9 research outputs found

    Data Hiding in Color Images: A High Capacity Data Hiding Technique for Covert Communication

    Get PDF
    A high capacity data hiding technique using color images as cover medium and referred to as 4R-4G-4B technique has been investigated and presented in this paper. The color image is firstly divided into its constituent bit planes followed by data embedding. To thwart the adversary different embedding algorithms have been used for embedding data in Red, Green and Blue planes. Additional layer of security to the embedded data is added by embedding secret data at the pseudorandom locations determined by Main Address Vector (MAV) and Complementary Address Vector (CAV). The comparison of our method with an existing technique shows that proposed technique is capable of providing better quality stego-images even if the embedded data is slightly more. A 2.7dB increase in PSNR in case of proposed technique substantiates the argument

    Color space adaptation for video coding

    Get PDF
    Processament d'imatges abans de ser codificades pel codificador HEVC amb la finalitat d'augmentar la qualitat i la fidelitat.[ANGLÈS] Project on the objective and subjective improvements by pre-processing images to be encoded into a video.[CASTELLÀ] Proyecto sobre la repercusión en la mejora de calidad objetiva y subjetiva del pre-procesado de imágenes a codificar con vídeo.[CATALÀ] Projecte sobre la repercussió en la millora de la qualitat objectiva i subjectiva del pre-processament d'imatges a codificar amb vídeo

    Custom Lossless Compression and High-Quality Lossy Compression of White Blood Cell Microscopy Images for Display and Machine Learning Applications

    Get PDF
    This master's thesis investigates both custom lossless compression and high-quality lossy compression of microscopy images of white blood cells produced by CellaVision's blood analysis systems. A number of different compression strategies have been developed and evaluated, all of which are taking advantage of the specific color filter array used in the sensor in the cameras in the analysis systems. Lossless compression has been the main focus of this thesis. The lossless compression method, of those developed, that gave best result is based on a statistical autoregressive model. A model is constructed for each color channel with external information from the other color channels. The difference between the predictions from the statistical model and the original is further Huffman coded. The method achieves an average bit-rate of 3.0409 bits per pixel on the test set consisting of 604 images. The proposed lossy method is based on taking the difference between the image compressed with an ordinary lossy compression method, JPEG 2000, and the original image. The JPEG 2000 image is saved, as well as the differences at the foreground (i.e. locations with cells), in order to keep the cells identical to the cells in the original image, but allow loss of information for the, not so important, background. This method achieves a bit-rate of 2.4451 bits per pixel, with a peak signal-to-noise-ratio (PSNR) of 48.05 dB

    Hardware JPEG Decompression

    Get PDF
    Due to the ever increasing popularity of mobile devices, and the growing number of pixels in digital photography, there becomes a strain on viewing one\u27s own photos. Similar to Desktop PCs, a common trend occurring in the mobile market to compensate for the increased computational requirements is faster and multi-processor systems. The observation that the number of transistors in integrated circuits doubles approximately every 18-24 months is known as Moore\u27s law. Some believe that this trend, Moore\u27s law, is plateauing which enforces alternate methods to aid in computation. This thesis explores supplementing the processor with a dedicated hardware module to reduce its workload. This provides a software-hardware combination that can be utilized when large and long computations are needed, such as in the decompression of high pixel count JPEG images. The results show that this proposed architecture decreases the viewing time of JPEG images significantly

    Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting

    Get PDF
    Linear identification technique is to linearly embed a piece of unique information into digital media data for the purpose of satisfying specific demands such as identification, annotation, and copyright, etc. We need to consider the quantity and the quality of identification data to be embedded as well as the corresponding interference to the original subject signal. However, there exist no generalized computationally-efficient optimization techniques for linear identification up to now. Therefore, in this dissertation work, we try to theoretically investigate the advanced linear identification techniques and combat the tradeoff problems between the quality of the embedded identification data and the quality of the subject signal. Two particular signal processing and telecommunication applications, namely transmitter identification and digital watermarking, will be exploited in this work. We propose a novel optimization paradigm for both digital terrestrial television (DTV) systems and multiple digital watermarking systems to maximize the overall signal-to-interference-plus-noise ratio (SINR) over both identification and subject signals. The new theories and practice related to pseudo random sequences, extended arithmetic-geometric mean inequality, and constrained overall system performance are also presented in this dissertation

    Colour image coding with wavelets and matching pursuit

    Get PDF
    This thesis considers sparse approximation of still images as the basis of a lossy compression system. The Matching Pursuit (MP) algorithm is presented as a method particularly suited for application in lossy scalable image coding. Its multichannel extension, capable of exploiting inter-channel correlations, is found to be an efficient way to represent colour data in RGB colour space. Known problems with MP, high computational complexity of encoding and dictionary design, are tackled by finding an appropriate partitioning of an image. The idea of performing MP in the spatio-frequency domain after transform such as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to encode the image representation obtained after MP into a bit-stream. Novel approaches for encoding the atomic decomposition of a signal and colour amplitudes quantisation are proposed and evaluated. The image codec that has been built is capable of competing with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio

    Reversible integer color transform with bit-constraint

    No full text
    corecore