789 research outputs found

    Voltage-to-Time Converter for High-Speed Time-Based Analog-to-Digital Converters

    Get PDF
    In modern complementary metal oxide semiconductor (CMOS) technologies, the supply voltage scales faster than the threshold voltage (Vth) of the transistors in successive smaller nodes. Moreover, the intrinsic gain of the transistors diminishes as well. Consequently, these issues increase the difficulty of designing higher speed and larger resolution analog-to-digital converters (ADCs) employing voltage-domain ADC architectures. Nevertheless, smaller transistor dimensions in state-of-the-art CMOS technologies leads to reduced capacitance, resulting in lower gate delays. Therefore, it becomes beneficial to first convert an input voltage to a 'time signal' using a voltage-to-time converter (VTC), instead of directly converting it into a digital output. This 'time-signal' could then be converted to a digital output through a time-to-digital converter (TDC) for complete analog-to-digital conversion. However, the overall performance of such an ADC will still be limited to the performance level of the voltage-to-time conversion process. Hence, this thesis presents the design of a linear VTC for a high-speed time-based ADC in 28 nm CMOS process. The proposed VTC consists of a sample-and-hold (S/H) circuit, a ramp generator and a comparator to perform the conversion of the input signal from the voltage to the time domain. Larger linearity is attained by integrating a constant current (with high output impedance) over a capacitor, generating a linear ramp. The VTC operates at 256 MSPS consuming 1.3 mW from 1 V supply with a full-scale 1 V pk-pk differential input signal, while achieving a time-domain output signal with a spurious-free-dynamic-range (SFDR) of 77 dB and a signal-to-noise-and-distortion ratio (SNDR) of 56 dB at close to Nyquist frequency (f = 126.5 MHz). The proposed VTC attains an output range of 2.7 ns, which is the highest linear output range for a VTC at this speed, published to date

    Development of a portable time-domain system for diffuse optical tomography of the newborn infant brain

    Get PDF
    Conditions such as hypoxic-ischaemic encephalopathy (HIE) and perinatal arterial ischaemic stroke (PAIS) are causes of lifelong neurodisability in a few hundred infants born in the UK each year. Early diagnosis and treatment are key, but no effective bedside detection and monitoring technology is available. Non-invasive, near-infrared techniques have been explored for several decades, but progress has been inhibited by the lack of a portable technology, and intensity measurements, which are strongly sensitive to uncertain and variable coupling of light sources and detector to the scalp. A technique known as time domain diffuse optical tomography (TD-DOT) uses measurements of photon flight times between sources and detectors placed on the scalp. Mean flight time is largely insensitive to the coupling and variation in mean flight time can reveal spatial variation in blood volume and oxygenation in regions of brain sampled by the measurements. While the cost, size and high power consumption of such technology have hitherto prevented development of a portable imaging system, recent advances in silicon technology are enabling portable and low-power TD-DOT devices to be built. A prototype TD-DOT system is proposed and demonstrated, with the long-term aim to design a portable system based on independent modules, each supporting a time-of-flight detector and a pulsed source. The operation is demonstrated of components that can be integrated in a portable system: silicon photodetectors, integrated circuit-based signal conditioning and time detection -- built using a combination of off-the-shelf components and reconfigurable hardware, standard computer interfaces, and data acquisition and calibration software. The only external elements are a PC and a pulsed laser source. This thesis describes the design process, and results are reported on the performance of a 2-channel system with online histogram generation, used for phantom imaging. Possible future development of the hardware is also discussed

    A 3-step Low-latency Low-Power Multichannel Time-to-Digital Converter based on Time Residual Amplifier

    Full text link
    This paper proposes and evaluates a novel architecture for a low-power Time-to-Digital Converter with high resolution, optimized for both integration in multichannel chips and high rate operation (40 Mconversion/s/channel). This converter is based on a three-step architecture. The first step uses a counter whereas the following ones are based on two kinds of Delay Line structures. A programmable time amplifier is used between the second and third steps to reach the final resolution of 24.4 ps in the standard mode of operation. The system makes use of common continuously stabilized master blocks that control trimmable slave blocks, in each channel, against the effects of global PVT variations. Thanks to this structure, the power consumption of a channel is considerably reduced when it does not process a hit, and limited to 2.2 mW when it processes a hit. In the 130 nm CMOS technology used for the prototype, the area of a TDC channel is only 0.051 mm2. This compactness combined with low power consumption is a key advantage for integration in multi-channel front-end chips. The performance of this new structure has been evaluated on prototype chips. Measurements show excellent timing performance over a wide range of operating temperatures (-40{\deg}C to 60{\deg}C) in agreement with our expectations. For example, the measured timing integral nonlinearity is better than 1 LSB (25 ps) and the overall timing precision is better than 21 ps RMS

    Measurement of the Fermi Constant by FAST

    Full text link
    An initial measurement of the lifetime of the positive muon to a precision of 16 parts per million (ppm) has been performed with the FAST detector at the Paul Scherrer Institute. The result is tau_mu = 2.197083 (32) (15) microsec, where the first error is statistical and the second is systematic. The muon lifetime determines the Fermi constant, G_F = 1.166353 (9) x 10^-5 GeV^-2 (8 ppm).Comment: 15 pages, 6 figure

    Current-mode processing based Temperature-to-Digital Converters for MEMS applications

    Get PDF
    This thesis presents novel Temperature-to-Digital Converters (TDCs) designed and fabricated in CMOS technology. These integrated smart temperature sensing circuits are widely employed in the Micro-Electro-Mechanical Systems (MEMS) field in order to mitigate the impact of the ambient temperature on their performance. In this framework, the increasingly stringent demands of the market have led the cost-effectiveness specification of these compensation solutions to an higher and higher level, directly translating into the requirement of more and more compact designs (< 0.1 mm²); in addition to this, considering that the great majority of the systems whose thermal drift needs to be compensated is battery supplied, ultra-low energy-per-conversion (< 10 nJ) is another requirement of primary importance. This thesis provides a detailed description of two different test-chips (mas fuerte and es posible) that have been designed with this orientation and that are the result of three years of research activity; for both devices, the conception, design, layout and testing phases are all described in detail and are supported by simulation and measurement results.This thesis presents novel Temperature-to-Digital Converters (TDCs) designed and fabricated in CMOS technology. These integrated smart temperature sensing circuits are widely employed in the Micro-Electro-Mechanical Systems (MEMS) field in order to mitigate the impact of the ambient temperature on their performance. In this framework, the increasingly stringent demands of the market have led the cost-effectiveness specification of these compensation solutions to an higher and higher level, directly translating into the requirement of more and more compact designs (< 0.1 mm²); in addition to this, considering that the great majority of the systems whose thermal drift needs to be compensated is battery supplied, ultra-low energy-per-conversion (< 10 nJ) is another requirement of primary importance. This thesis provides a detailed description of two different test-chips (mas fuerte and es posible) that have been designed with this orientation and that are the result of three years of research activity; for both devices, the conception, design, layout and testing phases are all described in detail and are supported by simulation and measurement results

    A Low-Power Silicon-Photomultiplier Readout ASIC for the CALICE Analog Hadronic Calorimeter

    Get PDF
    The future e + e − collider experiments, such as the international linear collider, provide precise measurements of the heavy bosons and serve as excellent tests of the underlying fundamental physics. To reconstruct these bosons with an unprecedented resolution from their multi-jet final states, a detector system employing the particle flow approach has been proposed, requesting calorimeters with imaging capabilities. The analog hadron calorimeter based on the SiPM-on-tile technology is one of the highly granular candidates of the imaging calorimeters. To achieve the compactness, the silicon-photomultiplier (SiPM) readout electronics require a low-power monolithic solution. This thesis presents the design of such an application-specific integrated circuit (ASIC) for the charge and timing readout of the SiPMs. The ASIC provides precise charge measurement over a large dynamic range with auto-triggering and local zero-suppression functionalities. The charge and timing information are digitized using channel-wise analog-to-digital and time-to-digital converters, providing a fully integrated solution for the SiPM readout. Dedicated to the analog hadron calorimeter, the power-pulsing technique is applied to the full chip to meet the stringent power consumption requirement. This work also initializes the commissioning of the calorimeter layer with the use of the designed ASIC. An automatic calibration procedure has been developed to optimized the configuration settings for the chip. The new calorimeter base unit with the designed ASIC has been produced and its functionality has been tested

    Towards a fully integrated quantum optic circuit

    Get PDF

    On time, time synchronization and noise in time measurement systems

    Get PDF
    Time plays an important role in our modern lives. Especially having accurate time, which in turn depends on having clocks being synchronized to each other. This thesis is split into three distinct parts. The first part deals with the mathematical description of noise that is required to model clocks and electronics accurately. In particular we will address the problem that the generally used tools from signal theory fail for noise signals which are neither of finite energy nor periodic in nature. For this we will introduce a new function space based on the Pp-seminorm that is an extension of the Lp-norm for functions of potentially infinite energy but limited power. Using this new semi-norm we will modify the Fourier transform to work on signals from this P p-space. And last but not least, we will introduce, based on the above, a new mathematical model of noise that captures all the properties associated with 1/f -noise. In the second part, we will look at how noise propagates in a few classes of electronics, especially how the non-linear behavior of electronics leads to an amplification of noise and how it could be miti-gated. Lastly, in the third part we will look at one approach of fault-tolerant clock synchronization. After explaining its working principle and showing an implementation in an FPGA we will focus on meta-stability, the problems it can cause and how to handle them on two different circuit levels.Zeit spielt eine wichtige Rolle in unserem Leben. Insbesondere die Verfügbarkeit einer genauen Zeit. Welches wiederum davon abhängt, dass man Uhren hat die auf einander synchronisiert laufen. Diese Arbeit ist in drei Teile aufgeteilt: Im ersten Teil betrachten wir die mathematische Beschreibung von Rauschen um elektronische Systeme und Uhren korrekt beschreiben zu können. Im Besonderen betrachten wir die Probleme die die generell benutzten Methoden der Signalverarbeitung beim Umgang mit Rauschsignalen haben, die weder energiebegrenzt noch periodisch sind. Dafür erweitern wir den Funktionenraum der Lp-Norm auf leistungslimiterte Funktionene und führen die Pp-Halbnorm ein und modifizieren die Fouriertransformation zur Verwendung auf diesen Raum. Und letztlich führen wir ein neues mathematisches Model zur Beschreibung von Rauschen ein, welches alle üblicherweise angenommenen Eigenschaften gleichzeitig erfüllt. Im zweiten Teil analysieren wir wie sich einige Klassen von elektronischen Schaltungem im Bezug auf Rauschen verhalten. Insbesondere im Bezug auf das nicht-lineare Verhalten der elektronischen Elemente, welches zu einer Verstärkung des Rauschens führt. Im dritten Teil betrachten wir eine Möglichkeit um fehlertolerante Synchronization von Uhren zu erreichen. Nach einem Überblick über den verwendeten Algorithmus und wie dieser einem FPGA implementiert werden kann, schauen wir uns den Einfluss von Metastabilität an und wie dieser eingedämmt werden kann

    Significance of Artificial Intelligence in the Production of Effective Output in Power Electronics

    Get PDF
    The power electronics (PE) industry is expected to play a significant role in the development of energy conservation and global industrialization trends of the 21st century. Due to the technological advancements that have occurred in the field, such as transportation and communication, the need for efficient and quality products is becoming more prevalent. The importance of power electronics is acknowledged in the automated industries that are constantly striving to improve their efficiency and effectiveness. Due to the increasing global energy consumption, the need for more energy-efficient technologies is also becoming more prevalent. Around 87% of our energy is derived from fossil fuels, while 6% is generated from nuclear power plants and 7% from renewable sources. Due to the increasing concerns about the environment and safety issues associated with nuclear plants and fossil fuels, the need for energy conservation is becoming more prevalent. This is also expected to be achieved through the development of power electronics. In the coming decades, the development of artificial intelligence (AI) tools, such as neural network, expert system, and fuzzy logic, is expected to bring a new era to the field of motion control and power electronics. Despite the technological advancements that have occurred in the field, these tools have not yet reached the power electronics sectors. In this paper, the AI tools and their applications in the field of power electronics and motion control are discussed
    corecore