filters and to grow or shrink them to match the schedule.
The stream programming model exposes the information needed to transform the program and
attain the desired performance.

4.4 Related Work

Parallelization Printz also compiles synchronous dataflow graphs (including support for sliding
window operations and stateful filters) to the distributed-memory Warp machine [Pri91]. In order

99

to support applications with hard real-time constraints, he minimizes the latency of a single steady
state rather than maximizing the overall throughput. Both coarse-grained data parallelism and
coarse-grained software pipelining have the potential to increase the latency of the program, and
thus fall outside the scope of his model. Also, Printz does not attempt to minimize communication
when assigning tasks to processors; data-parallel actors are assigned to processors in any topolog-
ical order and are always spread across as many processors aspossible. As he acknowledges, this
sometimes introduces unnecessary communication [Pri91, p.155]. Our technique exploits only as
much data parallelism as is needed to complement existing task parallelism in the program. It also
matches producers and consumers prior to data parallelization by fusing stateless actors as much
as possible. Still, it is difficult to compare our techniquesdirectly because they focus on different
things. Our focus is on stateless actors with limitless dataparallelism, while Printz focuses on
actors with a fixed amount of internal data parallelism. He also has built-in support for systolic
computations (pipelines of balanced filters) which we do notmodel explicitly.

The ASSIGNparallel program generator also maps coarse-grained stream graphs to Warp [O’H91].
However, it relies solely on task and pipeline parallelism;the stream graph is partitioned into
contiguous groups for execution on the processors. While wepreviously adopted a similar ap-
proach [GTK+02], it proved difficult to balance the load and to utilize all ofthe processors without
exploiting data parallelism. The approach described in this chapter offers a 1.84x improvement
over our previous work.

Liao et al. map Brook to multicore processors by leveraging the affine partitioning model [LDWL06].
While affine partitioning is a powerful technique for parameterized loop-based programs, in StreamIt
we simplify the problem by fully resolving the program structure at compile time. This allows us to
schedule a single steady state using flexible, non-affine techniques (e.g., simulated annealing) and
to repeat the found schedule for an indefinite period at runtime. Gummaraju and Rosenblum map
stream programs to a general-purpose hyperthreaded processor [GR05]. Such techniques could be
integrated with our spatial partitioning to optimize per-core performance. Gu et al. expose data
and pipeline parallelism in a Java-like language and use a compiler analysis to efficiently extract
coarse-grained filter boundaries [DFA05]. Ottoni et al. also extract decoupled threads from se-
quential code, using hardware-based software pipelining to distribute the resulting threads across
cores [ORSA05]. By embedding pipeline-parallel filters in the programming model, we focus on
the mapping step.

Previous work in scheduling computation graphs to paralleltargets has focused on partition-
ing and scheduling techniques that exploit task and pipeline parallelism [EM87, MSK87, PL95,
PBL95, KA99]. Application of loop-conscious transformations to coarse-grained dataflow graphs
has been investigated. Unrolling (or “unfolding” in this domain) is employed for synchronous
dataflow (SDF) graphs to reduce the initiation interval but they do not evaluate mappings to actual
architectures [PM91, CS97]. Software pipelining techniques have been applied to SDF graphs
onto various embedded and DSP targets [BG99, CV02], but has required programmer knowledge
of both the application and the architecture. To our knowledge, none of these systems automati-
cally exploit the combination of task, data, and pipeline parallelism. Furthermore, these systems
do not provide a robust end-to-end path for application parallelization from a high-level, portable
programming language.

100

Optimizing Linear Computations Several other groups have developed automated frameworks
for optimizing linear signal processing kernels. SPIRAL isa system that generates libraries for sig-
nal processing algorithms [PMJ+05]. Using a feedback-directed search process, DSP transforms
are optimized for the underlying architecture. The input language to SPIRAL is SPL [XJJP01,
Xio01], which provides a parameterizable way of expressing matrix computations. Given a matrix
representation in SPL, SPIRAL generates formulas that correspond to different factorizations of
the matrix. It searches for the most efficient formula using several techniques, including dynamic
programming and stochastic evolutionary search.

We consider our work to be complementary to SPIRAL. While SPIRAL starts with a matrix
representation in SPL, we start with general StreamIt code and use linear dataflow analysis to
extract a matrix representation where possible. Our linearcombination rules are distinct from
the factorizations of SPIRAL, due to StreamIt’s support forsliding windows. We also support
optimizations on linear statespace filters, which are not handled in SPIRAL. In the future, SPIRAL
could be integrated with StreamIt to optimize a matrix factorization for a given architecture.

The FFTW system [FJ05] generates platform-optimized FFT libraries using a dynamic pro-
gramming algorithm and profile feedback to match the recursive FFT formulation to a given mem-
ory hierarchy. ATLAS [WPD01, DDE+05] produces platform-specific linear algebra routines by
searching over blocking strategies and other parameters; Sparsity [DDE+05, IYV04] applies a
similar approach to sparse matrices. StreamIt is again complementary to these packages: it allows
programmers to interface with them using general user-level code. It also supports linear statespace
filters.

A variety of tools have been developed for specifying and deriving DSP algorithms [ON92].
The SMART project aims to develop an algebraic theory of signal processing, providing a uni-
fied framework for deriving, explaining, and classifying fast transform algorithms [PM03]. ADE
(A Design Environment) provides a predefined set of composable signal transforms, as well as a
rule-based system that searches for improved algorithms using extensible rewriting rules [Cov89].
Janssen et al. automatically derive low-cost hardware implementations of signal flow graphs us-
ing algebraic transformations and hill-climbing search [JCM94]. Our work shares the vision of
automatically deriving optimized algorithms from a high-level description, though we start from a
general-purpose, imperative stream language rather than amathematical formalism.

Karr [Kar76] and Cousot and Halbwachs [CH78] describe general methods for detecting linear
relationships among program variables. Karr maintains an affine representation (similar to ours)
for each program variable, while Cousot and Halbwachs use a polyhedral model in which each
dimension corresponds to a program variable. For general programs, the analyses described by
these authors is more general than ours. In fact, the noveltyof our linear dataflow analysis is in
its specialization for the streaming domain. Rather than tracking general relationships, we only
track relationships to items on the input tape. This restriction—in combination with the atomic,
fine-grained nature of filter work functions—makes it feasible to symbolically execute all loops,
thereby obtaining more precise linearity information.

Potkonjak and Rabaey describe optimized hardware synthesis for linear and “feedback linear”
computations [PR00]. Linear state space systems correspond to “constant feedback linear com-
putations” in the authors’ terminology. For linear and linear feedback systems, their technique
offers 1) a maximally fast implementation under latency constraints, 2) an arbitrarily fast imple-
mentation, and 3) an implementation reducing the number of arithmetic operations. In reducing
arithmetic operations, they perform common subexpressionelimination (CSE) in a manner that re-

101

sembles our state removal optimization. However, the general state removal transformation cannot
be achieved by CSE alone (or by the Potkonjak and Rabaey algorithm). We are unaware of any
sequence of traditional compiler optimizations that achieves the same effect as state removal (and
likewise for parameter reduction).

Also note that the “linear data flow analysis” of Ryan [Rya92] is completely unrelated to our
work; it aims to do program analysis in linear time.

Cache Optimizations There is a large body of literature on scheduling synchronous dataflow
(SDF) graphs to optimize various metrics [BML96, BML99]. The work most closely related to
ours is a recent study by Kohli [Koh04] on cache aware scheduling of SDF graphs, implemented
as part of the Ptolemy framework for simulating heterogeneous embedded systems [Lee03]. Kohli
develops a Cache Aware Scheduling (CAS) heuristic for an embedded target with a software-
managed scratchpad instruction cache. His algorithm greedily decides how many times to execute
a given actor based on estimates of the data cache and instruction cache penalties associated with
switching to the next actor. In contrast, our algorithm considers the buffering requirements of all
filters in a given container and increases the multiplicity so long as 90% of buffers are contained
within the data cache. The evaluation is limited to one 6-filter pipeline and an assortment of random
SDF graphs. An empirical comparison of our heuristics on a common architectural target would
be an interesting direction for future work.

It is recognized that there is a tradeoff between code size and buffer size when determining an
SDF schedule. Most techniques to date have focused on “single appearance schedules” in which
each filter appears at only one position in the loop nest denoting the schedule. Such schedules guar-
antee minimal code size and facilitate the inlining of filters. There are a number of approaches to
minimizing the buffer requirements for single-appearanceschedules (see Bhattacharyya [BML99]
for a review). While it has been shown that obtaining the minimal memory requirements for gen-
eral graphs is NP-complete [BML97], there are two complimentary heuristics, APGAN (Pairwise
Grouping of Adjacent Nodes) and RPMC (Recursive Partitioning by Minimum Cuts), that have
been shown to be effective when applied together [BML97]. Buffer merging[MB99, MB04] rep-
resents another technique for decreasing buffer sizes, which could be integrated with our approach
in the future.

Govindarajan et al. develop a linear programming frameworkfor determining the “rate-optimal
schedule” with the minimal memory requirement [GGD94]. A rate-optimal schedule is one that
takes advantage of parallel resources to execute the graph with the maximal throughput. However,
the technique is specific to rate-optimal schedules and can result in a code size explosion, as the
same node is potentially executed in many different contexts.

The work described above is related to ours in that minimizing buffer requirements can also
improve caching behavior. However, our goal is different inthat we aim to improve spatial and
temporal locality instead of simply decreasing the size of the live data set. In fact, our scaling
transformation actuallyincreasesthe size of the data buffers, leading to higher performance across
our benchmark suite. Our transformations also take into account the size of the instruction and
data caches to select an appropriate scaling and partitioning for the stream graph.

Proebsting and Watterson [PW96] give a fusion algorithm that interleaves the control flow
graphs of adjacent filters. Their algorithm supports synchronousput andget operations (analo-
gous topush andpop), but would have to be extended to deal with peeking.

102

4.5 Future Work

Our current parallelization algorithm does not support thefull generality of the StreamIt language;
it omits support for teleport messages and dynamic rates. Messaging may constrain the latency of
certain parts of the stream graph, preventing the compiler from exploiting data parallelism. Also,
static rates are important for estimating the work performed by pipeline-parallel filters. In the
software pipelining stage, static load balancing would be difficult in the presence of dynamic rates.
Incorporating these language features into the parallelization process is fertile grounds for future
research.

While our implementation targets Raw, the techniques developed should be applicable to other
multicore architectures. As Raw has a relatively high communication bandwidth, coarsening the
granularity of data parallelism may benefit other multicores even more. In porting this transforma-
tion to a new architecture, one may need to adjust the threshold computation-to-communication
ratio that justifies data parallelism. As for coarse-grained software pipelining, the scheduling free-
dom afforded should benefit many multicore systems. One should consider the most efficient loca-
tion for intermediate buffers (local memory, shared memory, FIFOs, etc.) as well as the best mech-
anism for shuffling data (DMA, on-chip network, etc.). The basic algorithms for coarsening gran-
ularity, introducing data parallelism, and software pipelining are largely architecture-independent.
At the time of this writing, others in the StreamIt group are porting the algorithm to target the
Tilera TILE64 chip, the Cell processor, commodity multicores, and a cluster of workstations.

A limitation of the linear optimizations is that they currently do not support linear filters that
send or receive teleport messages. This scenario is meaningful because messages are often sent
to adjust filtering coefficients in linear nodes. Supportingmessages in tandem with linear opti-
mizations represents an interesting research opportunity. If messages update the state of a linear
filter, than those state updates should be propagated through any combined or optimized nodes.
Alternately, it may be simpler to maintain two versions of the filter at runtime: one which is op-
timized (and potentially combined with other filters), and one which is unoptimized (and stands
alone). The runtime system could speculatively execute theoptimized node until messages demand
a temporary switch to the unoptimized node.

Our experience with linear optimizations also revealed an opportunity to develop an interesting
and useful optimization which we termdecimation propagation. Our current analysis will auto-
matically propagate any decimation of the output through the linear portions of the stream graph,
eliminating any computations that do not affect the final output. However, it would be possible to
generalize and extend this analysis to handle non-linear filters as well. By performing a dependence
analysis within each filter, one can trace which input items are decimated due to decimations on
the output. Comparable to an inter-procedural version of dead code elimination, this optimization
could prune unnecessary operations far more effectively than traditional compilers.

The cache aware scaling heuristic applies the same scaling factor to all parts of the stream
graph. We have been working (with Fabrice Rastello) on generalizing this approach to use different
scaling factors for different sections of the stream graph.This approach has the potential to strike a
more flexible tradeoff between the static data footprint andthe dynamic data footprint in the cache.

Finally, a broad limitation of the current StreamIt compiler is that it performs all of its optimiza-
tions at compile time. To embed streaming concepts in a general-purpose programming language,
it will likely be desirable to provide API support for constructing and initializing the stream graph
at runtime. In this context, all of the optimizations described should be migrated to a Just-In-Time

103

(JIT) compiler, where they can be invoked once at the start ofsteady-state execution. As part of
this change, it will be important to evaluate and improve theexecution time of all of the compiler
analyses.

4.6 Chapter Summary

This chapter presents three aggressive transformations that utilize the abundant parallelism and reg-
ular communication patterns of stream programs to achieve automatic performance improvements
that are beyond the reach of traditional compilers.

In parallelizing stream programs, we leverage the task, data, and pipeline parallelism that is ex-
posed in the programming model to attain robust performanceon a multicore architecture. The key
aspect of our work is in exploiting parallelism at a coarse level of granularity. To bolster the benefits
of data parallelism on a multicore architecture, we build coarse-grained data-parallel units that are
duplicated as few times as needed. And to leverage the benefits of pipeline parallelism, we employ
software pipelining techniques—traditionally applied atthe instruction level—to coarse-grained
filters in the program. The combination of these techniques achieves an 11.2x mean speedup on
the 16-core Raw machine.

In optimizing linear computations, we demonstrate how the compiler can mirror the actions
of a DSP expert in performing algorithmic transformations on the stream graph. We automati-
cally extract a linear representation from the code in a filter’s work function, and manipulate that
representation to perform algebraic simplification of adjacent filters, translation of filters into the
frequency domain, removal of redundant states, and reduction of the number of parameters. We
develop an optimization selection algorithm that uses dynamic programming to choose the most
profitable transformations out of a large array of possibilities. The combination of these tech-
niques eliminates an average of 87% of the FLOPs and offers anaverage speedup of 5.5x across
our benchmark suite.

In performing cache optimizations, we derive a schedule of filter executions that improves
the instruction and data locality. In order to gain the benefits of fusing nodes together without
the hazard of exceeding the instruction cache, a cache awarefusion algorithm fuses only so long
as the cache limit is respected. And to amortize the cost of cold misses upon loading a filter’s
instructions and data into the cache, a cache aware scaling algorithm repeatedly executes each
filter many times – but only so long as the resulting communication buffers are unlikely to exceed
the cache. The combination of these techniques is especially useful in the context of embedded
processors; we achieve a 3.49x average improvement over unoptimized StreamIt on a StrongARM
1100 processor.

There were many aspects of the stream programming model thatenabled the optimizations
described in this chapter. The properties of the synchronous dataflow model – that is, the separation
of filters into independent units with atomic execution steps and known communication rates – was
essential for almost all of the analyses described. In addition, the StreamIt construct of peeking
was uniformly useful for facilitating analysis of sliding window operations.

Structured streams also found some applications within thecompiler, though fewer than we
had originally anticipated. The presence of structure was essential for formulating the optimiza-
tion selection algorithm for linear filters; without the regular structure, there would have been
no prescription for finding overlapping subproblems in the stream graph. We believe that struc-

104

ture also simplified the development and presentation of thelinear optimizations, as they only
have to handle a fixed number of cases rather than dealing withthe full generality of an arbitrary
stream graph. The splitjoin construct also facilitated thedetection of task-parallel components
during the introduction of data parallelism. Though we did not discuss it here, the single-input,
single-output property of structured streams was integralto the development of phased schedul-
ing [KTA03, Kar02]. Finally, though the StreamIt compiler completely unrolls the stream graph,
structure may prove useful in facilitating a parameterizedgraph representation in future work.

105

106

Chapter 5

Translating Stream Programs into the
Compressed Domain

This chapter presents a new domain-specific optimization for stream programs: translation to the
compressed domain. This transformation allows programs tooperate directly on compressed data,
accelerating common video editing operations by a median of15x. Unlike the optimization of lin-
ear nodes in StreamIt, this represents a domain-specific optimization that was previously unknown
(it was not performed even by experts). We define the transformation in general terms and also
evaluate it experimentally in the context of StreamIt.

5.1 Introduction

Stream programs often operate on huge volumes of data. For example, each frame of a digital film
requires approximately 2 megabytes, implying that a fully-edited 90-minute video demands about
300 gigabytes of data for the imagery alone [DM05]. Industrial Light and Magic reports that, in
2003, their processing pipeline output 13.7 million framesand their internal network processed
9 petabytes of data [Ben]. The U.S. Geological Survey had archived over 13 million frames of
photographic data by the end of 2004, and estimates that 5 years is needed to digitize 8.6 million
additional images [U.S04]. In all of these situations, the data is highly compressed to reduce
storage costs. At the same time, extensive post-processingis often required for adding captions,
watermarking, resizing, compositing, adjusting colors, converting formats, and so on. As such
processing logically operates on the uncompressed format,the usual practice is to decompress and
re-compress the data whenever it needs to be modified.

In order to accelerate the process of editing compressed data, researchers have identified spe-
cific transformations that can be mapped into the compresseddomain – that is, they can operate
directly on the compressed data format rather than on the uncompressed format [Cha95, Smi95,
MIP99, WSA02]. In addition to avoiding the cost of the decompression and re-compression, such
techniques greatly reduce the total volume of data processed, thereby offering large savings in both
execution time and memory footprint. However, existing techniques for operating directly on com-
pressed data are largely limited to lossy compression formats such as JPEG [SS96b, SS96a, SR96,
SS98, DA01, MM02, FJ03] and MPEG [AS98, Vas98, DRB00, NKH00, WSA02]. While these
formats are used pervasively in the distribution of image and video content, they are rarely used
during the production of such content. Instead, professional artists and filmmakers rely on lossless

107

compression formats (BMP, PNG, Apple Animation) to avoid accumulating artifacts during the
editing process. Given the computational intensity of professional video editing, there is a large
demand for new techniques that could accelerate operationson lossless formats.

In this chapter, we present a technique for translating stream programs to operate directly on
losslessly-compressed data. We consider compression formats that are based on LZ77, a com-
pression algorithm that is utilized by ZIP and fully encapsulates common formats such as Apple
Animation, Microsoft RLE, and Targa. The transformation ismost efficient when each element of
a stream is transformed in a uniform way (e.g., adjusting thebrightness of each pixel). However,
it also applies to cases in which multiple items are processed at once (e.g., averaging pixels) or in
which multiple streams are split or combined (e.g., compositing frames).

The key idea behind our technique can be understood in simpleterms. In LZ77, compression
is achieved by indicating that a given part of the data streamis a repeat of a previous part of the
stream. If a program is transforming each element of the stream in the same way, then any repeti-
tions in the input will necessarily be present in the output as well. Thus, while new data sequences
need to be processed as usual, any repeats of those sequencesdo not need to be transformed again.
Rather,the repetitions in the input stream can be directly copied tothe output stream, thereby
referencing the previously-computed values. This preserves the compression in the stream while
avoiding the cost of decompression, re-compression, and computing on the uncompressed data.

In this work, we extend this simple idea to encompass a broad class of programs that can
be expressed in StreamIt. We have implemented a subset of ourgeneral technique in the StreamIt
compiler. The end result is a fully-automatic system in which the user writes programs that operate
on uncompressed data, and our compiler emits an optimized program that operates directly on
compressed data. Our compiler generates plugins for two popular video editing tools (MEncoder
and Blender), allowing the optimized transformations to beused as part of a standard video editing
process.

Using a suite of 12 videos (screencasts, animations, and stock footage) in Apple Animation
format, our transformation offers a speedup roughly proportional to the compression factor. For
transformations that adjust a single video (brightness, contrast, color inversion), speedups range
from 2.5x to 471x, with a median of 17x. For transformations that combine two videos (overlays
and mattes), speedups range from 1.1x to 32x, with a median of6.6x. We believe this is the first
demonstration of compressed-domain techniques for losslessly compressed video content.

In the general case, compressed processing techniques may need to partially decompress the
input data to support the behavior of certain programs. Evenif no decompression is performed,
the output may benefit from an additional re-compression step if new redundancy is introduced
during the processing (for example, increasing image brightness can whiteout parts of the image).
This effect turns out to be minor in the case of our experiments. For pixel transformations, output
sizes are within 0.1% of input sizes and often (more than halfthe time) are within 5% of a full
re-compression. For video compositing, output files maintain a sizable compression ratio of 8.8x
(median) while full re-compression results in a ratio of 13x(median).

In the remainder of the chapter, we give an overview of LZ77 compression before describing
our technique and its compatibility with popular file formats. We then present an experimental
evaluation before closing with related work and a chapter summary.

108

 1,3! 2,4!O L A

 1,3! 2,4!O L A

 1,3! 2,4!O L A

L A

 1,3! O L ALA A

 1,3! O L ALA A

O

input stream decompress output stream

4 8 965 721 3
distance

10

L L ALA AOO OO

L

L

L ALA AL

Figure 5-1: Example of LZ77 decompression.

LZ77 Compression

Our technique supports compressed data formats that are based on LZ77. LZ77 is a lossless,
dictionary-based compression algorithm that is asymptotically optimal [WZ94]. LZ77 forms the
basis for many popular compression formats, including ZIP,GZIP and PNG, and also serves as a
generalization of simpler encodings such as Apple Animation, Microsoft RLE, and Targa.

The basic idea behind LZ77 is to utilize a sliding window of recently encoded values as the
dictionary for the compression algorithm. In the compressed data stream, there are two types of
tokens:valuesandrepeats. A value indicates a token that should be copied directly to the output
of the decoded stream. A repeat〈d, c〉 contains two parts: a distanced and a countc. It indicates
that the decoder should start at offsetd from the end of the decoded stream and copy a sequence of
c values to the output. It is important to note that the count may exceed the distance, in which case
some of the values produced by a repeat operation are also copied by that operation. For example,
a value A followed by a repeat〈1, 3〉 results in an output of “A A A”. An additional example is
given in Figure5-1.

5.2 Mapping into the Compressed Domain

Our technique allows any cyclo-static dataflow program to operate directly on LZ77-compressed
data. Rather than modifying the code within the actors, our transformation treats actors as black
boxes and wraps them in a new execution layer. The transformation attempts to preserve as much
compression as possible without ever performing an explicit re-compression step. While there exist
cases in which the output data will not be as compressed as possible, under certain conditions the
output is guaranteed to be fully compressed (relative to thecompression of the input). We quantify
this issue later.

To describe the mapping into the compressed domain, we consider each StreamIt construct in
turn. An alternate formulation of our technique, in terms ofan operational semantics, is available
in a technical report [THA07].

109

Execute a filter in the compressed domain, given that it consumesn
items and producesm items on each execution.
EXECUTE-COMPRESSED-FILTER (int n, int m) {

while true {
/* pass-uncompressed */
if inputendswithn valuesthen

executeone call to uncompressed filter

/* pass-compressed */
else if inputendswith 〈d, c〉 and d%n = 0 and c ≥ n then

replace〈d, c〉 with 〈d, c%n〉 on input
push 〈m d/n, m (c − c%n)/n〉 to output

else
let 〈d, c〉 = last repeat on input

/* coarsen-repeat */
let L = LCM(d, n)
if d < L < c then

replace〈d, c〉 with 〈c − (L − d)〉, 〈d, L− d〉 on input

/* expand */
else ifc > 0 then

decode〈d, c〉 into 〈d, c − 1〉, V on input

/* prune */
else/* c = 0 */

remove〈d, c〉 from input
}

}

Figure 5-2: Translation of filters into the compressed domain. We use% to denote a modulo
operation.

Filters

The procedure for translating a filter into the compressed domain is given in Figure5-2, and an
example appears in Figure5-4. The behavior of the compressed-domain filter can be considered in
two pieces. The first piece consists of the simple case (annotatedpass-uncompressedin the code)
in which the upcoming inputs to the filter are uncompressed values. In this case, the original filter
is called with those inputs, transformingn input items tom output items. The rest of the code deals
with repeat tokens, attempting to translate them across thefilter with the minimum decompression
needed.

Thekey idea behind our techniqueis encapsulated in thepass-compressedcase in Figure5-2.
This case specifies how to translate a repeat token directly from a filter’s input tape to a filter’s

110

x

o

o o

o

o

o

o o

o

char->char splitjoin Transpose2x5 {
split roundrobin(5,5);
add Identity<char>();
add Identity<char>();
join roundrobin(1,1);

}

o o o oo

o o o ox

(b) Example splitjoin

char->char filter HyphenatePairs {
work pop 2 push 3 {

push(‘~’);
push(pop());
push(pop());

} }

output

(a) Example filter

input

Figure 5-3: Example filter, splitter, and joiner in StreamIt. The splitter and joiner combine to form
a Transpose. Translation to the compressed domain is illustrated in Figures5-4 and5-8.

input output
Compressed-Exec
(HyphenatePairs)

 1,3! O 2,4! L A
 1,3! O 2,4!

 1,3! O
 2,2! 1,1! O

 2,2! 1,0! O O
 2,2! 1,0!

 2,2!

[pass-uncompressed]
[pass-compressed]
[coarsen-repeat]
[expand]
[pass-uncompressed]
[prune]
[pass-compressed]

(a) Normal execution (b) Compressed-domain execution

|
| L A ~
| 3,6! L A ~
| 3,6! L A ~
| 3,6! L A ~
| O O ~ 3,6! L A ~
| O O ~ 3,6! L A ~
| 3,6! O O ~ 3,6! L A ~

input Exec(HyphenatePairs) output

O O O O L A L A L A
O O O O L A L A

O O O O L A
OOOO

OO

|
| L A ~
| L A ~ L A ~
| L A ~ L A ~ L A ~
| O O ~ L A ~ L A ~ L A ~
| O O ~ O O ~ L A ~ L A ~ L A ~

Figure 5-4: Example execution of a filter in the uncompressedand compressed domains. See
Figure5-3(a) for the source filter.

output tape without invoking the filter’s computation. Thistranslation is possible whenever the
repeat distanced is a multiple of the filter’s input raten. In other words, the repeat is aligned
with the execution boundaries of the actor, so invoking the actor would produce the same results
as before. In transferring the repeat token to the output tape, two adjustments are made: 1) the
distance and count are scaled by a factor ofm/n to reflect possible differences between the output
(m) and input (n) rates of the actor, and 2) if the count is not an even multipleof the input rate, then
some leftover items (c%n, where% represents the modulo operation) are left on the input tape.

In cases where the repeat distance does not match the granularity of the actor, the distance
can sometimes be adjusted to allow compressed-domain processing. Thecoarsen-repeatlogic in
Figure5-2 represents such an adjustment. Consider that a filter inputstwo items at a time, but
encounters a long repeat with distance three and count 100. That is, the input stream contains a
regular pattern of values with periodicity three. Though consecutive executions of the filter are
aligned at different offsets in this pattern, every third filter execution (spanning six values) falls at
the same alignment. In general, a repeat with distanced can be exploited by a filter with input rate
n by expanding the distance to LCM(d, n). In order to perform this expansion, the count must be
greater than the distance, as otherwise the repeat references old data that may have no periodicity.
Also, the stream needs to be padded with LCM− d values before the coarsened repeat can begin;
this padding takes the form of a shorter repeat using the original distance.

111

A second way to adjust a repeat token for compressed-domain processing is by changing its
count rather than its distance (caseexpandin Figure5-2). This case applies if a repeat has a count
less thann, if it is unaligned with the boundaries of an actor’s execution, or if its distance is not
a multiple ofn (and cannot be coarsened appropriately). The expand logic decodes a single value
from a repeat token, thereby decreasing its count by one; therest of the repeat may become aligned
later. If the count of a repeat reaches zero, it is eliminatedin theprunecase.

Note that theexpandlogic requires partial decompression of the data stream. Inorder to per-
form this decompression, it may be necessary to maintain an auxiliary data structure–separate from
the filter’s input stream–that holds a complete window of decompressed data. This auxiliary struc-
ture is needed because the sliding-window dictionary of LZ77 makes it difficult to decode one
element without decoding others. However, even if the stream is fully decompressed in parallel
with the main computation, our technique retains many benefits because the filters still operate on
the compressed stream; the volume of data processed is reduced, and the cost of re-compression
is averted. For general algorithms such as gzip, compression can be up to 10x slower than decom-
pression [ZSdMNBY00].

Splitters

Duplicate splitters are trivial to transform to the compressed domain, as all input tokens (both
values and repeats) are copied directly to the output streams. For roundrobin splitters, the central
concern is that a repeat token can only be transferred to a given output tape if the items referenced
are also on that tape. If the items referenced by the repeat token were distributed to another tape,
then the repeat must be decompressed.

The rest of this section focuses on roundrobin splitters. Tosimplify the presentation, we con-
sider a splitter with only two output streams, distributingm1 and m2 items to each respective
stream. This case captures all of the fundamental ideas; extension to additional streams is straight-
forward. In addition, we use the following notations:

• Splitters adopt a fine-grained cyclo-static execution model, in which each execution step
transfers only one item from an input tape to an output tape. That is, a roundrobin(m1, m2)
splitter hasm1 + m2 distinct execution steps. We refer to every group ofm1 + m2 steps as
anexecution cycle.

• The pseudocode for our algorithm assumes, without loss of generality, that the next execution
step of the splitter will write to the first output stream (output1).

• We useposto denote the number of items (in terms of the uncompressed domain) that have
already been written to the current output stream (output1)in the current execution cycle.
For brevity, the pseudocode does not maintain the value ofpos, though it is straightforward
to do so.

The procedure for executing a roundrobin splitter in the compressed domain appears in Fig-
ure5-5, while an example appears in Figure5-8. As mentioned previously, a repeat token can be
transferred to an output tape so long as the items referencedalso appear on that tape. However, the
repeat may need to be fragmented (into several repeats of a lesser count), depending on the repeat
distance. There are two cases to consider.

112

Execute a roundrobin splitter in the compressed domain, given that it outputs
m1 items to output1 andm2 items to output2 on each execution cycle.
EXECUTE-COMPRESSED-SPLITTER (int m1, int m2) {

while true {
/* pass-uncompressed */
if inputendswith valuethen

transfer value from input to output1

else
let 〈d, c〉 = end of input
let offset =d%(m1 + m2)

/* pass-compressed-long */
if offset= 0 then

let (L1, L2) = SPLIT-TO-BOTH-STREAMS(c)
pop 〈d, c〉 from input
push 〈dm1/(m1 + m2), L1〉 to output1
push 〈dm2/(m1 + m2), L2〉 to output2

/* pass-compressed-short */
else ifSPLIT-TO-ONE-STREAM(d, c) > 0 then

let offset’ = if offset≤ pos then offsetelseoffset− m2

let L = SPLIT-TO-ONE-STREAM(d, c)
replace〈d, c〉 with 〈d, c − L〉 on input
push 〈m1 floor(d/(m1 + m2)) + offset’, L〉 to output1

/* expand */
else/* SPLIT-TO-ONE-STREAM(d, c) = 0 */

decode〈d, c〉 into 〈d, c − 1〉, V on input

/* prune */
if inputendswith 〈d, 0〉 then

pop 〈d, 0〉 from input
}

}

Figure 5-5: Translation of splitters into the compressed domain.

The first case, calledpass-compressed-longin Figure5-5, distributes an entire repeat token to
both output tapes without any fragmentation. This is only possible when the repeat can be cleanly
separated into two independent sequences, one offset bym1 and the next offset bym2. In other
words, the repeat distance must be a multiple ofm1 +m2. In this case, the repeat token is moved to
the output streams. The repeat distance is scaled down to match the weight of each stream, and the
count is divided according to the current position of the splitter (a simple but tedious calculation
implemented by SPLIT-TO-BOTH-STREAMS in Figure5-6).

113

Given thatc items are available on input stream of a splitter, returns the
number of items that can be written to each output stream before the
input is exhausted. Assumes that the splitter is currently writing to the
first output stream, to which pos items have previously been written in the
current execution cycle.
SPLIT-TO-BOTH-STREAMS (int c) returns (int, int) {

// the number of complete splitter cycles, and the leftover
let total_cycles= floor(c/(m1 + m2))
let total_leftover= c%(m1 + m2)

// the last partial cycle may end in three regions:
if total_leftover≤ m1 − posthen

// 1. in writing to the first output stream
L1 = total_leftover
L2 = 0

else iftotal_leftover≤ m1 − pos+ m2 then
// 2. in subsequent writing to the second output stream
L1 = m1 − pos
L2 = total_leftover− m1 − pos

else
// 3. in wrap-around writing to the first output stream
L1 = total_leftover− m2

L2 = m2

return (m1 ∗ total_cycles+ L1, m2 ∗ total_cycles+ L2)
}

Figure 5-6: The SPLIT-TO-BOTH-STREAMS function is called during compressed splitter execu-
tion. In the case where an input token can be split across bothoutput streams, it calculates the
maximum numbers of items that can be written to the outputs before the input is exhausted.

The second case, calledpass-compressed-short, is when the repeat distance is mis-aligned with
the splitter’s execution cycle, and thus the repeat (if it islong enough) eventually references items
that are distributed to a different output tape. Nonetheless, part of the repeat may be eligible
to pass through, so long as the items referenced refer to the current output tape. This judgment
is performed by SPLIT-TO-ONE-STREAM (Figure5-7) by comparing the repeat distance to the
current position in the output stream. If one or more of the repeated values are in range, the valid
segment of the repeat (of lengthactual_repeat) is moved to the output tape. As before, the repeat
distance needs to be scaled according to the weights of the splitter, and an extra offset is needed if
the repeat distance wraps around to reference the end of a previous cycle.

If neither of the above transfers apply, then the input stream needs to be partially decompressed
(according to theexpandcase) because the current repeat token references items that will be sent to
the wrong output tape. Theprunecase is also needed to clear empty repeats generated byexpand.

As future work, it would also be desirable to derive an analogof the coarsen-repeatlogic
(Figure5-2) to preserve even more compression across a splitter. The intuition is that, by increas-

114

Given a repeat token with distanced and countc that is input to a splitter,
and that is not possible to divide across both output streamsof the splitter,
returns the maximum count of a repeat token that could safelybe emitted
to the current output stream of the splitter.
SPLIT-TO-ONE-STREAM (int d, int c) returns int {

let offset= d%(m1 + m2)
if offset≤ posthen

// repeat for remainder of this execution cycle
return min(c, m1 − pos)

else ifoffset> m2 + posthen
// repeat until referenced data goes out of range
return min(c, offset− (m2 + pos))

else
// referenced data is on the other output stream
return 0

}

Figure 5-7: The SPLIT-TO-ONE-STREAM function is called during compressed splitter execu-
tion. In the case where an input token cannot be split across both output streams, it calculates the
maximum number of items that can be passed to a single output stream.

oooooxoooo

ooooo
xoooo
ooooo

xoooo
ooooo

xooo
o

oooo

xooo
oo

o

x
oooooooo

o
xoooooooo

oxoooooooo

in RR(5,5) RR(1,1) out

 1,4! o
x 1,3! o

 1,4! o x
 1,3! o

 1,4! o x 1,3!
o

 1,4! o x 1,3! o

 1,4!
x 1,3! o

o

x 1,3! o

 1,4! o

x 1,3!

 1,4! o
o

x 1,3!

 1,4!
o o

input RR(5,5) RR(1,1) output

x

 1,1!
 2,6! o o

 1,1!
x 2,6! o o

 2,1! x 2,6! o o

[pass-uncomp]

[pass-comp-short]

[pass-uncomp]

[pass-uncomp]

[pass-comp]

[pass-uncomp]

[pass-uncomp]

[pass-comp-long]

[pass-uncomp]

[pass-comp-short]

x 1,3! o

 1,4! o

fast

forward

continued

(a) Normal execution (b) Compressed-domain execution of splitter (left) and joiner (right)

prune rules

not shown

Figure 5-8: Example execution of splitters and joiners in the compressed domain. As illustrated by
the input/output pairs in Figure5-3(b), the example performs a transpose of a 2x5 matrix. When
the matrix is linearized as shown here, the input stream traverses the elements row-wise while the
output stream traverses column-wise. Due to redundancy in the matrix, this reordering can be done
largely in the compressed domain.

ing certain repeat distances, the splitter’s output tapes can become more independent (referencing
themselves rather than each other). This would enable a compressed rule to fire in place of an
expansion step.

115

Execute a roundrobin joiner in the compressed domain, giventhat it inputs
n1 items from input1 andn2 items from input2 on each execution cycle.
EXECUTE-COMPRESSED-JOINER (int n1, int n2) {

while true {
/* pass-uncompressed */
if input1endswith valuethen

transfer value from input1 to output

/* pass-compressed-long */
else if input1endswith 〈d1, c1〉 and d1%n1 = 0

and input2endswith 〈d2, c2〉 and d2%n2 = 0
and d1/n1 = d2/n2 then

let (L1, L2) = JOIN-FROM-BOTH-STREAMS(c1 , c2)
replace〈d1, c1〉 with 〈d1, c1 − L1〉 on input1
replace〈d1, c2〉 with 〈d2, c2 − L2〉 on input2
push 〈d1(n1 + n2)/n1, L1 + L2〉 to output

/* pass-compressed-short */
else/* input1 endswith〈d, c〉 andc > 0 */

let offset =if d%n1 ≤ posthen poselsed%n1 + n2

let L = Join-From-One-Stream(d, c))
replace〈d, c〉 with 〈d, c − L〉 on input1
push 〈(n1 + n2) floor(d/n1) + offset, L〉 to output

/* prune */
if input1endswith 〈d, 0〉 then

pop 〈d, 0〉 from input1
if input2endswith 〈d, 0〉 then

pop 〈d, 0〉 from input2
}

}

Figure 5-9: Translation of joiners into the compressed domain.

Joiners

The procedure for executing a joiner in the compressed domain appears in Figure5-9, while an
example appears in Figure5-8. Analogously to splitters, we consider a roundrobin joinerwith
only two input streams, collectingn1 andn2 items from each respective stream. We also use the
following notations:

• Joiners adopt a fine-grained cyclo-static execution model,in which each execution step trans-
fers only one item from an input tape to an output tape. That is, a roundrobin(n1, n2) joiner
hasn1 +n2 distinct execution steps. We refer to every group ofn1 +n2 steps as anexecution
cycle.

116

Given thatc1 and c2 compressed items are available on the first and
second input streams of a joiner, returns the number of itemsthat can be
read from each input before one of them is exhausted. Assumesthat the
joiner is currently reading from the first input stream, fromwhich pos
items have previously been consumed in the current execution cycle.
JOIN-FROM-BOTH-STREAMS (int c1, int c2) returns (int, int) {

// the number of complete joiner cycles, and the leftovers
let total_cycles= floor(c/(n1 + n2))
let leftover1 = c1 − total_cycles∗ n1

let leftover2 = c2 − total_cycles∗ n2

// the last partial cycle may end in three regions:
if leftover1 ≤ n1 − posthen

// 1. in reading from the first input stream
L1 = leftover1
L2 = 0

else if leftover2 ≤ n2 then
// 2. in subsequent reading from the second input stream
L1 = n1 − pos
L2 = leftover2

else
// 3. in wrap-around reading from the first input stream
L1 = leftover1
L2 = n2

return (n1 ∗ total_cycles+ L1, n2 ∗ total_cycles+ L2)
}

Figure 5-10: The JOIN-FROM-BOTH-STREAMS function is called during compressed joiner ex-
ecution. In the case where the input tokens to the joiner havecompatible repeat distances, it
calculates the maximum repeat lengths that can be passed to the output.

• The pseudocode in Figure5-9 assumes, without loss of generality, that the next execution
step of the joiner will read from the first input stream (input1).

• We useposto denote the number of items (in terms of the uncompressed domain) that have
already been read from the current input stream (input1) in the current execution cycle. For
brevity, the pseudocode does not maintain the value ofpos, though it is straightforward to do
so.

There are two ways to pass repeat tokens through a joiner. If the input streams contain com-
patible repeat tokens, then they can be combined into a long repeat that spans multiple execution
cycles; otherwise, a shorter repeat is extracted from only one of the streams.

The first and most powerful way to execute joiners in the compressed domain is to combine
repeat tokens from both input streams (casepass-compressed-longin Figure5-9). For this to be

117

Given a repeat token with distanced and countc on the current input
stream of a joiner, and that cannot be combined with a token onthe other
input of the joiner, returns the maximum count of a repeat token that could
safely be emitted to the output stream.
JOIN-FROM-ONE-STREAM (int d, int c) returns int {

let offset= d%n1

if offset≤ posthen
// repeat for remainder of this execution cycle
return min(c, n1 − pos)

else
// repeat until referenced data goes out of range
return min(c, offset− pos)

}

Figure 5-11: The JOIN-FROM-ONE-STREAM function is called during compressed joiner exe-
cution. In the case where the input tokens to the joiner have incompatible repeat distances, it
calculates the maximum length of the current token that may be passable to the output.

possible, both repeat distances must be the same multiple oftheir respective joiner weight (n1 or
n2); the combined token has a repeat distance that is a multipleof n1+n2. The JOIN-FROM-BOTH-
STREAMS routine (detailed in Figure5-10) calculates the maximum repeat length depending on
the current position of the joiner and the repeat lengths of the inputs.

The second mode of compressed joiner execution (pass-compressed-shortin Figure5-9) inputs
only a single repeat token, extracting the maximum length that can safely move to the output. The
JOIN-FROM-ONE-STREAM routine (detailed in Figure5-11) determines how much of the repeat
can be moved to the output before the data referenced would have originated from a different input
stream.

As in the case of splitters, further compression gains are possible by adding rules to coarsen
the repeat distance or shift the distance to align with otherstreams. We leave this for future work.

5.3 Supported File Formats

As LZ77 refers to a compression algorithm rather than a complete compression format, there are
additional factors to consider in mapping computations to real-world image and video codecs.
Some codecs are a subset of LZ77, utilizing only run-length encoding or a fixed window size;
these are supported very efficiently by our technique. Others are a superset of LZ77, incorporating
additional techniques such as delta coding or Huffman coding; these may incur additional pro-
cessing overhead. In the following sections, we describe the practical considerations involved in
targeting various compression formats with our technique.Formats are ordered by approximate
goodness of the achievable mapping.

High-Efficiency Mappings

All of the formats in this category can be considered to be subsets of LZ77.

118

1. Apple Animation. The Apple Animation codec (which forms the basis for our experimen-
tal evaluation) is supported as part of the Quicktime MOV container format. It serves as an
industry standard for exchanging computer animations and digital video content before they
are rendered to lossy formats for final distribution [Ado06, p. 106][HMG04, p. 284] [LS02,
p. 367][Pog03, p. 280].

The Animation codec represents a restricted form of LZ77 in which repeat distances are limited
to two values: a full frame or a single pixel. A repeat across frames indicates that a stretch of
pixels did not change from one frame to the next, while a repeat across pixels indicates that a
stretch of pixels has the same color within a frame.

2. Flic Video. Flic Video files (FLI/FLC) were originally produced by Autodesk Animator and
are still supported by many animation packages today. Theircompression of frame data is
almost identical to Apple Animation.

3. Microsoft RLE. Microsoft RLE compression can appear in both BMP images and AVI an-
imations. Apart from bit-depth and formatting details, itscapabilities are identical to Apple
Animation; it can perform run-length encoding within a frame, and can skip over pixels to
exploit inter-frame redundancy.

4. Targa. The Truevision Targa (TGA) format is a simple image format that is widely used to
render frame sequences in the computer animation and video industries. The format includes
an optional RLE compression stage, making it a good target for our technique.

5. PXY. The pxy format is a research-based image format designed to support efficient transpose
and rotation of black-and-white images [Sho95]. It consists of the series of(x, y) coordinates at
which the image changes color during a horizontal scan. As this information can be converted
to a run-length encoding, it can also be targeted by our technique.

Medium-Efficiency Mappings

While the formats in this category utilize an encoding that is compatible with LZ77, they incur
extra overhead because the data is reorganized prior to the compression stage.

1. Planar RGB. The Planar RGB video format is supported by Apple Quicktime files. It utilizes
run-length encoding for pixels within a frame, with partialsupport for expressing inter-frame
repeats (only the end of lines can be skipped). The red, green, and blue planes are encoded
separately in order to increase compression. For user transformations that need to process red,
green, and blue values together, this introduces additional alignment overhead when applying
our technique.

2. OpenEXR. OpenEXR is an emerging image format (backed by Industrial Light and Magic)
for use in digital film. It offers several compression options, including run-length encoding,
zip, and wavelet-based compression. However, in run-length encoding mode, the low and high
bytes of the pixels are separated and encoded as separate run-length sequences; this enables
pixels with variations in the low bytes to nonetheless benefit from compression of the high
bytes. As most user transformations would utilize the entire bit-width of the pixel, our tech-
nique suffers additional alignment overhead in processingthese files.

119

Low-Efficiency Mappings

The formats in this category are supersets of LZ77. While ourtechnique could offer some gains in
exploiting the LZ77 compression, it would have to undo any compression sitting on top of LZ77
and offers limited benefit for filters (as in PNG) applied underneath LZ77.

1. DEFLATE. DEFLATE is a general-purpose algorithm that provides all ofthe compression for
popular formats such as ZIP and GZIP. The algorithm consistsof a full LZ77 encoder followed
by Huffman coding, which resizes the symbols in the stream tomatch their usage frequencies.
In targeting ZIP or GZIP with our transformations, we would first have to undo the Huffman
coding (unless the application simply reordered data, in which case the coding could remain
intact). Though Huffman decoding is a lightweight lookup operation, it would also increase the
memory footprint. In addition, as DEFLATE’s LZ77 algorithmoperates on individual bytes,
there may be an exaggerated alignment cost if the application operates on a larger word size.

2. TSCC. The TechSmith Screen Capture Codec is very similar to Microsoft RLE, except that
the final output is further compressed using DEFLATE. Thus, any overheads incurred by our
technique on DEFLATE also extend to TSCC.

3. PNG. The PNG image format also relies on DEFLATE to compress the pixels in the image.
However, before running DEFLATE, the pixels are usually filtered with a delta encoding; each
pixel is replaced with the difference between its value and apredicted value, where the pre-
diction is a linear combination of neighboring pixels. While program segments that compute
a linear function [LTA03] could perhaps be mapped to this compressed format, our current
technique only applies if the delta encoding is turned off. Even in this scenario, there is a large
amount of overhead due to the Huffman coding in DEFLATE.

5.4 Experimental Evaluation

As an initial demonstration of the potential benefits of mapping into the compressed domain, we
implemented a core subset of our transformations as part of the StreamIt compiler. Our current
implementation supports two computational patterns: 1) transforming each individual element
of a stream (via a pop-1, push-1 filter), and 2) combining the elements of two streams (via a
roundrobin(1,1) joiner and a pop-2, push-1 filter). The program can contain any number of filters
that perform arbitrary computations, so long as the I/O rates match these patterns. While we
look forward to performing a broader implementation in future work, these two building blocks
are sufficient to express a number of useful programs and to characterize the performance of the
technique.

Our evaluation focuses on applications in digital video editing. Given StreamIt source code that
operates on pixels from each frame of a video, the StreamIt compiler maps the computation into the
compressed domain and emits executable plugins for two popular video editing tools, MEncoder
and Blender. The plugins are written for the Apple Animationformat (see Section5.3).

Our benchmarks fall into two categories: 1) pixel transformations, such as brightness, contrast,
and color inversion, which adjust pixels within a single video, and 2) video compositing, in which
one video is combined with another as an overlay or mask.

120

COMPRESSION

VIDEO DESCRIPTION SOURCE DIMENSIONS FRAMES SIZE (MB) FACTOR

screencast-demo Online demo of an authentication generator Software website 691 x 518 10621 38 404.8

screencast-ppt Powerpoint presentation screencast Self-made 691 x 518 13200 26 722.1

logo-head Animated logo of a small rotating head Digital Juice 691 x 518 10800 330 46.8

logo-globe Animated logo of a small rotating globe Digital Juice 691 x 518 10800 219 70.7

anim-scene1 Rendered indoor scene Elephant's Dream 720 x 480 1616 10 213.8

anim-scene2 Rendered outdoor scene Elephant's Dream 720 x 480 1616 65 34.2

anim-character1 Rendered toy character Elephant's Dream 720 x 480 1600 161 13.7

anim-character2 Rendered human characters Elephant's Dream 720 x 480 1600 108 20.6

digvid-background1 Full-screen background with lateral animation Digital Juice 720 x 576 300 441 1.1

digvid-background2 Full-screen background with spiral animation Digital Juice 720 x 576 300 476 1.0

digvid-matte-frame Animated matte for creating new frame overlays Digital Juice 720 x 576 300 106 4.7

digvid-matte-third Animated matte for creating new lower-third overlays Digital Juice 720 x 576 300 51 9.7

In
te

rn
e

t

V
id

e
o

C
o

m
p

u
te

r

A
n

im
a
ti

o
n

D
ig

it
a

l

T
e
le

v
is

io
n

Table 5-12: Characteristics of the video workloads.

The main results of our evaluation are:

• Operating directly on compressed data offers a speedup roughly proportional to the com-
pression factor in the resulting video.

• For pixel transformations, speedups range from 2.5x to 471x, with a median of 17x. Output
sizes are within 0.1% of input sizes and about 5% larger (median) than a full re-compression.

• For video compositing, speedups range from 1.1x to 32x, witha median of 6.6x. Output
files retain a sizable compression ratio (1.0x to 44x) and areabout 52% larger (median) than
a full re-compression.

The following sections provide more details on our video workloads, the evaluation of pixel trans-
formations, and the evaluation of video compositing.

Video Workloads

Our evaluation utilizes a suite of 12 video workloads that are described in Table5-12; some of
the videos are also pictured in Figure5-16. The suite represents three common usage scenarios for
lossless video formats: Internet screencasts, computer animation, and digital television production.
While videos in each area are often rendered to a lossy formatfor final distribution, lossless codecs
are preferred during the editing process to avoid accumulating compression artifacts. All of our
source videos are in the Apple Animation format (described in Section5.3), which is widely used
by video editing professionals [Ado06, p. 106] [HMG04, p. 284] [LS02, p. 367] [Pog03, p. 280].
The Apple Animation format is also popular for capturing video from the screen or camera, as the
encoder is relatively fast.

Our suite of videos is assembled from a variety of realistic and industry-standard sources. The
first screencast is an online demo of an authentication generator for rails [Aut]; the second is a
PowerPoint presentation (including animations), captured using Camtasia Studio. As Internet con-
tent is often watermarked with a logo or advertisement, we include two animated logos in the
“Internet video” category. These logos are taken from Digital Juice [Dig06], a standard source for
professional animations, and rendered to Apple Animation format using their software. The ani-
mated logos are rendered full-frame (with the logo in the corner) because compositing operations
in our testbed (Blender) are done on equal-sized videos.

121

The computer animation clips are derived from Elephant’s Dream, a short film with entirely
open-source content [Ele]; our videos are rendered from source using Blender. Finally, the digital
television content is also taken from a Digital Juice library [Dig06]. The backgrounds represent
high-resolution, rotating backdrops as might appear in theintroduction to a program. The mattes
are black-and-white animations that can be used to synthesize a smaller overlay (such as a frame
or a “lower third”, often used for text) from a full animated background (see Figure5-16b for an
example).

The videos exhibit a wide range of compression factors. The screencasts have very high com-
pression (∼400x-700x) because only a small part of the screen (e.g., a mouse, menu, or PowerPoint
bullet) is changing on any given frame; the Apple Animation format compresses the inter-frame
redundancy. The compression foranim-scene1 is also in excess of 200x because motion is lim-
ited to a small animated character. The animated logos are the next most compressed (∼50-70x),
influenced largely by the constant blank region outside the logo. The computer animation content
(∼10-30x compression) has a high level of detail but benefits from both inter-frame and intra-
frame redundancy, as some rendered regions have constant color. Next are the digital video mattes
(∼5-10x compression), which have fine-grained motion in some sections. Finally, the digital video
backgrounds offer almost no compression gains (1.0-1.1x) under Apple Animation, as they have
pervasive motion and detail across the entire frame.

The Apple Animation format supports various bit depths. Allof our source videos use 32 bits
per pixel, allocating a single byte for each of the red, green, blue, and alpha channels.

Pixel Transformations

The pixel transformations adjust the color of each pixel in auniform way. We evaluated three
transformations:

• Brightness adjustment, which increases each RGB value by a value of 20 (saturating at 255).

• Contrast adjustment, which moves each RGB value away from the center (128) by a factor
of 1.2 (saturating at 0 and 255).

• Color inversion, which subtracts each RGB value from 255 (useful for improving the read-
ability of screencasts or for reversing the effect of video mattes).

We implemented each transformation as a single StreamIt filter that transforms one pixel to
another. Because the filter has a pop rate of one, it does not incur any alignment overhead.

Setup The pixel transformations were compiled into plugins for MEncoder, a popular command-
line tool (bundled with MPlayer) for video decoding, encoding, and filtering. MEncoder relies
on the FFMPEG library to decode the Apple Animation format; as FFMPEG lacked an encoder
for this format, the authors implemented one. Additionally, as MEncoder lacks an interface for
toggling only brightness or contrast, the baseline configuration was implemented by the authors.

The baseline configuration performs decompression, pixel transformations, then re-compression.
Because the main video frame is updated incrementally by thedecoder, the pixel transformations
are unable to modify the frame in place (otherwise pixels present across frames would be trans-
formed multiple times). Thus, the baseline transformationwrites to a separate location in mem-
ory. The optimized configuration performs pixel transformations directly on the compressed data,

122

VIDEO Brightness Contrast Inverse Brightness Contrast Inverse Brightness Contrast Inverse

screencast-demo 137.8x 242.3x 154.7x 1.00 1.00 1.00 0.90 0.90 1.00

screencast-ppt 201.1x 470.6x 185.1x 1.00 1.00 1.00 0.75 0.74 1.00

logo-head 27.0x 29.2x 25.2x 1.00 1.00 1.00 0.87 0.86 1.00

logo-globe 35.7x 46.4x 36.6x 1.00 1.00 1.00 1.00 0.64 1.00

anim-scene1 66.4x 124.3x 58.5x 1.00 0.98 1.00 0.99 0.92 1.00

anim-scene2 19.3x 27.9x 20.5x 1.00 1.00 1.00 0.99 0.85 1.00

anim-character1 11.5x 12.2x 11.2x 1.00 1.00 1.00 0.96 0.90 1.00

anim-character2 15.6x 15.3x 14.8x 1.00 1.00 1.00 0.95 0.88 1.00

digvid-background1 4.6x 2.6x 4.6x 1.00 1.00 1.00 1.00 0.88 1.00

digvid-background2 4.1x 2.5x 4.7x 1.00 1.00 1.00 0.92 0.91 1.00

digvid-matte-frame 6.3x 5.3x 6.5x 1.00 1.00 1.00 0.98 0.64 1.00

digvid-matte-third 7.5x 6.9x 8.9x 1.00 1.00 1.00 0.83 0.35 1.00

OUPUT SIZE / INPUT SIZE

(Uncompress, Compute, Re-Compress)

In
te

rn
e

t

V
id

e
o

C
o

m
p

u
te

r

A
n

im
a
ti

o
n

D
ig

it
a

l

T
e
le

v
is

io
n

OUTPUT SIZE / INPUT SIZE

(Compute on Compressed Data)SPEEDUP

Table 5-13: Results for pixel transformations.

avoiding data expansion implied by decompression and multiple frame buffers, before copying the
data to the output file.

Our evaluation platform is a dual-processor Intel Xeon (2.2GHz) with 2 GB of RAM. As
all of our applications are single-threaded, the second processor is not utilized. For the timing
measurements, we execute each program five times and report the median user time.

Results Detailed results for the pixel transformations appear in Table 5-13. Figure5-14 illus-
trates the speedups, which range from 2.5x to 471x. As illustrated in Figure5-15, the speedups are
closely correlated with the compression factor in the original video. For the highly-compressed
screencasts andanim-scene1, speedups range from 58x to 471x. For the medium-compression
computer animations (including the animated logos), speedups range from 11x to 46x. And for the
low-compression digital television content, speedups range from 2.5x to 8.9x.

There are two distinct reasons for the speedups observed. First, by avoiding the decompression
stage, computing on compressed data reduces the volume of data that needs to be stored, manipu-
lated, and transformed. This savings is directly related tothe compression factor and is responsible
for the upwards slope of the graph in Figure5-15. Second, computing on compressed data elimi-
nates the algorithmic complexity of re-compression. For the Apple Animation format, the cost of
compressing a given frame does not increase with the compression factor (if anything, it decreases
as fewer pixels need a fine-grained encoding). Thus, the baseline devotes roughly constant runtime
to re-compressing each video, which explains the positive intercept in the graph of Figure5-15.

The impact of re-compression is especially evident in the digital television examples. Despite
a compression factor of 1.0 ondigvid-background2, our technique offers a 4.7x speedup on
color inversion. Application profiling confirms that 73% of the baseline runtime is spent in the
encoder; as this stage is absent from the optimized version,it accounts for1/(1 − 0.73) = 3.7x of
the speedup. The remaining speedup in this case is due to the extra frame buffer (and associated
memory operations) in the decompression stage of the baseline configuration.

Another important aspect of the results is the size of the output files produced. Apart from the
first frame of a video1, performing pixel transformations directly on compresseddata will never

1In the Apple Animation format, the first frame is encoded as ifthe previous frame was black. Thus, adjusting the
color of black pixels in the first frame may increase the size of the file, as it removes inter-frame redundancy.

123

0x

50x

100x

150x

200x

250x

sc
re

en
ca

st
-d

em
o

sc
re

en
ca

st
-p

pt

lo
go

-h
ea

d

lo
go

-g
lo
be

an
im

-s
ce

ne
1

an
im

-s
ce

ne
2

an
im

-c
ha

ra
ct
er

1

an
im

-c
ha

ra
ct
er

2

di
gv

id
-b

ac
kg

ro
un

d1

di
gv

id
-b

ac
kg

ro
un

d2

di
gv

id
-m

at
te

-fr
am

e

di
gv

id
-m

at
te

-th
ird

S
p

e
e
d

u
p

Brightness

Contrast

Inverse

471x

Figure 5-14: Speedup on pixel transformations.

increase the size of the file. This is illustrated in the middle columns of Table5-13, in which the
output sizes are mostly equal to the input sizes (up to 2 decimal places). The only exception is
contrast adjustment onanim-scene1, in which the output is 2% smaller than the input due to
variations in the first frame; for the same reason, some casesexperience a 0.1% increase in size
(not visisble in the table).

Though computing on compressed data has virtually no effecton the file size, there are some
cases in which the pixel transformation increases the redundancy in the video and an additional
re-compression step could compress the output even furtherthan the original input. This potential
benefit is illustrated in the last three columns of Table5-13, which track the output size of the
baseline configuration (including a re-compression stage)versus the original input. For the inverse
transformation, no additional compression is possible because inverse is a 1-to-1 transform: two
pixels have equal values in the output file if and only if they have equal values in the input file.
However, the brightness and contrast transformations may map distinct input values to the same
output value, due to the saturating arithmetic. In such cases, the re-compression stage can shrink
the file to as low as 0.75x (brightness) and 0.35x (contrast) its original size. These are extreme
cases in which many pixels are close to the saturating point;the median re-compression (across
brightness and contrast) is only 10%.

To achieve the minimal file size whenever possible, future work will explore integrating a
lightweight re-compression stage into the compressed processing technique. Because most of the
compression is already in place, it should be possible to improve the compression ratio without
running the full encoder (e.g., run-length encoded regionscan be extended without being rediscov-
ered).

124

1x

10x

100x

1000x

1x 10x 100x 1000x

Compression Factor

S
p

e
e

d
u

p

Brightness

Contrast

Inverse

Compositing

Figure 5-15: Speedup vs. compression factor for all transformations.

Video Compositing

In video compositing, two videos are combined using a specific function to derive each output pixel
from a pair of input pixels (see Figure5-16). In the case of subtitling, animated logos, and computer
graphics, an alpha-under transformation is common; it overlays one video on top of another using
the transparency information in the alpha channel. In applying an animated matte, the videos are
combined with a multiply operation, thereby masking the output according to the brightness of
the matte. For our experiments, we generated composites using each foreground/background pair
within a given application area, yielding a total of 12 composites.

In StreamIt, we implemented each compositing operation as aroundrobin(1,1) joiner (to in-
terleave the streams) followed by a filter (to combine the pixel values). The intuition of the
compressed-domain execution is that if both streams have the same kind of repeat (inter-frame
or intra-frame), then the repeat is copied directly to the output. If they have different kinds of
repeats, or if one stream is uncompressed, then both streamsare uncompressed.

Setup The compositing operations were compiled into plugins for Blender, a popular tool for
modeling, rendering, and post-processing 3-D animations.Blender has logged 1.8 million down-
loads in the last year [Ble06b] and was used in the production of Spiderman 2 [Ble06a]. Like
MEncoder, Blender relies on the FFMPEG library for video coding, so we utilize the same Apple
Animation decoder/encoder as in the pixel transformations.

As Blender already includes support for video compositing,we use its implementation as our
baseline. The compositing operations have already been hand-tuned for performance; the imple-
mentation of alpha-under includes multiple shortcuts, unrolled loops, and the following comment:
“this complex optimalisation is because the ’skybuf’ can becrossed in”. We further improved the
baseline performance by patching other parts of the Blendersource base, which were designed

125

anim-scene1 + anim-character2 = video composite

(a) Computer animation composite (alpha-under)

digvid-background1 + digvid-matte-frame = video composite

(b) Digital television composite (multiply)

Figure 5-16: Examples of video compositing operations.

around 3-D rendering and are more general than needed for video editing. We removed two re-
dundant vertical flips for each frame, two redundant BGRA-RGBA conversions, and redundant
memory allocation/deallocation for each frame.

Our optimized configuration operates in the compressed domain. Outside of the auto-generated
plugin, we patched three frame-copy operations in the Blender source code to copy only the com-
pressed frame data rather than the full frame dimensions.

Results Full results for the compositing operations appear in Table5-17. Figure5-18illustrates
the speedups, which range from 1.1x to 32x. As in the case of the pixel transformations, the
speedups are closely correlated with the compression factor of the resulting videos, a relationship
depicted in Figure5-15. The highly-compressed screencasts enjoy the largest speedups (20x-32x),
the computer animations have intermediate speedups (5x-9x), while the digital television content
has negligible speedups (1.1x-1.4x). Overall, the speedups on video compositing (median = 6.6x)
are lower than the pixel transformations (median = 17x); this is because the compression achieved
on composite videos is roughly proportional to the minimum compression across the two input
files.

As for the pixel transformations, the composite videos produced by the compressed process-
ing technique would sometimes benefit from an additional re-compression stage. The last three
columns in Table5-17 quantify this benefit by comparing the compression factors achieved by
compressed processing and normal processing (including a re-compression step). For screencasts

126

VIDEO COMPOSITE EFFECT SPEEDUP

screencast-demo + logo-head alpha-under 20.46x 34 52 1.55

screencast-demo + logo-globe alpha-under 27.96x 44 61 1.39

screencast-ppt + logo-head alpha-under 22.99x 39 54 1.38

screencast-ppt + logo-globe alpha-under 31.88x 55 64 1.18

anim-scene1 + anim-character1 alpha-under 6.72x 7.7 12 1.57

anim-scene1 + anim-character2 alpha-under 9.35x 14 19 1.39

anim-scene2 + anim-character1 alpha-under 4.96x 6.4 10 1.49

anim-scene2 + anim-character2 alpha-under 6.45x 10 13 1.32

digvid-background1 + digvid-matte-frame mul 1.23x 1.0 2.2 2.28

digvid-background2 + digvid-matte-third mul 1.13x 1.0 5.6 5.42

digvid-background2 + digvid-matte-frame mul 1.38x 1.0 1.8 1.84

digvid-background2 + digvid-matte-third mul 1.16x 1.0 4.8 4.91

C
o

m
p

u
te

r

A
n

im
a
ti

o
n

D
ig

it
a
l

T
e
le

v
is

io
n

Compute on

Compressed

Data

Uncompress,

Compute,

Re-Compress Ratio

COMPRESSION FACTOR

In
te

rn
e
t

V
id

e
o

Table 5-17: Results for composite transformations.

0x

5x

10x

15x

20x

25x

30x

35x

sc
re

en
ca

st
-d

em
o

+
lo
go

-h
ea

d

sc
re

en
ca

st
-d

em
o

+
lo
go

-g
lo
be

sc
re

en
ca

st
-p

pt
 +

 lo
go

-h
ea

d

sc
re

en
ca

st
-p

pt
 +

 lo
go

-g
lo
be

an
im

-s
ce

ne
1

+
an

im
-c

ha
ra

ct
er

1

an
im

-s
ce

ne
1

+
an

im
-c

ha
ra

ct
er

2

an
im

-s
ce

ne
2

+
an

im
-c

ha
ra

ct
er

1

an
im

-s
ce

ne
2

+
an

im
-c

ha
ra

ct
er

2

di
gv

id
-b

ac
kg

ro
un

d1
 +

 d
ig
vi
d-

m
at

te
-fr

am
e

di
gv

id
-b

ac
kg

ro
un

d2
 +

 d
ig
vi
d-

m
at

te
-th

ird

di
gv

id
-b

ac
kg

ro
un

d2
 +

 d
ig
vi
d-

m
at

te
-fr

am
e

di
gv

id
-b

ac
kg

ro
un

d2
 +

 d
ig
vi
d-

m
at

te
-th

ird

S
p

e
e
d

u
p

Compositing

Figure 5-18: Speedup on composite transformations.

and computer animations, compressed processing preservesa sizable compression factor (7.7x-
44x), though the full re-compression can further reduce filesizes by 1.2x to 1.6x. For digital
television, the matting operations introduce a large amount of redundancy (black regions), thereby
enabling the re-compression stage to shrink the file by 1.8x to 5.4x over the compressed processing
technique.

127

Even if a composite transformation does not introduce any new redundancy in the video, the
compressed processing technique may increase file sizes by ignoring a specific kind of redundancy
in the inputs. Suppose that in the first frame, both inputs are100% black, while in the second
frame, one input is 100% black and the other is 100% white. If the inputs are averaged, the second
frame of output will be 100% gray and can be run-length encoded within the frame. However,
because the inputs have different kinds of redundancy on thesecond frame (one is inter-frame, the
other is intra-frame), the technique is unable to detect theintra-frame redundancy in the output
and will instead produce N distinct pixels (all of them gray). We believe that this effect is small in
practice, though we have yet to quantify its impact in relation to the new redundancy introduced by
a transformation. Future work will explore alternate data structures for the compressed processing
technique that may be able to preserve this redundancy with low overhead.

5.5 Related Work

Several other researchers have pursued the idea of operating directly on compressed data formats.
The novelty of our work is two-fold: first, in its focus on lossless compression formats, and second,
in its ability to map a flexible stream program, rather than a single predefined operation, into the
compressed domain.

Most of the previous work on mapping algorithms into the compressed domain has focused on
formats such as JPEG that utilize a Discrete Cosine Transform (DCT) to achieve spatial compres-
sion [SS96b, SS96a, SR96, AS98, SS98, Vas98, NKH00, DRB00, DA01, MM02, FJ03]. This task
requires a different analysis, with particular attention given to details such as the blocked decompo-
sition of the image, quantization of DCT coefficients, zig-zag ordering, and so-on. Because there
is also a run-length encoding stage in JPEG, our current technique might find some application
there; however, it appears that techniques designed for JPEG have limited application to formats
such as LZ77.

There has been some interest in performing compressed processing on lossless encodings
of black-and-white images. Shoji presents the pxy format for performing transpose and other
affine operations [Sho95]; the memory behavior of the technique was later improved byMisra et
al. [MAC99]. The pxy format lists the(x, y) coordinate pairs at which a black-and-white image
changes color during a horizontal scan. As illustrated in Figure5-8, our technique can also preserve
a certain amount of compression during a transpose, though we may achieve lesser compression
than the pxy format due to our one-dimensional view of the data.

Researchers have also considered the problem of pattern matching on compressed text. A
randomized algorithm has been developed for LZ77 [FT98] while deterministic strategies exist for
LZ78 and LZW [Nav03, NT05]. These solutions are specialized to searching text; they do not
apply to our transformations, and our technique does not apply to theirs.

In the realm of programming languages, Swartz and Smith present RIVL, a Resolution Inde-
pendent Video Language [SS95]. The language is used to describe a sequence of image transfor-
mations; this allows the compiler to analyze the sequence and, via lazy evaluation, to eliminate any
operations that do not effect the final output. Such a technique is complementary to ours and could
also be implemented using StreamIt as the source language.

128

5.6 Future Work

There remain rich areas for future work in computing on compressed data. First, the compressed
processing technique can be applied far beyond the current focus. In its current form, the tech-
nique could be evaluated on video operations such as thresholding, color depth reduction, sepia
toning, saturation adjustment, and color replacement. With minor extensions, the technique can
support video operations such as cropping, padding, histograms, image flipping, sharpening, and
blurring. The technique may also have applications in an embedded setting, where it could offer
power savings – for example, in processing the RAW data format within digital cameras. It may
even be possible to do sparse matrix operations using the technique; in addition to compressing
the locations of the zero elements, LZ77 would also compressrepetitive patterns in the non-zero
elements.

Research is also underway to apply a similar technique to lossy, DCT-based compression for-
mats. Because these formats represent a linear encoding, they are subject to the linear optimizations
described in the previous chapter. That is, a JPEG transcoder typically performs an iDCT (during
decompression), followed by the user’s transformation, followed by a DCT (during compression).
If the user’s transformation is also linear (e.g., color inversion) then all three stages can be auto-
matically collapsed, thereby eliminating the decompression and re-compression steps. Preliminary
experiments in this direction indicate speedups upwards of10x. Additional research will be needed
to support piecewise linear transformations, such as brightness adjustment with saturation at the
maximum brightness level. By extending the framework to multiple compression formats, users
will be able to write their transformations once, in a high-level language, and rely on the compiler
to map the computations to each of the compressed domains.

While we formulated our transformation in terms of a streaming model, the techniques can
be applied within other functional and general-purpose languages so long as the right information
is available and certain constraints are satisfied. The transformation relies on a regular pattern of
data access; we use a streaming abstraction, but structurediteration over arrays could also suffice.
We rely on static data rates in actors, which could also be expressed as functions with a fixed
number of arguments and return values. Actors (functions) must be pure, without side effects
or unresolvable dependences on potentially mutable data. While these properties are intrinsic to
a language such as StreamIt, they also come naturally in mostfunctional languages and may be
adaptable to general-purpose languages in the form of a runtime library with a restricted API.

5.7 Chapter Summary

In order to accelerate operations on compressible data, this chapter presents a general technique for
translating stream programs into the compressed domain. Given a natural program that operates
on uncompressed data, our transformation outputs a programthat directly operates on the com-
pressed data format. We support lossless compression formats based on LZ77. In the general case,
the transformed program may need to partially decompress the data to perform the computation,
though this decompression is minimized throughout the process and significant compression ratios
are preserved without resorting to an explicit re-compression step.

We implemented some of our transformations in the StreamIt compiler and demonstrated ex-
cellent speedups. Across a suite of 12 videos in Apple Animation format, computing directly on

129

compressed data offers a speedup roughly proportional to the compression ratio. For pixel trans-
formations (brightness, contrast, inverse) speedups range from 2.5x to 471x, with a median of
17x; for video compositing operations (overlays and mattes) speedups range from 1.1x to 32x,
with a median of 6.6x. While previous researchers have used special-purpose compressed process-
ing techniques to obtain speedups on lossy, DCT-based codecs, we are unaware of a comparable
demonstration for lossless video compression. As digital films and animated features have em-
braced lossless formats for the editing process, the speedups obtained may have practical value.

130

Chapter 6

Migrating Legacy C Programs to a
Streaming Representation

This chapter stands independently of the StreamIt project.Rather than starting with a stream pro-
gramming language, we consider the problem of starting witha legacy C application and migrating
the code to a streaming representation. To address this problem, we equip the programmer with a
simple set of annotations (indicating possible filter boundaries) and a dynamic analysis that tracks
all communication across those boundaries. Our analysis outputs a stream graph of the application
as well as a set of macros for (unsoundly) parallelizing the program and communicating the data
needed.

Our analysis is unsound because it is based on a fixed set of dynamic traces, rather than a
conservative static analysis. However, we argue that this unsoundness enables us to provide pro-
grammers with more information, that is ultimately more useful, than can be expected from a static
analysis. We apply our methodology to six case studies, including MPEG-2 decoding, MP3 de-
coding, GMTI radar processing, and three SPEC benchmarks. Our analysis extracts a useful block
diagram for each application, facilitating a translation to StreamIt and other stream languages.
In addition, the parallelized versions run correctly (given appropriate training inputs) and offer a
2.78x mean speedup on a 4-core machine.

6.1 Introduction

While adopting a stream programming model is an attractive approach for improving the perfor-
mance of future applications, one of the drawbacks of relying on a new programming model is that
it does not immediately address the vast quantities of legacy code that have already been written
in other languages. There are 310 billion lines of legacy code in industry today, and 75-80% of
the typical IT budget is spent maintaining legacy systems [HH06]. While much of this code is
amenable to streaming, the process of migrating the code to astreaming representation is an ardu-
ous and time-consuming process. The most important resources that could help with the transla-
tion – such as the original author of the code, or the high-level design documents that guided its
implementation – are often unavailable. Thus, a fresh programmer is left with the daunting task of
obtaining an in-depth understanding of all the program modules, the dependences between them,
and the possibilities for safely extracting parallelism.

While there have been many efforts to automatically parallelize legacy codes, few of them have

131

focused on the pipeline parallelism that is characteristicof the streaming domain. It is even difficult
to express pipeline parallelism in a traditional programming model. This is in stark contrast to task
parallelism, which is naturally supported by threads, as well as data parallelism, which is supported
by dialects such as OpenMP. The only efforts to exploit pipeline parallelism in C programs have
been very fine-grained, partitioning individual instructions across processing cores [ORSA05].
Such fine-grained communication is inefficient on commoditymachines and demands new hard-
ware support [RVVA04, ORSA05]. While a coarse-grained partitioning is more desirable, it is
difficult to achieve at compile time due to the obscured data dependences in C; constructs such as
pointer arithmetic, function pointers, and circular buffers (with modulo operations) make it nearly
impossible to extract coarse-grained parallelism from realistic C programs.

In this chapter, we overcome the traditional barriers in exploiting coarse-grained pipeline par-
allelism by embracing anunsoundprogram transformation. Our key insight is that, for stream
programs, the data communicated across pipeline-parallelstages is stable throughout the lifetime
of the program. No matter how obfuscated the C implementation appears, the heart of the algo-
rithm is following a regular communication pattern. For this reason, it is unnecessary to undertake
a heroic static analysis; we need only observe the communication pattern at the beginning of ex-
ecution, and then “safely” infer that it will remain constant throughout the rest of execution (and
perhaps other executions).

As depicted in Figure6-1, our analysis does exactly that. We allow the programmer to naturally
specify the boundaries of pipeline partitions, and then we record all communication across those
boundaries during a training run. The communication trace is emitted as a stream graph that reflects
the high-level structure of the algorithm (aiding a possible translation to StreamIt), as well as a list
of producer/consumer statements that can be used to trace down problematic dependences. The
programmer never needs to worry about providing a “correct”partitioning; if there is no parallelism
between the suggested partitions, it will result in cycles in the stream graph. If the programmer
is satisfied with the parallelism in the graph, he recompilesthe annotated program against a set of
macros that are emitted by our analysis tool. These macros serve to fork each partition into its own
process and to communicate the recorded locations using pipes between processes.

Though our transformation is grossly unsound, we argue thatit is quite practical within the
domain of streaming applications. Because pipeline parallelism is deterministic, any incorrect
transformations incurred by our technique can be identifiedvia traditional testing methods, and
failed tests can be fixed by adding the corresponding input toour training set. Further, the com-
munication trace provided by our analysis is useful in aiding manual parallelization of the code –
a process which, after all, is only sound insofar as the programmer’s understanding of the system.
By improving the programmer’s understanding, we are also improving the soundness of the current
best-practice for parallelizing legacy C applications.

We have applied our methodology to six case studies: MPEG-2 decoding, MP3 decoding,
GMTI radar processing, and three SPEC benchmarks. Our tool was effective at parallelizing the
programs, providing a mean speedup of 2.78x on a four-core architecture. Despite the potential
unsoundness of the tool, our transformations correctly decoded ten popular videos from YouTube,
ten audio tracks from MP3.com, and the complete test inputs for GMTI and SPEC benchmarks.
At the same time, we did identify specific combinations of training and testing data (for MP3) that
lead to erroneous results. Thus, it is important to maximizethe coverage of the training set and to
apply the technique in concert with a rigorous testing framework.

The remainder of this chapter is organized as follows. In Section 6.2, we show that stream

132

for (i=0; i<N; i++) {

BEGIN_PIPELINED_LOOP();

… // stage 1

PIPELINE();

… // stage 2

PIPELINE();

… // stage 3

END_PIPELINED_LOOP();

}

for (i=0; i<N; i++) {

… // stage 1

… // stage 2

… // stage 3

}

Annotated ProgramOriginal program

Insert
Pipeline

Annotations

Run
Dynamic
Analysis

Move annotations
Eliminate cyclic dependences

No

Recompile annotated program
against communication macros

stage 1

stage 2

stage 3

Stream Graph Producer / Consumer Trace

Producer Statement Consumer Statement

doStage1(), line 55 doStage2(), line 23

doStage1(), line 58 doStage3(), line 40

doStage2(), line 75 doStage3(), line 30

doStage2(), line 75 doStage3(), line 35

Parallel Program (Simplified)

for (i=0; i<N; i++) {

if (i==0) { … // fork into 3 processes, establish pipes }

if (process_id == 1) {

… // stage 1

write(pipe_1_2, &result1, 4); write(pipe_1_3, &result3, 4);

} else if (process_id == 2) {

read(pipe_1_2, &result1, 4);

… // stage 2

write(pipe_2_3, &result2, 4);

} else if (process_id == 3) {

read(pipe_2_3, &result2, 4); read(pipe_1_3, &result3, 4);

… // stage 3

}

if (i==N-1) { … // terminate processes, collect data }

}

#define BEGIN_PIPELINED_LOOP() // fork processes, establish pipes

#define PIPELINE() // send/receive all variables used in given partition

#define END_PIPELINED_LOOP() // terminate processes, collect data

Communication Macros

Yes

Satisfied with
Parallelism?

Send and receive

pre-recorded

variables via pipes

Figure 6-1: Overview of our approach.

programs have a stable communication pattern. Communication observed at the start of execu-
tion is often preserved throughout the program lifetime, aswell as other executions. Section6.3
describes our dynamic analysis tool and programmer methodology to iteratively extract stream
parallelism from C programs. Section6.4describes the implementation of the tool using the Val-
grind infrastructure. Section6.5 is devoted to our case studies, including performance results and
the experience gained during parallelization. The remaining sections present related work, future
work, and a chapter summary.

6.2 Stability of Stream Programs

A dynamic analysis is most useful when the observed behavioris likely to continue, both through-
out the remainder of the current execution as well as other executions (with other inputs). Our

133

hypothesis is that stream programs exhibit very stable flowsof data, enhancing the reliability of
dynamic analyses toward the point where they can be trusted to validate otherwise-unsafe program
transformations. For the purpose of our analysis, we consider a program to bestableif there is a
predictable set of memory dependences between pipeline stages. The boundaries between stages
are specified by the programmer using a simple set of annotations; the boundaries used for the
experiments in this section are illustrated by the stream graphs that appear later (Figure6-10).

Stability Within a Single Execution

Our first experiment explores the stability of memory dependences within a single program exe-
cution. We profiled MPEG-2 and MP3 decoding using the most popular content from YouTube1

and MP3.com; results appear in Figures6-2 and6-3. These graphs plot the cumulative number of
unique addresses that are passed between program partitions as execution proceeds. The figures
show that after a few frames, the program has already performed a communication for most of the
addresses it will ever send between pipeline stages.

In the case of MPEG-2, all of the address traces remain constant after 50 frames, and 8 out of
10 traces remain constant after 20 frames. The videos converge at different rates in the beginning
due to varying parameters and frame types; for example, video 10 contains an intra-coded frame
where all other videos have a predictive-coded frame, thereby delaying the use of predictive buffers
in video 10. Video 1 communicates more addresses than the others because it has a larger frame
size.

MP3 exhibits a similar stability property, though convergence is slower for some audio tracks.
While half of the tracks exhibit their complete communication pattern in the first 35 frames, the
remaining tracks exhibit a variable delay (up to 420 frames)in making the final jump to the com-
mon communication envelope. These jumps correspond to elements of two parameter structures
which are toggled only upon encountering certain frame types. Track 10 is an outlier because it
starts with a few layer-1 frames, thus delaying the primary (layer-3) communication and resulting
in a higher overall communication footprint. The only otherfile to contain layer-1 frames is track
9, resulting in a small address jump at iteration 17,900 (notillustrated).

It is important to note that there does exist a dynamic component to these applications; however,
the dynamism is contained within a single pipeline stage. For example, in MP3, there is a Huff-
man decoding step that relies on a dynamically-allocated lookup tree. Throughout the program,
the shape of the tree grows and shrinks and is manipulated on the heap. Using a static analysis, it
is difficult to contain the effects of such dynamic data structures; a conservative pointer or shape
analysis may conclude that the dynamism extends throughoutthe entire program. However, us-
ing a dynamic analysis, we are able to observe the actual flow of data, ignoring the intra-node
communication and extracting the regular patterns that exist between partitions.

Stability Across Different Executions

The communication patterns observed while decoding one input file can often extend to other
inputs as well. Figures6-4 and6-5 illustrate the minimum number iterations (i.e., frames) that
need to be profiled from one file in order to enable correct parallel decoding of the other files. In

1YouTube videos were converted from Flash to MPEG-2 using ffmpeg and vixy.net.

134

0

250000

500000

750000

1000000

1 10 100

Iteration

U
n

iq
u

e
 A

d
d

re
s
s
e
s

S
e
n

t
B

e
tw

e
e
n

 P
a
rt

it
io

n
s

1.m2v 6.m2v

2.m2v 7.m2v

3.m2v 8.m2v

4.m2v 9.m2v

5.m2v 10.m2v

10.m2v

1.m2v

MPEG-2

Figure 6-2: Stability of streaming communi-
cation patterns for MPEG-2 decoding. The
decoder was monitored while processing the
top 10 short videos from YouTube. See Fig-
ure6-10a for a stream graph of the application.

0

10000

20000

30000

1 10 100 1000

Iteration

U
n

iq
u

e
 A

d
d

re
s
s
e
s

S
e
n

t
B

e
tw

e
e
n

 P
a
rt

it
io

n
s

1.mp3 6.mp3

2.mp3 7.mp3

3.mp3 8.mp3

4.mp3 9.mp3

5.mp3 10.mp3

10.mp3

MP3

Figure 6-3: Stability of streaming communi-
cation patterns for MP3 decoding. The de-
coder was monitored while processing the top
10 tracks from MP3.com. See Figure6-10b
for a stream graph of the application.

1.m2v 2.m2v 3.m2v 4.m2v 5.m2v 6.m2v 7.m2v 8.m2v 9.m2v 10.m2v

1.m2v 3 3 3 3 3 3 3 3 3 3

2.m2v 3 3 3 3 3 3 3 3 3 3

3.m2v 5 5 5 5 5 5 5 5 5 5

4.m2v 3 3 3 3 3 3 3 3 3 3

5.m2v 3 3 3 3 3 3 3 3 3 3

6.m2v 3 3 3 3 3 3 3 3 3 3

7.m2v 3 3 3 3 3 3 3 3 3 3

8.m2v 3 3 3 3 3 3 3 3 3 3

9.m2v 3 3 3 3 3 3 3 3 3 3

10.m2v 4 4 4 4 4 4 4 4 4 4

Testing File
MPEG-2

Figure 6-4: Minimum number of training iter-
ations (frames) needed on each video in order
to correctly decode the other videos.

1.mp3 2.mp3 3.mp3 4.mp3 5.mp3 6.mp3 7.mp3 8.mp3 9.mp3 10.mp3

1.mp3 1 1 1 1 1 1 1 1 — —

2.mp3 1 1 1 1 1 1 1 1 — —

3.mp3 1 1 1 1 1 1 1 1 — —

4.mp3 1 1 1 1 1 1 1 1 — —

5.mp3 1 1 1 1 1 1 1 1 — —

6.mp3 1 1 1 1 1 1 1 1 — —

7.mp3 1 1 1 1 1 1 1 1 — —

8.mp3 1 1 1 1 1 1 1 1 — —

9.mp3 1 1 1 1 1 1 1 1 17900 —

10.mp3 5 5 5 5 5 5 5 5 5 5

Testing File
MP3

Figure 6-5: Minimum number of training iter-
ations (frames) needed on each track in order
to correctly decode the other tracks.

most cases, a training set of five loop iterations is sufficient to infer an address trace that correctly
decodes the other inputs in their entirety. The exceptions are tracks 9 and 10 of MP3 decoding,
which are the only two files containing layer-1 frames; because they execute code that is never
reached by the other files, training on the other files is insufficient to expose the full communication
trace. In addition, track 9 is insufficient training for track 10, as the latter contains an early CRC
error that triggers a unique recovery procedure. As each of these hazards is caused by executing
code that is untouched by the training set, the runtime system could easily detect such cases (using
guards around untrained code) and revert to a sequential execution for the iterations in question.
Rigorous testing practices that incorporate code coveragemetrics would also help to reduce the
risk of encountering unfamiliar code at runtime.

The ability to generalize short training runs across multiple executions relies on two aspects of
our methodology. First, as described later, we require the user to supply a symbolic size for each
dynamically-allocated variable; this allows MPEG-2 address traces to apply across different frame

135

sizes. Second, we coarsen the granularity of the trace to treat structure types and dynamically-
allocated segments as atomic units. That is, whenever a single element of such a structure is
communicated between partitions, the rest of the structureis communicated as well (so long as
it does not conflict with a local change in the target partition). Such coarsening increases the
tolerance to small element-wise changes as observed in later iterations of MPEG-2 and MP3.
However, it does not trivialize the overall result, as coarsening is only needed for a small fraction
of communicated addresses (15% for MP3 and dependent on frame size for MPEG-2).

While we have focused on MPEG-2 and MP3 in this section, we observe similar stability across
our other benchmarks (GMTI, bzip2, parser, and hmmer). As described in Section6.5, we profile
five iterations of a training file and (with minimal programmer intervention) apply the trace to
correctly execute a test file.

6.3 Migration Methodology

We introduce a dynamic analysis tool that empowers the programmer in migrating legacy C ap-
plications to a streaming representation. Using this tool,the programmer follows the workflow
illustrated in Figure6-1. The first step is to identify the main loop in the application, which is
typically iterating over frames, packets, or another long-running data source. The programmer
annotates the start and end of this loop, as well as the boundaries between the desired pipeline-
parallel partitions. The tool reports the percentage of execution time spent in each pipeline stage
in order to help guide the placement of pipeline boundaries.

In our current implementation, there are some restrictionson the placement of the partition
boundaries. All boundaries must appear within the loop bodyitself, rather than within a nested
loop, within nested control flow, or as part of another function (this is an artifact of using macros
to implement the parallelism). The programmer may work around these restrictions by performing
loop distribution or function inlining. Also, though bothfor loops andwhile loops are supported,
there cannot be anybreak or continue statements within the loop; such statements implicitly
alter the control flow in all of the partitions, an effect thatis difficult to trace in our dynamic
analysis. If such statements appear in the original code, the programmer needs to convert them to
a series ofif statements, which our tool will properly handle.

Once a loop has been annotated with partition boundaries, the programmer selects a set of
training inputs and runs our dynamic analysis to trace the communication pattern. The tool outputs
a stream graph, a list of producer/consumer statements, anda set of communication macros for
automatically running the code in parallel.

An example stream graph for GMTI radar processing appears inFigure6-6. The graph ex-
tracted by our tool is very similar to the block diagram from the GMTI specification, which appears
in Figure6-7. Our graph contains some additional edges that are not depicted in the specification;
these represent communication of minor flags rather than thesteady-state dataflow. Edges flow-
ing from a node back unto itself (e.g., in Setup, Beamformer,and Tracker) indicate mutable state
that is retained across iterations of the main loop. Nodes without such dependences are stateless
with respect to the main loop, and the programmer may choose to execute them in a data-parallel
manner (see below). Overall, the tight correspondence between our extracted stream graph and
the original specification demonstrates that the tool can effectively capture the underlying commu-
nication patterns, assisting the programmer in understanding the opportunities and constraints for
parallelization.

136

Setup
(2%)

Time Delay Equalization (FFT)
(26%)

32,768

Time Delay Equalization (IFFT)
(26%)

8

Detect / estimate
(2%)

8

Tracker
(5%)

4

32,768

Beamformer
(5%)

1,382,400

801 24

4,768

Pulse compression
(4%)

1,036,800

Space-Time Adaptive Processing
(12%)

4,768

Doppler
(18%)

1,108,224

1,048,288

2,170,272

2,170,272

Figure 6-6: Stream graph for GMTI, as extracted using our tool. Nodes are annotated with their
computation requirements, and edges are labeled with the number of bytes transferred per steady-
state iteration.

Time

Delay &

Equaliz’n

... ...

Compute

Beamform

Weights

Pulse

Com-

pression

...
Doppler

Filter
...

STAP ...
Target

Detection

Adaptive

Figure courtesy of J. Lebak, R.

Haney, A. Reuther, & J. Klepner,

MIT Lincoln Laboratories

Beamform

Target

Parameter

Estimation

Compute

STAP

Weights

... ...

1 2a

2b

3 4

5a

5b

6
7

Figure 6-7: Stream graph for GMTI, as it appears in the GMTI specification [Reu03].

137

{)++i ;N<i ;0=i(rof

;)(POOL_DENILEPIP_NIGEB

1 egats //…

;)W(ENILEPIP

2 egats //…

;)(ENILEPIP

3 egats //…

;)(POOL_DENILEPIP_DNE

}

1 egats

3 egats

2 egats 1 2 egats W

Figure 6-8: Programmers can specify data parallelism by passing an extra argument to the pipeline
annotation. In this case, the runtime system executes W parallel copies of stage 2.

Many nodes in a streaming application are suitable to data parallelism, in which multiple loop
iterations are processed in parallel by separate instancesof the node. Such nodes are immediately
visible in the stream graph, as they lack a carried dependence2 (i.e., a self-directed edge). Our tool
offers natural support for exploiting data parallelism: the user simply provides an extra argument to
thePIPELINE annotation, specifying the number of ways that the following stage should be repli-
cated (see Figure6-8). While this annotation does not affect the profiler output,it is incorporated
by the runtime system to implement the intended parallelism.

Depending on the parallelism evident in the stream graph, itmay be desirable to iterate the par-
allelization process by adjusting the pipeline partitionsas well as the program itself. The partitions
can execute in a pipeline-parallel manner so long as there are no cyclic dependences between them.
If there are any strongly connected components in the streamgraph, they will execute sequentially;
the programmer can reduce the overhead by collapsing such partitions into one. Alternately, the
programmer may be able to verify that certain dependences can safely be ignored, in which case
our analysis tool will filter them out of future reports. For example, successive calls to malloc result
in a data dependence that was originally reported by our tool; however, this dependence (which
stems from an update of a memory allocation map) does not prohibit parallelism because the calls
can safely execute in any order. Additional examples of non-binding dependences include legacy
debugging information such as timers, counters, etc. that are not observable in the program output.
Sometimes, dependences can also be removed by eliminating the reuse of certain storage locations
(see Section6.5for details).

Once the programmer is satisfied with the parallelism in the stream graph, the code can auto-
matically be executed in a pipeline-parallel fashion usingthe communication macros emitted by
the tool. In most cases, the macros communicate items from one partition to another using the cor-
responding variable name (and potential offset, in the caseof arrays) from the program. However,
a current limitation is in the case of dynamically-allocated data, where we have yet to automate
the discovery of variable name given the absolute addressesthat are communicated dynamically.
Thus, if the tool detects any communication of dynamically-allocated data, it alerts the user and
indicates the line of the program that is performing the communication. The user needs to supply a
symbolic expression for the name and size of the allocated region. Only two of our six benchmarks
(MPEG-2 and bzip2) communicate dynamically-allocated data across partition boundaries.

2In some cases, nodes with carried dependences on an outer loop can still be data-parallelized on an inner loop.
We perform such a transformation in MP3, though it is not fully automatic.

138

6.4 Implementation

Dynamic Analysis Tool

Our tool is built on top of Valgrind, a robust framework for dynamic binary instrumentation [NS07].
Our analysis interprets every instruction of the program and (by tracing the line number in the an-
notated loop) recognizes which partition it belongs to. Theanalysis maintains a table that indicates,
for each memory location, the identity of the partition (if any) that last wrote to that location. On
encountering a store instruction, the analysis records which partition is writing to the location.
Likewise, on every load instruction, the analysis does a table lookup to determine the partition
that produced the value being consumed by the load. Every unique producer-consumer relation-
ship is recorded in a list that is output at the end of the program, along with the stream graph and
communication macros.

There are some interesting consequences of tracking dependence information in terms of load
and store instructions. In order to track the flow of data through local variables, we disable reg-
ister allocation and other optimizations when preparing the application for profiling. However, as
we do not model the dataflow through the registers, the tool isunable to detect cases in which
loaded values are never used (and thus no dependence exists). This pattern often occurs for short
or unaligned datatypes; even writes to such variables can involve loads of neighboring bytes, as
the entire word is loaded for modification in the registers. Our tool filters out such dependences
when they occur in parallel stack frames, i.e., a spurious dependence between local variables of
two neighboring function calls. Future work could further improve the precision of our reported
dependences by also tracking dependences through registers (in the style of Redux [NM03]).

As the dynamic analysis traces communication in terms of absolute memory locations, some
engineering was required to translate these addresses to variable names in the generated macros.
(While absolute addresses could also be used in the macros, they would not be robust to changes
in stack layout or in the face of re-compilation.) We accomplish this mapping using a set of gdb
scripts3, which provide the absolute location of every global variable as well as the relative location
of every local variable (we insert a known local variable andprint its location as a reference point).
In generating the communication code, we express every address as an offset from the first variable
allocated at or below the given location. In the case of dynamically-allocated data, the mapping
from memory location to variable name is not yet automated and requires programmer assistance
(as described in the previous section).

Parallel Runtime System

The primary challenge in implementing pipeline parallelism is the need to buffer data between
execution stages. In the sequential version of the program,a given producer and consumer takes
turns in accessing the shared variables used for communication. However, in the parallel version,
the producer is writing a given output while the producer is still reading the previous one. This
demands that the producer and consumer each have a private copy of the communicated data, so
that they can progress independently on different iterations of the original loop. Such a transfor-
mation is commonly referred to as “double-buffering”, though we may wish to buffer more than
two copies to reduce the synchronization between pipeline stages.

3Our scripts rely on having compiled with debug information.

139

Benchmark Description Source Lines of Code

MPEG-2 MPEG-2 video decoder MediaBench [LPMS97] 10,000
MP3 MP3 audio decoder Fraunhofer IIS [Fra03b] 5,000
GMTI Ground Moving Target Indicator MIT Lincoln Laboratory [Reu03] 37,000
197.parser Grammatical parser of English language SPECINT 2000 11,000
256.bzip2 bzip2 compression and decompression SPECINT 2000 5,000
456.hmmer Calibrating HMMs for biosequence analysisSPECCPU 2006 36,000

Table 6-9: Benchmark characteristics.

There are two broad approaches for establishing a buffer between pipeline stages: either explic-
itly modify the code to do the buffering, or implicitly wrap the existing code in a virtual environ-
ment that performs the buffering automatically. The first approach utilizes a shared address space
and modifies the code for the producer or consumer so that theyaccess different locations; values
are copied from one location to the other at synchronizationpoints. Unfortunately, this approach
requires a deep program analysis in order to infer all of the variables and pointer references that
need to be remapped to shift the produced or consumed data to anew location. Such an analysis
seems largely intractable for a language such as C.

The second approach, and the one that we adopt, avoids the complexities of modifying the
code by simply forking the original program into multiple processes. The memory spaces of the
processes are isolated from one another, yet the processes share the exact same data layout so no
pointers or instructions need to be adjusted. A standard inter-process communication mechanism
(such as pipes) is used to send and buffer data from one process to another; a producer sends its
latest value for a given location, and the consumer reads that value into the same location in its
private address space. At the end of the loop’s execution, all of the processes copy their modified
data (as recorded by our tool during the profiling stage) intoa single process that continues after
the loop. Our analysis also verifies that there is no overlap in the addresses that are sent to a given
pipeline stage; such an overlap would render the program non-deterministic and would likely lead
to incorrect outputs.

6.5 Case Studies

To evaluate our approach, we applied our tool and methodology to six realistic programs. Three
of these are traditional stream programs (MPEG-2 decoding,MP3 decoding, GMTI radar pro-
cessing) while three are SPEC benchmarks (parser, bzip2, hmmer) that also exhibit regular flows
of data. As illustrated in Table6-9, the size of these benchmarks ranges from 5 KLOC to 37
KLOC. Each program processes a conceptually-unbounded stream of input data; our technique
adds pipeline parallelism to the toplevel loop of each application, which is responsible for 100%
of the steady-state runtime. (For bzip2, there are two toplevel loops, one for compression and one
for decompression.)

In the rest of this section, we first describe our experience in parallelizing the benchmarks
before presenting performance results.

140

Parallelization Experience

During the parallelization process, the programmer reliedheavily on the stream graphs extracted
by our tool. The final graphs for each benchmark appear in Figures6-10and6-11. In the graphs,
node labels are gleaned from function names and comments in the code, rather than from any
domain-specific knowledge of the algorithm. Nodes are also annotated with the amount of work
they perform, while edges are labeled with the number of bytes communicated per steady-state
iteration. Nodes that were data-parallelized are annotated with their multiplicity; for example, the
Dequantize stage in MP3 (Figure6-10b) is replicated twice.

As described in Section6.3, our tool relies on some programmer assistance to parallelize the
code. The manual steps required for each benchmark are summarized in Figure6-12and detailed
in the following sections.

MPEG-2 Decoding To obtain the stream graph for MPEG-2 (Figure6-10a), the programmer
iteratively refined the program with the help of the dynamic analysis tool. Because the desired
partition boundaries fell in distinct functions, those functions were inlined into the main loop. Early
return statements in these functions led to unstructured control flow after inlining; the programmer
converted the control flow to if/else blocks as required by our analysis. The tool exposed an
unintended data dependence that was inhibiting parallelism: a global variable (progressive_frame)
was being re-used as a temporary variable in one module. The programmer introduced a unique
temporary variable for this module, thereby restoring the parallelism. In addition, the updates to
some counters in the main loop were reordered so as to place them in the same pipeline stage that
the counters were utilized.

In generating the parallel version, our tool required two interventions from the programmer.
First, as the pipeline boundaries spanned multiple loop nests, the communication code (auto-
generated for a single loop nest) was patched to ensure that matching send and receive instructions
executed the same number of times. Second, as described in Section6.3, the programmer supplied
the name and size of dynamically-allocated variables (in this case, frame buffers) that were sent
between partitions.

MP3 Decoding The extracted stream graph for MP3 decoding appears in Figure 6-10b. In the
process of placing the pipeline boundaries, the programmerinlined functions, unrolled two loops,
and distributed a loop. Four dynamically-allocated arrays(of fixed size) were changed to use static
allocation, so that our tool could manage the communicationautomatically. As profiling indicated
that the dequantization and inverse MDCT stages were consuming most of the runtime, they were
each data-parallelized two ways.

In analyzing the parallelism of MP3, the programmer made three deductions. First, the initial
iteration of the loop was found to exhibit many excess dependences due to one-time initialization
of coefficient arrays; thus, the profiling and parallelization was postponed to the second iteration.
Second, though the tool reports a carried dependence in the inverse MDCT stage, the programmer
found that this dependence is on an outer loop and that it is safe to data-parallelize the stage on
an inner loop. Finally, the programmer judged the executionto be insensitive to the ordering of
diagnostic print statements, allowing the dependences between statements to be ignored for the
sake of parallelization. (With some additional effort, theoriginal ordering of print statements can
always be preserved by extracting the print function into its own pipeline stage.)

141

decode block
(8%)

saturate
(1%)

230400

form_predictions
add_block

(9%)

115200

IDCT
(10%)

230400

230400

conv420to422
(14%)

192000

store_ppm_tga
(45%)

153600

conv422to444
(13%)

192000

76800

tupnI

edoceD namffuH

)%4(

)%04(

0262

oeretS

redroeR

sailaitnA

)%2(

27

25

sisehtnys esahpyloP

)%21(

4

tuptuO

)%2(

8

8064

2132
4

4032

4032

ezitnauqeD

TCDM esrevnI

)%04(2

2

(a) MPEG-2 (b) MP3

Figure 6-10: Extracted stream graphs for MPEG-2 and MP3 decoding.

As in the case of MPEG-2, the programmer also patched the generated communication code to
handle nested loops.

GMTI Radar Processing The Ground Moving Target Indicator (GMTI) is a radar processing
application that extracts targets from raw radar data [Reu03]. The stream graph extracted by our
tool (Figure6-6) is very similar to the one that appears in the GMTI specification (Figure6-7).

In analyzing GMTI, the programmer made minor changes to the original application. The
programmer inlined two functions, removed the application’s self-timers, and scaled down an
FFT window from 4096 to 512 during the profiling phase (the resulting communication code was
patched to transfer all 4096 elements during parallel execution).

As print statements were judged to be independent of ordering, the tool was instructed to ig-
nore the corresponding dependences. Dependences between calls to memory allocation functions
(malloc/free) were also disregarded so as to allow pipelinestages to manage their local memories
in parallel. The programmer verified that regions allocatedwithin a stage remained private to that
stage, thus ensuring that the parallelism introduced couldnot cause any memory hazards.

Our tool reported an address trace that was gradually increasing over time; closer inspection
revealed that an array was being read in a sparse pattern thatwas gradually encompassing the entire
data space. The programmer directed the tool to patch the parallel version so that the entire array
was communicated at once.

142

Histogram

4

Input

Decode move-to-front values

Undo reversible transformation

Check CRC

Output

901,045

Input

Calculate CRC

900,309

Send move-to-front values

264

3,601,052

(a) 197.parser (b) 256.bzip2 (compression) (c) 256.bzip2 (decompression) (d) 456.hmmer

Input

Process special comands

1540

4

Accumulate errors

Output

4

Parse 4
7

Do reversible transformation

Generate move-to-front values

Generate random sequence

Calculate Viterbi score

Figure 6-11: Extracted stream graphs for parser, bzip2 (compression and decompression) and
hmmer.

Parser The stream graph for 197.parser appears in Figure6-11a. Each steady-state iteration of
the graph parses a single sentence; the benchmark runs in batch mode, repeatedly parsing all of
the sentences in a file. As indicated in the graph, the cyclic dependences in the benchmark are
limited to the input stage (which performs file reading and adjusts the configuration of the parser)
and the output stage (which accumulates an error count). Theparsing stage itself (which represents
most of the computation) retains no mutable state from one sentence to the next, and can thus be
replicated to operate on many sentences in parallel. In our optimized version, the parsing stage is
replicated four times.

During the iterative parallelization process, the programmer made three adjustments to the
program. Our tool reported a number of loop-carried dependences due to the program’s implicit
use of uninitialized memory locations; the program allocates space for a struct and later copies the
struct (by value) before all of the elements have been initialized. This causes our tool to report
a dependence on the previous write to the uninitialized locations, even though such writes were
modifying a different data structure that has since been de-allocated. The programmer eliminated
these dependence reports by initializing all elements to a dummy value at the time of allocation.

The programmer also made two adjustments to the communication trace emitted by our tool.
One block of addresses was expanding gradually over the firstfew iterations of the program. Closer
inspection revealed that that sentences of increasing length were being passed between partitions.
The programmer patched the trace to always communicate the complete sentence buffer. Also, the
programmer observed that in the case of errors, the parser’serror count needs to be communicated
to the output stage and accumulated there. As none of our training or testing samples elicited
errors, our trace did not detect this dependence.

Our data-parallel version of the program may reorder the program’s print statements. If desired,
the print statements can be serialized by moving them to the output stage.

Bzip2 The stream graphs for 256.bzip2 appear in Figures6-11b and6-11c. The benchmark
includes both a compression and decompression stage, whichwere parallelized separately.

Because bzip2 compresses blocks of fixed size, the main compression routine is completely
data-parallel. The only cyclic dependences in the compressor are at the input stage (file reading,
CRC calculation) and output stage (file writing). The programmer replicated the compression stage
seven ways to match the four-core machine; this allows threecores to handle two compression

143

noisrev lellarap ot sehctaP .III noitazilellarap gnirud loot ot snoitatonnA .II noisrev laitneuqes ot snoitacifidoM .I

2-GEPM

snoitcnuf denilni -

stnemetats deredroer -

owt otni elbairav yraropmet dednapxe -

wolf lortnoc deziraluger -

spool detsen ssorca noitacinummoc dehctap -

atad d'collam fo noitacinummoc dehctap -

3PM

snoitcnuf denilni -

spool dellornu -

pool a detubirtsid -

 detacolla-yllacimanyd detrevnoc -

syarra detacolla-yllacitats ot syarra

noitareti pool dnoces ot noitazilellarap denoptsop -

pool retuo no lellarap-atad sa TCDMI deifitnedi -

* stnemetats tnirp neewteb secnedneped derongi -

spool detsen ssorca noitacinummoc dehctap -

ITMG

snoitcnuf denilni -

ytilanoitcnuf gniliforp-fles devomer -

)ylno gniniart rof(ezis TFF nwod delacs -

* stnemetats tnirp neewteb secnedneped derongi -

*snoitacolla .mem neewteb secnedneped derongi -
yarra lluf revoc ot ecart sserdda dednapxe -

resrap.791
yromem dezilatininu no secnedneped derongi -

* stnemetats tnirp neewteb secnedneped derongi -

yarra lluf revoc ot ecart sserdda dednapxe -

elbairav noitcuder detalumucca yllaunam -

2pizb.652 atad d'collam fo noitacinummoc dehctap - stnemetats deredroer -

remmh.654

noisnapxe reffub latnemercni fo redro derongi -

* dnar ot sllac neewteb secnedneped derongi -

*snoitacolla .mem neewteb secnedneped derongi -

noititrap lellarap hcae ni dees modnar teser -

Figure 6-12: Steps taken by the programmer to assist in parallelizing each benchmark. Assistance
may be needed to expose parallelism in the original code, to verify parallelism using the tool, or to
handle special cases in the parallelized code. Steps annotated with an asterisk (*) may change the
observable behavior of the program1.

stages each, while one core handles a single compression stage as well as the input and output
stages. The decompression step lacks data-parallelism because the boundaries of the compressed
blocks are unknown; however, it can be split into a pipeline of two stages.

In parallelizing bzip2, the programmer reordered some statements to improve the pipeline par-
titioning (the call togenerateMTFValues moved from the output stage to the compute stage).
The programmer also supplied the name and size of two dynamically-allocated arrays.

Hmmer In 456.hmmer, a Hidden Markov Model is loaded at initialization time, and then a series
of random sequences are used to calibrate the model. Figure6-11d shows the extracted stream
graph for this benchmark. The calibration is completely data-parallel except for a histogram at
the end of the loop, which must be handled with pipeline parallelism. In our experiments, the
programmer replicated the data-parallel stage four ways toutilize the four-core machine.

Our tool reports three parallelism-limiting dependences for hmmer. The first is due to random
number generation: each iteration generates a new random sample and modifies the random seed.
The programmer chose to ignore this dependence, causing theoutput of our parallel version to
differ from the original version by 0.01%. Also, the programmer made an important patch to the
parallel code: after forking from the original process, each parallel partition needs to set its random
seed to a different value. Otherwise each partition would follow an identical sequence of random
values, and the parallel program would sample only a fraction of the input space as the original
program.

The second problematic dependence is due to an incremental resizing of an array to fit the

1Reordering calls to malloc (or reordering calls to free) will only change the program’s behavior if one of the calls
fails.

144

Benchmark Pipeline Depths Data-Parallel Widths Speedup

GMTI 9 — 3.03x
MPEG-2 7 — 2.03x
MP3 6 2,2 2.48x
197.parser 3 4 2.95x
256.bzip2 3,2 7 2.66x
456.hmmer 2 4 3.89x
GeoMean 2.78x

Table 6-13: Characteristics of the parallel stream graphs and performance results on a 4-core
machine. Data-parallel width refers to the number of ways any data-parallel stage was replicated.

length of the input sequence. Since each parallel partitioncan expand its own private array, this
dependence is safely ignored. Finally, as in the case of GMTI, dependences between memory
allocation functions were relaxed for the sake of the parallelization.

Performance Results

Following parallelization with our tool, all of the benchmarks obtain the correct results on their
training and testing sets. For MPEG-2 and MP3, we train usingfive iterations of input files 1 and
10, respectively (see Section6.2). For GMTI, we only have access to a single input trace, so we
use five iterations for training and the rest (300 iterations) for testing. For the SPEC benchmarks,
we train on five iterations of the provided training set and test on the provided testing set.

Our evaluation platform contains two AMD Opteron 270 dual-core processors (for a total of
4 cores) with 1 MB L2 cache per processor and 8 GB of RAM. We measure the speedup of the
parallel version, which uses up to 4 cores, versus the original sequential version, which uses 1
core. We generate one process per stage of the stream graph, and rely on the operating system to
distribute the processes across cores (we do not provide an explicit mapping from threads to cores).
All speedups reflect total (wall clock) execution time.

Our performance results appear in Table6-13. Speedups range from 2.03x (MPEG-2) to 3.89x
(hmmer), with a geometric mean of 2.78x. While these resultsare good, there is some room for
improvement. Some benchmarks (MPEG-2, decompression stage of bzip2) suffer from load im-
balance that is difficult to amend without rewriting parts ofthe program. The imperfect speedups
in other benchmarks may reflect synchronization overheads between threads, as the operating sys-
tem would need to interleave executions in a specific ratio toavoid excessive blocking in any one
process. The volume of communication does not appear to be a significant bottleneck; for exam-
ple, duplicating all communication instructions in MP3 results in only a 1.07x slowdown. Ongoing
work will focus on improving the runtime scheduling of the processes, as well as exploring other
inter-process communication mechanisms (e.g., using shared memory).

6.6 Related Work

Static Analysis

The work most closely related to ours is that of Bridges et al.[BVZ+07], which was developed
concurrently to our first publication of this research [TCA07]. They exploit pipeline parallelism

145

using the techniques of Decoupled Software Pipelining [RVVA04, ORSA05]. In addition, they
employ thread-level speculation to speculatively executemultiple loop iterations in parallel. Both
of our systems require some assistance from the programmer in parallelizing legacy applications.
Whereas we annotate spurious dependences within our tool, they annotate the original source code
with a new function modifier (called “commutative”) to indicate that successive calls to the func-
tion can be freely reordered. Such source-level annotations are attractive (e.g., for malloc/free) and
could be integrated with our approach. However, our transformations rely on a different property
of these functions, as we call them in parallel from isolatedaddress spaces rather than reordering
the calls in a single address space.

Once parallelism has been exposed, their compiler automatically places the pipeline boundaries
and generates a parallel runtime, whereas we rely on the programmer to place pipeline boundaries
and to provide some assistance in generating the parallel version (see Section6.3). Our approaches
arrive at equivalent decompositions of 197.parser and 256.bzip2. However, our runtime systems
differ. Rather than forking multiple processes that communicate via pipes, they rely on a proposed
“versioned memory” system [VRR+07] that maintains multiple versions of each memory location.
This allows threads to communicate via shared memory, with the version history serving as buffers
between threads. Their evaluation platform also includes aspecialized hardware construct termed
the synchronization array [RVVA04]. In comparison, our technique runs on commodity hardware.

Dai et al. presents an algorithm for automatically partitioning sequential packet-processing ap-
plications for pipeline-parallel execution on network processors [DHLH05]. Their static analysis
targets fine-grained instruction sequences within a singleprocedure, while our dynamic analysis is
coarse-grained and inter-procedural. Du et al. describes asystem for pipeline-parallel execution of
Java programs [DFA05]. The programmer declares parallel regions, while the compiler automati-
cally places pipeline boundaries and infers the communicated variables using an inter-procedural
static analysis. Unlike our system, the compiler does not check if the declared regions are actually
parallel.

Dynamic Analysis

The dynamic analysis most similar to ours is that of Rul et al.[RVDB06], which also tracks pro-
ducer/consumer relationships between functions and uses the information gleaned to assist the
programmer in parallelizing the program. They use bzip2 as acase study and report speedups
comparable to ours. However, it appears that their system requires the programmer to determine
which variables should be communicated between threads andto modify the original program to
insert new buffers and coordinate thread synchronization.

Karkowski and Corporaal also utilize dynamic information to uncover precise dependences for
parallelization of C programs [KC97]. Their runtime system utilizes a data-parallel mapping rather
than a pipeline-parallel mapping, and they place less emphasis on the programmer interface and
visualization tools.

Redux is a tool that traces instruction-level producer/consumer relationships for program com-
prehension and debugging [NM03]. Unlike our tool, Redux tracks dataflow through registers in
addition to memory locations. (We avoid the need for such tracking by profiling an unoptimized
binary, generated with gcc -O0, that stores all intermediate values to memory.) Because it gener-
ates a distinct graph node for every value produced, the authors note that the visualization becomes
unwieldy and does not scale to realistic programs. We address this issue by coarsening the program
partitions.

146

A style of parallelism that is closely related to pipeline parallelism is DOACROSS paral-
lelism [PKL80, Cyt86]. Rather than devoting a processor to a single pipeline stage, DOACROSS
parallelism assigns a processor to execute complete loop iterations, spanning all of the stages. In
order to support dependences between iterations, communication is inserted at pipeline bound-
aries to pass the loop-carried state between processors. While DOACROSS parallelism has been
exploited dynamically using inspector/executor models (see Rauchwerger [Rau98] for a survey),
they lack the generality needed for arbitrary C programs. The parallelism and communication pat-
terns inferred by our tool could be used to generate a DOACROSS-style mapping; such a mapping
could offer improved load balancing, at the possible expense of degrading instruction locality and
adding communication latency to the critical path.

Giacomoni et al. describe a toolchain for pipeline-parallel programming [GMP+07], including
BDD-based compression of dependence traces [PV06]. Such techniques could extend our stream
graph visualization to a much finer granularity. DDgraph is adynamic analysis for Lisp that offers
a visualization of call graphs and data dependence graphs for the sake of program understanding
and correctness checking [BWCA05]. It is implemented as part of a Lisp interpreter and has been
applied to an AI Blocks World program, which exhibits less regular streams of data than our target
applications. Malton and Pahelvan also use a dynamic analysis (built on gdb) to identify control
flow between “pivotal functions” that are likely to aid in program understanding [MP05]. They do
not extract streams of data flow.

Program slicing is a technique that aims to identify the set of program statements that may
influence a given statement in the program. Slicing is a rich research area with many static and
dynamic approaches developed to date; see Tip [Tip95] for a review. The problem that we consider
is more coarse-grained than slicing; we divide the program into partitions and ask which partitions
affect a given partition. Also, we identify a list of memory locations that are sufficient to convey all
the information needed between partitions. Finally, we areinterested only in direct dependences
between partitions, rather than the transitive dependences reported by slicing tools.

6.7 Future Work

There are rich opportunities for future work in enhancing the soundness and automation of our
tool. If the runtime system encounters code that was not visited during training, it could execute
the corresponding loop iteration in a sequential manner (such a policy would have fixed the only
unsoundness we observed). A static analysis could also lessen the programmer’s involvement, e.g.,
by automatically handling nested loops or automatically placing the pipeline partitions. Many of
the optimizations implemented in StreamIt could be targeted to the extracted stream graphs, as they
follow the synchronous dataflow model. It could also be interesting to develop systematic testing
techniques to exhibit control flow paths that were not covered during training.

More broadly, the observations in Section6.5 suggest that many of the memory dependences
that constrain automatic parallelizers can be safely ignored without affecting the ultimate program
outcome. It would be interesting to build a testing tool thatexplores this opportunity more deeply,
perhaps by systematically violating each individual memory dependence in the program and re-
porting those that do not affect the program outcome. While such an analysis would be very slow if
only one dependence is broken per run, perhaps an optimized version can be built by speculatively
“pooling” many tests into a single run, or by detecting that an intermediate program state is correct

147

without finishing the complete execution. Testing tools could also be useful for inferring likely
high-level properties, such as commutativity between methods in a library. This would save the
user the trouble of indicating the potential for such reordering to our tool.

6.8 Chapter Summary

This work represents one of the first systematic techniques to extract a coarse-grained streaming
representation from C programs. Rather than extracting streams from small instruction sequences
or inner loops, we extract pipeline stages from the outermost toplevel loop of a streaming appli-
cation, which encapsulates 100% of the steady-state runtime. Our approach is applicable both to
legacy codes, in which the user has little or no knowledge about the structure of the program, as
well as new applications, in which programmers can utilize our annotations to easily express the
desired pipelining.

The key observation underlying our technique is that for thedomain of streaming applications,
the steady-state communication pattern is regular and stable, even if the program is written in a
language such as C that resists static analysis. To exploit this pattern, we employ a dynamic analy-
sis to trace the memory locations communicated between program partitions at runtime. Partition
boundaries are defined by the programmer using a simple set ofannotations; the partitions can be
iteratively refined to improve the parallelism and load balance. Our tool uses the communication
trace to construct a stream graph for the application as wellas a detailed list of producer-consumer
instruction pairs, both of which aid program understandingand help to track down any problematic
dependences. Our dynamic analysis tool also outputs a set ofmacros to automatically parallelize
the program and communicate the needed data between partitions. We applied our tool to six re-
alistic case studies; the parallel programs produced the correct output and offered a mean speedup
of 2.78x on a 4-core machine.

Our technique gains both its leverage and its liabilities from the fact that it is unsound. By
tracing the dynamic flow of data, it can detect communicationpatterns that are beyond the reach
of static analyses. However, because the analysis samples only a fraction of program executions,
the observed communication may offer an incomplete pictureof the behavior of other runs. The
unsound data remains useful for program understanding, as it helps programmers understand the
common-case behavior of the application. In the context of automatic parallelization, the un-
soundness is more problematic because untested executionsmay lead to incorrect results when
parallelized.

This risk can be minimized by employing a rigorous quality assurance (QA) policy, in which
the tool observes all distinct modes of execution prior to parallelization. Such QA practices are
already deeply ingrained in the industry. Given that industrial testing strategies have proven effec-
tive for eliminating a myriad of human-induced bugs, it doesnot seem implausible that they could
be applied to eliminate potential bugs introduced by our tool. Unlike a programmer, our analysis
can automatically fix any bugs found by including the buggy input in its training set. Perhaps by
treating tools more like programmers – as intelligent but unsound beings whose output must be
subjected to rigorous testing – we can overcome some of the traditional limitations of automatic
parallelization.

148

Chapter 7

Conclusions

My thesis is that incorporating streaming abstractions into the programming language can simul-
taneously improve both programmability and performance. Programmers are unburdened from
providing low-level implementation details, while compilers can perform parallelization and op-
timization tasks that were previously beyond the reach of automation. This dissertation supports
this thesis with the following contributions:

1. We define the StreamIt language, one of the first programming languages to embrace syn-
chronous dataflow as a model of computation. StreamIt contains novel language constructs,
including structured streams, parameterized data reordering, and teleport messaging, that im-
prove both the programmability and the analyzability of stream programs. Teleport messaging
addresses a long-standing problem in synchronizing eventsacross decoupled modules, and rep-
resents the first general framework for delivering messageswith respect to the regular dataflow
in the stream. By providing a modular and composable syntax,the StreamIt language becomes
accessible to non-expert programmers. Simultaneously, the language preserves the rich static
properties of the streaming domain, exposing them to the compiler for the sake of optimization.

2. We demonstrate that it is tractable to develop large-scale applications in a stream program-
ming model. Our experience comes on two fronts. First, we describe the development of
the 34,000-line StreamIt benchmark suite, consisting of large applications (such as MPEG-2
encoding/decoding and GMTI radar processing) that were written by programmers who were
previously unfamiliar with StreamIt. Our survey of these benchmarks provides the first rig-
orous characterization of the streaming domain, as well as new insights into the utility and
usability of various language features. Second, we developa tool for migrating legacy C pro-
grams into a streaming representation. It is the first tool touse a dynamic analysis to expose
coarse-grained parallelism in C programs. We show that thistool is effective at extracting a
synchronous dataflow graph from large C applications, spanning MPEG-2, GMTI, MP3, and
others.

3. We develop a new optimization for the streaming domain, allowing programmers to accelerate
common video editing operations by a median of 15x and a maximum of 471x. This transfor-
mation maps stream programs into the compressed domain, allowing them to operate directly
on compressed data formats rather than requiring a costly decompression and re-compression
on either side of processing. Our technique is the first to support compressed-domain process-
ing of LZ77-compressed data. We apply our technique to accelerate transformations such as

149

color adjustment and video compositing on the Apple Animation format. Performance gains
are proportional to the compression factor.

4. We review the key optimization results in the StreamIt project, enabling programmers to obtain
large speedups on many tasks. Targeting a 16-core architecture, our compiler leverages a novel
combination of task, data, and pipeline parallelism to obtain a robust speedup of over 11x (rel-
ative to a single core). In optimizing linear computations,our compiler mirrors the behavior of
a DSP expert, automatically combining linear nodes, translating them to the frequency domain,
and selecting the most profitable series of transformations. Linear optimizations yield an aver-
age performance improvement of 5.5x, and a maximum improvement of 8.0x. Finally, we offer
a set of cache optimizations that adjusts the schedule of filter executions so as to improve the
data and instruction locality. It offers an average benefit of 3.5x when targeting an embedded
processor.

Several of the transformations that are automated in the StreamIt compiler are already accessi-
ble to expert programmers. For example, the optimization oflinear nodes is a standard part of the
DSP design flow. Cache optimizations similar to ours are routinely performed during the manual
tuning of an embedded system. Streaming applications can beparallelized in other languages with
significant help from the programmer. However, the key benefit of StreamIt is that all of these
transformations become accessible to non-experts. Using astream programming model, the com-
piler can leverage new information to automate transformations that were previously reserved for
technology wizards.

Perhaps the biggest limitation of the techniques describedin this dissertation is that they apply
primarily to static-rate programs, in which the input and output rates of actors are known at compile
time. The compiler depends on static rates for load-balancing task- and pipeline-parallel actors;
for optimizing linear filters (which are implicitly static-rate); for cache optimizations; and for
teleport messaging (though Section3.6describes how to extend messaging to handle dynamism).
Some of the techniques described do extend to dynamic rates,including the language’s support
for hierarchical streams and parameterized data reordering, as well as the compiler’s support for
coarse-grained data parallelism, translation to the compressed domain (with minor modifications),
and our dynamic analysis for extracting parallelism from C programs.

In the long term, we envision that our optimizations of static-rate graphs would have maximum
impact when those graphs are embedded in a more flexible and hybrid programming model. By
analogy to instruction scheduling, one could consider our optimizations as focusing on the basic
block: a simple yet pervasive construct that can be stitchedtogether to perform a broad array of
tasks. While support for complex control flow is important for functionality, aggressive optimiza-
tion within the basic block is essential for high performance. Our benchmark suite supports the
premise that dynamic rates often occur at only a few points inan application; out of our 29 most
realistic applications, 24 are completely static-rate, and out of those with any dynamic rates, only
3% of the user-defined filters have a dynamic rate. Thus, the compiler can focus on optimizing each
static-rate subgraph, while relying on the runtime system to orchestrate the dynamic-rate bound-
aries. In addition to supporting dynamism, we envision thata hybrid programming model would
provide support for many models of computation (transactions, event-driven programs, scientific
codes, etc.) with high-performance streaming playing onlyone part. These models could likely
be embedded in a general-purpose programming language, using a separate library and runtime

150

system for each one. Integrating such models of computationinto a unified authoring environment
is an interesting direction for further research.

What is the future of stream programming? Well, the goal of academic programming language
research is frequently misunderstood. While it would not beobjectionable to have a language like
StreamIt take over the world, this goal is rarely realistic or sustainable. Rather, the primary goal of
our research is to influence the direction of future languages. There is broad precedent for such in-
fluence; for example, Bjarne Stroustrup traces the detailedevolution of the C++ language, tracing
the impact of many previous languages on its structure and feature set [Str94]. While many of these
languages are also well known (Fortran, C, Ada, Simula), there are also important influences from
lesser-known languages, many of which are of academic origin (CPL, BCPL, ML, Clu). Given
the trend towards multicore processors, and the increasingprevalence of streaming applications,
we anticipate the emergence of languages and libraries withintegrated support for efficient stream
processing. Already the StreamIt system (which is open-source and available online [Stra]) has
been reused and extended by multiple research groups, including UC Berkeley [NY04, SLRBE05],
IBM Research [HHBR08, HKM+08], University of Michigan [KM08, HKM+08], Halmstad Uni-
versity [JSuA05, And07], Johns Hopkins University [Duc04], and North Carolina State Univer-
sity [So07]. It is our hope that the abstractions, optimizations, and lessons learned as part of this
dissertation will serve to inform and inspire this researchas well as the upcoming generation of
mainstream programming languages.

151

152

Bibliography

[AB71] J. Achermann and R. Bucy,Canonical minimal realization of a matrix of impulse response
sequences, Information and Control (1971), 224–231.

[ABC+06] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A.Yelick, The landscape of
parallel computing research: A view from Berkeley, Tech. Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[AD79] W. Ackerman and J. Dennis,VAL – A value-oriented algorithmic language, Tech. Report
MIT-LCS-TR-218, Masscahusetts Institute of Technology, 1979.

[Ado06] About digital video editing, Adobe online education materials, 2006,
http://www.adobe.com/education/pdf/cib/pre65_cib/pre65_cib02.pdf.

[Agh85] G. Agha,Actors: A model of concurrent computation in distributed systems, Ph.D. Thesis,
Massachusetts Insitute of Technology, 1985.

[AGK+05] S. Amarasinghe, M. I. Gordon, M. Karczmarek, J. Lin, D. Maze, R. M. Rabbah, and
W. Thies,Language and compiler design for streaming applications, International Journal
of Parallel Programming, 2005.

[AGP78] Arvind, K. Gostelow, and W. Plouffe,An asynchronous programming language and com-
puting machine, Tech. Report TR 114a, University of California, Irvine, 1978.

[Agr04] S. Agrawal,Linear state-space analysis and optimization of StreamIt programs, M.Eng.
Thesis, Massachusetts Institute of Technology, 2004.

[AK82] J. Allen and K. Kennedy,PFC: A program to convert Fortran to parallel form, IBM Con-
ference on Parallel Computing and Scientific Computations (1982).

[ALP97] M. Adé, R. Lauwereins, and J. A. Peperstraete,Data memory minimisation for syn-
chronous data flow graphs emulated on DSP-FPGA targets, Design Automation Con-
ference (DAC), 1997.

[And07] J. Andersson,Modelling and evaluating the StreamBits language, Master’s thesis, Halm-
stad University, 2007.

[Arm07] J. Armstrong,A history of Erlang, Conference on History of Programming Languages
(HOPL), ACM, 2007.

[AS98] S. Acharya and B. Smith,Compressed domain transcoding of MPEG, International Con-
ference on Multimedia Computing and Systems (1998), 295–304.

153

http://www.adobe.com/education/pdf/cib/pre65_cib/pre65_cib02.pdf

[ATA05] S. Agrawal, W. Thies, and S. Amarasinghe,Optimizing stream programs using linear
state space analysis, International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), 2005.

[Aut] Authentication generator demo, Online screencast,
http://penso.info/auth_generator.

[AVW93] J. Armstrong, R. Virding, and M. Williams,Concurrent programming in Erlang, Prentice
Hall, 1993.

[AW77] E. A. Ashcroft and W. W. Wadge,Lucid, a nonprocedural language with iteration, Com-
munications of the ACM20 (1977), no. 7, 519–526.

[Azi07] A. Aziz, Image-based motion estimation in a stream programming language, M.Eng. The-
sis, Massachusetts Institute of Technology, 2007.

[BB00] B. Bhattacharya and S. S. Bhattacharyya,Quasi-static scheduling of reconfigurable
dataflow graphs for DSP systems, International Workshop on Rapid System Prototyping
(RSP), 2000, p. 84.

[BCG+03] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, and V. Josifovski,Stream-
ing XPath processing with orward and backward axes, International Conference on Data
Engineering, 2003.

[BDB99] V. Bala, E. Duesterwald, and S. Banerjia,Dynamo: A transparent dynamic optimization
system, Conference on Programming Language Design and Implementation (PLDI), 1999.

[BELP95] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete,Cyclo-static data flow, Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP), 1995.

[Ben] S. Benza, Interview transcript, Computer Graphics Society,
http://forums.cgsociety.org/showthread.php?s=&threadid=115293.

[BFH+04] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.Houston, and P. Hanrahan,
Brook for GPUs: Stream computing on graphics hardware, SIGGRAPH, 2004.

[BG92] G. Berry and G. Gonthier,The ESTEREL synchronous programming language: Design,
semantics, implementation, Science of Computer Programming19 (1992), no. 2, 87–152.

[BG99] S. Bakshi and D. D. Gajski,Partitioning and pipelining for performance-constrained
hardware/software systems, IEEE Transactions on Very Large Scale Integrated Systems
7 (1999), no. 4, 419–432.

[BHLM91] J. Buck, S. Ha, E. Lee, and D. Messerschmitt,Multirate signal processing in Ptolemy,
International Conference on Acoustics, Speech, and SignalProcessing (ICASSP), 1991.

[Ble06a] Blender, Wikipedia, The Free Encyclopedia, November 2006,
http://en.wikipedia.org/wiki/Blender_software.

[Ble06b] Blender.org: website statistics, Blender Foundation, 2006.

[BML95] S. Bhattacharyya, P. Murthy, and E. Lee,Optimal parenthesization of lexical orderings for
DSP block diagrams, International Workshop on VLSI Signal Processing, 1995.

154

http://penso.info/auth_generator
http://forums.cgsociety.org/showthread.php?s=&threadid=115293
http://en.wikipedia.org/wiki/Blender_software

[BML96] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Software synthesis from dataflow graphs,
Kluwer Academic Publishers, 1996.

[BML97] C. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,APGAN and RPMC: Complemen-
tary heuristics for translating DSP block diagrams into efficient software implementations,
Journal of Design Automation for Embedded Systems (1997), 33–60.

[BML99] S. Bhattacharyya, P. Murthy, and E. Lee,Synthesis of embedded software from syn-
chronous dataflow specifications, Journal of VLSI Signal Processing Systems21 (1999),
no. 2.

[BSL96] S. S. Bhattacharyya, S. Sriram, and E. A. Lee,Self-timed resynchronization: A post-
optimization for static multiprocessor schedules, International Parallel Processing Sym-
posium, 1996, pp. 199–205.

[BV00] J. Buck and R. Vaidyanathan,Heterogeneous modeling and simulation of embedded sys-
tems in El Greco, International Workshop on Hardware/Software Codesign (CODES),
2000.

[BVZ+07] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August,Revisiting the se-
quential programming model for multi-core, MICRO, 2007.

[BWCA05] F. Balmas, H. Wertz, R. Chaabane, and L. Artificielle, DDgraph: A tool to visualize dy-
namic dependences, Workshop on Program Comprehension through Dynamic Analysis,
2005.

[CBL01] N. Chandrachoodan, S. Bhattacharyaa, and K. Liu,An efficient timing model for hard-
ware implementation of multirate dataflow graphs, International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), vol. 2, 2001.

[CCD+08] Y.-K. Chen, J. Chhugani, P. Dubey, C. Hughes, D. Kim, S. Kumar, V. Lee, A. Nguyen,
and M. Smelyanskiy,Convergence of recognition, mining, and synthesis workloads and
its implications, Proceedings of the IEEE96 (2008), no. 5, 790–807.

[CGT+05] J. Chen, M. I. Gordon, W. Thies, M. Zwicker, K. Pulli, and F. Durand,A reconfigurable ar-
chitecture for load-balanced rendering, SIGGRAPH / Eurographics Workshop on Graph-
ics Hardware, 2005.

[CH78] P. Cousot and N. Halbwachs,Automatic discovery of linear restraints among variables of a
program, Symposium on Principles of Programming Languages (POPL),1978, pp. 84–97.

[Cha95] S. Chang,Compressed-domain techniques for image/video indexing and manipulation,
International Conference on Image Processing (1995).

[Che05] J. Chen,Load-balanced rendering on a general-purpose tiled architecture, M.Eng. Thesis,
Massachusetts Insitute of Technology, 2005.

[CHP07] P. Caspi, G. Hamon, and M. Pouzet,Real-time systems: Models and verification – Theory
and tools, ch. Synchronous Functional Programming with Lucid Synchrone, ISTE, 2007.

[CHR+03] C. Consel, H. Hamdi, L. Réveillère, L. Singaravelu, H. Yu, and C. Pu,Spidle: A DSL
approach to specifying streaming applications, International Conference on Generative
Programming and Component Engineering, 2003.

155

[Cli81] W. D. Clinger, Foundations of actor semantics, Ph.D. Thesis, Massachusetts Insitute of
Technology, 1981.

[Cov89] M. M. Covell,An algorithm design environment for signal processing, Ph.D. Thesis, MIT,
1989.

[CP95] P. Caspi and M. Pouzet,A functional extension to Lustre, International Symposium on
Languages for Intentional Programming, 1995.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice,LUSTRE: A declarative language
for real-time programming, International Symposium on Principles of Programming Lan-
guages (POPL), 1987.

[CS97] L.-F. Chao and E. H.-M. Sha,Scheduling data-flow graphs via retiming and unfolding,
IEEE Transactions on Parallel and Distributed Systems08 (1997), no. 12, 1259–1267.

[CV02] K. S. Chatha and R. Vemuri,Hardware-software partitioning and pipelined schedulingof
transformative applications, IEEE Transactions on Very Large Scale Integrated Systems
10 (2002), no. 3, 193–208.

[Cyt86] R. Cytron,DOACROSS: Beyond vectorization for multiprocessors, International Confer-
ence on Parallel Processing, 1986.

[DA01] R. Dugad and N. Ahuja,A fast scheme for image size change in the compressed domain,
IEEE Transactions on Circuits and Systems for Video Technology11 (2001), no. 4, 461–
474.

[DBH+01] B. A. Draper, A. P. W. Böhm, J. Hammes, W. A. Najjar, J. R. Beveridge, C. Ross,
M. Chawathe, M. Desai, and J. Bins,Compiling SA-C programs to FPGAs: Performance
results, International Workshop on Computer Vision Systems, 2001.

[DDE+05] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, C. Whaley, and
K. Yelick, Self adapting linear algebra algorithms and software, Proceedings of the IEEE:
Special Issue on Program Generation, Optimization, and Adaptation93 (2005), no. 2.

[DFA05] W. Du, R. Ferreira, and G. Agrawal,Compiler support for exploiting coarse-grained
pipelined parallelism, International Conference on Supercomputing, 2005.

[DHLH05] J. Dai, B. Huang, L. Li, and L. Harrison,Automatically partitioning packet processing
applications for pipelined architectures, Conference on Programming Language Design
and Implementation (PLDI), 2005.

[Dig06] Digital Juice, Editor’s toolkit 4: High tech tools, Digital Juice, 2006,
http://www.digitaljuice.com/products/products.asp?pid=119.

[Dij68] E. W. Dijkstra, Go to statement considered harmful, Communications of the ACM11
(1968), no. 3, 147–148.

[DM05] G. Dolbier and V. Megler,Building an animation and special effects studio from the ground
up, IBM Report, 2005.

[Dra06] M. Drake,Stream programming for image and video compression, M.Eng. Thesis, Mas-
sachusetts Institute of Technology, 2006.

156

http://www.digitaljuice.com/products/products.asp?pid=119

[DRB00] C. Dorai, N. Ratha, and R. Bolle,Detecting dynamic behavior in compressed fingerprint
videos: Distortion, Conference on Computer Vision and Pattern Recognition (CVPR),
2000.

[Duc04] N. Duca,Applications and execution of stream graphs, Senior Undergraduate Thesis,
Johns Hopkins University, 2004.

[EGK+02] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull, Graphviz – Open source
graph drawing tools, Graph Drawing (2002), 594–597.

[EJL+03] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and
Y. Xiong, Taming heterogeneity – the Ptolemy approach, Proceedings of the IEEE91
(2003), no. 1, 127–144.

[Ele] Elephant’s Dream, http://orange.blender.org/.

[EM87] E. and D. Messerschmitt,Pipeline interleaved programmable DSP’s: Synchronous data
flow programming, IEEE Transactions on Signal Processing35 (1987), no. 9.

[FG05] K. Fisher and R. Gruber,PADS: A domain-specific language for processing ad hoc data,
Conference on Programming Language Design and Implementation (PLDI), 2005.

[FJ03] G. Feng and J. Jiang,Image segmentation in compressed domain, Journal of Electronic
Imaging12 (2003), no. 3, 390–397.

[FJ05] M. Frigo and S. G. Johnson,The design and implementation of FFTW3, Proceedings of
the IEEE: Special Issue on Program Generation, Optimization, and Adaptation93 (2005),
no. 2.

[Fra03a] M. Frank,SUDS: Automatic parallelization for Raw processors, Ph.D. Thesis, MIT, 2003.

[Fra03b] Fraunhofer Institute, MP3 reference implementation,
http://www.mpeg1.de/util/dos/mpeg1iis/, 2003.

[FT98] M. Farach and M. Thorup,String matching in Lempel-Ziv compressed strings, Algorith-
mica20 (1998).

[GBBG86] P. L. Guernic, A. Benveniste, P. Bournai, and T. Gautier, Signal – A data flow-oriented
language for signal processing, IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing34 (1986), no. 2, 362–374.

[GBS05] M. Geilen, T. Basten, and S. Stuijk,Minimising buffer requirements of synchronous
dataflow graphs with model checking, Design Automation Conference (DAC) (Anaheim,
California, USA), ACM, 2005, pp. 819–824.

[GGD94] R. Govindarajan, G. Gao, and P. Desai,Minimizing memory requirements in rate-optimal
schedules, International Conference on Application Specific Array Processors (ASAP),
1994, pp. 75–86.

[GGD02] R. Govindarajan, G. R. Gao, and P. Desai,Minimizing buffer requirements under rate-
optimal schedule in regular dataflow networks, Journal of VLSI Signal Processing31
(2002), no. 3, 207–229.

157

http://orange.blender.org/
http://www.mpeg1.de/util/dos/mpeg1iis/

[GMP+07] J. Giacomoni, T. Moseley, G. Price, B. Bushnell, M. Vachharajani, and D. Grunwald,
Toward a toolchain for pipeline parallel programming on CMPs, Workshop on Software
Tools for Multi-Core Systems (STMCS), 2007.

[Gor02] M. Gordon,A stream-aware compiler for communication-exposed architectures, S.M.
Thesis, Massachusetts Institute of Technology, 2002.

[GR05] J. Gummaraju and M. Rosenblum,Stream programming on general-purpose processors,
MICRO, 2005.

[Gre75] I. Greif,Semantics of communicating parallel processes, Ph.D. Thesis, Massachusetts In-
situte of Technology, 1975.

[GTA06] M. I. Gordon, W. Thies, and S. Amarasinghe,Exploiting coarse-grained task, data,
pipeline parallelism in stream programs, International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), 2006.

[GTK+02] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb, C. Leger, J. Wong,
H. Hoffmann, D. Maze, and S. Amarasinghe,A stream compiler for communication-
exposed architectures, International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2002.

[Hal98] N. Halbwachs,Synchronous programming of reactive systems, International Conference
on Computer Aided Verification, Springer-Verlag, 1998, pp.1–16.

[HBS73] C. Hewitt, P. Bishop, and R. Steiger,A universal modular ACTOR formalism for artificial
intelligence, International Joint Conferences on Artificial Intelligence (IJCAI), 1973.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud,The synchronous data flow program-
ming language LUSTRE, Proceedings of the IEEE79 (1991), no. 9, 1305–1320.

[HH06] C. Howard and P. Hoke, Legacy migrations: Turning legacy sys-
tems into gold–the planning process, T&I Supplement (2006),
http://www.ateras.com/PDF/bij_Article.pdf.

[HHBR08] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah,Liquid Metal: Object-oriented
programming across the hardware/software boundary, European Conference on Object-
Oriented Programming (ECOOP) (Paphos, Cypress), Springer-Verlag, 2008, pp. 76–103.

[HKM +08] A. Hormati, M. Kudlur, S. Mahlke, D. Bacon, and R. Rabbah,Optimus: Efficient re-
alization of streaming applications on FPGAs, International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES) (Atlanta, GA, USA), ACM,
2008, pp. 41–50.

[HL97] S. Ha and E. A. Lee,Compile-time scheduling of dynamic constructs in dataflow program
graphs, IEEE Transactions on Computers6 (1997).

[HM76] P. Henderson and J. H. Morris,A lazy evaluator, Symposium on Principles of Program-
ming Languages (POPL), 1976.

[HMG04] R. Harrington, R. Max, and M. Geduld,After effects on the spot: Time-saving tips and
shortcuts from the pros, Focal Press, 2004.

158

http://www.ateras.com/PDF/bij_Article.pdf

[HMWZ92] J. C. Huang, J. Muñoz, H. Watt, and G. Zvara,ECOS graphs: A dataflow programming
language, Symposium on Applied Computing, 1992.

[Hoa78] C. A. R. Hoare,Communicating sequential processes, Communications of the ACM21
(1978), no. 8, 666–677.

[HP02] H. Harada and R. Prasad,Simulation and software radio for mobile communications,
Artech House, 2002.

[HRB88] S. Horwitz, T. Reps, and D. Binkley,Interprocedural slicing using dependence graphs,
Conference on Programming Language Design and Implementation (PLDI), 1988.

[Inm88] Inmos Corporation,Occam 2 reference manual, Prentice Hall, 1988.

[IT88] F. Irigoin and R. Triolet,Supernode partitioning, Symposium on Principles of Program-
ming Languages (POPL), 1988.

[IYV04] E. Im, K. A. Yelick, and R. Vuduc,SPARSITY: An optimization framework for sparse
matrix kernels, International Journal of High Performance Computing Applications18
(2004), no. 1, 135–158.

[JCM94] M. Janssen, F. Catthoor, and H. D. Man,A specification invariant technique for operation
cost minimisation in flow-graphs, International Symposium on High-level Synthesis, 1994,
pp. 146–151.

[JHM04] W. M. Johnston, J. R. P. Hanna, and R. J. Millar,Advances in dataflow programming
languages, ACM Compututing Surveys36 (2004), no. 1, 1–34.

[JSuA05] O. Johnsson, M. Stenemo, and Z. ul Abdin,Programming and implementation of stream-
ing applications, Tech. Report IDE0405, Halmstad University, 2005.

[KA99] Y.-K. Kwok and I. Ahmad, Static scheduling algorithms for allocating directed task
graphs to multiprocessors, ACM Computing Surveys31 (1999), no. 4, 406–471.

[Kah74] G. Kahn,The semantics of a simple language for parallel programming, Information Pro-
cessing (1974), 471–475.

[Kar76] M. Karr, Affine relationships among variables of a program, Acta Informatica6 (1976),
133–155.

[Kar02] M. A. Karczmarek,Constrained and phased scheduling of synchronous data flow graphs
for the StreamIt language, Master’s thesis, Massachusetts Institute of Technology,2002.

[KC97] I. Karkowski and H. Corporaal,Overcoming the limitations of the traditional loop paral-
lelization, HPCN Europe, 1997.

[KM66] R. M. Karp and R. E. Miller,Properties of a model for parallel computations: Deter-
minacy, termination, queueing, SIAM Journal on Applied Mathematics14 (1966), no. 6,
1390–1411.

[KM08] M. Kudlur and S. Mahlke,Orchestrating the execution of stream programs on multicore
platforms, Conference on Programming Language Design and Implementation (PLDI),
2008.

159

[Koh04] S. Kohli, Cache aware scheduling of synchronous dataflow programs, Master’s Report
Technical Memorandum UCB/URL M04/03, UC Berkeley, 2004.

[KRA05] K. Kuo, R. Rabbah, and S. Amarasinghe,A productive programming environment for
stream computing, Workshop on Productivity and Performance in High-End Computing,
2005.

[KRD+03] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and J. D. Owens,
Programmable stream processors, IEEE Computer (2003).

[KSB06] M.-Y. Ko, C.-C. Shen, and S. S. Bhattacharyya,Memory-constrained block processing
optimization for synthesis of DSP software, International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation, 2006, pp. 137–143.

[KTA03] M. Karczmarek, W. Thies, and S. Amarasinghe,Phased scheduling of stream programs,
Conference on Languages, Compilers, Tools for Embedded Systems (LCTES), 2003.

[Kuo04] K. Kuo,The StreamIt development tool: A programming environment for StreamIt, M.Eng.
Thesis, Massachusetts Institute of Technology, 2004.

[Lam03] A. A. Lamb,Linear analysis and optimization of stream programs, M.Eng. Thesis, Mas-
sachusetts Institute of Technology, 2003.

[LDWL06] S. Liao, Z. Du, G. Wu, and G. Lueh,Data and computation transformations for Brook
streaming applications on multiprocessors, International Symposium on Code Generation
and Optimization (CGO), 2006.

[LEAP95] R. Lauwereins, M. Engels, M. Ade, and J. Peperstraete, Grape-II: A system-level proto-
typing environment for DSP applications, IEEE Computer28 (1995), no. 2, 35–43.

[Lee03] E. A. Lee,Overview of the Ptolemy project, Tech. report, Tech Memo UCB/ERL M03/25,
UC Berkeley, 2003.

[LHG+89] E. Lee, W.-H. Ho, E. Goei, J. Bier, and S. Bhattacharyya,Gabriel: A design environment
for DSP, IEEE Transactions on Acoustics, Speech and Signal Processing37(1989), no. 11,
1751–1762.

[LM87] E. A. Lee and D. G. Messerschmitt,Static scheduling of synchronous data flow programs
for digital signal processing, IEEE Transactions on Computing36 (1987), no. 1, 24–35.

[LPMS97] C. Lee, M. Potkonjak, and W. Mangione-Smith,MediaBench: A tool for evaluating and
synthesizing multimedia andcommunications systems, IEEE MICRO, 1997.

[LS02] B. Long and S. Schenk,Digital filmmaking handbook, Charles River Media, 2002.

[LTA03] A. A. Lamb, W. Thies, and S. Amarasinghe,Linear analysis and optimization of stream
programs, Conference on Programming Language Design and Implementation (PLDI),
2003.

[MAC99] V. Misra, J. Arias, and A. Chhabra,A memory efficient method for fast transposing run-
length encoded images, International Conference on Document Analysis and Recognition
(1999), 161–164.

160

[May73] D. Q. Mayne,An elementary derivation of Rosenbrock’s minimal realization algorithm,
IEEE Transactions on Automatic Control (1973), 306–307.

[MB99] P. K. Murthy and S. S. Bhattacharyya,A buffer merging technique for reducing mem-
ory requirements of synchronous dataflow specifications, Proceedings of the International
Symposium on System Synthesis (San Jose, California), 1999, pp. 78–84.

[MB01] P. Murthy and S. Bhattacharyya,Shared buffer implementations of signal processing sys-
tems using lifetime analysis techniques, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems20 (2001), no. 2, 177–198.

[MB04] P. K. Murthy and S. S. Bhattacharyya,Buffer merging – a powerful technique for reduc-
ing memory requirements of synchronous dataflow specifications, ACM Transactions on
Design Automation for Electronic Systems9 (2004), no. 2, 212–237.

[MBL94] P. Murthy, S. Bhattacharyya, and E. Lee,Minimizing memory requirements for chain-
structured synchronous dataflow programs, International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 1994.

[MCR01] P. K. Murthy, E. G. Cohen, and S. Rowland,System canvas: A new design environment
for embedded DSP and telecommunication systems, International Symposium on Hard-
ware/Software Codesign (CODES), 2001.

[MDH+06] Matthew, Drake, H. Hoffman, R. Rabbah, and S. Amarasinghe, MPEG-2 decoding in a
stream programming language, International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2006.

[Med08] C. Medford,Microsoft/Yahoo is mobile equal of Google, Red Herring (2008).

[MGAK03] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard,Cg: A system for programming
graphics hardware in a C-like language, SIGGRAPH, 2003.

[MIP99] M. Mandal, F. Idris, and S. Panchanathan,A critical evaluation of image and video index-
ing techniques in the compressed domain, Image and Vision Computing17 (1999), no. 7,
513–529.

[ML02] P. Murthy and E. Lee,Multidimensional synchronous dataflow, IEEE Transactions on Sig-
nal Processing50 (2002), no. 8, 2064–2079.

[ML03] P. Mattson and R. Lethin,"Streaming" as a pattern, August 2003.

[MM02] J. Mukherjee and S. Mitra,Image resizing in the compressed domain using subband DCT,
IEEE Transactions on Circuits and Systems for Video Technology12 (2002), no. 7, 620–
627.

[MP05] A. Malton and A. Pahelvan,Enhancing static architectural design recovery by lightweight
dynamic analysis, Workshop on Program Comprehension through Dynamic Analysis,
2005.

[MQP02] M. D. McCool, Z. Qin, and T. S. Popa,Shader metaprogramming, SIGGRAPH, 2002.

[MR01] F. Maraninchi and Y. Remond,Argos: An automaton-based synchronous language, Com-
puter Languages27 (2001), no. 1-3, 61–92.

161

[MSA+85] J. McGraw, S. Skedzielewski, S. Allan, R. Oldhoeft, J. Glauert, C. Kirkham, B. Noyce,
and R. Thomas,SISAL: Streams and iteration in a single assignment language, Language
reference manual, version 1.2, Lawrence Livermore National Laboratory, 1985.

[MSK87] D. May, R. Shepherd, and C. Keane,Communicating process architecture: Transputers
and Occam, Future Parallel Computers: An Advanced Course (Lecture Notes in Computer
Science)272(1987), 35–81.

[MTP+04] M. McCool, S. D. Toit, T. Popa, B. Chan, and K. Moule,Shader algebra, SIGGRAPH,
2004.

[Mur89] T. Murata,Petri nets: Properties, analysis and applications, Proceedings of the IEEE77
(1989), no. 4, 541–580.

[NA01] R. Nikhil and Arvind, Implicit parallel programming in pH, 1st ed., Morgan Kaufmann,
2001.

[Nav03] G. Navarro,Regular expression searching on compressed text, Journal of Discrete Algo-
rithms1 (2003).

[Nik91] R. S. Nikhil, ID language reference manual, version 90.1, Computation Structures Group
Memo 284-2, Massachusetts Institute of Technology, 1991.

[NKH00] J. Nang, O. Kwon, and S. Hong,Caption processing for MPEG video in MC-DCT com-
pressed domain, ACM Multimedia (2000), 211–218.

[NM03] N. Nethercote and A. Mycroft,Redux: A dynamic dataflow tracer, Workshop on Runtime
Verification, 2003.

[NS07] N. Nethercote and J. Seward,Valgrind: A framework for heavyweight dynamic bi-
nary instrumentation, Conference on Programming Language Design and Implementation
(PLDI), 2007.

[NT05] G. Navarro and J. Tarhio,LZgrep: A Boyer-Moore string matching tool for Ziv-Lempel
compressed text, Software: Practice and Experience35 (2005).

[NY04] M. Narayanan and K. Yelick,Generating permutation instructions from a high-level de-
scription, Workshop on Media and Streaming Processors (MSP), 2004.

[O’H91] D. O’Hallaron,The Assign parallel program generator, Distributed Memory Computing
Conferenc, 1991.

[ON92] A. V. Oppenheim and S. H. Nawab (eds.),Symbolic and knowledge-based signal process-
ing, Prentice Hall, 1992.

[ORSA05] G. Ottoni, R. Rangan, A. Stoler, and D. I. August,Automatic thread extraction with decou-
pled software pipelining, International Symposium on Microarchitecture (MICRO), 2005.

[PBL95] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee,A hierarchical multiprocessor scheduling
framework for synchronous dataflow graphs, Technical Report UCB/ERL M95/36, Uni-
versity of California, Berkeley, 1995.

[Pet62] C. Petri,Communication with automata, Ph.D. Thesis, Darmstadt Institue of Technology,
1962.

162

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical recipes in
C: The art of scientific computing, 2nd ed., Cambridge University Press, October 1992.

[PKL80] D. Padua, D. Kuck, and D. Lawrie,High-speed multiprocessors and compilation tech-
niques, Transactions on ComputersC-29 (1980), no. 9.

[PL95] J. L. Pino and E. A. Lee,Hierarchical static scheduling of dataflow graphs onto mul-
tiple processors, International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 1995.

[PM91] K. Parhi and D. Messerschmitt,Static rate-optimal scheduling of iterative data-flow pro-
grams via optimum unfolding, IEEE Transactions on Computers40 (1991), no. 2, 178–
195.

[PM03] M. Püschel and J. Moura,The algebraic approach to the discrete cosine and sine trans-
forms and their fast algorithms, SIAM Journal of Computing32(2003), no. 5, 1280–1316.

[PMJ+05] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer, J. Xiong,
F. Franchetti, A. Gǎcić, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo,SPIRAL:
Code generation for DSP transforms, Proceedings of the IEEE: Special Issue on Program
Generation, Optimization, and Adaptation93 (2005), no. 2.

[Pog03] D. Pogue,Imovie 3 & IDVD: The missing manual, O’Reilly, 2003.

[PPL95] T. M. Parks, J. L. Pino, and E. A. Lee,A comparison of synchronous and cycle-static
dataflow, Asilomar Conference on Signals, Systems, and Computers, 1995.

[PR97] W. Pugh and E. Rosser,Iteration based slicing and its application to communication opti-
mization, International Conference on Supercomputing, 1997.

[PR00] M. Potkonjak and J. M. Rabaey,Maximally and arbitrarily fast implementation of lin-
ear and feedback linear computations, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems19 (2000), no. 1, 30–43.

[Pri91] H. Printz,Automatic mapping of large signal processing systems to a parallel machine,
Ph.D. Thesis, Carnegie Mellon University, 1991.

[PV06] G. D. Price and M. Vachharajani,A case for compressing traces with BDDs, Computer
Architecture Letters5 (2006), no. 2.

[PW96] T. A. Proebsting and S. A. Watterson,Filter fusion, Symposium on the Principles of Pro-
gramming Languages (POPL), 1996.

[Rau98] L. Rauchwerger,Run-time parallelization: Its time has come, Parallel Computing24
(1998), no. 3-4.

[Reu03] A. Reuther,Preliminary design review: GMTI narrowband for the basic PCA integrated
radar-tracker application, Tech. Report ESC-TR-2003-076, MIT Lincoln Laboratory,
2003.

[Rey04] J. C. Reyes,A graph editing framework for the StreamIt language, M.Eng. Thesis, Mas-
sachusetts Institute of Technology, 2004.

163

[RVDB06] S. Rul, H. Vandierendonck, and K. De Bosschere,Function level parallelism driven by
data dependencies, Workshop on Design, Architecture and Simulation of Chip Multi-
Processors, 2006.

[RVVA04] R. Rangan, N. Vachharajani, M. Vachharajani, and D. August,Decoupled software pipelin-
ing with the synchronization array, International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2004.

[Rya92] S. Ryan,Linear data flow analysis, ACM SIGPLAN Notices27 (1992), no. 4, 59–67.

[Sen80] S. Seneff,Speech transformation system (spectrum and/or excitation) without pitch ex-
traction, Master’s thesis, Massachussetts Institute of Technology, 1980.

[Ser05] J. Sermulins,Cache Optimizations for Stream Programs, M.Eng. Thesis, Massachusetts
Institute of Technology, 2005.

[SGB06] S. Stuijk, M. Geilen, and T. Basten,Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs, Design Automation Conference
(DAC), 2006.

[Sho95] K. Shoji,An algorithm for affine transformation of binary images stored in pxy tables by
run format, Systems and Computers in Japan26 (1995), no. 7, 69–78.

[SLRBE05] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu, Programming by sketching for
bit-streaming programs, Conference on Programming Language Design and Implementa-
tion (PLDI), 2005.

[Smi95] B. Smith,A survey of compressed domain processing techniques, Cornell University, 1995.

[So07] W. So,Software thread integration for instruction level parallelism, Ph.D. Thesis, North
Carolina State University, 2007.

[SR96] B. Smith and L. Rowe,Compressed domain processing of JPEG-encoded images, Real-
Time Imaging2 (1996), no. 2, 3–17.

[SS95] J. Swartz and B. Smith,RIVL: A resolution independent video language, Proceedings of
the Tcl/TK Workshop, 1995.

[SS96a] B. Shen and I. Sethi,Convolution-based edge detection for image/video in blockDCT
domain, Journal of Visual Communication and Image Representation7 (1996), no. 4,
411–423.

[SS96b] , Direct feature extraction from compressed images, SPIE Storage & Retrieval for
Image and Video Databases IV2670(1996).

[SS98] , Block-based manipulations on transform-compressed images and videos, Multi-
media Systems6 (1998), no. 2, 113–124.

[Ste97] R. Stephens,A survey of stream processing, Acta Informatica34 (1997), no. 7, 491–541.

[Stra] StreamIt homepage, http://cag.csail.mit.edu/streamit.

[Strb] StreamIt cookbook,
http://cag.csail.mit.edu/streamit/papers/streamit-cookbook.pdf.

164

http://cag.csail.mit.edu/streamit
http://cag.csail.mit.edu/streamit/papers/streamit-cookbook.pdf

[Strc] StreamIt language specification,
http://cag.csail.mit.edu/streamit/papers/streamit-lang-spec.pdf.

[Str94] B. Stroustrup,The Design and Evolution of C++, Addison-Wesley Professional, 1994.

[STRA05] J. Sermulins, W. Thies, R. Rabbah, and S. Amarasinghe, Cache aware optimization of
stream programs, Conference on Languages, Compilers, Tools for Embedded Systems
(LCTES), 2005.

[TB96] D. L. Tennenhouse and V. G. Bose,The SpectrumWare approach to wireless signal pro-
cessing, Wireless Networks2 (1996), no. 1, 1–12.

[TCA07] W. Thies, V. Chandrasekhar, and S. Amarasinghe,A practical approach to exploiting
coarse-grained pipeline parallelism in C programs, International Symposium on Microar-
chitecture (MICRO), 2007.

[THA07] W. Thies, S. Hall, and S. Amarasinghe,Mapping stream programs into the compressed
domain, Tech. Report MIT-CSAIL-TR-2007-055, Massachusetts Institute of Technology,
2007,http://hdl.handle.net/1721.1/39651.

[Tip95] F. Tip, A survey of program slicing techniques, Journal of Programming Languages3
(1995), no. 3.

[TKA02] W. Thies, M. Karczmarek, and S. Amarasinghe,StreamIt: A language for streaming ap-
plications, International Conference on Compiler Construction (CC),2002.

[TKG+02] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Hoffmann, M. Brown,
and S. Amarasinghe,A common machine language for grid-based architectures, ACM
SIGARCH Computer Architecture News, 2002.

[TKM +02] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,B. Greenwald, H. Hoffman,
J.-W. Lee, P. Johnson, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal,The Raw microprocessor: A computational
fabric for software circuits and general purpose programs, IEEE MICRO22 (2002).

[TKS+05] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Amarasinghe,Teleport mes-
saging for distributed stream programs, Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2005.

[TLM +04] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff., I. Bratt, B. Greenwald, H. Hoffmann,
P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amaras-
inghe, and A. Agarwal,Evaluation of the Raw microprocessor: An exposed-wire-delay
architecture for ILP and streams, International Symposium on Computer Architecture
(ISCA), 2004.

[TPO06] D. Tarditi, S. Puri, and J. Oglesby,Accelerator: Using data parallelism to program GPUs
for general-purpose uses, International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2006.

[Tse89] P.-S. Tseng,A parallelizing compiler for disributed memory parallel computers, Ph.D.
thesis, Carnegie Mellon University, 1989.

[TZB99] J. Teich, E. Zitzler, and S. S. Bhattacharyya,3D exploration of software schedules for DSP
algorithms, International Workshop on Hardware/Software Codesign (CODES), 1999.

165

http://cag.csail.mit.edu/streamit/papers/streamit-lang-spec.pdf
http://hdl.handle.net/1721.1/39651

[U.S04] U.S. Geological Survey,Annual report of data sales, distribution, and archiving, National
Center for EROS, 2004,http://edc.usgs.gov/about/reports/sales2004.pdf.

[Vas98] B. Vasudev,Compressed-domain reverse play of MPEG video streams, SPIE Conference
on Multimedia Systems and Applications (1998), 237–248.

[VRR+07] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. August,Spec-
ulative decoupled software pipelining, Parallel Architectures and Compilation Techniques
(PACT), 2007.

[Wat06] D. Watkins,Mash Hits, The Guardian (2006).

[Wol82] M. Wolfe, Optimizing supercompilers for supercomputers, Ph.D. Thesis, University of
Illinois, Urbana-Champaign, 1982.

[Won04] J. Wong,Modeling the scalability of acyclic stream programs, M.Eng. Thesis, Mas-
sachusetts Institute of Technology, 2004.

[WPD01] R. C. Whaley, A. Petitet, and J. J. Dongarra,Automated empirical optimizations of soft-
ware and the ATLAS project, Parallel Computing27 (2001), no. 1–2, 3–35.

[WSA02] S. Wee, B. Shen, and J. Apostolopoulos,Compressed-domain video processing, HP Labs
Technical Report, HPL-2002282(2002).

[WTS+97] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,et al.,Baring it all to software:
Raw machines, IEEE Computer30 (1997), no. 9, 86–93.

[WZ94] A. Wyner and J. Ziv,The sliding-window Lempel-Ziv algorithm is asymptotically optimal,
Proceedings of the IEEE82 (1994), no. 6.

[Xio01] J. Xiong, Automatic optimization of DSP algorithms, Ph.D. Thesis, Univ. of Illinois at
Urbana-Champaign, 2001.

[XJJP01] J. Xiong, J. Johnson, R. W. Johnson, and D. A. Padua,SPL: A language and compiler
for DSP algorithms, Conference on Programming Language Design and Implementation
(PLDI), 2001, pp. 298–308.

[Zha07] X. D. Zhang,A streaming computation framework for the Cell processor, M.Eng. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, 2007.

[ZLRA08] D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe,A lightweight streaming layer for
multicore execution, Workshop on Design, Architecture, and Simulation of Chip Multi-
Processors (dasCMP), 2008.

[ZLSL05] D. Zhang, Z.-Z. Li, H. Song, and L. Liu,A programming model for an embedded media
processing architecture, International Symposium on Systems, Architectures, Modeling,
and Simulation (SAMOS), 2005.

[ZSdMNBY00] N. Ziviani, E. Silva de Moura, G. Navarro, and R.Baeza-Yates,Compression: A key for
next-generation text retrieval systems, IEEE Computer33 (2000), no. 11.

[ZTB00] E. Zitzler, J. Teich, and S. S. Bhattacharyya,Multidimensional exploration of software
implementations for DSP algorithms, Journal of VLSI Signal Processing24 (2000), no. 1,
83–98.

166

http://edc.usgs.gov/about/reports/sales2004.pdf

Appendix A

Example StreamIt Program

This appendix provides a complete program listing for a small StreamIt benchmark, ChannelVocoder.
The stream graph for this benchmark can be found in FigureB-9.

/**
* Author: Andrew Lamb
*
* This is a channel vocoder as described in MIT 6.555 Lab 2. Itssalient features
* are a filter bank, each of which contains a decimator after a bandpass filter.
*
* First the signal is conditioned using a lowpass filter with cutoff at 5000
* Hz. Then the signal is “center clipped” which basically means that very high and
* very low values are removed. The sampling rate is 8000 Hz.
*
* Then, the signal is sent both to a pitch detector and to a filter bank with 200 Hz
* wide windows (16 overall).
*
* Thus, each output is the combination of 16 band envelope values from the filter
* bank and a single pitch detector value. This value is eitherthe pitch if the
* sound was voiced or 0 if the sound was unvoiced.
**/

void−>void pipeline ChannelVocoder{
int PITCH WINDOW = 100; // the number of samples to base the pitch detection on
int DECIMATION = 50; // decimation factor
int NUM FILTERS = 16;

add FileReader<float>("input.dat");
// low pass filter to filter out high freq noise
add LowPassFilter(1, (2*pi*5000)/8000, 64);
add float−>float splitjoin {

split duplicate;
add PitchDetector(PITCH WINDOW, DECIMATION);
add VocoderFilterBank(NUM FILTERS, DECIMATION);
join roundrobin (1, NUM FILTERS);

}
add FileWriter<float>("output.dat");

}

167

/**
* Pitch detector.
**/

float−>float pipeline PitchDetector(int winsize, int decimation) {
add CenterClip();
add CorrPeak(winsize, decimation);

}

/**
* The channel vocoder filterbank.
**/

float−>float splitjoin VocoderFilterBank(int N, int decimation) {
split duplicate;
for (int i=0; i<N; i++) {

add FilterDecimate(i, decimation);
}
join roundrobin ;

}

/**
* A channel of the vocoder filter bank – has a band pass filter centered at i*200
* Hz followed by a decimator with decimation rate of decimation.
**/

float−>float pipeline FilterDecimate(int i, int decimation) {
add BandPassFilter(2, 400*i, 400*(i+1), 64);
add Compressor(decimation);

}

/**
* This filter “center clips” the input value so that it is always within the range
* of -.75 to .75
**/

float−>float filter CenterClip{
float MIN = −0.75;
float MAX = 0.75;
work pop 1 push 1 {

float t = pop();
if (t<MIN) {

push(MIN);
} else if (t>MAX) {

push(MAX);
} else {

push(t);
}

}
}

168

/**
* This filter calculates the autocorrelation of the next winsize elements and then
* chooses the max peak. If the max peak is under a threshold we output a zero. If
* the max peak is above the threshold, we simply output its value.
**/

float−>float filter CorrPeak(int winsize, int decimation) {
float THRESHOLD = 0.07;
work peek winsize push 1 pop decimation{

float[winsize] autocorr; // auto correlation
for (int i=0; i<winsize; i++) {

float sum = 0;
for (int j=i; j<winsize; j++) {

sum += peek(i)*peek(j);
}
autocorr[i] = sum/winsize;

}

// armed with the auto correlation, find the max peak in a real vocoder, we
// would restrict our attention to the first few values of the auto corr to
// catch the initial peak due to the fundamental frequency.
float maxpeak= 0;
for (int i=0; i<winsize; i++) {

if (autocorr[i]>maxpeak) {
maxpeak= autocorr[i];

}
}

// output the max peak if it is above the threshold.
// otherwise output zero.
if (maxpeak> THRESHOLD) {

push(maxpeak);
} else {

push(0);
}
for (int i=0; i<decimation; i++) {

pop();
}

}
}

169

/**
* A simple adder which takes in N items and pushes out the sum ofthem.
**/

float−>float filter Adder(int N) {
work pop N push 1 {

float sum = 0;
for (int i=0; i<N; i++) {

sum += pop();
}
push(sum);

}
}

/**
* This is a bandpass filter with the rather simple implementation of a low pass
* filter cascaded with a high pass filter. The relevant parameters are: end of
* stopband=ws and end of passband=wp, such that 0<=ws<=wp<=pi gain of passband and
* size of window for both filters. Note that the high pass and low pass filters
* currently use a rectangular window.
**/

float−>float pipeline BandPassFilter(float gain, float ws, float wp, int numSamples) {
add LowPassFilter(1, wp, numSamples);
add HighPassFilter(gain, ws, numSamples);

}

/**
* This filter compresses the signal at its input by a factor M.
* Eg it inputs M samples, and only outputs the first sample.
**/

float−>float filter Compressor(int M) {
work peek M pop M push 1 {

push(pop());
for (int i=0; i<(M−1); i++) {

pop();
}

}
}

170

/**
* Simple FIR high pass filter with gain=g, stopband ws(in radians) and N samples.
*
* Eg
* ^ H(ê jw)
* |
* ——— | ———
* | | | | |
* | | | | |
* <———————————-> w
* pi-wc pi pi+wc
*
* This implementation is a FIR filter is a rectangularly windowed sinc function (eg
* sin(x)/x) multiplied by ê(j*pi*n)=(-1) ^n, which is the optimal FIR high pass
* filter in mean square error terms.
*
* Specifically, h[n] has N samples from n=0 to (N-1)
* such that h[n] = (-1)̂ (n-N/2) * sin(cutoffFreq*pi*(n-N/2))/(pi*(n-N/2)).
* where cutoffFreq is pi-ws
* and the field h holds h[-n].
*/

float−>float filter HighPassFilter(float g, float ws, int N) {
float[N] h;

/* since the impulse response is symmetric, I don’t worry about reversing h[n]. */
init {

int OFFSET= N/2;
float cutoffFreq = pi − ws;
for (int i=0; i<N; i++) {

int idx = i + 1;
/* flip signs every other sample (done this way so that it gets array destroyed) */
int sign = ((i%2) == 0) ? 1 : −1;
// generate real part
if (idx == OFFSET)

/* take care of div by 0 error (lim x->oo of sin(x)/x actually equals 1)*/
h[i] = sign * g * cutoffFreq / pi;

else
h[i] = sign * g * sin(cutoffFreq * (idx−OFFSET)) / (pi*(idx−OFFSET));

}
}

/* implement the FIR filtering operation as the convolution sum. */
work peek N pop 1 push 1 {

float sum = 0;
for (int i=0; i<N; i++) {

sum += h[i]*peek(i);
}
push(sum);
pop();

}
}

171

/**
* Simple FIR low pass filter with gain=g, wc=cutoffFreq(in radians) and N samples.
* Eg:
* ^ H(ê jw)
* |
* ———————
* | | |
* | | |
* <———————————-> w
* -wc wc
*
* This implementation is a FIR filter is a rectangularly windowed sinc function (eg
* sin(x)/x), which is the optimal FIR low pass filter in mean square error terms.
*
* Specifically, h[n] has N samples from n=0 to (N-1)
* such that h[n] = sin(cutoffFreq*pi*(n-N/2))/(pi*(n-N/2)).
* and the field h holds h[-n].
*/

float−>float filter LowPassFilter(float g, float cutoffFreq, int N) {
float[N] h;

/* since the impulse response is symmetric, I don’t worry about reversing h[n]. */
init {

int OFFSET= N/2;
for (int i=0; i<N; i++) {

int idx = i + 1;
// generate real part
if (idx == OFFSET)

/* take care of div by 0 error (lim x->oo of sin(x)/x actually equals 1)*/
h[i] = g * cutoffFreq / pi;

else
h[i] = g * sin(cutoffFreq * (idx−OFFSET)) / (pi*(idx−OFFSET));

}
}

/* Implement the FIR filtering operation as the convolution sum. */
work peek N pop 1 push 1 {

float sum = 0;
for (int i=0; i<N; i++) {

sum += h[i]*peek(i);
}
push(sum);
pop();

}
}

172

Appendix B

Graphs of StreamIt Benchmarks

This appendix contains stream graphs for the StreamIt benchmark suite (detailed in Table2-10).
As described in Table2-11, many of the graphs are parameterized, and we often assign small values
to the parameters in order to facilitate visualization and comprehension of the graph. Graphs with
different sizes, shapes, and work distributions can be obtained by varying the parameters.

The stream graphs reflect the structure of the original inputprogram, prior to any transforma-
tions by the compiler. In practice, the compiler canonicalizes each graph by removing redundant
synchronization points, flattening nested pipelines, and collapsing data-parallel splitjoins. With the
exception of GMTI and MPEG21, this canonicalization is disabled to illustrate the programmer’s
original intent.

In the stream graphs, each filter is annotated with the following information:

• The filter name.

• The number of items2 pushed and popped per execution of the filter.

• The estimated work (number of cycles) per execution of the filter.

• Peeking filters are annotated with the number of items peeked(but not popped) per execution.

• Stateful filters are annotated as such.

Filters are also colored to indicate their approximate amount of work relative to other filters
in the same program. The heaviest and lightest filters in a program are assigned fixed colors, and
intermediate filters are colored on a linear scale between the two:

most work

least work

Work estimates are gathered statically and may differ by 2x or more from actual runtime values.
Work estimates are not available in some programs due to dynamic rates or Java subroutines. Also,
some individual filters are marked as having “unknown” work in cases where the work estimator
is known to perform poorly (while loops, recursive functions, etc.)

1The stream graphs for GMTI and MPEG2 are canonicalized by thecompiler, in order to reduce their size and
improve the visualization.

2Some items may contain multiple values. For example, if a data channel carries items of array type, then the
graphs illustrate the number of arrays pushed and popped perexecution.

173

dcalc

SourceAHL

GenA

ConvMat

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

extFilt

AddZeroBeg

AddZeroEnd

SplitMat

DelMat DelMat DelMat DelMat DelMat DelMat DelMat DelMat

AandL

GenL

RowCol

choldAha

AhrdAhA

Ahrd

AhrL

multvectdoub

sourcerSplit

vectdouble

vectdouble

split_ahrd

vectdouble

dsolve

LrL

Ahrchold

Lest

error_split

vectdouble

LrL

Sourceh

work=128

I/O: 0->16

roundrobin(2,2,2,2,2,2,2,2)

roundrobin(0,2) roundrobin(0,2) roundrobin(0,2) roundrobin(0,2) roundrobin(0,2) roundrobin(0,2) roundrobin(0,2) roundrobin(0,2)

roundrobin(9,9,9,9,9,9,9,9)

roundrobin(9,9,9,9,9,9,9,9)

ZeroGen

work=3

I/O: 0->1

Identity

work=12

I/O: 1->1

roundrobin(1,2)

FirFilter

work=90

I/O: 1->1

*** PEEKS 1 AHEAD ***

roundrobin(3,0)

Identity

work=18

I/O: 1->1

ZeroGen

work=18

I/O: 0->1

roundrobin(3,6)

ZeroGen

work=3

I/O: 0->1

Identity

work=12

I/O: 1->1

roundrobin(1,2)

FirFilter

work=90

I/O: 1->1

*** PEEKS 1 AHEAD ***

roundrobin(3,0)

Identity

work=18

I/O: 1->1

ZeroGen

work=18

I/O: 0->1

roundrobin(3,6)

ZeroGen

work=3

I/O: 0->1

Identity

work=12

I/O: 1->1

roundrobin(1,2)

FirFilter

work=90

I/O: 1->1

*** PEEKS 1 AHEAD ***

roundrobin(3,0)

Identity

work=18

I/O: 1->1

ZeroGen

work=18

I/O: 0->1

roundrobin(3,6)

ZeroGen

work=3

I/O: 0->1

Identity

work=12

I/O: 1->1

roundrobin(1,2)

FirFilter

work=90

I/O: 1->1

*** PEEKS 1 AHEAD ***

roundrobin(3,0)

Identity

work=18

I/O: 1->1

ZeroGen

work=18

I/O: 0->1

roundrobin(3,6)

ZeroGen

work=3

I/O: 0->1

Identity

work=12

I/O: 1->1

roundrobin(1,2)

FirFilter

work=90

I/O: 1->1

*** PEEKS 1 AHEAD ***

roundrobin(3,0)

Identity

work=18

I/O: 1->1

ZeroGen

work=18

I/O: 0->1

roundrobin(3,6)

ZeroGen

work=3

I/O: 0->1

Identity

work=12

I/O: 1->1

roundrobin(1,2)

FirFilter

work=90

I/O: 1->1

*** PEEKS 1 AHEAD ***

roundrobin(3,0)

Identity

work=18

I/O: 1->1

ZeroGen

work=18

I/O: 0->1

roundrobin(3,6)

ZeroGen

work=3

I/O: 0->1

Identity

work=12

I/O: 1->1

roundrobin(1,2)

FirFilter

work=90

I/O: 1->1

*** PEEKS 1 AHEAD ***

roundrobin(3,0)

Identity

work=18

I/O: 1->1

ZeroGen

work=18

I/O: 0->1

roundrobin(3,6)

ZeroGen

work=3

I/O: 0->1

Identity

work=12

I/O: 1->1

roundrobin(1,2)

FirFilter

work=90

I/O: 1->1

*** PEEKS 1 AHEAD ***

roundrobin(3,0)

Identity

work=18

I/O: 1->1

ZeroGen

work=18

I/O: 0->1

roundrobin(3,6)

duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1) duplicate(1,1,1,1)

roundrobin(4,4,4,4,4,4,4,4)

duplicate(1,1)

Identity

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

roundrobin(1,1,1,1)

Identity

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

roundrobin(1,1,1,1)

Identity

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

roundrobin(1,1,1,1)

Identity

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

roundrobin(1,1,1,1)

Identity

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

roundrobin(1,1,1,1)

Identity

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

roundrobin(1,1,1,1)

Identity

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

roundrobin(1,1,1,1)

Identity

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

Delay

work=54

I/O: 1->1

roundrobin(1,1,1,1)

Identity

work=1728

I/O: 1->1

roundrobin(1,1)

roundrobin(288,1056)

roundrobin(816,528)

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

Identity

work=54

I/O: 1->1

roundrobin(9,9)

SelfProd

work=10944

I/O: 288->528

duplicate(1,1)

chold

work=34048

I/O: 528->528

Identity

work=3168

I/O: 1->1

roundrobin(528,528)

roundrobin(288,528)

Identity

work=3168

I/O: 1->1

roundrobin(96,528)

roundrobin(32,592)

roundrobin(0,288) duplicate(1,1)

roundrobin(64,1056)

roundrobin(32,1088)

Sourcer

work=63

I/O: 0->9

Identity

work=1728

I/O: 1->1

roundrobin(9,288)

multvect

work=3391

I/O: 297->32

duplicate(1,1)

Identity

work=192

I/O: 1->1

Identity

work=192

I/O: 1->1

roundrobin(32,32)

Identity

work=3168

I/O: 1->1

Identity

work=3168

I/O: 1->1

roundrobin(528,528)

duplicate(1,1) roundrobin(560,528)

roundrobin(64,32)

Identity

work=192

I/O: 1->1

Identity

work=192

I/O: 1->1

roundrobin(32,32)

forw

work=3168

I/O: 560->32

Identity

work=3168

I/O: 1->1

roundrobin(32,528)

backs

work=3200

I/O: 560->32

Identity

work=192

I/O: 1->1

roundrobin(64,528)

roundrobin(32,1056)

roundrobin(560,528)

error_est

work=643

I/O: 64->1

Identity

work=3168

I/O: 1->1

roundrobin(1,528)

choldsigma

work=36771

I/O: 529->528

duplicate(1,1)

Identity

work=3168

I/O: 1->1

Identity

work=3168

I/O: 1->1

roundrobin(528,528)

forw

work=3168

I/O: 560->32

Identity

work=3168

I/O: 1->1

roundrobin(32,528)

backs

work=3200

I/O: 560->32

SinkD

work=256

I/O: 32->0

Figure B-1: Stream graph for 3GPP.

174

transmit

add_seqs

cyclicIFFT

IFFTKernel

FFTReorder

header_and_data

encoded_header

conv_code

conv_code_pipeline

permute

insert_pilots

insert_zeros_complex

encoded_data

insert_zeros

scramble

interleave_scramble_seq

conv_code

conv_code_pipeline

permute

permute

swapHalf

insert_pilots

insert_zeros_complex

cyclicIFFT

IFFTKernel

FFTReorder

append_symbols

roundrobin(0,0)

roundrobin(0,0)

FileReader

work=0

I/O: 0->1

roundrobin(321,561)

roundrobin(320,2,560)

short_seq

work=320

I/O: 0->64

long_seq

work=320

I/O: 0->64

roundrobin(64,64)

fftshift_1d

work=1344

I/O: 64->64

FFTReorderSimple

work=1664

I/O: 64->64

FFTReorderSimple

work=1664

I/O: 32->32

FFTReorderSimple

work=1664

I/O: 16->16

FFTReorderSimple

work=1664

I/O: 8->8

FFTReorderSimple

work=1664

I/O: 4->4

CombineIDFT

work=10176

I/O: 2->2

CombineIDFT

work=10048

I/O: 4->4

CombineIDFT

work=9984

I/O: 8->8

CombineIDFT

work=9952

I/O: 16->16

CombineIDFT

work=9936

I/O: 32->32

CombineIDFTFinal

work=10952

I/O: 64->64

duplicate(1,1,1,1)

remove_first

work=832

I/O: 64->32

Identity

work=768

I/O: 1->1

Identity

work=768

I/O: 1->1

remove_last

work=646

I/O: 64->1

roundrobin(32,64,64,1)

roundrobin(1,159,2,159,1)

halve

work=134

I/O: 1->1

Identity

work=954

I/O: 1->1

halve_and_combine

work=153

I/O: 2->1

Identity

work=954

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,159,1,159,1)

roundrobin(0,800)

generate_header

work=157

I/O: 0->24

roundrobin(0,800,0)

roundrobin(64,384)

fftshift_1d

work=4704

I/O: 64->64

Anonymous

work=144

I/O: 1->1

conv_code_filter

work=1128

I/O: 1->2

*** PEEKS 6 AHEAD ***

roundrobin(16,16,16)

Identity

work=96

I/O: 1->1

Identity

work=96

I/O: 1->1

Identity

work=96

I/O: 1->1

roundrobin(1,1,1)

BPSK

work=576

I/O: 1->1

roundrobin(48,0)

Identity

work=288

I/O: 1->1

header_pilot_generator

work=20

I/O: 0->4

roundrobin(48,4)

Anonymous

work=443

I/O: 52->52

roundrobin(0,26,0,26,0)

zero_gen_complex

work=42

I/O: 0->1

Identity

work=156

I/O: 1->1

zero_gen_complex

work=7

I/O: 0->1

Identity

work=156

I/O: 1->1

zero_gen_complex

work=35

I/O: 0->1

roundrobin(6,26,1,26,5)

zero_gen

work=48

I/O: 0->1

Identity

work=4800

I/O: 1->1

zero_gen

work=144

I/O: 0->1

roundrobin(16,800,48)

roundrobin(1,0)

Identity

work=5184

I/O: 1->1

scramble_seq

work=44928

I/O: 0->1

*** STATEFUL ***

roundrobin(1,1)

xor_pair

work=8640

I/O: 2->1

zero_tail_bits

work=6912

I/O: 864->864

Anonymous

work=5184

I/O: 1->1

conv_code_filter

work=40608

I/O: 1->2

*** PEEKS 6 AHEAD ***

puncture

work=7776

I/O: 6->4

roundrobin(16,16,16,16,16,16,16,16,16,16,16,16)

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

Identity

work=576

I/O: 1->1

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1)

roundrobin(12,12)

Identity

work=3456

I/O: 1->1

swap

work=3456

I/O: 2->2

roundrobin(12,12)

QAM

work=33120

I/O: 4->1

roundrobin(48,0)

Identity

work=1728

I/O: 1->1

pilot_generator

work=1350

I/O: 0->4

*** STATEFUL ***

roundrobin(48,4)

Anonymous

work=2658

I/O: 52->52

roundrobin(0,26,0,26,0)

zero_gen_complex

work=252

I/O: 0->1

Identity

work=936

I/O: 1->1

zero_gen_complex

work=42

I/O: 0->1

Identity

work=936

I/O: 1->1

zero_gen_complex

work=210

I/O: 0->1

roundrobin(6,26,1,26,5)

FFTReorderSimple

work=5824

I/O: 64->64

FFTReorderSimple

work=5824

I/O: 32->32

FFTReorderSimple

work=5824

I/O: 16->16

FFTReorderSimple

work=5824

I/O: 8->8

FFTReorderSimple

work=5824

I/O: 4->4

CombineIDFT

work=35616

I/O: 2->2

CombineIDFT

work=35168

I/O: 4->4

CombineIDFT

work=34944

I/O: 8->8

CombineIDFT

work=34832

I/O: 16->16

CombineIDFT

work=34776

I/O: 32->32

CombineIDFTFinal

work=38332

I/O: 64->64

duplicate(1,1,1)

remove_first

work=2576

I/O: 64->16

Identity

work=2688

I/O: 1->1

remove_last

work=2261

I/O: 64->1

roundrobin(16,64,1)

roundrobin(1,486,79,1)

Identity

work=6

I/O: 1->1

roundrobin(79,2)

Identity

work=474

I/O: 1->1

halve

work=134

I/O: 1->1

roundrobin(1,480,79,1)

Identity

work=2844

I/O: 1->1

halve_and_combine

work=918

I/O: 2->1

roundrobin(79,1)

Identity

work=1920

I/O: 1->1

halve_and_combine

work=153

I/O: 2->1

Identity

work=3360

I/O: 1->1

roundrobin(320,1,560)

output_c

work=11453

I/O: 1->0

Figure B-2: Stream graph for 802.11a.

175

Audiobeam

calculate_single_position

process_signal

do_beamforming

FileReader

work=0

I/O: 0->1

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Interpolate

work=22

I/O: 1->1

*** PEEKS 1 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 1 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 2 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 3 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 4 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 5 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 5 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 6 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 7 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 8 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 9 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 10 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 11 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 12 AHEAD ***

Interpolate

work=22

I/O: 1->1

*** PEEKS 13 AHEAD ***

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Average

work=140

I/O: 15->1

Printer

work=25

I/O: 1->0

*** STATEFUL ***

Figure B-3: Stream graph for Audiobeam.

176

AutoCor

Cor

OneSource

work=352

I/O: 0->1

*** STATEFUL ***

duplicate(1,1,1,1,1,1,1,1)

Anonymous

work=579

I/O: 32->1

Anonymous

work=566

I/O: 32->1

Anonymous

work=553

I/O: 32->1

Anonymous

work=540

I/O: 32->1

Anonymous

work=527

I/O: 32->1

Anonymous

work=514

I/O: 32->1

Anonymous

work=501

I/O: 32->1

Anonymous

work=488

I/O: 32->1

roundrobin(1,1,1,1,1,1,1,1)

FloatPrinter

work=48

I/O: 1->0

Figure B-4: Stream graph for Autocor.

177

AutoBatcherSort

IntSource

work=208

I/O: 0->1

*** STATEFUL ***

BatcherStep

work=216

I/O: 16->16

BatcherStep

work=244

I/O: 16->16

BatcherStep

work=258

I/O: 16->16

BatcherStep

work=265

I/O: 16->16

IntPrinter

work=96

I/O: 1->0

Figure B-5: Stream graph for BitonicSort (coarse).

178

BitonicSort

StepOfMerge_Hier_Hier

StepOfMerge_Hier_child StepOfMerge_Hier_child StepOfMerge_Hier_child StepOfMerge_Hier_child

StepOfMerge

PartitionBitonicSequence PartitionBitonicSequence PartitionBitonicSequence PartitionBitonicSequence

StepOfMerge_Hier_Hier_Hier_Hier

StepOfMerge_Hier_Hier_Hier_child

StepOfMerge_Hier_Hier_child StepOfMerge_Hier_Hier_child

StepOfMerge_Hier_Hier_Hier_child

StepOfMerge_Hier_Hier_child StepOfMerge_Hier_Hier_child

StepOfMerge

PartitionBitonicSequence PartitionBitonicSequence

StepOfMerge_Hier_Hier

StepOfMerge_Hier_child

PartitionBitonicSequence PartitionBitonicSequence

StepOfMerge_Hier_child

PartitionBitonicSequence PartitionBitonicSequence

StepOfMerge_Hier_Hier

StepOfMerge_Hier_child StepOfMerge_Hier_child

PartitionBitonicSequence

StepOfLastMerge

PartitionBitonicSequence PartitionBitonicSequence

StepOfLastMerge_Hier_Hier

StepOfLastMerge_Hier_child

PartitionBitonicSequence PartitionBitonicSequence

StepOfLastMerge_Hier_child

PartitionBitonicSequence PartitionBitonicSequence

StepOfLastMerge_Hier_Hier

StepOfLastMerge_Hier_child StepOfLastMerge_Hier_child

KeySource

work=112

I/O: 0->16

roundrobin(4,4,4,4)

roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2)

roundrobin(4,4,4,4)

roundrobin(4,4,4,4)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4,4,4)

roundrobin(8,8)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(4,4) roundrobin(4,4)

roundrobin(8,8)

roundrobin(8,8)

roundrobin(2,2) roundrobin(2,2)

roundrobin(4,4)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

roundrobin(2,2) roundrobin(2,2)

roundrobin(4,4)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

roundrobin(1,1,1,1) roundrobin(1,1,1,1)

roundrobin(8,8)

roundrobin(8,8)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1,1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1,1,1)

roundrobin(4,4) roundrobin(4,4)

roundrobin(8,8)

roundrobin(8,8)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2,2,2) roundrobin(2,2,2,2)

roundrobin(8,8)

roundrobin(1,1,1,1,1,1,1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2,2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2,2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(8,8)

roundrobin(1,1,1,1) roundrobin(1,1,1,1)

roundrobin(8,8)

roundrobin(8,8)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1,1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1,1,1)

roundrobin(4,4) roundrobin(4,4)

roundrobin(8,8)

roundrobin(8,8)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2,2,2) roundrobin(2,2,2,2)

roundrobin(8,8)

KeyPrinter

work=126

I/O: 16->0

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2,2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2,2,2)

Figure B-6: Stream graph for BitonicSort (fine, iterative).

179

BitonicSortRecursive

BitonicSortKernelRecursive

BitonicSortKernelRecursive

BitonicSortKernelRecursive BitonicSortKernelRecursive

BitonicSortKernelRecursive

BitonicSortKernelRecursive BitonicSortKernelRecursive

BitonicMergeRecursive BitonicMergeRecursive

BitonicSortKernelRecursive

BitonicSortKernelRecursive

BitonicSortKernelRecursive BitonicSortKernelRecursive

BitonicSortKernelRecursive

BitonicSortKernelRecursive BitonicSortKernelRecursive

BitonicMergeRecursive

BitonicMergeRecursive BitonicMergeRecursive

BitonicMergeRecursive

BitonicMergeRecursive BitonicMergeRecursive

KeySource

work=112

I/O: 0->16

roundrobin(8,8)

roundrobin(4,4) roundrobin(4,4)

roundrobin(8,8)

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(2,2) roundrobin(2,2)

roundrobin(4,4)

roundrobin(1,1,1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

CompareExchange

work=28

I/O: 2->2

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1,1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

roundrobin(2,2) roundrobin(2,2)

roundrobin(4,4)

CompareExchange

work=56

I/O: 2->2

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

CompareExchange

work=28

I/O: 2->2

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

CompareExchange

work=28

I/O: 2->2

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(8,8)

roundrobin(1,1,1,1) roundrobin(1,1,1,1)

roundrobin(8,8)

KeyPrinter

work=128

I/O: 16->0

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1,1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1,1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

CompareExchange

work=14

I/O: 2->2

CompareExchange

work=14

I/O: 2->2

roundrobin(2,2)

Figure B-7: Stream graph for BitonicSort (fine, recursive).

180

BubbleSort

IntSource

work=13

I/O: 0->1

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

Bubble

work=23

I/O: 1->1

*** PEEKS 1 AHEAD ***

*** STATEFUL ***

IntPrinter

work=6

I/O: 1->0

Figure B-8: Stream graph for BubbleSort.

181

ChannelVocoder

PitchDetector

VocoderFilterBank

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FilterDecimate

BandPassFilter

FileReader

work=0

I/O: 0->1

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

duplicate(1,1)

CenterClip

work=450

I/O: 1->1

duplicate(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

roundrobin(1,16)

FileWriter

work=0

I/O: 1->0

CorrPeak

work=64055

I/O: 50->1

*** PEEKS 50 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

LowPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

HighPassFilter

work=35500

I/O: 1->1

*** PEEKS 63 AHEAD ***

Compressor

work=251

I/O: 50->1

Figure B-9: Stream graph for ChannelVocoder.

182

chol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

break

rchol

source

work=640

I/O: 0->136

divises

work=1873

I/O: 136->136

updates

work=1058

I/O: 136->136

roundrobin(16,120)

Identity

work=96

I/O: 1->1

divises

work=1713

I/O: 120->120

roundrobin(16,120)

recon

work=9088

I/O: 136->136

updates

work=988

I/O: 120->120

roundrobin(15,105)

Identity

work=90

I/O: 1->1

divises

work=1561

I/O: 105->105

roundrobin(15,105)

updates

work=918

I/O: 105->105

roundrobin(14,91)

Identity

work=84

I/O: 1->1

divises

work=1417

I/O: 91->91

roundrobin(14,91)

updates

work=848

I/O: 91->91

roundrobin(13,78)

Identity

work=78

I/O: 1->1

divises

work=1281

I/O: 78->78

roundrobin(13,78)

updates

work=778

I/O: 78->78

roundrobin(12,66)

Identity

work=72

I/O: 1->1

divises

work=1153

I/O: 66->66

roundrobin(12,66)

updates

work=708

I/O: 66->66

roundrobin(11,55)

Identity

work=66

I/O: 1->1

divises

work=1033

I/O: 55->55

roundrobin(11,55)

updates

work=638

I/O: 55->55

roundrobin(10,45)

Identity

work=60

I/O: 1->1

divises

work=921

I/O: 45->45

roundrobin(10,45)

updates

work=568

I/O: 45->45

roundrobin(9,36)

Identity

work=54

I/O: 1->1

divises

work=817

I/O: 36->36

roundrobin(9,36)

updates

work=498

I/O: 36->36

roundrobin(8,28)

Identity

work=48

I/O: 1->1

divises

work=721

I/O: 28->28

roundrobin(8,28)

updates

work=428

I/O: 28->28

roundrobin(7,21)

Identity

work=42

I/O: 1->1

divises

work=633

I/O: 21->21

roundrobin(7,21)

updates

work=358

I/O: 21->21

roundrobin(6,15)

Identity

work=36

I/O: 1->1

divises

work=553

I/O: 15->15

roundrobin(6,15)

updates

work=288

I/O: 15->15

roundrobin(5,10)

Identity

work=30

I/O: 1->1

divises

work=481

I/O: 10->10

roundrobin(5,10)

updates

work=218

I/O: 10->10

roundrobin(4,6)

Identity

work=24

I/O: 1->1

divises

work=417

I/O: 6->6

roundrobin(4,6)

updates

work=148

I/O: 6->6

roundrobin(3,3)

Identity

work=18

I/O: 1->1

divises

work=361

I/O: 3->3

roundrobin(3,3)

updates

work=78

I/O: 3->3

roundrobin(2,1)

Identity

work=12

I/O: 1->1

divises

work=313

I/O: 1->1

roundrobin(2,1)

updates

work=8

I/O: 1->1

sink

work=672

I/O: 136->0

Figure B-10: Stream graph for Cholesky.

183

ComparisonCounting

CountSortSplit

IntSource

work=208

I/O: 0->1

*** STATEFUL ***

duplicate(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Counter

work=198

I/O: 16->1

Identity

work=96

I/O: 1->1

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,16)

RearrangeIndices

work=272

I/O: 32->16

IntPrinter

work=96

I/O: 1->0

Figure B-11: Stream graph for ComparisonCounting.

184

CrcEncoder32Test

CrcFeedbackLoop

FeedbackBodyStream

CrcInputFilter

work=3

I/O: 0->1

roundrobin(1,1)

InitialAdditionFilter

work=20

I/O: 2->2

duplicate(1,1)

Identity

work=6

I/O: 1->1

IntPrinter

work=6

I/O: 1->0

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

AdditionFilter

work=20

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

ShiftRegisterFilter

work=12

I/O: 2->2

Identity

work=12

I/O: 1->1

FeedbackEndFilter

work=9

I/O: 2->1

Figure B-12: Stream graph for CRC.

185

DCT

bitrev

recurse

DCTcore

bitrev

recurse

DCTcore

bitrev

recurse

reordDCT

reordDCT

bitrev

recurse

reordDCT

reordDCT

bitrev

recurse

DCTcore

bitrev

recurse

reordDCT

reordDCT

bitrev

recurse

reordDCT

source

work=48

I/O: 0->4

roundrobin(8,8)

Identity

work=48

I/O: 1->1

reversal

work=104

I/O: 8->8

roundrobin(8,8)

decimate

work=240

I/O: 16->16

roundrobin(8,8)

roundrobin(4,4) roundrobin(4,4)

roundrobin(1,1)

sink

work=128

I/O: 16->0

Identity

work=24

I/O: 1->1

reversal

work=52

I/O: 4->4

roundrobin(4,4)

decimate

work=120

I/O: 8->8

roundrobin(4,4)

roundrobin(2,2) roundrobin(2,2)

roundrobin(1,1)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=21

I/O: 2->2

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=47

I/O: 4->4

outmix

work=21

I/O: 2->2

Identity

work=24

I/O: 1->1

reversal

work=52

I/O: 4->4

roundrobin(4,4)

decimate

work=120

I/O: 8->8

roundrobin(4,4)

roundrobin(2,2) roundrobin(2,2)

roundrobin(1,1)

outmix

work=99

I/O: 8->8

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=21

I/O: 2->2

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=47

I/O: 4->4

outmix

work=21

I/O: 2->2

Figure B-13: Stream graph for DCT (float).

186

DCT2D

rows

DCTcore

bitrev

recurse

reordDCT

DCTcore

bitrev

recurse

reordDCT

DCTcore

bitrev

recurse

reordDCT

DCTcore

bitrev

recurse

reordDCT

rows

DCTcore

bitrev

recurse

reordDCT

DCTcore

bitrev

recurse

reordDCT

DCTcore

bitrev

recurse

reordDCT

DCTcore

bitrev

recurse

reordDCT

source

work=80

I/O: 0->16

roundrobin(4,4,4,4)

roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2)

roundrobin(1,1,1,1)

roundrobin(4,4,4,4)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=21

I/O: 2->2

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=21

I/O: 2->2

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=21

I/O: 2->2

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=21

I/O: 2->2

roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2)

roundrobin(1,1,1,1)

sink

work=128

I/O: 16->0

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=21

I/O: 2->2

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=21

I/O: 2->2

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=21

I/O: 2->2

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

decimate

work=60

I/O: 4->4

roundrobin(2,2)

TwoPointDCT

work=80

I/O: 2->2

TwoPointDCT

work=80

I/O: 2->2

roundrobin(1,1)

outmix

work=21

I/O: 2->2

Figure B-14: Stream graph for DCT2D (NxM, float).

187

DCT

DCT8x8_ieee

DCT_2D_reference_fine

DCT_1D_X_reference_fine

DCT_1D_Y_reference_fine

FileReader

work=0

I/O: 0->1

Anonymous

work=384

I/O: 1->1

roundrobin(8,8,8,8,8,8,8,8)

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

roundrobin(1,1,1,1,1,1,1,1)

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

DCT_1D_reference_fine

work=744

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

Anonymous

work=4864

I/O: 1->1

FileWriter

work=0

I/O: 1->0

Figure B-15: Stream graph for DCT2D (NxN, int, reference).

188

repeat pipeline round 14 additional times

Figure B-16: Stream graph for DES.

189

OneBitDToA

OverSampler

NoiseShaper

DataSource

work=13

I/O: 0->1

*** STATEFUL ***

Expander

work=11

I/O: 1->2

LowPassFilter

work=1420

I/O: 1->1

*** PEEKS 63 AHEAD ***

Expander

work=22

I/O: 1->2

LowPassFilter

work=2840

I/O: 1->1

*** PEEKS 63 AHEAD ***

Expander

work=44

I/O: 1->2

LowPassFilter

work=5680

I/O: 1->1

*** PEEKS 63 AHEAD ***

Expander

work=88

I/O: 1->2

LowPassFilter

work=11360

I/O: 1->1

*** PEEKS 63 AHEAD ***

roundrobin(1,1)

AdderFilter

work=176

I/O: 2->1

roundrobin(1,1)

Delay

work=96

I/O: 1->1

LowPassFilter

work=45152

I/O: 1->1

*** PEEKS 255 AHEAD ***

QuantizerAndError

work=208

I/O: 1->2

DataSink

work=96

I/O: 1->0

Figure B-17: Stream graph for DToA.

190

FAT_test

FAT

WideBand

BandProc

SubAnalysis

Block45

ElPipe

PulseCmp

DopFilt

FFTVect

FFTKernel3

AnonFilter_a4

FFTReorder

SubSynth

BandProc

SubAnalysis

Block45

ElPipe

PulseCmp

DopFilt

FFTVect

FFTKernel3

AnonFilter_a4

FFTReorder

SubSynth

BandProc

SubAnalysis

Block45

ElPipe

PulseCmp

DopFilt

FFTVect

FFTKernel3

AnonFilter_a4

FFTReorder

SubSynth

BandProc

SubAnalysis

Block45

ElPipe

PulseCmp

DopFilt

FFTVect

FFTKernel3

AnonFilter_a4

FFTReorder

SubSynth

CFAR

IntSource

duplicate

FormChg20 FormChg20 FormChg20 FormChg20

Target

Print3d

roundrobin(1, 1, 1, 1)

FormChg20

CFAR_Vect

FormChg21Real

FormChg21

AdapBeam

roundrobin(1024, 32)

GenCub

streamit_library_Identity

roundrobin(1024, 32)

STAP

FormChg20

UpSamp

FreqShift

arrayFIR

DownSamp

arrayFIR

FormChg20

arrayFIR

FormChg21

Chg40

DecompVect

Chg41

DegenTetr

AnonFilter_a0

CompVect

FFTReorderSimple

FFTReorderSimple

CombineDFT

AnonFilter_a1

FFTReorderSimple

CombineDFT

CombineDFT

CombineDFT

CombineDFT

FFTReorderSimple

arrayFIR

FreqShift

FormChg21

FormChg21

AdapBeam

roundrobin(1024, 32)

GenCub

streamit_library_Identity

roundrobin(1024, 32)

STAP

FormChg20

UpSamp

FreqShift

arrayFIR

DownSamp

arrayFIR

FormChg20

arrayFIR

FormChg21

Chg40

DecompVect

Chg41

DegenTetr

AnonFilter_a0

CompVect

FFTReorderSimple

FFTReorderSimple

CombineDFT

AnonFilter_a1

FFTReorderSimple

CombineDFT

CombineDFT

CombineDFT

CombineDFT

FFTReorderSimple

arrayFIR

FreqShift

FormChg21

FormChg21

AdapBeam

roundrobin(1024, 32)

GenCub

streamit_library_Identity

roundrobin(1024, 32)

STAP

FormChg20

UpSamp

FreqShift

arrayFIR

DownSamp

arrayFIR

FormChg20

arrayFIR

FormChg21

Chg40

DecompVect

Chg41

DegenTetr

AnonFilter_a0

CompVect

FFTReorderSimple

FFTReorderSimple

CombineDFT

AnonFilter_a1

FFTReorderSimple

CombineDFT

CombineDFT

CombineDFT

CombineDFT

FFTReorderSimple

arrayFIR

FreqShift

FormChg21

FormChg21

AdapBeam

roundrobin(1024, 32)

GenCub

streamit_library_Identity

roundrobin(1024, 32)

STAP

FormChg20

UpSamp

FreqShift

arrayFIR

DownSamp

arrayFIR

FormChg20

arrayFIR

FormChg21

Chg40

DecompVect

Chg41

DegenTetr

AnonFilter_a0

CompVect

FFTReorderSimple

FFTReorderSimple

CombineDFT

AnonFilter_a1

FFTReorderSimple

CombineDFT

CombineDFT

CombineDFT

CombineDFT

FFTReorderSimple

arrayFIR

FreqShift

FormChg21

Figure B-18: Stream graph for FAT.

191

FFT

FFTKernel

FFTReorder

FFTTestSource

work=632

I/O: 0->128

FFTReorderSimple

work=963

I/O: 128->128

FFTReorderSimple

work=966

I/O: 64->64

FFTReorderSimple

work=972

I/O: 32->32

FFTReorderSimple

work=984

I/O: 16->16

FFTReorderSimple

work=1008

I/O: 8->8

CombineDFT

work=2464

I/O: 4->4

CombineDFT

work=2464

I/O: 8->8

CombineDFT

work=2464

I/O: 16->16

CombineDFT

work=2464

I/O: 32->32

CombineDFT

work=2464

I/O: 64->64

CombineDFT

work=2464

I/O: 128->128

FloatPrinter

work=768

I/O: 1->0

Figure B-19: Stream graph for FFT (coarse, default).

192

FFT

ButterflyGroup

ComputeStage

ButterflyGroup ButterflyGroup

ComputeStage_Hier_Hier

ComputeStage_Hier_child

ButterflyGroup ButterflyGroup

ComputeStage_Hier_child

ButterflyGroup ButterflyGroup

ComputeStage_Hier_Hier

ComputeStage_Hier_child

ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup

ComputeStage_Hier_child

ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup

ComputeStage_Hier_Hier

ComputeStage_Hier_child

ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup

ComputeStage_Hier_child

ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup ButterflyGroup

LastComputeStage_Hier_Hier

LastComputeStage_Hier_child LastComputeStage_Hier_child

FloatSource

work=1408

I/O: 0->2

*** STATEFUL ***

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

roundrobin(64,64)

roundrobin(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) roundrobin(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)

roundrobin(64,64)

roundrobin(64,64)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)

roundrobin(32,32) roundrobin(32,32)

roundrobin(64,64)

roundrobin(64,64)

roundrobin(2,2,2,2,2,2,2,2) roundrobin(2,2,2,2,2,2,2,2)

roundrobin(32,32)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2,2,2,2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2,2,2,2,2)

roundrobin(2,2,2,2,2,2,2,2) roundrobin(2,2,2,2,2,2,2,2)

roundrobin(32,32)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2,2,2,2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2,2,2,2,2)

roundrobin(16,16,16,16) roundrobin(16,16,16,16)

roundrobin(64,64)

roundrobin(64,64)

roundrobin(2,2,2,2) roundrobin(2,2,2,2) roundrobin(2,2,2,2) roundrobin(2,2,2,2)

roundrobin(16,16,16,16)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2)

roundrobin(2,2,2,2) roundrobin(2,2,2,2) roundrobin(2,2,2,2) roundrobin(2,2,2,2)

roundrobin(16,16,16,16)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2,2,2)

roundrobin(8,8,8,8,8,8,8,8) roundrobin(8,8,8,8,8,8,8,8)

roundrobin(64,64)

roundrobin(64,64)

roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2)

roundrobin(8,8,8,8,8,8,8,8)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2) roundrobin(2,2)

roundrobin(8,8,8,8,8,8,8,8)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(2,2)

roundrobin(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4) roundrobin(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)

roundrobin(64,64)

BitReverse

work=4035

I/O: 128->128

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

Butterfly

work=44

I/O: 4->4

roundrobin(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)

FloatPrinter

work=768

I/O: 2->0

Figure B-20: Stream graph for FFT (fine 1).

193

FFT

FFTKernel

bitreverse

bitreverse

bitreverse

bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse

bitreverse bitreverse

bitreverse

bitreverse bitreverse

FFTstage

split

split split

FFTstage

split

split split split split split split split split split split split split split split split split

FFTstage

split

split split split split split split split split

source

work=336

I/O: 0->8

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(32,32)

roundrobin(2,2)

roundrobin(1,1) roundrobin(1,1)

roundrobin(16,16)

roundrobin(1,1) roundrobin(1,1)

roundrobin(8,8)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(8,8)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(16,16)

roundrobin(1,1) roundrobin(1,1)

roundrobin(8,8)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(8,8)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(2,2)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1) roundrobin(1)

roundrobin(2,2)

roundrobin(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

butterfly

work=100

I/O: 2->2

roundrobin(1)

roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1)

roundrobin(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)

roundrobin(8,8,8,8,8,8,8,8)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1)

roundrobin(1,1,1,1) roundrobin(1,1,1,1) roundrobin(1,1,1,1) roundrobin(1,1,1,1) roundrobin(1,1,1,1) roundrobin(1,1,1,1) roundrobin(1,1,1,1) roundrobin(1,1,1,1)

roundrobin(8,8,8,8,8,8,8,8)

magnitude

work=20928

I/O: 1->1

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1,1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1,1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1,1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1,1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1,1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1,1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1,1,1)

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

butterfly

work=100

I/O: 2->2

roundrobin(1,1,1,1)

sink

work=384

I/O: 1->0

Figure B-21: Stream graph for FFT (fine 2).

194

FFT

FFTKernel

Butterfly

Butterfly

Butterfly

Butterfly

Butterfly

Butterfly

OneSource

work=192

I/O: 0->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

Multiply

work=256

I/O: 1->1

roundrobin(1,1)

duplicate(1,1)

Add

work=448

I/O: 2->1

Subtract

work=448

I/O: 2->1

roundrobin(1,1)

roundrobin(2,2)

Identity

work=192

I/O: 1->1

Multiply

work=256

I/O: 1->1

roundrobin(1,1)

duplicate(1,1)

Add

work=448

I/O: 2->1

Subtract

work=448

I/O: 2->1

roundrobin(2,2)

roundrobin(4,4)

Identity

work=192

I/O: 1->1

Multiply

work=256

I/O: 1->1

roundrobin(1,1)

duplicate(1,1)

Add

work=448

I/O: 2->1

Subtract

work=448

I/O: 2->1

roundrobin(4,4)

roundrobin(8,8)

Identity

work=192

I/O: 1->1

Multiply

work=256

I/O: 1->1

roundrobin(1,1)

duplicate(1,1)

Add

work=448

I/O: 2->1

Subtract

work=448

I/O: 2->1

roundrobin(8,8)

roundrobin(16,16)

Identity

work=192

I/O: 1->1

Multiply

work=256

I/O: 1->1

roundrobin(1,1)

duplicate(1,1)

Add

work=448

I/O: 2->1

Subtract

work=448

I/O: 2->1

roundrobin(16,16)

roundrobin(32,32)

Identity

work=192

I/O: 1->1

Multiply

work=256

I/O: 1->1

roundrobin(1,1)

duplicate(1,1)

Add

work=448

I/O: 2->1

Subtract

work=448

I/O: 2->1

roundrobin(32,32)

FloatPrinter

work=384

I/O: 1->0

Figure B-22: Stream graph for FFT (medium).

195

FHRFeedback

FFT_Kernel

FFTReorder

Check_Freq_Hop

Read_From_AtoD

work=75776

I/O: 0->256

roundrobin(512,256)

RFtoIF

work=14592

I/O: 768->512

*** STATEFUL ***

roundrobin(1,1)

Identity

work=1536

I/O: 1->1

__Output_Filter

work=2304

I/O: 1->0

FFTReorderSimple

work=3843

I/O: 512->512

FFTReorderSimple

work=3846

I/O: 256->256

FFTReorderSimple

work=3852

I/O: 128->128

FFTReorderSimple

work=3864

I/O: 64->64

FFTReorderSimple

work=3888

I/O: 32->32

FFTReorderSimple

work=3936

I/O: 16->16

FFTReorderSimple

work=4032

I/O: 8->8

CombineDFT

work=9600

I/O: 4->4

CombineDFT

work=9600

I/O: 8->8

CombineDFT

work=9600

I/O: 16->16

CombineDFT

work=9600

I/O: 32->32

CombineDFT

work=9600

I/O: 64->64

CombineDFT

work=9600

I/O: 128->128

CombineDFT

work=9600

I/O: 256->256

CombineDFT

work=9600

I/O: 512->512

Magnitude

work=84992

I/O: 2->1

roundrobin(62,1,1,128,1,1,62)

Anonymous

work=558

I/O: 1->2

Detect

work=11

I/O: 1->2

Detect

work=11

I/O: 1->2

Anonymous

work=1152

I/O: 1->2

Detect

work=11

I/O: 1->2

Detect

work=11

I/O: 1->2

Anonymous

work=558

I/O: 1->2

roundrobin(124,2,2,256,2,2,124)

Figure B-23: Stream graph for FHR (feedback loop).

196

Figure B-24: Stream graph for FHR (teleport messaging).

197

FMRadio

FMRadioCore

Equalizer

EqSplit

BandPassFilter

BPFCore

BandPassFilter

BPFCore

BandPassFilter

BPFCore

BandPassFilter

BPFCore

BandPassFilter

BPFCore

BandPassFilter

BPFCore

FileReader

work=0

I/O: 0->1

LowPassFilter

work=1434

I/O: 5->1

*** PEEKS 123 AHEAD ***

FMDemodulator

work=221

I/O: 1->1

*** PEEKS 1 AHEAD ***

duplicate(1,1,1,1,1,1)

duplicate(1,1) duplicate(1,1) duplicate(1,1) duplicate(1,1) duplicate(1,1) duplicate(1,1)

roundrobin(1,1,1,1,1,1)

Adder

work=45

I/O: 6->1

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Subtracter

work=14

I/O: 2->1

Amplify

work=8

I/O: 1->1

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Subtracter

work=14

I/O: 2->1

Amplify

work=8

I/O: 1->1

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Subtracter

work=14

I/O: 2->1

Amplify

work=8

I/O: 1->1

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Subtracter

work=14

I/O: 2->1

Amplify

work=8

I/O: 1->1

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Subtracter

work=14

I/O: 2->1

Amplify

work=8

I/O: 1->1

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=1414

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Subtracter

work=14

I/O: 2->1

Amplify

work=8

I/O: 1->1

FileWriter

work=0

I/O: 1->0

Figure B-25: Stream graph for FMRadio.

198

Fib

roundrobin(0,1)

PeekAdd

work=10

I/O: 1->1

*** PEEKS 1 AHEAD ***

duplicate(1,1)

Identity

work=6

I/O: 1->1

IntPrinter

work=6

I/O: 1->0

Figure B-26: Stream graph for Fib.

199

FilterBank

FilterBankPipeline

FilterBankSplitJoin

ProcessingPipeline

BandPassFilter

BandStopFilter

ProcessingPipeline

BandPassFilter

BandStopFilter

ProcessingPipeline

BandPassFilter

BandStopFilter

ProcessingPipeline

BandPassFilter

BandStopFilter

ProcessingPipeline

BandPassFilter

BandStopFilter

ProcessingPipeline

BandPassFilter

BandStopFilter

ProcessingPipeline

BandPassFilter

BandStopFilter

ProcessingPipeline

BandPassFilter

BandStopFilter

FileReader

work=0

I/O: 0->1

duplicate(1,1,1,1,1,1,1,1)

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1,1,1,1,1,1,1)

Adder

work=472

I/O: 8->1

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

Compressor

work=41

I/O: 8->1

ProcessFilter

work=6

I/O: 1->1

Expander

work=41

I/O: 1->8

duplicate(1,1)

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Adder

work=136

I/O: 2->1

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

Compressor

work=41

I/O: 8->1

ProcessFilter

work=6

I/O: 1->1

Expander

work=41

I/O: 1->8

duplicate(1,1)

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Adder

work=136

I/O: 2->1

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

Compressor

work=41

I/O: 8->1

ProcessFilter

work=6

I/O: 1->1

Expander

work=41

I/O: 1->8

duplicate(1,1)

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Adder

work=136

I/O: 2->1

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

Compressor

work=41

I/O: 8->1

ProcessFilter

work=6

I/O: 1->1

Expander

work=41

I/O: 1->8

duplicate(1,1)

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Adder

work=136

I/O: 2->1

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

Compressor

work=41

I/O: 8->1

ProcessFilter

work=6

I/O: 1->1

Expander

work=41

I/O: 1->8

duplicate(1,1)

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Adder

work=136

I/O: 2->1

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

Compressor

work=41

I/O: 8->1

ProcessFilter

work=6

I/O: 1->1

Expander

work=41

I/O: 1->8

duplicate(1,1)

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Adder

work=136

I/O: 2->1

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

Compressor

work=41

I/O: 8->1

ProcessFilter

work=6

I/O: 1->1

Expander

work=41

I/O: 1->8

duplicate(1,1)

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Adder

work=136

I/O: 2->1

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

Compressor

work=41

I/O: 8->1

ProcessFilter

work=6

I/O: 1->1

Expander

work=41

I/O: 1->8

duplicate(1,1)

LowPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

HighPassFilter

work=11312

I/O: 1->1

*** PEEKS 127 AHEAD ***

roundrobin(1,1)

Adder

work=136

I/O: 2->1

FileWriter

work=0

I/O: 1->0

Figure B-27: Stream graph for FilterBank.

200

iden_c

roundrobin(390, 189)

output_final

roundrobin(375, 189)

iden_c

roundrobin(189, 0)

roundrobin(375, 468)

duplicate

output_final output_initial

roundrobin(468, 375)

roundrobin(468, 375)

iden_c

roundrobin(0, 375)

roundrobin(432, 156)

output_final

sqr_sumComplex

ConvertComplexToFloat

get_final_targets

output_f

roundrobin(405, 315)

roundrobin(390, 330)

iden_c

roundrobin(15, 315)

roundrobin(50, 375)

duplicate

output_V1_T1

output_A_V1

get_XtPulseroundrobin(0)

roundrobin(5, 5, 5, 5, 5)

roundrobin(25, 0)

div_valComplex

eye

roundrobin(1, 1, 1, 1, 1)

roundrobin(35, 0) roundrobin(35, 0) roundrobin(35, 0) roundrobin(35, 0)roundrobin(35, 0)

roundrobin(5, 5, 5, 5, 5)

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_ciden_c

roundrobin(35, 35)

roundrobin(35, 35)

iden_ciden_c

mult_consec_terms_c

roundrobin(7, 7, 7, 7, 7)

sum_vectorComplexsum_vectorComplex sum_vectorComplex sum_vectorComplex sum_vectorComplex

roundrobin(1, 1, 1, 1, 1) roundrobin(0)

iden_ciden_c iden_c iden_c iden_c

roundrobin(7, 7, 7, 7, 7)

roundrobin(7, 7)

roundrobin(7, 7)

iden_c iden_c

mult_consec_terms_c

duplicate

roundrobin(7) roundrobin(7) roundrobin(7)roundrobin(7) roundrobin(7)

create_dopfilt

cheb_taps

ConvertFloatToComplex

roundrobin(1, 1)

roundrobin(7, 7, 7, 7, 7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

roundrobin(1, 1)

roundrobin(1, 1, 1, 1, 1)

roundrobin(35, 35)

roundrobin(35, 35)

iden_ciden_c

mult_consec_terms_c

roundrobin(7, 7, 7, 7, 7)

sum_vectorComplexsum_vectorComplex sum_vectorComplex sum_vectorComplex sum_vectorComplex

roundrobin(1, 1, 1, 1, 1) roundrobin(0)

iden_ciden_c iden_c iden_c iden_c

roundrobin(7, 7, 7, 7, 7)

roundrobin(7, 7)

roundrobin(7, 7)

iden_c iden_c

mult_consec_terms_c

duplicate

roundrobin(7) roundrobin(7) roundrobin(7)roundrobin(7) roundrobin(7)

create_dopfilt

cheb_taps

ConvertFloatToComplex

roundrobin(1, 1)

roundrobin(7, 7, 7, 7, 7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

roundrobin(1, 1)

roundrobin(1, 1, 1, 1, 1)

roundrobin(35, 35)

roundrobin(35, 35)

iden_ciden_c

mult_consec_terms_c

roundrobin(7, 7, 7, 7, 7)

sum_vectorComplexsum_vectorComplex sum_vectorComplex sum_vectorComplex sum_vectorComplex

roundrobin(1, 1, 1, 1, 1) roundrobin(0)

iden_ciden_c iden_c iden_c iden_c

roundrobin(7, 7, 7, 7, 7)

roundrobin(7, 7)

roundrobin(7, 7)

iden_c iden_c

mult_consec_terms_c

duplicate

roundrobin(7) roundrobin(7) roundrobin(7)roundrobin(7) roundrobin(7)

create_dopfilt

cheb_taps

ConvertFloatToComplex

roundrobin(1, 1)

roundrobin(7, 7, 7, 7, 7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

roundrobin(1, 1)

roundrobin(1, 1, 1, 1, 1)

roundrobin(35, 35)

roundrobin(35, 35)

iden_ciden_c

mult_consec_terms_c

roundrobin(7, 7, 7, 7, 7)

sum_vectorComplexsum_vectorComplex sum_vectorComplex sum_vectorComplex sum_vectorComplex

roundrobin(1, 1, 1, 1, 1) roundrobin(0)

iden_ciden_c iden_c iden_c iden_c

roundrobin(7, 7, 7, 7, 7)

roundrobin(7, 7)

roundrobin(7, 7)

iden_c iden_c

mult_consec_terms_c

duplicate

roundrobin(7) roundrobin(7) roundrobin(7)roundrobin(7) roundrobin(7)

create_dopfilt

cheb_taps

ConvertFloatToComplex

roundrobin(1, 1)

roundrobin(7, 7, 7, 7, 7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

roundrobin(1, 1)

roundrobin(1, 1, 1, 1, 1)

roundrobin(35, 35)

roundrobin(35, 35)

iden_ciden_c

mult_consec_terms_c

roundrobin(7, 7, 7, 7, 7)

sum_vectorComplexsum_vectorComplex sum_vectorComplex sum_vectorComplex sum_vectorComplex

roundrobin(1, 1, 1, 1, 1) roundrobin(0)

iden_c iden_c iden_ciden_c iden_c

roundrobin(7, 7, 7, 7, 7)

roundrobin(7, 7)

roundrobin(7, 7)

iden_c iden_c

mult_consec_terms_c

duplicate

roundrobin(7) roundrobin(7) roundrobin(7) roundrobin(7)roundrobin(7)

create_dopfilt

cheb_taps

ConvertFloatToComplex

roundrobin(1, 1)

roundrobin(7, 7, 7, 7, 7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

roundrobin(1, 1)

roundrobin(1, 1, 1, 1, 1)

roundrobin(5, 5)

mult_val

ConvertFloatToComplex

mult_consec_terms_c

duplicate

complex_conjugate

iden_c

roundrobin(360, 360)

roundrobin(360, 360)

iden_ciden_c

roundrobin(0)

complexify

roundrobin(1, 360)

divide_by_constant

ConvertFloatToComplex

Hamming roundrobin(0)

sum_vector roundrobin(72, 72, 72, 72, 72)

roundrobin(1, 1)

iden iden ideniden iden

roundrobin(0) roundrobin(0) roundrobin(0)roundrobin(0) roundrobin(0)

Hamming zeros

roundrobin(18, 54)

zerosHamming zeros

roundrobin(13, 18, 41)

zerosHamming zeros

roundrobin(27, 18, 27)

zeros Hammingzeros

roundrobin(40, 18, 14)

zeros Hamming

roundrobin(54, 18)

roundrobin(5, 5)

exp_vector

duplicate

roundrobin(1, 1)

roundrobin(360)

duplicateduplicate duplicate

roundrobin(5, 5)

iden_ciden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_ciden_c iden_c iden_ciden_c

roundrobin(1, 1, 1, 1, 1)

roundrobin(360, 5184)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(15, 360)

roundrobin(72, 72, 72, 72, 72)

duplicate

iden_c

roundrobin(360, 0)

roundrobin(360, 15)

roundrobin(360, 15)

duplicateroundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3)

clean_up_zeros

duplicate

complex_conjugate

complex_conjugate

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_ciden_c

roundrobin(360, 216)

clean_up_zeros

MatrixMultComplex1

iden_c

roundrobin(0)

roundrobin(216, 216)

roundrobin(216, 216)

iden_ciden_c

Hammingroundrobin(0)

duplicate

roundrobin(1, 1)

roundrobin(216)

ConvertFloatToComplex

duplicate duplicate duplicate duplicate duplicate duplicate duplicateduplicate duplicate

roundrobin(3, 3)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

iden iden iden

roundrobin(1, 1, 1)

roundrobin(72, 3)

MatrixMultComplex1

exp_vector

complexifylinspace

addval

ConvertFloatToComplex

roundrobin(1, 1)

mult_consec_terms_c

roundrobin(50, 5)

roundrobin(55, 55, 55)

roundrobin(25, 30) roundrobin(25, 30)roundrobin(25, 30)

roundrobin(30, 30, 30)

roundrobin(30, 30, 30)

roundrobin(25, 5) roundrobin(25, 5)roundrobin(25, 5)

roundrobin(5, 5, 5)

roundrobin(1, 1, 1, 1, 1)

iden_c iden_ciden_c iden_c iden_c

MatrixMultComplex1

convert_to_square_cols

duplicate

complex_conjugate

iden_c

complex_conjugate

iden_c

complex_conjugate iden_c

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(360, 5184)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(360, 5184)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(360, 5184)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(360, 5184)

select_partial_row

duplicate

normComplex complex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 72)

roundrobin(1, 5184)

roundrobin(72, 72)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 71)

roundrobin(1, 5041)

roundrobin(71, 71)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 70)

roundrobin(1, 4900)

roundrobin(70, 70)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 69)

roundrobin(1, 4761)

roundrobin(69, 69)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 68)

roundrobin(1, 4624)

roundrobin(68, 68)

MatrixMultComplex1

iden_ccomplex_conjugate

roundrobin(25, 25, 25, 25, 25, 25)

roundrobin(1, 1, 1, 1, 1)

iden_ciden_c iden_c iden_c iden_c

roundrobin(5, 5, 5, 5, 5)

roundrobin(1, 1, 1, 1, 1)

iden_ciden_c iden_c iden_c iden_c

roundrobin(5, 5, 5, 5, 5)

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(5, 5, 5, 5, 5)

iden_c iden_c iden_c

roundrobin(5, 5, 5)

iden_c

roundrobin(25, 5)

roundrobin(25, 5)

roundrobin(5, 1)

f_substitutions_c

iden_ciden_c

iden_c

roundrobin(25, 5)

roundrobin(25, 5)

roundrobin(5, 1)

f_substitutions_c

iden_ciden_c

iden_c roundrobin(25, 5)

roundrobin(25, 5)

roundrobin(5, 1)

f_substitutions_c

iden_ciden_c

roundrobin(25, 5)

roundrobin(25, 5)

iden_c iden_c

f_substitutions_c

reverse_1_c

reverse_1_c reverse_1_c

roundrobin(5, 1)

roundrobin(25, 5)

roundrobin(25, 5)

iden_c iden_c

f_substitutions_c

reverse_1_c

reverse_1_c reverse_1_c

roundrobin(5, 1)

roundrobin(25, 5)

roundrobin(25, 5)

iden_c iden_c

f_substitutions_c

reverse_1_c

reverse_1_c reverse_1_c

roundrobin(5, 1)

roundrobin(9, 3)

roundrobin(9, 3)

iden_c iden_c

f_substitutions_c

complex_conjugate

multiply_by_constant_c

convert_to_square_rows

complex_conjugate

roundrobin(1, 1, 1)

roundrobin(3, 3, 3)

duplicate

roundrobin(3, 3, 3) roundrobin(3, 3, 3) roundrobin(3, 3, 3)roundrobin(3, 3, 3) roundrobin(3, 3, 3)

roundrobin(5, 5, 5)

duplicate

iden_c

select_partial_row

MatrixMultComplex1

complex_conjugate

roundrobin(1, 1, 1, 1, 1)

roundrobin(3, 3, 3, 3, 3)

duplicate

get_diags

iden_c

roundrobin(1, 3)

roundrobin(1, 1, 1)

iden_c iden_c iden_c

roundrobin(15, 25)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(15, 25)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(15, 25)

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 5)

roundrobin(1, 25)

roundrobin(5, 5)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 4)

roundrobin(1, 16)

roundrobin(4, 4)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 3)

roundrobin(1, 9)

roundrobin(3, 3)

MatrixMultComplex1

iden_ccomplex_conjugate

iden_c iden_c iden_ciden_c iden_c

norm_diags

roundrobin(3, 0)

iden_c zeros_c

roundrobin(3, 2)

iden_c iden_c iden_c

roundrobin(9, 9, 9, 9, 9)

duplicate duplicate duplicate

roundrobin(3, 3, 3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

duplicate duplicate duplicate

roundrobin(3, 3, 3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

duplicate duplicate duplicate

roundrobin(3, 3, 3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

duplicate duplicate duplicate

roundrobin(3, 3, 3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

duplicate duplicate duplicate

roundrobin(3, 3, 3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

roundrobin(3, 1)

roundrobin(375, 30)

roundrobin(50, 15)

duplicateroundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3)

duplicate

roundrobin(3, 3, 3, 3, 3)roundrobin(3, 3, 3, 3, 3)

roundrobin(50, 5)

roundrobin(55, 55, 55)

roundrobin(25, 30)roundrobin(25, 30) roundrobin(25, 30)

roundrobin(30, 30, 30)

roundrobin(30, 30, 30)

roundrobin(25, 5)roundrobin(25, 5) roundrobin(25, 5)

roundrobin(5, 5, 5)

roundrobin(1, 1, 1, 1, 1)

iden_ciden_c iden_c iden_c iden_c

MatrixMultComplex1

convert_to_square_cols

duplicate

complex_conjugate

iden_c

complex_conjugate

iden_c

complex_conjugate iden_c

roundrobin(50, 100)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(50, 100)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(50, 100)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(50, 100)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(50, 100)

iden_c

select_partial_row

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 10)

roundrobin(1, 100)

roundrobin(10, 10)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 9)

roundrobin(1, 81)

roundrobin(9, 9)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 8)

roundrobin(1, 64)

roundrobin(8, 8)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 7)

roundrobin(1, 49)

roundrobin(7, 7)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 6)

roundrobin(1, 36)

roundrobin(6, 6)

MatrixMultComplex1

iden_ccomplex_conjugate

roundrobin(25, 25, 25, 25, 25, 25)

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_c iden_c

roundrobin(5, 5, 5, 5, 5)

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_ciden_c

roundrobin(5, 5, 5, 5, 5)

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_ciden_c

roundrobin(5, 5, 5, 5, 5)

iden_ciden_c iden_c

roundrobin(5, 5, 5)

iden_c

roundrobin(25, 5)

roundrobin(25, 5)

roundrobin(5, 1)

f_substitutions_c

iden_ciden_c

iden_c

roundrobin(25, 5)

roundrobin(25, 5)

roundrobin(5, 1)

f_substitutions_c

iden_c iden_c

iden_croundrobin(25, 5)

roundrobin(25, 5)

roundrobin(5, 1)

f_substitutions_c

iden_c iden_c

roundrobin(25, 5)

roundrobin(25, 5)

reverse_1_creverse_1_c

iden_c

duplicate

roundrobin(1, 5)

divide_by_constant_c

sqr_sumComplexiden_c

roundrobin(25, 5)

roundrobin(25, 5)

iden_ciden_c

f_substitutions_c

reverse_1_c

roundrobin(5, 1)

roundrobin(25, 5)

roundrobin(25, 5)

reverse_1_creverse_1_c

iden_c

duplicate

roundrobin(1, 5)

divide_by_constant_c

sqr_sumComplex iden_c

roundrobin(25, 5)

roundrobin(25, 5)

iden_ciden_c

f_substitutions_c

reverse_1_c

roundrobin(5, 1)

roundrobin(25, 5)

roundrobin(25, 5)

reverse_1_creverse_1_c

iden_cduplicate

roundrobin(1, 5)

divide_by_constant_c

sqr_sumComplex iden_c

roundrobin(25, 5)

roundrobin(25, 5)

iden_ciden_c

f_substitutions_c

reverse_1_c

roundrobin(5, 1)

roundrobin(15, 15)

duplicateduplicate duplicate duplicate duplicate

roundrobin(3, 3, 3, 3, 3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

duplicateduplicate duplicate duplicate duplicate

roundrobin(3, 3, 3, 3, 3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

iden_c

roundrobin(3)

roundrobin(15, 45)

MatrixMultComplex1

complex_conjugate

iden_c roundrobin(5, 5, 5)

duplicate

roundrobin(5, 5, 5) roundrobin(5, 5, 5)roundrobin(5, 5, 5) roundrobin(5, 5, 5) roundrobin(5, 5, 5) roundrobin(5, 5, 5) roundrobin(5, 5, 5)

roundrobin(1, 1, 1)

iden_c iden_ciden_c

roundrobin(15, 15, 15, 15, 15, 15, 15)

duplicate duplicateduplicate

roundrobin(5, 5, 5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

duplicate duplicateduplicate

roundrobin(5, 5, 5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

duplicate duplicateduplicate

roundrobin(5, 5, 5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

duplicate duplicateduplicate

roundrobin(5, 5, 5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

duplicate duplicateduplicate

roundrobin(5, 5, 5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

duplicate duplicateduplicate

roundrobin(5, 5, 5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

duplicate duplicateduplicate

roundrobin(5, 5, 5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

iden_c

roundrobin(5)

output_initial

roundrobin(273, 0)

duplicatecheb_taps

roundrobin(9, 5)

roundrobin(9, 5)

roundrobin(9, 0)roundrobin(5, 0)

iden_c

gen_ints

divide_by_constant_c

duplicate

roundrobin(1, 1, 1, 1, 1)roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1)

exp_vector

roundrobin(5, 0)

iden_czeros_c

roundrobin(5, 4)

roundrobin(9, 0)

iden_c

gen_ints

complex_conjugate

roundrobin(9, 0)

iden_c

Hamming

duplicate

mult_valComplex

iden_c

roundrobin(5, 5)

roundrobin(5, 5)

iden_ciden_c

mult_consec_terms_c

addvalComplex

mult_valComplex

roundrobin(1, 1)

roundrobin(9, 9)

roundrobin(9, 9)

iden_ciden_c

mult_consec_terms_c

duplicate

roundrobin(9, 0)roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0)

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1)

mult_valComplex

exp_vector

roundrobin(1, 1)

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(9, 9)

roundrobin(9, 9)

iden_ciden_c

mult_consec_terms_c

complex_conjugate

duplicate

divide_by_N

rearrange

roundrobin(5, 5)

normComplexiden_c

ConvertFloatToComplex

fftshift_1d

roundrobin(4, 0, 4)

iden_czeros_c iden_c

roundrobin(4, 1, 4)

roundrobin(1, 1)

roundrobin(9, 0)roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0) roundrobin(9, 0)

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1)

complex_conjugate

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 5)

roundrobin(5, 5)

duplicaduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden

rou

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

duplicateduplicate duplicate duplicate duplicate

roundrobin(1, 1, 1, 1, 1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

iden_c

roundrobin(1)

roundrobin(16, 16)

roundrobin(16, 16)

iden_ciden_c

mult_consec_terms_c

complex_conjugate

duplicate

divide_by_N

roundrobin(9, 7)

duplicate

roundrobin(16, 0)roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0)

iden_czeros_c

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(5, 11)

duplicate

roundrobin(16, 0)roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0)

iden_czeros_c

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

roundrobin(16, 0)roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0) roundrobin(16, 0)

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

complex_conjugate

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(234, 234)

roundrobin(234, 234)

iden_ciden_c

mult_consec_terms_c

roundrobin(1, 1)

iden_ciden_c iden_c

roundrobin(6, 6)

duplicate

roundrobin(6, 0)roundrobin(6, 0) roundrobin(6, 0) roundrobin(6, 0) roundrobin(6, 0) roundrobin(6, 0)

roundrobin(1, 1, 1, 1, 1, 1)

roundrobin(1, 1, 1, 1, 1, 1)

iden_ciden_c iden_c iden_c iden_c iden_c

roundrobin(39, 39, 39, 39, 39, 39)

roundrobin(234, 234)

iden_ciden_c

roundrobin(39, 39)

roundrobin(78, 78, 78, 78, 78, 78)

iden_ciden_c iden_c iden_c iden_c iden_c

roundrobin(1, 1, 1, 1, 1, 1)

fftshift_1d

roundrobin(78, 78, 78, 78, 78, 78)

roundrobin(1, 1, 1, 1, 1, 1)roundrobin(1, 1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1, 1) roundrobin(1, 1, 1, 1, 1, 1)

partial_3d_matrix partial_3d_matrix

roundrobin(234, 234)

duplicate

ideniden iden

roundrobin(1, 1)

ConvertFloatToComplex

duplicate

roundrobin(6, 6)roundrobin(6, 6)

roundrobin(234, 234)

duplicateduplicate duplicate

roundrobin(6, 6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

duplicateduplicate duplicate

roundrobin(6, 6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

iden_c

roundrobin(6)

roundrobin(1, 1)

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(1, 1)

mult_and_sum

iden_ccreate_unity_train

roundrobin(13, 13, 13, 13, 13, 13)

iden_ciden_c iden_c iden_c iden_c iden_c

roundrobin(13, 13, 13, 13, 13, 13)

iden_ciden_c iden_c iden_c iden_c iden_c

roundrobin(13, 13, 13, 13, 13, 13)

iden_ciden_c iden_c iden_c iden_c iden_c

roundrobin(13, 13, 13, 13, 13, 13)

iden_ciden_c iden_c iden_c iden_c iden_c

roundrobin(13, 13, 13, 13, 13, 13)

iden_ciden_c iden_c iden_c iden_c iden_c

roundrobin(13, 13, 13, 13, 13, 13)

iden_ciden_c iden_c iden_c iden_c iden_c

roundrobin(13, 13, 13, 13, 13, 13)

roundrobin(78, 7)

roundrobin(78, 7)

duplicate roundrobin(1, 6)

roundrobin(150, 16)

duplicate

get_A_V2

get_D_R2

roundrobin(84, 82)

roundrobin(72, 94)

iden_c

roundrobin(90, 4)

gen_ints

MatrixMultComplex1

roundrobin(1, 6)

fftshift_1d

div_valComplex

roundrobin(2, 2, 2)

duplicate

roundrobin(2, 2, 2)roundrobin(2, 2, 2) roundrobin(2, 2, 2) roundrobin(2, 2, 2) roundrobin(2, 2, 2) roundrobin(2, 2, 2)

complex_conjugate

roundrobin(1, 1, 1)

roundrobin(72, 72, 72)

duplicate

roundrobin(72, 72, 72)roundrobin(72, 72, 72)

roundrobin(216, 216)

roundrobin(432, 0)

iden_c

roundrobin(0)

roundrobin(432, 144)

roundrobin(216, 360)

iden_cMatrixMultComplex1

roundrobin(216, 6)

roundrobin(216, 6)

duplicateroundrobin(1, 1)

iden_ciden_c iden_c

duplicateduplicate duplicate

roundrobin(72, 72, 72)

iden_c

roundrobin(72)

iden_c

roundrobin(72)

iden_c

roundrobin(72)

duplicateduplicate duplicate

roundrobin(72, 72, 72)

iden_c

roundrobin(72)

iden_c

roundrobin(72)

iden_c

roundrobin(72)

roundrobin(144, 144)

roundrobin(144, 144)

iden_ciden_c

Hammingroundrobin(0)

duplicate

roundrobin(1, 1)

roundrobin(144)

ConvertFloatToComplex

duplicate duplicate duplicateduplicate duplicate

roundrobin(2, 2)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

iden iden

roundrobin(1, 1)

roundrobin(72, 2)

MatrixMultComplex1

exp_vector

complexify

linspace

addval

ConvertFloatToComplex

roundrobin(1, 1)

mult_consec_terms_c

roundrobin(18, 3)

roundrobin(21, 21)

roundrobin(9, 12)roundrobin(9, 12)

roundrobin(12, 12)

roundrobin(12, 12)

roundrobin(9, 3)roundrobin(9, 3)

roundrobin(3, 3)

roundrobin(1, 1, 1)

iden_ciden_c iden_c

MatrixMultComplex1

convert_to_square_cols

duplicate

complex_conjugate

iden_c

complex_conjugate

iden_c

roundrobin(216, 5184)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(216, 5184)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(216, 5184)

iden_c

select_partial_row

duplicate

normComplex complex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 72)

roundrobin(1, 5184)

roundrobin(72, 72)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 71)

roundrobin(1, 5041)

roundrobin(71, 71)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 70)

roundrobin(1, 4900)

roundrobin(70, 70)

MatrixMultComplex1

iden_ccomplex_conjugate

roundrobin(9, 9, 9, 9)

roundrobin(1, 1, 1)

iden_ciden_c iden_c

roundrobin(3, 3, 3)

roundrobin(1, 1, 1)

iden_c iden_c iden_c

roundrobin(3, 3, 3)

iden_ciden_c

roundrobin(3, 3)

iden_c

roundrobin(9, 3)

roundrobin(9, 3)

roundrobin(3, 1)

f_substitutions_c

iden_c iden_c

iden_c

roundrobin(9, 3)

roundrobin(9, 3)

roundrobin(3, 1)

f_substitutions_c

iden_ciden_c

roundrobin(9, 3)

roundrobin(9, 3)

iden_ciden_c

f_substitutions_c

reverse_1_c

reverse_1_creverse_1_c

roundrobin(3, 1)

roundrobin(9, 3)

roundrobin(9, 3)

iden_ciden_c

f_substitutions_c

reverse_1_c

reverse_1_creverse_1_c

roundrobin(3, 1)

roundrobin(6, 6, 6, 6, 6, 6)

duplicateduplicate duplicate

roundrobin(2, 2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate duplicate

roundrobin(2, 2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate duplicate

roundrobin(2, 2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate duplicate

roundrobin(2, 2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate duplicate

roundrobin(2, 2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate duplicate

roundrobin(2, 2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

partial_3d_matrix

iden_c

roundrobin(72, 78)

div_valComplex

roundrobin(36, 0)

iden_c

eye

roundrobin(6, 6)

ConvertFloatToComplex

mult_valComplex

roundrobin(2, 6)

roundrobin(2, 6)

duplicateduplicate

multiply_by_constant_c

duplicate

duplicatecomplex_conjugate

roundrobin(12, 12)

roundrobin(12, 12)

iden_cpartial_3d_matrix

duplicate

iden_croundrobin(1, 2)

multiply_by_constant_c

mult_valComplex

exp_vector

iden_cgen_ints

roundrobin(1, 2)

roundrobin(1, 1)

roundrobin(6)

duplicateduplicate

roundrobin(3, 3)

iden_ciden_c iden_c

roundrobin(1, 1, 1)

iden_ciden_c iden_c

roundrobin(1, 1, 1)

roundrobin(2, 2, 2)roundrobin(2, 2, 2)

roundrobin(6, 6)

duplicateduplicate duplicate

roundrobin(2, 2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate duplicate

roundrobin(2, 2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

roundrobin(4, 2)

roundrobin(4, 2)

iden_c iden_c

f_substitutions_c

complex_conjugate

complex_conjugate

complex_conjugatemultiply_by_constant_c

convert_to_square_rows

complex_conjugate

roundrobin(1, 1)

roundrobin(2, 2)

duplicate

roundrobin(2, 2) roundrobin(2, 2) roundrobin(2, 2)roundrobin(2, 2) roundrobin(2, 2) roundrobin(2, 2)

roundrobin(6, 6)

duplicate

iden_c

select_partial_row

MatrixMultComplex1

complex_conjugate

roundrobin(1, 1, 1, 1, 1, 1)

roundrobin(2, 2, 2, 2, 2, 2)

duplicate

get_diags

iden_c

roundrobin(1, 2)

roundrobin(1, 1)

iden_ciden_c

roundrobin(12, 36)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(12, 36)

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 6)

roundrobin(1, 36)

roundrobin(6, 6)

MatrixMultComplex1

iden_c complex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 5)

roundrobin(1, 25)

roundrobin(5, 5)

MatrixMultComplex1

iden_c complex_conjugate

iden_c iden_c iden_ciden_c iden_c iden_c

norm_diags

roundrobin(2, 0)

iden_czeros_c

roundrobin(2, 4)

iden_ciden_c

roundrobin(4, 4, 4, 4, 4, 4)

duplicateduplicate

roundrobin(2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate

roundrobin(2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate

roundrobin(2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate

roundrobin(2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate

roundrobin(2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

duplicateduplicate

roundrobin(2, 2)

iden_c

roundrobin(2)

iden_c

roundrobin(2)

roundrobin(2, 1)

roundrobin(6, 6)

duplicate

iden_c

select_partial_row

MatrixMultComplex1

complex_conjugate

roundrobin(1, 1, 1, 1, 1, 1)

roundrobin(2, 2, 2, 2, 2, 2)

duplicate

get_diags

iden_c

roundrobin(1, 2)

multiply_by_constant_c

roundrobin(1, 1)

iden_ciden_c

roundrobin(12, 36)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(12, 36)

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplexduplicate

calculate_matrix

pad_matrix

roundrobin(1, 6)

roundrobin(1, 36)

roundrobin(6, 6)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplexduplicate

calculate_matrix

pad_matrix

roundrobin(1, 5)

roundrobin(1, 25)

roundrobin(5, 5)

MatrixMultComplex1

iden_ccomplex_conjugate

iden_ciden_c iden_c iden_c iden_c iden_c

norm_diags

roundrobin(2, 0)

iden_c zeros_c

roundrobin(2, 4)

roundrobin(12, 4)

duplicate

output_initial

roundrobin(72, 12)

roundrobin(72, 12)

roundrobin(2, 2, 2, 2, 2, 2)

complex_conjugate

roundrobin(1, 1)

roundrobin(72, 6)

roundrobin(78, 78)

roundrobin(36, 42)roundrobin(36, 42)

roundrobin(42, 42)

roundrobin(42, 42)

roundrobin(36, 6)roundrobin(36, 6)

roundrobin(6, 6)

roundrobin(1, 1, 1, 1, 1, 1)

iden_ciden_c iden_c iden_c iden_c iden_c

duplicateroundrobin(1, 1)

MatrixMultComplex1

convert_to_square_cols

duplicate

complex_conjugate

iden_c

complex_conjugate

iden_c

roundrobin(72, 144)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(72, 144)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(72, 144)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(72, 144)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(72, 144)

MatrixMultComplex1

duplicate

iden_c

select_partial_row

roundrobin(72, 144)

iden_c

select_partial_row

duplicate

normComplex complex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 12)

roundrobin(1, 144)

roundrobin(12, 12)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 11)

roundrobin(1, 121)

roundrobin(11, 11)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 10)

roundrobin(1, 100)

roundrobin(10, 10)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 9)

roundrobin(1, 81)

roundrobin(9, 9)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 8)

roundrobin(1, 64)

roundrobin(8, 8)

MatrixMultComplex1

iden_ccomplex_conjugate

duplicate

normComplexcomplex_conjugate

addnorm

duplicate

sqr_sumComplex

duplicate

calculate_matrix

pad_matrix

roundrobin(1, 7)

roundrobin(1, 49)

roundrobin(7, 7)

MatrixMultComplex1

iden_ccomplex_conjugate

roundrobin(36, 36, 36, 36)

roundrobin(1, 1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_ciden_c iden_c

roundrobin(6, 6, 6, 6, 6, 6)

roundrobin(1, 1, 1, 1, 1, 1)

iden_c iden_c iden_ciden_c iden_c iden_c

roundrobin(6, 6, 6, 6, 6, 6)

iden_ciden_c

roundrobin(6, 6)

iden_c

roundrobin(36, 6)

roundrobin(36, 6)

roundrobin(6, 1)

f_substitutions_c

iden_c iden_c

iden_c

roundrobin(36, 6)

roundrobin(36, 6)

roundrobin(6, 1)

f_substitutions_c

iden_ciden_c

roundrobin(36, 6)

roundrobin(36, 6)

reverse_1_creverse_1_c

iden_c

duplicate

roundrobin(1, 6)

divide_by_constant_c

sqr_sumComplex iden_c

roundrobin(36, 6)

roundrobin(36, 6)

iden_ciden_c

f_substitutions_c

reverse_1_c

roundrobin(6, 1)

roundrobin(36, 6)

roundrobin(36, 6)

reverse_1_creverse_1_c

iden_c

duplicate

roundrobin(1, 6)

divide_by_constant_c

sqr_sumComplexiden_c

roundrobin(36, 6)

roundrobin(36, 6)

iden_ciden_c

f_substitutions_c

reverse_1_c

roundrobin(6, 1)

iden_ciden_c

roundrobin(6, 6)

roundrobin(26, 4)

MatrixMultComplex1

roundrobin(1, 1)

iden_ciden_c

MatrixMultComplex1

complex_conjugate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

iden_c iden_ciden_c iden_c iden_c iden_c iden_c iden_c iden_c iden_c iden_c iden_c iden_c

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

roundrobin(13, 13)

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(0, 156)

zeros iden

roundrobin(12, 156)

roundrobin(12, 156)

iden

duplicate

roundrobin(12, 144)

roundrobin(12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12)

iden iden iden iden iden iden iden iden iden iden iden iden iden

roundrobin(12, 156)

duplicate

roundrobin(12, 156) roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

partial_3d_matrix_f

iden

roundrobin(12, 156)

roundrobin(3, 3)

sum_vector sum_vector

roundrobin(1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

ideniden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

iden partial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_fpartial_3d_matrix_f

negate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 132)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_fnegate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 120)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_fpartial_3d_matrix_f

negate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 108)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_fpartial_3d_matrix_f

negate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 96)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_fpartial_3d_matrix_f

negate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 84)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1, 1)

roundrobin(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_f

partial_3d_matrix_f partial_3d_matrix_f

negatenegate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 72)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1, 1)

roundrobin(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_f

partial_3d_matrix_f partial_3d_matrix_f

negatenegate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 60)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_f

partial_3d_matrix_f

negatenegate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 48)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f partial_3d_matrix_fpartial_3d_matrix_f

negatenegate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 36)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_f

partial_3d_matrix_f

negatenegate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 24)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f partial_3d_matrix_f

negate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 12)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)

remove

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_fnegate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 0)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

iden partial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(315, 0)

get_XtPulse

roundrobin(5, 5, 5, 5, 5)

roundrobin(25, 0)

div_valComplex

eye

roundrobin(1, 1, 1, 1, 1)

roundrobin(35, 0) roundrobin(35, 0) roundrobin(35, 0) roundrobin(35, 0)roundrobin(35, 0)

roundrobin(5, 5, 5, 5, 5)

roundrobin(1, 1, 1, 1, 1)

iden_c iden_c iden_c iden_ciden_c

roundrobin(35, 35)

roundrobin(35, 35)

iden_ciden_c

mult_consec_terms_c

roundrobin(7, 7, 7, 7, 7)

sum_vectorComplexsum_vectorComplex sum_vectorComplex sum_vectorComplex sum_vectorComplex

roundrobin(1, 1, 1, 1, 1) roundrobin(0)

iden_ciden_c iden_c iden_c iden_c

roundrobin(7, 7, 7, 7, 7)

roundrobin(7, 7)

roundrobin(7, 7)

iden_c iden_c

mult_consec_terms_c

duplicate

roundrobin(7) roundrobin(7) roundrobin(7)roundrobin(7) roundrobin(7)

create_dopfilt

cheb_taps

ConvertFloatToComplex

roundrobin(1, 1)

roundrobin(7, 7, 7, 7, 7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

roundrobin(1, 1)

roundrobin(1, 1, 1, 1, 1)

roundrobin(35, 35)

roundrobin(35, 35)

iden_ciden_c

mult_consec_terms_c

roundrobin(7, 7, 7, 7, 7)

sum_vectorComplexsum_vectorComplex sum_vectorComplex sum_vectorComplex sum_vectorComplex

roundrobin(1, 1, 1, 1, 1) roundrobin(0)

iden_ciden_c iden_c iden_c iden_c

roundrobin(7, 7, 7, 7, 7)

roundrobin(7, 7)

roundrobin(7, 7)

iden_c iden_c

mult_consec_terms_c

duplicate

roundrobin(7) roundrobin(7) roundrobin(7)roundrobin(7) roundrobin(7)

create_dopfilt

cheb_taps

ConvertFloatToComplex

roundrobin(1, 1)

roundrobin(7, 7, 7, 7, 7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

roundrobin(1, 1)

roundrobin(1, 1, 1, 1, 1)

roundrobin(35, 35)

roundrobin(35, 35)

iden_ciden_c

mult_consec_terms_c

roundrobin(7, 7, 7, 7, 7)

sum_vectorComplexsum_vectorComplex sum_vectorComplex sum_vectorComplex sum_vectorComplex

roundrobin(1, 1, 1, 1, 1) roundrobin(0)

iden_ciden_c iden_c iden_c iden_c

roundrobin(7, 7, 7, 7, 7)

roundrobin(7, 7)

roundrobin(7, 7)

iden_c iden_c

mult_consec_terms_c

duplicate

roundrobin(7) roundrobin(7) roundrobin(7)roundrobin(7) roundrobin(7)

create_dopfilt

cheb_taps

ConvertFloatToComplex

roundrobin(1, 1)

roundrobin(7, 7, 7, 7, 7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

roundrobin(1, 1)

roundrobin(1, 1, 1, 1, 1)

roundrobin(35, 35)

roundrobin(35, 35)

iden_ciden_c

mult_consec_terms_c

roundrobin(7, 7, 7, 7, 7)

sum_vectorComplex sum_vectorComplex sum_vectorComplex sum_vectorComplex

roundrobin(1, 1, 1, 1, 1) roundrobin(0)

iden_ciden_c iden_c iden_c iden_c

roundrobin(7, 7, 7, 7, 7)

roundrobin(7, 7)

roundrobin(7, 7)

iden_c iden_c

mult_consec_terms_c

duplicate

roundrobin(7) roundrobin(7) roundrobin(7)roundrobin(7) roundrobin(7)

create_dopfilt

cheb_taps

ConvertFloatToComplex

roundrobin(1, 1)

roundrobin(7, 7, 7, 7, 7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

roundrobin(1, 1)

roundrobin(1, 1, 1, 1, 1)

roundrobin(35, 35)

roundrobin(35, 35)

iden_ciden_c

mult_consec_terms_c

roundrobin(7, 7, 7, 7, 7)

sum_vectorComplexsum_vectorComplex sum_vectorComplex sum_vectorComplex sum_vectorComplex

roundrobin(1, 1, 1, 1, 1) roundrobin(0)

iden_c iden_c iden_ciden_c iden_c

roundrobin(7, 7, 7, 7, 7)

roundrobin(7, 7)

roundrobin(7, 7)

iden_c iden_c

mult_consec_terms_c

duplicate

roundrobin(7) roundrobin(7) roundrobin(7) roundrobin(7)roundrobin(7)

create_dopfilt

cheb_taps

ConvertFloatToComplex

roundrobin(1, 1)

roundrobin(7, 7, 7, 7, 7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

duplicate

roundrobin(7)

iden_c

roundrobin(7)

roundrobin(1, 1)

roundrobin(1, 1, 1, 1, 1)

roundrobin(5, 5)

mult_val

ConvertFloatToComplex

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_fnegate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_fpartial_3d_matrix_f

negate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

duplicate

roundrobin(12, 156)roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_fpartial_3d_matrix_f

negate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(12, 12)

roundrobin(12, 12)

div_val

iden

idenpartial_3d_matrix_f

roundrobin(1, 1)

normalized_power

above_thresh

clean_up_zeros_f

replace_zeros

roundrobin(12, 156)

roundrobin(12, 168)

roundrobin(24, 156)

roundrobin(12, 12)

iden

iden

duplicate

duplicate

iden

roundrobin(12, 156)

roundrobin(1, 1, 1)

roundrobin(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

partial_3d_matrix_f

partial_3d_matrix_fpartial_3d_matrix_f

negate

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

roundrobin(1, 1)

roundrobin(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

sum_vector sum_vectorsum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector sum_vector

iden iden

roundrobin(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Figure B-28: Stream graph for GMTI.

201

GPUModel

FrontendSplitJoin

BackendSplit

PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline

FileReader

I/O: 0->1

Input

I/O: 3->1

roundrobin(3,3,3,3,3,3,3,3,3)

VertexShader

I/O: 3->12

VertexShader

I/O: 3->12

VertexShader

I/O: 3->12

VertexShader

I/O: 3->12

VertexShader

I/O: 3->12

VertexShader

I/O: 3->12

VertexShader

I/O: 3->12

VertexShader

I/O: 3->12

VertexShader

I/O: 3->12

roundrobin(12,12,12,12,12,12,12,12,12)

TriangleSetup

I/O: 3->1

TriangleSetup

I/O: 1->1

duplicate(1,1,1,1,1,1,1,1,1,1,1,1)

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

roundrobin(0,0,0,0,0,0,0,0,0,0,0,0)

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

Figure B-29: Stream graph for GP - particle-system.

202

GPUModel

BackendSplit

PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline

FileReader

I/O: 0->1

Input

I/O: 3->1

VertexShader

I/O: 1->1

TriangleSetup

I/O: 3->1

duplicate(1,1,1,1,1,1,1,1,1,1,1,1)

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

roundrobin(0,0,0,0,0,0,0,0,0,0,0,0)

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

PixelShaderB

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

Figure B-30: Stream graph for GP - phong-shading.

203

GPUModel

FrontendSplitJoin

BackendSplit

PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline

FileReader

I/O: 0->1

Input

I/O: 3->1

roundrobin(1,1,1,1,1,1)

VertexShader

I/O: 1->1

VertexShader

I/O: 1->1

VertexShader

I/O: 1->1

VertexShader

I/O: 1->1

VertexShader

I/O: 1->1

VertexShader

I/O: 1->1

roundrobin(1,1,1,1,1,1)

TriangleSetup

I/O: 3->1

duplicate(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

roundrobin(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

PixelShader

I/O: 1->1

RasterOps

I/O: 1->0

*** STATEFUL ***

Figure B-31: Stream graph for GP - reference-version.

204

Pass

BackendSplit

PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline PixelPipeline

FileReader

I/O: 0->1

Input

I/O: 3->1

VertexShader

I/O: 1->1

TriangleSetup

I/O: 3->1

duplicate(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

Rasterizer

I/O: 1->*

roundrobin(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

RasterOps

I/O: 1->0

*** STATEFUL ***

Figure B-32: Stream graph for GP - shadow-volumes.

205

Gsm

DecoderFeedback

LTPLoopStream

LTPInputSplitJoin

LTPPipeline

LARInputSplitJoin

LARPipeline

ReflectionCoeff

ReflectionCoeffCalc

ReflectionCoeffLARpp

ReflectionCoeffLARpp

ReflectionCoeffLARpp

IntegerTermSynth

FileReader

work=0

I/O: 0->1

RPEInputFilter

work=7328

I/O: 260->60

RPEDecodeFilter

work=10544

I/O: 15->40

roundrobin(40,1)

AdditionUpdateFilter

work=3788

I/O: 41->40

duplicate(1,1)

roundrobin(0,1)

HoldFilter

work=4160

I/O: 160->40

AdditionUpdateDuplication

work=5920

I/O: 40->160

*** PEEKS 40 AHEAD ***

FileReader

work=0

I/O: 0->1

Identity

work=3840

I/O: 1->1

roundrobin(2,160)

LTPFilter

work=14632

I/O: 162->1

*** STATEFUL ***

LTPInputFilter

work=2332

I/O: 260->8

roundrobin(1,0)

Identity

work=960

I/O: 1->1

FileReader

work=0

I/O: 0->1

roundrobin(160,8)

roundrobin(120,40,8)

LARInputFilter

work=2460

I/O: 260->8

Anonymous

work=360

I/O: 1->0

Identity

work=240

I/O: 1->1

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(0,40,8)

IntegerTermReorder

work=2040

I/O: 48->360

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(1,1,1,1,1,1,1,1)

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(1,1,1,1,1,1,1,1)

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

ReflectionCoeffLARppInternal

work=182

I/O: 1->1

roundrobin(1,1,1,1,1,1,1,1)

IntegerTermSynthCalc

work=52040

I/O: 9->1

*** STATEFUL ***

PostProcessingFilter

work=7600

I/O: 1->1

*** STATEFUL ***

IntegerPrint

work=240

I/O: 1->0

Figure B-33: Stream graph for GSM.

206

IntraPrediction

Luma16x16IntraPrediction16x

LumaIntraPred16x16AndTQ

LumaIntraPredictionModes16x

Transform16x16LumaIntra

QTAndHVX

DelayHVX

IntStream

work=1520640

I/O: 0->1

*** STATEFUL ***

roundrobin(256,33)

duplicate(1,1,1,1)

duplicate(1,1)

roundrobin(256,34)

PrintMBlockIntsResult

work=1847340

I/O: 290->0

*** STATEFUL ***

Prediction16x16Mode0AndSAE

work=9834660

I/O: 289->290

Prediction16x16Mode1AndSAE

work=9834660

I/O: 289->290

Prediction16x16Mode2AndSAE

work=9533304

I/O: 289->290

Prediction16x16Mode3AndSAE

work=10633788

I/O: 289->290

roundrobin(290,290,290,290)

FindBestPredictionMode16x

work=3358080

I/O: 1160->290

PredictionResultPrinter

work=2762496

I/O: 290->290

roundrobin(256,34)

roundrobin(4,4,4,4)

Identity

work=80784

I/O: 1->1

roundrobin(256,34)

Identity

work=152064

I/O: 1->1

Identity

work=152064

I/O: 1->1

Identity

work=152064

I/O: 1->1

Identity

work=152064

I/O: 1->1

roundrobin(16,16,16,16)

IntTo4x4Matrix

work=1539648

I/O: 16->1

FactorizedCoreDCT4x4Transform

work=6956928

I/O: 1->1

Matrix4x4ToInt

work=849024

I/O: 1->16

roundrobin(1,15)

IntTo4x4Matrix

work=96228

I/O: 16->1

Identity

work=570240

I/O: 1->1

roundrobin(1,15)

IntTo4x4Matrix

work=1539648

I/O: 16->1

Hadamard4x

work=447480

I/O: 1->1

Matrix4x4ToInt

work=53064

I/O: 1->16

Factorized4x4Quantization

work=12063744

I/O: 1->1

Matrix4x4ToInt

work=849024

I/O: 1->16

roundrobin(1,15)

Identity

work=80784

I/O: 1->1

roundrobin(256,34)

Reconstruct16x16LumaIntraPredFromHVX

work=771804

I/O: 290->33

IntTo4x4Matrix

work=96228

I/O: 16->1

Identity

work=570240

I/O: 1->1

roundrobin(1,15)

IntTo4x4Matrix

work=1539648

I/O: 16->1

Hadamard4x

work=447480

I/O: 1->1

Matrix4x4ToInt

work=53064

I/O: 1->16

Factorized4x4Rescale

work=9022464

I/O: 1->1

FactorizedCoreInverseDCT4x4Transform

work=15675264

I/O: 1->1

Matrix4x4ToInt

work=849024

I/O: 1->16

roundrobin(16,16,16,16)

Identity

work=152064

I/O: 1->1

Identity

work=152064

I/O: 1->1

Identity

work=152064

I/O: 1->1

Identity

work=152064

I/O: 1->1

roundrobin(4,4,4,4)

roundrobin(16,16,1)

roundrobin(5984,352) roundrobin(336,16) roundrobin(21,1)

roundrobin(16,16,1)

Identity

work=35904

I/O: 1->1

Dead

work=1056

I/O: 1->0

roundrobin(1,0)

roundrobin(0,1)

Negative1s

work=1056

I/O: 0->1

Identity

work=35904

I/O: 1->1

roundrobin(352,5984)

Identity

work=36288

I/O: 1->1

Dead

work=864

I/O: 1->0

roundrobin(1,0)

roundrobin(0,1)

Negative1s

work=864

I/O: 0->1

Identity

work=36288

I/O: 1->1

roundrobin(16,336)

Identity

work=2268

I/O: 1->1

Dead

work=54

I/O: 1->0

roundrobin(1,0)

roundrobin(357,21)

Identity

work=2142

I/O: 1->1

Dead

work=63

I/O: 1->0

roundrobin(1,0)

roundrobin(0,1)

Negative1s

work=51

I/O: 0->1

Identity

work=2142

I/O: 1->1

roundrobin(1,21)

roundrobin(0,1)

Negative1s

work=66

I/O: 0->1

Identity

work=2244

I/O: 1->1

roundrobin(22,374)

Figure B-34: Stream graph for H264 subset.

207

HDTV

HDTVEncodePipeline

ConvolutionalInterleaver

TrellisEncoderPipeline

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

TrellisEncoderPipelineElement

TrellisEncoder

HDTVDecodePipeline

TrellisDecoderPipeline

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

TrellisDecoderPipelineElement

TrellisDecoder

ConvolutionalDeinterleaver

DataSegmentGenerator

work=478720

I/O: 0->1

*** STATEFUL ***

IntegerSplitter

work=1376320

I/O: 1->4

ReedSolomonEncoder

work=UNKNOWN

I/O: 187->207

roundrobin(1,1,1,1,1)

Delay

work=317952

I/O: 1->1

Delay

work=317952

I/O: 1->1

Delay

work=317952

I/O: 1->1

Delay

work=317952

I/O: 1->1

Delay

work=317952

I/O: 1->1

roundrobin(1,1,1,1,1)

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1)

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

Bitifier

work=184920

I/O: 8->1

roundrobin(12,12,12,12,12,12,12,12,12,12,12,12)

DataReorder

work=58274640

I/O: 1->1

*** STATEFUL ***

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

roundrobin(1,1)

PreCoder

work=15180

I/O: 1->1

*** STATEFUL ***

UngerboeckEncoder

work=24840

I/O: 1->2

*** STATEFUL ***

roundrobin(1,2)

SymbolMapper

work=430560

I/O: 3->1

SyncGenerator

work=132720

I/O: 828->832

SyncRemover

work=132880

I/O: 832->828

SymbolUnMapper

work=480240

I/O: 1->3

DataReorder

work=58274640

I/O: 1->1

*** STATEFUL ***

roundrobin(12,12,12,12,12,12,12,12,12,12,12,12)

roundrobin(1,2) roundrobin(1,2) roundrobin(1,2) roundrobin(1,2) roundrobin(1,2) roundrobin(1,2) roundrobin(1,2) roundrobin(1,2) roundrobin(1,2) roundrobin(1,2) roundrobin(1,2) roundrobin(1,2)

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1)

roundrobin(1,1,1,1,1)

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=UNKNOWN

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

PreDecoder

work=17940

I/O: 1->1

*** PEEKS 1 AHEAD ***

UngerboeckDecoder

work=1656

I/O: 10->5

*** STATEFUL ***

roundrobin(1,1)

UnBitifier

work=20355

I/O: 8->1

Delay

work=4968

I/O: 1->1

Delay

work=4968

I/O: 1->1

Delay

work=4968

I/O: 1->1

Delay

work=4968

I/O: 1->1

Delay

work=4968

I/O: 1->1

roundrobin(1,1,1,1,1)

ReedSolomonDecoder

work=UNKNOWN

I/O: 207->187

IntegerCombiner

work=19635

I/O: 4->1

DataSegmentSink

work=5610

I/O: 1->0

Figure B-35: Stream graph for HDTV.

208

IDCT

Irecurse

IDCTcore

Irecurse

IDCTcore

Irecurse

reordIDCT

Idecimate

bitrev

reordIDCT

Irecurse

reordIDCT

Idecimate

bitrev

Idecimate

bitrev

reordIDCT

Irecurse

IDCTcore

Irecurse

reordIDCT

Idecimate

bitrev

reordIDCT

Irecurse

reordIDCT

Idecimate

bitrev

Idecimate

bitrev

Idecimate

bitrev

source

work=48

I/O: 0->4

roundrobin(1,1)

roundrobin(1,1)

inmix

work=115

I/O: 8->8

roundrobin(1,1)

roundrobin(2,2,2,2,2,2,2,2)

roundrobin(1,1)

inmix

work=55

I/O: 4->4

roundrobin(1,1)

roundrobin(2,2,2,2)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

roundrobin(1,1)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1,1,1)

roundrobin(4,4)

Identity

work=24

I/O: 1->1

reversal

work=52

I/O: 4->4

roundrobin(4,4)

roundrobin(1,1)

roundrobin(1,1)

inmix

work=55

I/O: 4->4

roundrobin(1,1)

roundrobin(2,2,2,2)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

roundrobin(1,1)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1,1,1)

roundrobin(4,4)

Identity

work=24

I/O: 1->1

reversal

work=52

I/O: 4->4

roundrobin(4,4)

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(8,8)

Identity

work=48

I/O: 1->1

reversal

work=104

I/O: 8->8

roundrobin(8,8)

sink

work=128

I/O: 16->0

Figure B-36: Stream graph for IDCT (float).

209

IDCT2D

Irows

IDCTcore

Irecurse

reordIDCT

Idecimate

bitrev

IDCTcore

Irecurse

reordIDCT

Idecimate

bitrev

IDCTcore

Irecurse

reordIDCT

Idecimate

bitrev

IDCTcore

Irecurse

reordIDCT

Idecimate

bitrev

Irows

IDCTcore

Irecurse

reordIDCT

Idecimate

bitrev

IDCTcore

Irecurse

reordIDCT

Idecimate

bitrev

IDCTcore

Irecurse

reordIDCT

Idecimate

bitrev

IDCTcore

Irecurse

reordIDCT

Idecimate

bitrev

source

work=48

I/O: 0->4

roundrobin(4,4,4,4)

roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1)

roundrobin(1,1,1,1)

roundrobin(4,4,4,4)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

roundrobin(1,1) roundrobin(1,1) roundrobin(1,1) roundrobin(1,1)

roundrobin(1,1,1,1)

sink

work=128

I/O: 8->0

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

inmix

work=25

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

TwoPointIDCT

work=80

I/O: 2->2

recover

work=112

I/O: 2->2

recover

work=112

I/O: 2->2

roundrobin(1,1)

roundrobin(2,2)

Identity

work=12

I/O: 1->1

reversal

work=26

I/O: 2->2

roundrobin(2,2)

Figure B-37: Stream graph for IDCT2D (NxM-float).

210

IDCT

iDCT8x8_ieee

iDCT_2D_reference_fine

iDCT_1D_Y_reference_fine

iDCT_1D_X_reference_fine

FileReader

work=0

I/O: 0->1

Anonymous

work=384

I/O: 1->1

roundrobin(1,1,1,1,1,1,1,1)

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(8,8,8,8,8,8,8,8)

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

iDCT_1D_reference_fine

work=784

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

Round

work=4864

I/O: 1->1

FileWriter

work=0

I/O: 1->0

Figure B-38: Stream graph for IDCT2D (NxN, int, reference).

211

IDCT

FileReader

work=0

I/O: 0->1

iDCT8x8_1D_row_fast

work=1104

I/O: 8->8

iDCT8x8_1D_col_fast

work=1576

I/O: 64->64

*** STATEFUL ***

FileWriter

work=0

I/O: 1->0

Figure B-39: Stream graph for IDCT2D (8x8, int, coarse).

212

IDCT

iDCT8x8_1D_X_fast_fine

iDCT8x8_1D_Y_fast_fine

FileReader

work=0

I/O: 0->1

roundrobin(8,8,8,8,8,8,8,8)

iDCT8x8_1D_row_fast

work=138

I/O: 8->8

iDCT8x8_1D_row_fast

work=138

I/O: 8->8

iDCT8x8_1D_row_fast

work=138

I/O: 8->8

iDCT8x8_1D_row_fast

work=138

I/O: 8->8

iDCT8x8_1D_row_fast

work=138

I/O: 8->8

iDCT8x8_1D_row_fast

work=138

I/O: 8->8

iDCT8x8_1D_row_fast

work=138

I/O: 8->8

iDCT8x8_1D_row_fast

work=138

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

roundrobin(1,1,1,1,1,1,1,1)

iDCT8x8_1D_col_fast_fine

work=143

I/O: 8->8

iDCT8x8_1D_col_fast_fine

work=143

I/O: 8->8

iDCT8x8_1D_col_fast_fine

work=143

I/O: 8->8

iDCT8x8_1D_col_fast_fine

work=143

I/O: 8->8

iDCT8x8_1D_col_fast_fine

work=143

I/O: 8->8

iDCT8x8_1D_col_fast_fine

work=143

I/O: 8->8

iDCT8x8_1D_col_fast_fine

work=143

I/O: 8->8

iDCT8x8_1D_col_fast_fine

work=143

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

FileWriter

work=0

I/O: 1->0

Figure B-40: Stream graph for IDCT2D (8x8, int, fine).

213

InsertionSort

IntSource

work=208

I/O: 0->1

*** STATEFUL ***

JumpSort

work=472

I/O: 16->16

JumpSort

work=628

I/O: 16->16

JumpSort

work=706

I/O: 16->16

JumpSort

work=745

I/O: 16->16

IntPrinter

work=96

I/O: 1->0

Figure B-41: Stream graph for InsertionSort.

214

JPEGtoBMP

ChannelUnencoding

ChannelUnencoder_Y

BlockDCDifferenceDecoder

staticLosslessDeQuantization

iDCT_2D

helper_Parallel_8_iDCT_1D_Y

helper_Parallel_8_iDCT_1D_X

ChannelUnencoder_C

BlockDCDifferenceDecoder

staticLosslessDeQuantization

iDCT_2D

helper_Parallel_8_iDCT_1D_Y

helper_Parallel_8_iDCT_1D_X

ChannelUnencoder_C

BlockDCDifferenceDecoder

staticLosslessDeQuantization

iDCT_2D

helper_Parallel_8_iDCT_1D_Y

helper_Parallel_8_iDCT_1D_X

BlockDescrambler

FileReader

I/O: 0->1

JPEGByteStream_Parser

I/O: [48,*]->[192,*]

Identity

I/O: 1->1

roundrobin(64,64,64)

ZigZagUnordering

I/O: 64->64

ZigZagUnordering

I/O: 64->64

ZigZagUnordering

I/O: 64->64

roundrobin(1,1,1)

YCbCrtoRGB

I/O: 3->3

roundrobin(1,63)

IntegerDifferenceDecoder

I/O: 1->1

*** PEEKS 1 AHEAD ***

Identity

I/O: 1->1

roundrobin(1,63)

staticDeQuantization

I/O: 64->64

roundrobin(1,1,1,1,1,1,1,1)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(8,8,8,8,8,8,8,8)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

Add

I/O: 1->1

roundrobin(1,63)

IntegerDifferenceDecoder

I/O: 1->1

*** PEEKS 1 AHEAD ***

Identity

I/O: 1->1

roundrobin(1,63)

staticDeQuantization

I/O: 64->64

roundrobin(1,1,1,1,1,1,1,1)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(8,8,8,8,8,8,8,8)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

Add

I/O: 1->1

roundrobin(1,63)

IntegerDifferenceDecoder

I/O: 1->1

*** PEEKS 1 AHEAD ***

Identity

I/O: 1->1

roundrobin(1,63)

staticDeQuantization

I/O: 64->64

roundrobin(1,1,1,1,1,1,1,1)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(8,8,8,8,8,8,8,8)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

Add

I/O: 1->1

roundrobin(24,24,24,24,24,24,24,24)

Identity

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

roundrobin(1920,1920,1920,1920,1920,1920,1920,1920)

FlipVertically

I/O: 921600->921600

Identity

I/O: 1->1

BMPByteStream_Creator

I/O: [3,*]->[54,*]

FileWriter

I/O: 1->0

Figure B-42: Stream graph for JPEG decoder.

215

Transcoder

ChannelUnencoding

ChannelUnencoder_Y

BlockDCDifferenceDecoder

staticLosslessDeQuantization

iDCT_2D

helper_Parallel_8_iDCT_1D_Y

helper_Parallel_8_iDCT_1D_X

ChannelUnencoder_C

BlockDCDifferenceDecoder

staticLosslessDeQuantization

iDCT_2D

helper_Parallel_8_iDCT_1D_Y

helper_Parallel_8_iDCT_1D_X

ChannelUnencoder_C

BlockDCDifferenceDecoder

staticLosslessDeQuantization

iDCT_2D

helper_Parallel_8_iDCT_1D_Y

helper_Parallel_8_iDCT_1D_X

ChannelEncoding

ChannelEncoder_Y

DCT_2D

helper_Parallel_8_DCT_1D_X

helper_Parallel_8_DCT_1D_Y

staticLuminanceQuantization

BlockDCDifferenceEncoder

ChannelEncoder_C

DCT_2D

helper_Parallel_8_DCT_1D_X

helper_Parallel_8_DCT_1D_Y

staticLuminanceQuantization

BlockDCDifferenceEncoder

ChannelEncoder_C

DCT_2D

helper_Parallel_8_DCT_1D_X

helper_Parallel_8_DCT_1D_Y

staticLuminanceQuantization

BlockDCDifferenceEncoder

FileReader

I/O: 0->1

JPEGByteStream_Parser

I/O: [48,*]->[192,*]

Identity

I/O: 1->1

roundrobin(64,64,64)

ZigZagUnordering

I/O: 64->64

ZigZagUnordering

I/O: 64->64

ZigZagUnordering

I/O: 64->64

roundrobin(1,1,1)

YCbCrtoRGB

I/O: 3->3

roundrobin(1,63)

IntegerDifferenceDecoder

I/O: 1->1

*** PEEKS 1 AHEAD ***

Identity

I/O: 1->1

roundrobin(1,63)

staticDeQuantization

I/O: 64->64

roundrobin(1,1,1,1,1,1,1,1)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(8,8,8,8,8,8,8,8)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

Add

I/O: 1->1

roundrobin(1,63)

IntegerDifferenceDecoder

I/O: 1->1

*** PEEKS 1 AHEAD ***

Identity

I/O: 1->1

roundrobin(1,63)

staticDeQuantization

I/O: 64->64

roundrobin(1,1,1,1,1,1,1,1)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(8,8,8,8,8,8,8,8)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

Add

I/O: 1->1

roundrobin(1,63)

IntegerDifferenceDecoder

I/O: 1->1

*** PEEKS 1 AHEAD ***

Identity

I/O: 1->1

roundrobin(1,63)

staticDeQuantization

I/O: 64->64

roundrobin(1,1,1,1,1,1,1,1)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

roundrobin(8,8,8,8,8,8,8,8)

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

iDCT_1D

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

Add

I/O: 1->1

RGBtoYCbCr

I/O: 3->3

roundrobin(1,1,1)

Add

I/O: 1->1

Add

I/O: 1->1

Add

I/O: 1->1

roundrobin(64,64,64)

Identity

I/O: 1->1

roundrobin(8,8,8,8,8,8,8,8)

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

roundrobin(1,1,1,1,1,1,1,1)

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

staticQuantization

I/O: 64->64

roundrobin(1,63)

IntegerDifferenceEncoder

I/O: 1->1

*** PEEKS 1 AHEAD ***

Identity

I/O: 1->1

roundrobin(1,63)

ZigZagOrdering

I/O: 64->64

roundrobin(8,8,8,8,8,8,8,8)

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

roundrobin(1,1,1,1,1,1,1,1)

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

staticQuantization

I/O: 64->64

roundrobin(1,63)

IntegerDifferenceEncoder

I/O: 1->1

*** PEEKS 1 AHEAD ***

Identity

I/O: 1->1

roundrobin(1,63)

ZigZagOrdering

I/O: 64->64

roundrobin(8,8,8,8,8,8,8,8)

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

roundrobin(8,8,8,8,8,8,8,8)

roundrobin(1,1,1,1,1,1,1,1)

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

DCT_1D

I/O: 8->8

roundrobin(1,1,1,1,1,1,1,1)

staticQuantization

I/O: 64->64

roundrobin(1,63)

IntegerDifferenceEncoder

I/O: 1->1

*** PEEKS 1 AHEAD ***

Identity

I/O: 1->1

roundrobin(1,63)

ZigZagOrdering

I/O: 64->64

JPEGByteStream_Creator

I/O: [192,*]->[48,*]

FileWriter

I/O: 1->0

Figure B-43: Stream graph for JPEG transcoder.

216

Lattice

ZeroStage

CompStage

LatDel

CompStage

LatDel

CompStage

LatDel

CompStage

LatDel

CompStage

LatDel

CompStage

LatDel

CompStage

LatDel

CompStage

LatDel

Counter

work=7

I/O: 0->1

*** STATEFUL ***

duplicate(1,1)

Identity

work=6

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,1)

roundrobin(1,1)

Identity

work=6

I/O: 1->1

DelayOne

work=6

I/O: 1->1

roundrobin(1,1)

LatFilt

work=29

I/O: 2->2

roundrobin(1,1)

Identity

work=6

I/O: 1->1

DelayOne

work=6

I/O: 1->1

roundrobin(1,1)

LatFilt

work=29

I/O: 2->2

roundrobin(1,1)

Identity

work=6

I/O: 1->1

DelayOne

work=6

I/O: 1->1

roundrobin(1,1)

LatFilt

work=29

I/O: 2->2

roundrobin(1,1)

Identity

work=6

I/O: 1->1

DelayOne

work=6

I/O: 1->1

roundrobin(1,1)

LatFilt

work=29

I/O: 2->2

roundrobin(1,1)

Identity

work=6

I/O: 1->1

DelayOne

work=6

I/O: 1->1

roundrobin(1,1)

LatFilt

work=29

I/O: 2->2

roundrobin(1,1)

Identity

work=6

I/O: 1->1

DelayOne

work=6

I/O: 1->1

roundrobin(1,1)

LatFilt

work=29

I/O: 2->2

roundrobin(1,1)

Identity

work=6

I/O: 1->1

DelayOne

work=6

I/O: 1->1

roundrobin(1,1)

LatFilt

work=29

I/O: 2->2

roundrobin(1,1)

Identity

work=6

I/O: 1->1

DelayOne

work=6

I/O: 1->1

roundrobin(1,1)

LatFilt

work=29

I/O: 2->2

LastStage

work=9

I/O: 2->0

Figure B-44: Stream graph for Lattice.

217

MatrixMultBlock

MatrixBlockMultiply

BlockSplit

Duplicate

Transpose

BlockSplit

Duplicate

BlockCombine

BlockSplit

BlockFloatSource

work=3528

I/O: 0->1

*** STATEFUL ***

roundrobin(144,108)

roundrobin(4,4,4) roundrobin(1,1,1,1,1,1,1,1,1)

roundrobin(16,12)

BlockMultiply

work=27648

I/O: 28->12

Identity

work=288

I/O: 1->1

Identity

work=288

I/O: 1->1

Identity

work=288

I/O: 1->1

roundrobin(16,16,16)

duplicate(1,1,1)

Identity

work=864

I/O: 1->1

Identity

work=864

I/O: 1->1

Identity

work=864

I/O: 1->1

roundrobin(48,48,48)

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

roundrobin(12,12,12,12,12,12,12,12,12)

roundrobin(4,4,4)

Identity

work=216

I/O: 1->1

Identity

work=216

I/O: 1->1

Identity

work=216

I/O: 1->1

roundrobin(12,12,12)

duplicate(1,1,1)

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

roundrobin(108,108,108)

BlockAdd

work=2916

I/O: 36->12

roundrobin(3,3,3,3)

Identity

work=162

I/O: 1->1

Identity

work=162

I/O: 1->1

Identity

work=162

I/O: 1->1

Identity

work=162

I/O: 1->1

roundrobin(9,9,9,9)

Anonymous

work=648

I/O: 1->0

Figure B-45: Stream graph for MatrixMult (coarse).

218

MatrixMult

MatrixMultiply

RearrangeDuplicateBoth

DuplicateRows

DuplicateRowsInternal

RearrangeDuplicate

Transpose

DuplicateRows

DuplicateRowsInternal

MultiplyAccumulateParallel

FloatSource

work=3528

I/O: 0->1

*** STATEFUL ***

roundrobin(144,108)

duplicate(1,1,1,1,1,1,1,1,1) roundrobin(1,1,1,1,1,1,1,1,1)

roundrobin(1,1)

roundrobin(24,24,24,24,24,24,24,24,24,24,24,24)

Identity

work=864

I/O: 1->1

Identity

work=864

I/O: 1->1

Identity

work=864

I/O: 1->1

Identity

work=864

I/O: 1->1

Identity

work=864

I/O: 1->1

Identity

work=864

I/O: 1->1

Identity

work=864

I/O: 1->1

Identity

work=864

I/O: 1->1

Identity

work=864

I/O: 1->1

roundrobin(12,12,12,12,12,12,12,12,12)

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

Identity

work=72

I/O: 1->1

roundrobin(12,12,12,12,12,12,12,12,12)

duplicate(1,1,1,1,1,1,1,1,1,1,1,1)

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

Identity

work=648

I/O: 1->1

roundrobin(108,108,108,108,108,108,108,108,108,108,108,108)

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

MultiplyAccumulate

work=1647

I/O: 24->1

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1)

FloatPrinter

work=648

I/O: 1->0

Figure B-46: Stream graph for MatrixMult (fine).

219

MergeSort

Sorter

Sorter Sorter

Sorter

Sorter Sorter

IntSource

work=208

I/O: 0->1

*** STATEFUL ***

roundrobin(1,1)

roundrobin(1,1) roundrobin(1,1)

roundrobin(1,1)

Merger

work=197

I/O: 16->16

roundrobin(1,1) roundrobin(1,1)

roundrobin(1,1)

Merger

work=157

I/O: 8->8

Merger

work=127

I/O: 2->2

Merger

work=127

I/O: 2->2

roundrobin(1,1)

Merger

work=137

I/O: 4->4

Merger

work=127

I/O: 2->2

Merger

work=127

I/O: 2->2

roundrobin(1,1)

Merger

work=137

I/O: 4->4

roundrobin(1,1) roundrobin(1,1)

roundrobin(1,1)

Merger

work=157

I/O: 8->8

Merger

work=127

I/O: 2->2

Merger

work=127

I/O: 2->2

roundrobin(1,1)

Merger

work=137

I/O: 4->4

Merger

work=127

I/O: 2->2

Merger

work=127

I/O: 2->2

roundrobin(1,1)

Merger

work=137

I/O: 4->4

IntPrinter

work=96

I/O: 1->0

Figure B-47: Stream graph for MergeSort.

220

Figure B-48: Stream graph for Mosaic (teleport messages notshown).

221

MP

MultiChannelPCMSynthesis

MultiChannelPCMSynthesisInterval

FilterBank

PCMSynthesis

FilterBank

PCMSynthesis

FileReader

work=0

I/O: 0->1

roundrobin(609,609)

Antialias

work=7216

I/O: 609->608

Antialias

work=7216

I/O: 609->608

roundrobin(1,1)

output_int

work=6912

I/O: 1->0

IMDCT

work=26464

I/O: 19->36

Anonymous

work=12096

I/O: 36->18

*** PEEKS 1134 AHEAD ***

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

roundrobin(32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32)

MatrixVectorMultiply

work=414144

I/O: 32->64

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Reorder

work=135360

I/O: 64->512

*** PEEKS 960 AHEAD ***

VectorVectorMultiply

work=110592

I/O: 512->512

roundrobin(1,1)

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

roundrobin(1,1)

FloatToShort

work=6912

I/O: 1->1

IMDCT

work=26464

I/O: 19->36

Anonymous

work=12096

I/O: 36->18

*** PEEKS 1134 AHEAD ***

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

Identity

work=192

I/O: 1->1

roundrobin(1,1)

roundrobin(32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32)

MatrixVectorMultiply

work=414144

I/O: 32->64

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Identity

work=96

I/O: 1->1

Inverse

work=128

I/O: 1->1

roundrobin(1,1)

Reorder

work=135360

I/O: 64->512

*** PEEKS 960 AHEAD ***

VectorVectorMultiply

work=110592

I/O: 512->512

roundrobin(1,1)

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

Sum

work=2070

I/O: 16->1

roundrobin(1,1)

FloatToShort

work=6912

I/O: 1->1

Figure B-49: Stream graph for MP3.

222

MPDChain

DopplerFilter

VideoPipe

FFTKernel

FFTReorder

VideoPipe

FFTKernel

FFTReorder

CTurnComplex

PulseCompression

SumFIRFilter
GuardPipe

GuardSplitter

PulsePipe

FFTKernel

FFTReorder

GuardFFTPipe

FFTKernel

FFTReorder

GuardIFFTPipe

IFFTKernel

FFTKernel

FFTReorder

CFARPipe

CFARNoiseSplitter

CFARNoiseLevelPipe

CFARNoiseLevelSplitter

CFARNoiseLevelCalcPipe CFARNoiseLevelCalcPipe

CFARTreshLMaxSplitter

CFARTreshLMaxReplicatePipe

CFARTreshLMaxSubSplitter

CFARTreshPipe

CFARTreshSplitter

CFARTreshGofPipe

CFARLMaxPipe

CFARDelayToLMax

CFARDetectPipe

CFARDetectPipeSplitter

FileReader

work=0

I/O: 0->1

roundrobin(2,2)

WeightCalc

work=106496

I/O: 2->2

*** STATEFUL ***

WeightCalc

work=106496

I/O: 2->2

*** STATEFUL ***

roundrobin(2,2)

roundrobin(4,4)

FFTReorderSimple

work=50232

I/O: 64->64

FFTReorderSimple

work=50544

I/O: 32->32

FFTReorderSimple

work=51168

I/O: 16->16

FFTReorderSimple

work=52416

I/O: 8->8

CombineDFT

work=128128

I/O: 4->4

CombineDFT

work=128128

I/O: 8->8

CombineDFT

work=128128

I/O: 16->16

CombineDFT

work=128128

I/O: 32->32

CombineDFT

work=128128

I/O: 64->64

FFTReorderSimple

work=50232

I/O: 64->64

FFTReorderSimple

work=50544

I/O: 32->32

FFTReorderSimple

work=51168

I/O: 16->16

FFTReorderSimple

work=52416

I/O: 8->8

CombineDFT

work=128128

I/O: 4->4

CombineDFT

work=128128

I/O: 8->8

CombineDFT

work=128128

I/O: 16->16

CombineDFT

work=128128

I/O: 32->32

CombineDFT

work=128128

I/O: 64->64

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

Identity

work=2496

I/O: 1->1

roundrobin(416,416)

roundrobin(2,2)

FIRReset

work=49792

I/O: 208->228

roundrobin(0,2)

roundrobin(2,2)

CFARToDecibelFilter

work=3274752

I/O: 2->1

FIRZeroAdder

work=65664

I/O: 1->2

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

SingleMultiply

work=291840

I/O: 4->4

*** PEEKS 2 AHEAD ***

FIRCleanUp

work=65664

I/O: 2->1

FIRResetClean

work=49792

I/O: 228->208

ValueCreator

work=90112

I/O: 0->2

*** STATEFUL ***

GuardDataPadder

work=60928

I/O: 208->256

roundrobin(2,2)

GuardMultiplier

work=122880

I/O: 4->2

FFTReorderSimple

work=61536

I/O: 256->256

FFTReorderSimple

work=61632

I/O: 128->128

FFTReorderSimple

work=61824

I/O: 64->64

FFTReorderSimple

work=62208

I/O: 32->32

FFTReorderSimple

work=62976

I/O: 16->16

FFTReorderSimple

work=64512

I/O: 8->8

CombineDFT

work=157696

I/O: 4->4

CombineDFT

work=157696

I/O: 8->8

CombineDFT

work=157696

I/O: 16->16

CombineDFT

work=157696

I/O: 32->32

CombineDFT

work=157696

I/O: 64->64

CombineDFT

work=157696

I/O: 128->128

CombineDFT

work=157696

I/O: 256->256

GuardConj

work=57344

I/O: 2->2

FFTReorderSimple

work=61536

I/O: 256->256

FFTReorderSimple

work=61632

I/O: 128->128

FFTReorderSimple

work=61824

I/O: 64->64

FFTReorderSimple

work=62208

I/O: 32->32

FFTReorderSimple

work=62976

I/O: 16->16

FFTReorderSimple

work=64512

I/O: 8->8

CombineDFT

work=157696

I/O: 4->4

CombineDFT

work=157696

I/O: 8->8

CombineDFT

work=157696

I/O: 16->16

CombineDFT

work=157696

I/O: 32->32

CombineDFT

work=157696

I/O: 64->64

CombineDFT

work=157696

I/O: 128->128

CombineDFT

work=157696

I/O: 256->256

Conjugate

work=57344

I/O: 2->2

FFTReorderSimple

work=61536

I/O: 256->256

FFTReorderSimple

work=61632

I/O: 128->128

FFTReorderSimple

work=61824

I/O: 64->64

FFTReorderSimple

work=62208

I/O: 32->32

FFTReorderSimple

work=62976

I/O: 16->16

FFTReorderSimple

work=64512

I/O: 8->8

CombineDFT

work=157696

I/O: 4->4

CombineDFT

work=157696

I/O: 8->8

CombineDFT

work=157696

I/O: 16->16

CombineDFT

work=157696

I/O: 32->32

CombineDFT

work=157696

I/O: 64->64

CombineDFT

work=157696

I/O: 128->128

CombineDFT

work=157696

I/O: 256->256

Conjugate

work=57344

I/O: 2->2

DivideByN

work=311296

I/O: 1->1

GuardRemovePadded

work=60928

I/O: 256->208

duplicate(1,1)

roundrobin(1,1)

CFARPusher

work=39936

I/O: 1->1

roundrobin(2,2)

roundrobin(1,3)

CFARNoiseLevelMeanCalc

work=21088

I/O: 104->1

*** STATEFUL ***

CFARNoiseLevelMeanCalc

work=21088

I/O: 104->1

*** STATEFUL ***

roundrobin(1,1)

CFARNoiseLevelGuardFirst

work=26630

I/O: 2->6656

CFARNoiseLevelMeanCalcGather

work=259

I/O: 32->1

CFARNoiseLevelMeanCalcGather

work=259

I/O: 32->1

CFARPusher

work=19968

I/O: 1->1

CFARSumReplicateFilter

work=79872

I/O: 3->5

roundrobin(1,4)

roundrobin(1,1,1,1,1)

roundrobin(2,1,2)

roundrobin(1,1)

LMaxCalc

work=312384

I/O: 104->104

*** STATEFUL ***

CFARPusher

work=39936

I/O: 1->1

roundrobin(1,1,2)

CFARPusher

work=19968

I/O: 1->1

CFARTreshReorganize

work=35520

I/O: 104->139

roundrobin(1,1)

CFARTreshFilter

work=53248

I/O: 2->1

CFARTreshCumSumFilter

work=102304

I/O: 1->1

*** STATEFUL ***

CFARTreshSubFilter

work=179680

I/O: 139->123

CFARTreshMaxFilter

work=46304

I/O: 123->104

Delay

work=19968

I/O: 1->1

Delay

work=19968

I/O: 1->1

Identity

work=19968

I/O: 1->1

Delay

work=19968

I/O: 1->1

Delay

work=19968

I/O: 1->1

roundrobin(1,1,1,1,1)

CFARDetectRearrange

work=99840

I/O: 5->5

roundrobin(2,2,1)

CFARDetectSum

work=36608

I/O: 2->1

CFARDetectGuard

work=43264

I/O: 2->1

CFARPusher

work=19968

I/O: 1->1

roundrobin(1,1,1)

CFARDetectFilter

work=126464

I/O: 3->1

*** STATEFUL ***

Printer

work=19968

I/O: 2->0

Figure B-50: Stream graph for MPD.

223

MPEGtoBMP

BlockDecode

LumChromFormatOne

LuminanceChannelProcessing ChrominanceChannelProcessing ChrominanceChannelProcessing

FileReader

I/O: 0->1

MPEGStreamParser

I/O: *->403

*** STATEFUL ***

roundrobin(384,16,3)

ZigZagUnordering

I/O: 64->64

MotionVectorDecode

I/O: 16->8

*** STATEFUL ***

Repeat

I/O: 3->18

roundrobin(64,8,3)

roundrobin(300,75,75)

duplicate(1,1)

roundrobin(1,63)

InverseQuantization_AC_Coeff

I/O: 64->64

*** STATEFUL ***

roundrobin(64,64)

InverseQuantizationJoinerSubstitute

I/O: 128->64

*** STATEFUL ***

InverseQuantization_DC_Intra_Coeff

I/O: 1->1

*** STATEFUL ***

InverseQuantization_AC_Coeff

I/O: 63->63

*** STATEFUL ***

roundrobin(1,63)

Saturation

I/O: 1->1

MismatchControl

I/O: 64->64

iDCT8x8_1D_row_fast

I/O: 8->8

iDCT8x8_1D_col_fast

I/O: 64->64

*** STATEFUL ***

BoundedSaturation

I/O: 1->1

Repeat

I/O: 8->48

Post_CollapsedDataParallel

I/O: 300->300
roundrobin(64,8,1,1,1) roundrobin(64,8,1,1,1)

roundrobin(1,1,1)

PictureReorder

I/O: 253440->253440

*** STATEFUL ***

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 6600->6600

roundrobin(64,8,1,1,1)

Identity

I/O: 1->1

DivideBy

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

roundrobin(64,8,1,1,1)

MotionPrediction

I/O: 99000->84480

*** STATEFUL ***

Identity

I/O: 1->1

DivideBy

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

roundrobin(64,8,1,1,1)

MotionPrediction

I/O: 24750->21120

*** STATEFUL ***

Pre_CollapsedDataParallel

I/O: 21120->21120

ChannelUpsample_1D

I/O: 120->240

Post_CollapsedDataParallel

I/O: 42240->42240

ChannelUpsample_1D

I/O: 176->352

Identity

I/O: 1->1

DivideBy

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

Identity

I/O: 1->1

roundrobin(64,8,1,1,1)

MotionPrediction

I/O: 24750->21120

*** STATEFUL ***

Pre_CollapsedDataParallel

I/O: 21120->21120

ChannelUpsample_1D

I/O: 120->240

Post_CollapsedDataParallel

I/O: 42240->42240

ChannelUpsample_1D

I/O: 176->352

YCbCrtoRGB

I/O: 3->3

Saturation

I/O: 1->1

roundrobin(253440,253440,253440)

Pre_CollapsedDataParallel

I/O: 253440->253440

Pre_CollapsedDataParallel

I/O: 253440->253440

Pre_CollapsedDataParallel

I/O: 253440->253440

roundrobin(0,0,0)

ReversePixelOrder

I/O: 720->720

Post_CollapsedDataParallel

I/O: 253440->253440

BMPStreamCreator

I/O: 1->1

FileWriter

I/O: 1->0

ReversePixelOrder

I/O: 720->720

Post_CollapsedDataParallel

I/O: 253440->253440

BMPStreamCreator

I/O: 1->1

FileWriter

I/O: 1->0

ReversePixelOrder

I/O: 720->720

Post_CollapsedDataParallel

I/O: 253440->253440

BMPStreamCreator

I/O: 1->1

FileWriter

I/O: 1->0

Figure B-51: Stream graph for MPEG2 decoder (teleport messages not shown).

224

BMPtoMPEG

PicturePreprocessing

TransformPicture

MacroBlockScrambler

CollapsedDataParallel CollapsedDataParallel

MacroBlockEncode

DCT_2D_reference_fine

MotionVectorEncode

DecodeAndSendBackReferenceFrame

MacroBlockAndMotionVectorDecode

roundrobin(0,0,0,0)

FileReader

I/O: 0->1

FileReader

I/O: 0->1

FileReader

I/O: 0->1

FileReader

I/O: 0->1

roundrobin(253440,253440,253440,253440)

duplicate(1,1)

BMPStreamParser

I/O: *->*

Pre_CollapsedDataParallel

I/O: 253440->253440

ReversePixelOrder

I/O: 720->720

Post_CollapsedDataParallel

I/O: 253440->253440

BMPStreamParser

I/O: *->*

Pre_CollapsedDataParallel

I/O: 253440->253440

ReversePixelOrder

I/O: 720->720

Post_CollapsedDataParallel

I/O: 253440->253440

BMPStreamParser

I/O: *->*

Pre_CollapsedDataParallel

I/O: 253440->253440

ReversePixelOrder

I/O: 720->720

Post_CollapsedDataParallel

I/O: 253440->253440

BMPStreamParser

I/O: *->*

Pre_CollapsedDataParallel

I/O: 253440->253440

ReversePixelOrder

I/O: 720->720

Post_CollapsedDataParallel

I/O: 253440->253440

AssignPictureType

I/O: 253440->2

*** STATEFUL ***

RGBtoYCbCr

I/O: 3->3

roundrobin(2,126720)

Anonymous

I/O: *->*

roundrobin(1,1,1)

roundrobin(16,16)
Post_CollapsedDataParallel

I/O: 352->352

Post_CollapsedDataParallel

I/O: 352->352

roundrobin(256,64,64)

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

Post_CollapsedDataParallel

I/O: 16->16

roundrobin(256,256)

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 128->128

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 5632->5632

DropSecond

I/O: 2->1

Pre_CollapsedDataParallel

I/O: 16->16

ChannelDownsample_1D

I/O: 2->1

Identity

I/O: 1->1

Pre_CollapsedDataParallel

I/O: 5632->5632

DropSecond

I/O: 2->1

Pre_CollapsedDataParallel

I/O: 16->16

ChannelDownsample_1D

I/O: 2->1

Anonymous

I/O: 126722->126720

duplicate(1,1,1)

IntraMotionPrediction

I/O: 384->389

MotionEstimation

I/O: 384->389

*** STATEFUL ***

MotionEstimation

I/O: 384->389

*** STATEFUL ***

roundrobin(389,389,389)

MotionPredictionDecision

I/O: 1167->390

*** STATEFUL ***

roundrobin(385,5)

roundrobin(1,384) roundrobin(4,1)

roundrobin(389,9)

duplicate(1,1)

Identity

I/O: 1->1

Anonymous

I/O: 1->1

roundrobin(1,384)

Quantisation

I/O: 385->389

DCT_1D_reference_fine

I/O: 8->8

Pre_CollapsedDataParallel

I/O: 64->64

DCT_1D_reference_fine

I/O: 8->8

Post_CollapsedDataParallel

I/O: 64->64

Anonymous

I/O: 1->1

roundrobin(5,384)

Identity

I/O: 1->1

ZigZagOrdering

I/O: 64->64

roundrobin(5,384)

Identity

I/O: 1->1

Repeat

I/O: 1->5

roundrobin(4,5)

roundrobin(8,1)

roundrobin(1,1,1,1)

Identity

I/O: 1->1

roundrobin(8,1)

IndividualMotionVectorEncode

I/O: 44->44

IndividualMotionVectorEncode

I/O: 44->44

IndividualMotionVectorEncode

I/O: 44->44

IndividualMotionVectorEncode

I/O: 44->44

roundrobin(2,2,2,2)

Identity

I/O: 1->1

roundrobin(389,2,2,2,2,1)

roundrobin(131340,1)

Anonymous

I/O: 131341->131340

Anonymous

I/O: 389->384

IndividualMotionVectorDecode

I/O: 44->22

IndividualMotionVectorDecode

I/O: 44->22

IndividualMotionVectorDecode

I/O: 44->22

IndividualMotionVectorDecode

I/O: 44->22

Identity

I/O: 1->1

roundrobin(384,1,1,1,1,1)

SendBackReferenceFrameEncoder

I/O: 128370->1

*** STATEFUL ***

ZigZagUnordering

I/O: 64->64

duplicate(1,1)

roundrobin(1,63)

InverseQuantization_AC_Coeff

I/O: 64->64

*** STATEFUL ***

roundrobin(64,64)

InverseQuantizationJoinerSubstitute

I/O: 128->64

*** STATEFUL ***

InverseQuantization_DC_Intra_Coeff

I/O: 1->1

*** STATEFUL ***

InverseQuantization_AC_Coeff

I/O: 63->63

*** STATEFUL ***

roundrobin(1,63)

iDCT8x8_1D_row_fast

I/O: 8->8

iDCT8x8_1D_col_fast

I/O: 64->64

GeneratorMessageReceiver

I/O: 131340->131342

*** STATEFUL ***

MPEGStreamGenerator

I/O: *->*

BitAlignStartCodes

I/O: *->*

*** STATEFUL ***

FileWriter

I/O: 1->0

Figure B-52: Stream graph for MPEG2 encoder (teleport messages not shown).

225

perftest

PerftestSplitJoin

PerftestPipeline PerftestPipeline PerftestPipeline PerftestPipeline

TestSource

work=181500

I/O: 0->1

*** STATEFUL ***

roundrobin(825,825,825,825)

ComplexFIRFilter

work=52915

I/O: 825->2

*** STATEFUL ***

ComplexFIRFilter

work=52915

I/O: 825->2

*** STATEFUL ***

ComplexFIRFilter

work=52915

I/O: 825->2

*** STATEFUL ***

ComplexFIRFilter

work=52915

I/O: 825->2

*** STATEFUL ***

roundrobin(1,1,1,1)

NullSink

work=24

I/O: 1->0

QuadratureDemod

work=10216

I/O: 10->5

RealFIRFilter

work=238

I/O: 5->1

*** PEEKS 15 AHEAD ***

QuadratureDemod

work=10216

I/O: 10->5

RealFIRFilter

work=238

I/O: 5->1

*** PEEKS 15 AHEAD ***

QuadratureDemod

work=10216

I/O: 10->5

RealFIRFilter

work=238

I/O: 5->1

*** PEEKS 15 AHEAD ***

QuadratureDemod

work=10216

I/O: 10->5

RealFIRFilter

work=238

I/O: 5->1

*** PEEKS 15 AHEAD ***

Figure B-53: Stream graph for OFDM.

226

Oversampler

OverSampler

DataSource

work=13

I/O: 0->1

*** STATEFUL ***

Expander

work=11

I/O: 1->2

LowPassFilter

work=1420

I/O: 1->1

*** PEEKS 63 AHEAD ***

Expander

work=22

I/O: 1->2

LowPassFilter

work=2840

I/O: 1->1

*** PEEKS 63 AHEAD ***

Expander

work=44

I/O: 1->2

LowPassFilter

work=5680

I/O: 1->1

*** PEEKS 63 AHEAD ***

Expander

work=88

I/O: 1->2

LowPassFilter

work=11360

I/O: 1->1

*** PEEKS 63 AHEAD ***

DataSink

work=96

I/O: 1->0

Figure B-54: Stream graph for Oversampler.

227

CoarseSerializedBeamFormer

roundrobin(0,0,0,0,0,0,0,0,0,0,0,0)

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

InputGenerate

I/O: 0->2

*** STATEFUL ***

roundrobin(2,2,2,2,2,2,2,2,2,2,2,2)

duplicate(1,1,1,1)

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

Decimator

I/O: 2->2

CoarseBeamFirFilter

I/O: 512->512

Decimator

I/O: 4->2

CoarseBeamFirFilter

I/O: 256->256

BeamForm

I/O: 24->2

BeamForm

I/O: 24->2

BeamForm

I/O: 24->2

BeamForm

I/O: 24->2

roundrobin(1,1,1,1)

FileWriter

I/O: 1->0

CoarseBeamFirFilter

I/O: 256->256

Magnitude

I/O: 2->1

CoarseBeamFirFilter

I/O: 256->256

Magnitude

I/O: 2->1

CoarseBeamFirFilter

I/O: 256->256

Magnitude

I/O: 2->1

CoarseBeamFirFilter

I/O: 256->256

Magnitude

I/O: 2->1

Figure B-55: Stream graph for Radar (coarse).

228

BeamFormer

roundrobin(0,0,0,0,0,0,0,0,0,0,0,0)

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

InputGenerate

work=1286

I/O: 0->2

*** STATEFUL ***

roundrobin(2,2,2,2,2,2,2,2,2,2,2,2)

duplicate(1,1,1,1)

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamFirFilter

work=5076

I/O: 2->2

*** STATEFUL ***

BeamFirFilter

work=2548

I/O: 4->2

*** STATEFUL ***

BeamForm

work=390

I/O: 24->2

BeamForm

work=390

I/O: 24->2

BeamForm

work=390

I/O: 24->2

BeamForm

work=390

I/O: 24->2

roundrobin(1,1,1,1)

FileWriter

work=0

I/O: 1->0

BeamFirFilter

work=5034

I/O: 2->2

*** STATEFUL ***

Magnitude

work=332

I/O: 2->1

BeamFirFilter

work=5034

I/O: 2->2

*** STATEFUL ***

Magnitude

work=332

I/O: 2->1

BeamFirFilter

work=5034

I/O: 2->2

*** STATEFUL ***

Magnitude

work=332

I/O: 2->1

BeamFirFilter

work=5034

I/O: 2->2

*** STATEFUL ***

Magnitude

work=332

I/O: 2->1

Figure B-56: Stream graph for Radar (fine).

229

RadixSort

IntSource

work=208

I/O: 0->1

*** STATEFUL ***

Sort

work=185

I/O: 16->16

Sort

work=185

I/O: 16->16

Sort

work=185

I/O: 16->16

Sort

work=185

I/O: 16->16

Sort

work=185

I/O: 16->16

Sort

work=185

I/O: 16->16

Sort

work=185

I/O: 16->16

Sort

work=185

I/O: 16->16

Sort

work=185

I/O: 16->16

Sort

work=185

I/O: 16->16

Sort

work=185

I/O: 16->16

IntPrinter

work=96

I/O: 1->0

Figure B-57: Stream graph for RadixSort.

230

SamplingRateConverter

SampledSource

work=420

I/O: 0->1

*** STATEFUL ***

Expander

work=33

I/O: 1->2

LowPassFilter

work=19836

I/O: 1->1

*** PEEKS 299 AHEAD ***

Compressor

work=32

I/O: 3->1

FloatPrinter

work=12

I/O: 1->0

Figure B-58: Stream graph for RateConvert.

231

Raytracer

genEyeRays

work=unknown

I/O: 0->1

*** STATEFUL ***

traceRays

work=unknown

I/O: 1->1

shadeHits

work=unknown

I/O: 1->1

PPMWriter

work=unknown

I/O: 1->0

*** STATEFUL ***

Figure B-59: Stream graph for Raytracer1.

232

RayTracer

RaySource

work=115

I/O: 0->1

*** STATEFUL ***

CircleIntersect

work=70

I/O: 1->1

NormalizeNorm

work=473

I/O: 1->1

Lighting

work=48

I/O: 1->1

WritePPM

work=8

I/O: 1->0

Figure B-60: Stream graph for RayTracer2.

233

SAR

FastTimeFilter

FTX1D FTX2D

FTY2D

iFTY2D

FTY2D

Reconstruction

iFTY2D

iFTX2D

Anonymous

work=3

I/O: 0->1

duplicate(1,1)

Anonymous

work=299595

I/O: 1->438

genRawSAR

work=6541487613

I/O: 1->70080

roundrobin(1,160)

Anonymous

work=2805390

I/O: 70518->70080

FFT1Dshift

work=10512

I/O: 438->438

FFT1D

work=9022800

I/O: 438->438

FFT1Dshift

work=10512

I/O: 438->438

Conjugate

work=6132

I/O: 438->438

FFT2Dshift

work=914106

I/O: 70080->70080

FFT2D

work=1505039276

I/O: 70080->70080

FFT2Dshift

work=914106

I/O: 70080->70080

Compression

work=2804076

I/O: 70080->70080

Transpose

work=1051520

I/O: 70080->70080

FFT2Dshift

work=912160

I/O: 70080->70080

FFT2D

work=550409516

I/O: 70080->70080

FFT2Dshift

work=912160

I/O: 70080->70080

Transpose

work=1052076

I/O: 70080->70080

ZeroPadding

work=2845248

I/O: 70080->167316

Transpose

work=2510504

I/O: 167316->167316

FFT2Dshift

work=2177782

I/O: 167316->167316

iFFT2D

work=3144873176

I/O: 167316->167316

FFT2Dshift

work=2177782

I/O: 167316->167316

Transpose

work=2510616

I/O: 167316->167316

Decompression

work=6693516

I/O: 167316->167316

Transpose

work=2510504

I/O: 167316->167316

FFT2Dshift

work=2177782

I/O: 167316->167316

FFT2D

work=3134164952

I/O: 167316->167316

FFT2Dshift

work=2177782

I/O: 167316->167316

Transpose

work=2510616

I/O: 167316->167316

matchedFiltering

work=8032044

I/O: 167316->167316

convolutionInterpolation

work=1170413600

I/O: 167316->101612

Transpose

work=1524944

I/O: 101612->101612

FFT2Dshift

work=1323630

I/O: 101612->101612

iFFT2D

work=1909900448

I/O: 101612->101612

FFT2Dshift

work=1323630

I/O: 101612->101612

Transpose

work=1524712

I/O: 101612->101612

FFT2Dshift

work=1322818

I/O: 101612->101612

iFFT2D

work=1332337840

I/O: 101612->101612

FFT2Dshift

work=1322818

I/O: 101612->101612

complexAbsoluate

work=147032564

I/O: 1->1

floatTranspose

work=1524944

I/O: 101612->101612

FloatPrinter

work=609672

I/O: 1->0

Figure B-61: Stream graph for SAR.

234

SampleTrellis

TrellisEncoderPipeline

DataSource

work=64

I/O: 0->1

*** STATEFUL ***

FrameMaker

work=35

I/O: 4->5

Shifter

work=295

I/O: 1->8

NoiseSource

work=920

I/O: 1->1

*** STATEFUL ***

RateDoubler

work=360

I/O: 1->2

roundrobin(1,1)

Delay

work=240

I/O: 1->1

Identity

work=240

I/O: 1->1

roundrobin(1,1)

DownSample

work=480

I/O: 2->1

TrellisEncoder

work=840

I/O: 1->2

*** PEEKS 2 AHEAD ***

TrellisDecoder

work=UNKNOWN

I/O: 80->40

*** STATEFUL ***

UnShifter

work=295

I/O: 8->1

UnFrameMaker

work=35

I/O: 5->4

CharPrinter

work=24

I/O: 1->0

Figure B-62: Stream graph for SampleTrellis.

235

repeat pipeline R (above)

 30 additional times

Figure B-63: Stream graph for Serpent.

236

tde_pp

FFTKernel

FFTReorder

IFFTKernel

FFTReorder

FileReader

work=0

I/O: 0->1

Transpose

work=15264

I/O: 1080->1080

Expand

work=12840

I/O: 72->128

FFTReorderSimple

work=14445

I/O: 128->128

FFTReorderSimple

work=14490

I/O: 64->64

FFTReorderSimple

work=14580

I/O: 32->32

FFTReorderSimple

work=14760

I/O: 16->16

FFTReorderSimple

work=15120

I/O: 8->8

CombineDFT

work=36960

I/O: 4->4

CombineDFT

work=36960

I/O: 8->8

CombineDFT

work=36960

I/O: 16->16

CombineDFT

work=36960

I/O: 32->32

CombineDFT

work=36960

I/O: 64->64

CombineDFT

work=36960

I/O: 128->128

Multiply_by_float

work=17280

I/O: 128->128

FFTReorderSimple

work=14445

I/O: 128->128

FFTReorderSimple

work=14490

I/O: 64->64

FFTReorderSimple

work=14580

I/O: 32->32

FFTReorderSimple

work=14760

I/O: 16->16

FFTReorderSimple

work=15120

I/O: 8->8

CombineIDFT

work=31680

I/O: 4->4

CombineIDFT

work=30960

I/O: 8->8

CombineIDFT

work=30600

I/O: 16->16

CombineIDFT

work=30420

I/O: 32->32

CombineIDFT

work=30330

I/O: 64->64

CombineIDFTFinal

work=32205

I/O: 128->128

Contract

work=12840

I/O: 128->72

Transpose

work=15180

I/O: 1080->1080

FileWriter

work=0

I/O: 1->0

Figure B-64: Stream graph for TDE.

237

TargetDetect

TargetDetectSplitJoin

TargetSource

work=25

I/O: 0->1

*** STATEFUL ***

duplicate(1,1,1,1)

MatchedFilterOne

work=3306

I/O: 1->1

*** PEEKS 299 AHEAD ***

MatchedFilterTwo

work=3306

I/O: 1->1

*** PEEKS 299 AHEAD ***

MatchedFilterThree

work=3306

I/O: 1->1

*** PEEKS 299 AHEAD ***

MatchedFilterFour

work=3306

I/O: 1->1

*** PEEKS 299 AHEAD ***

roundrobin(1,1,1,1)

FloatPrinter

work=24

I/O: 1->0

ThresholdDetector

work=8

I/O: 1->1

ThresholdDetector

work=8

I/O: 1->1

ThresholdDetector

work=8

I/O: 1->1

ThresholdDetector

work=8

I/O: 1->1

Figure B-65: Stream graph for TargetDetect.

238

VectAdd

TwoVectSource

roundrobin(0,0)

VectSource

work=7

I/O: 0->1

*** STATEFUL ***

VectSource

work=7

I/O: 0->1

*** STATEFUL ***

roundrobin(1,1)

VectAddKernel

work=10

I/O: 2->1

VectPrinter

work=6

I/O: 1->0

Figure B-66: Stream graph for VectAdd.

239

VocoderTopLevel

FilterBank

MagnitudeStuff

Remapper

PhaseStuff

InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff InnerPhaseStuff

SumReals

SumRealsRealHandler

StepSource

work=21

I/O: 0->1

*** STATEFUL ***

IntToFloat

work=6

I/O: 1->1

Delay

work=6

I/O: 1->1

duplicate(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

DFTFilter

work=66

I/O: 1->2

*** PEEKS 28 AHEAD ***

*** STATEFUL ***

roundrobin(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)

RectangularToPolar

work=9105

I/O: 2->2

roundrobin(1,1)

duplicate(1,1) roundrobin(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

roundrobin(1,1)

PolarToRectangular

work=5060

I/O: 2->2

FIRSmoothingFilter

work=3300

I/O: 15->15

Identity

work=90

I/O: 1->1

roundrobin(1,1)

Deconvolve

work=450

I/O: 2->2

roundrobin(1,1)

Duplicator

work=195

I/O: 3->4

LinearInterpolator

work=2010

I/O: 1->4

*** PEEKS 1 AHEAD ***

roundrobin(1,1)

Multiplier

work=220

I/O: 2->1

Decimator

work=320

I/O: 3->1

Identity

work=120

I/O: 1->1

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper

work=73

I/O: 1->1

*** STATEFUL ***

roundrobin(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Duplicator

work=195

I/O: 3->4

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

FirstDifference

work=14

I/O: 1->1

*** PEEKS 1 AHEAD ***

ConstMultiplier

work=8

I/O: 1->1

Accumulator

work=14

I/O: 1->1

*** STATEFUL ***

roundrobin(1,1)

roundrobin(1,18,1)

FloatVoid

work=60

I/O: 1->0

roundrobin(1,0)

InvDelay

work=9

I/O: 1->1

*** PEEKS 13 AHEAD ***

Identity

work=6

I/O: 1->1

Doubler

work=252

I/O: 1->1

Identity

work=6

I/O: 1->1

roundrobin(1,18,1)

roundrobin(1,1)

Adder

work=73

I/O: 10->1

Adder

work=73

I/O: 10->1

roundrobin(1,1)

Subtractor

work=14

I/O: 2->1

ConstMultiplier

work=8

I/O: 1->1

FloatToShort

work=12

I/O: 1->1

FileWriter

work=0

I/O: 1->0

Figure B-67: Stream graph for Vocoder.

240

	My Thesis
	Introduction
	Streaming Application Domain
	Brief History of Streaming
	The StreamIt Project
	Contributions

	The StreamIt Language
	Model of Computation
	Filters
	Stream Graphs
	Data Reordering
	Experience Report
	Related Work
	Future Work
	Chapter Summary

	Teleport Messaging
	Introduction
	Stream Dependence Function
	Semantics of Messaging
	Case Study
	Related Work
	Future Work
	Chapter Summary

	Optimizing Stream Programs
	Parallelization
	Optimizing Linear Computations
	Cache Optimizations
	Related Work
	Future Work
	Chapter Summary

	Translating Stream Programs into the Compressed Domain
	Introduction
	Mapping into the Compressed Domain
	Supported File Formats
	Experimental Evaluation
	Related Work
	Future Work
	Chapter Summary

	Migrating Legacy C Programs to a Streaming Representation
	Introduction
	Stability of Stream Programs
	Migration Methodology
	Implementation
	Case Studies
	Related Work
	Future Work
	Chapter Summary

	Conclusions
	Bibliography
	Example StreamIt Program
	Graphs of StreamIt Benchmarks

