422 research outputs found

    Building a path-integral calculus: a covariant discretization approach

    Full text link
    Path integrals are a central tool when it comes to describing quantum or thermal fluctuations of particles or fields. Their success dates back to Feynman who showed how to use them within the framework of quantum mechanics. Since then, path integrals have pervaded all areas of physics where fluctuation effects, quantum and/or thermal, are of paramount importance. Their appeal is based on the fact that one converts a problem formulated in terms of operators into one of sampling classical paths with a given weight. Path integrals are the mirror image of our conventional Riemann integrals, with functions replacing the real numbers one usually sums over. However, unlike conventional integrals, path integration suffers a serious drawback: in general, one cannot make non-linear changes of variables without committing an error of some sort. Thus, no path-integral based calculus is possible. Here we identify which are the deep mathematical reasons causing this important caveat, and we come up with cures for systems described by one degree of freedom. Our main result is a construction of path integration free of this longstanding problem, through a direct time-discretization procedure.Comment: 22 pages, 2 figures, 1 table. Typos correcte

    Stochastic Averaging Principle for Dynamical Systems with Fractional Brownian Motion

    Full text link
    Stochastic averaging for a class of stochastic differential equations (SDEs) with fractional Brownian motion, of the Hurst parameter H in the interval (1/2, 1), is investigated. An averaged SDE for the original SDE is proposed, and their solutions are quantitatively compared. It is shown that the solution of the averaged SDE converges to that of the original SDE in the sense of mean square and also in probability. It is further demonstrated that a similar averaging principle holds for SDEs under stochastic integral of pathwise backward and forward types. Two examples are presented and numerical simulations are carried out to illustrate the averaging principle

    Single polymer dynamics in elongational flow and the confluent Heun equation

    Full text link
    We investigate the non-equilibrium dynamics of an isolated polymer in a stationary elongational flow. We compute the relaxation time to the steady-state configuration as a function of the Weissenberg number. A strong increase of the relaxation time is found around the coil-stretch transition, which is attributed to the large number of polymer configurations. The relaxation dynamics of the polymer is solved analytically in terms of a central two-point connection problem for the singly confluent Heun equation.Comment: 9 pages, 6 figure

    Modelling and feedback control design for quantum state preparation

    Get PDF
    The goal of this article is to provide a largely self-contained introduction to the modelling of controlled quantum systems under continuous observation, and to the design of feedback controls that prepare particular quantum states. We describe a bottom-up approach, where a field-theoretic model is subjected to statistical inference and is ultimately controlled. As an example, the formalism is applied to a highly idealized interaction of an atomic ensemble with an optical field. Our aim is to provide a unified outline for the modelling, from first principles, of realistic experiments in quantum control

    Stability of attitude control systems acted upon by random perturbations

    Get PDF
    Mathematical models on stability of attitude control systems acted upon by random perturbation processe

    Stochastic Stability of Damped Mathieu Oscillator Parametrically Excited by a Gaussian Noise

    Get PDF
    This paper analyzes the stochastic stability of a damped Mathieu oscillator subjected to a parametric excitation of the form of a stationary Gaussian process, which may be both white and coloured. By applying deterministic and stochastic averaging, two Itô's differential equations are retrieved. Reference is made to stochastic stability in moments. The differential equations ruling the response statistical moment evolution are written by means of Itô's differential rule. A necessary and sufficient condition of stability in the moments of orderris that the matrixArof the coefficients of the ODE system ruling them has negative real eigenvalues and complex eigenvalues with negative real parts. Because of the linearity of the system the stability of the first two moments is the strongest condition of stability. In the case of the first moments (averages), critical values of the parameters are expressed analytically, while for the second moments the search for the critical values is made numerically. Some graphs are presented for representative cases

    Stability analysis of a noise-induced Hopf bifurcation

    Get PDF
    We study analytically and numerically the noise-induced transition between an absorbing and an oscillatory state in a Duffing oscillator subject to multiplicative, Gaussian white noise. We show in a non-perturbative manner that a stochastic bifurcation occurs when the Lyapunov exponent of the linearised system becomes positive. We deduce from a simple formula for the Lyapunov exponent the phase diagram of the stochastic Duffing oscillator. The behaviour of physical observables, such as the oscillator's mean energy, is studied both close to and far from the bifurcation.Comment: 10 pages, 8 figure
    corecore