
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2013

Hardware JPEG Decompression
Dan MacDonald
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
MacDonald, Dan, "Hardware JPEG Decompression" (2013). Electronic Theses and Dissertations. Paper 4889.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/4889?utm_source=scholar.uwindsor.ca%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Hardware JPEG Decompression

by

Dan MacDonald

A Thesis
Submitted to the Faculty of Graduate Studies through the

Department of Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2013

c© 2013 Dan MacDonald

All Rights Reserved. No Part of this document may be reproduced, stored or oth-

erwise retained in a retreival system or transmitted in any form, on any medium by

any means without prior written permission of the author.

Hardware JPEG Decompression

by

Dan MacDonald

APPROVED BY:

Boubakeur Boufama

Computer Science

Huapeng Wu

Electrical and Computer Engineering

Roberto Muscedere, Advisor

Electrical and Computer Engineering

May 15, 2013

Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon any-

ones copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my the-

sis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as ap-

proved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

iv

Abstract

Due to the ever increasing popularity of mobile devices, and the growing number of

pixels in digital photography, there becomes a strain on viewing one’s own photos.

Similar to Desktop PCs, a common trend occurring in the mobile market to com-

pensate for the increased computational requirements is faster and multi-processor

systems. The observation that the number of transistors in integrated circuits doubles

approximately every 18-24 months is known as Moore’s law. Some believe that this

trend, Moore’s law, is plateauing which enforces alternate methods to aid in compu-

tation.

This thesis explores supplementing the processor with a dedicated hardware mod-

ule to reduce its workload. This provides a software-hardware combination that can

be utilized when large and long computations are needed, such as in the decompression

of high pixel count JPEG images. The results show that this proposed architecture

decreases the viewing time of JPEG images significantly.

v

I would like to dedicate this work to my family and friends. I thank you for the
support and motivation to tinker and find this path.

vi

Acknowledgments

I will always be grateful to my supervisor, Dr. Muscedere, for his vast knowledge,

advice, and for bringing this challenging project to my attention.

I’d also like to thank my other committee members, Dr. H. Wu and Dr. B.

Boufama, for their support in this research. Lastly, I’d like to thank my dog Maxx

for posing in a test image.

vii

Contents

Declaration of Originality iv

Abstract v

Dedication vi

Acknowledgments vii

List of Figures xii

List of Tables xiv

List of Abbreviations xvi

1 Introduction 1

1.1 History of JPEG Images . 2

1.2 Overview of Research, Motivation . 3

1.3 Organization of Thesis . 4

2 The JPEG Standard 6

2.1 Discrete Cosine Transform . 7

viii

CONTENTS

2.2 Quantization . 10

2.3 Huffman Encoding and Decoding . 11

2.4 Field Programmable Gate Array . 14

2.4.1 Soft Processor . 14

2.5 Summary . 15

3 Existing Work in Hardware JPEG Algorithms 16

3.1 libjpeg . 17

3.2 Inverse Discrete Cosine Transform (IDCT) 18

3.2.1 Distributed Arithmetic DCT 19

3.2.2 Loeffler Algorithm . 20

3.3 YCC to RGB Colour Space Conversion 22

3.3.1 Look Up Table . 24

3.3.2 Shift and Add . 25

3.3.3 Integer Based Transform . 26

3.4 Summary . 27

4 Proposed Hybrid Architecture 28

4.1 Development Board Specs . 29

4.2 Hardware Software Communication 30

4.2.1 Communication through DDR2 RAM 31

4.2.2 Communication through Hardware Registers 32

4.3 Hardware Design . 33

4.3.1 IDCT . 33

4.3.2 Colour Conversion . 36

ix

CONTENTS

4.4 Software Design . 38

4.4.1 IDCT . 38

4.4.2 Colour Conversion . 40

4.5 Summary . 41

5 Results 43

5.1 Testing Setup and Procedure . 43

5.2 Timing Results . 46

5.2.1 Hardware Timing . 49

5.3 Image Verification . 50

5.4 Summary . 55

6 Conclusion and Recommendations 56

6.1 Recommendations . 57

References 59

A Source Images 61

B Testing Scripts 63

C C Code 66

C.1 libjpeg modifications . 66

C.2 ReadImage.c . 74

D VHDL Code 80

D.1 2D IDCT . 80

x

CONTENTS

D.2 Colour Converter . 95

E Huffman Decoding Example 105

E.1 Source Image . 105

E.2 Huffman Table Extraction . 108

E.3 Image Decoding . 109

E.3.1 Block 1 - Luminance . 109

E.3.2 Block 1 - Chrominance . 110

E.3.3 Block 2 - Luminance . 111

E.3.4 Block 2 - Chrominance . 112

E.4 Finalizing . 113

E.5 Huffman Tables . 114

Vita Auctoris 119

xi

List of Figures

2.1 JPEG Compression Process [13] . 7

2.2 JPEG Decompression Process [13] . 7

2.3 Energy Compaction of the DCT . 9

2.4 Zig Zag order of a DCT block [13] . 9

2.5 Huffman Tree . 13

3.1 Desktop JPEG Profiling . 18

3.2 Loeffler Algorithm for 1D DCT . 21

3.3 Loeffler Algorithm for 1D IDCT . 22

3.4 Cb-Cr colour plane at a constant luma value 23

4.1 Layers of a GNU/Linux based embedded system 31

4.2 Dequantization and 2D-IDCT Hardware Design 35

4.3 YCC to RGB Hardware Design . 38

4.4 IDCT array-register data compaction 39

4.5 3D image array . 40

4.6 Colour Conversion array-register data compaction 41

xii

LIST OF FIGURES

5.1 Image Decompression Timing . 48

5.2 Image Decompression Timing . 49

5.3 Bookstore image byte offset histogram 51

5.4 Dog image byte offset histogram . 52

5.5 beach image byte offset histogram . 53

A.1 Sample 20MP images . 62

E.1 Sample image . 106

E.2 HEX dump from sample image . 106

E.3 DCT Frequency domain of an 8x8 JPEG block 107

xiii

List of Tables

2.1 Example Huffman data . 12

3.1 Butterfly[B], Rotator[R], and constant Multiplication Blocks for Loef-

fler’s Algorithm . 21

3.2 Colour Space Look Up Table example 24

4.1 YCC - RGB constants . 37

5.1 Test Image Dimensions . 46

5.2 Bookstore Image Results . 47

5.3 Dog Image Results . 47

5.4 Beach Image Results . 47

5.5 Hardware Only Timing per test image 50

5.6 Test Image Verification . 54

E.1 Huffman Decoding Results . 113

E.2 Huffman Luminance (Y) DC table . 114

E.3 Huffman Luminance (Y) AC table . 115

E.4 Huffman Chrominance (Cb and Cr) DC table 116

xiv

LIST OF TABLES

E.5 Huffman Chrominance (Cb and Cr) AC table 117

E.6 Huffman DC Value Encoding . 118

xv

List of Abbreviations

xvi

LIST OF ABBREVIATIONS

1D 1 Dimensional

2D 2 Dimensional

ASIC Application Specific Integrated Circuit

CPU Central Processing Unit

DCT Discrete Cosine Transform

DSP Digital Signal Processing

FDCT Forward Discrete Cosine Transform

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HW Hardware

IDCT Inverse Discrete Cosine Transform

JPEG Joint Photographic Experts Group

LUT Lookup Table

MP Megapixel

px pixels

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SOC System On Chip

SW Software

RGB Red Green Blue

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

YCC Luminance Chrominance(Cb) Chrominance(Cr)

xvii

Chapter 1

Introduction

In recent years digital photography has taken leaps and bounds in the consumer mar-

ket. Along with improved sensors, functions, and touch screens, the pixel count of

the images are steadily increasing. At the time of writing this thesis, a consumer can

purchase a digital camera capable of taking a JPEG image of, 20 million pixels (20

MP). Additionally there has been an explosion with mobile devices such as smart

phones and tablets. The trend that the number of transistors in integrated circuits

doubles approximately every 18-24 months is known as Moore’s law [9]. Following

this trend, mobile processors are approaching the speed and multi-core architectures

of their desktop counterparts. A pocket sized computer has its advantages, but it

does face challenges when viewing the growing size of multi-media, especially digital

images.

1

1. INTRODUCTION

By far the most popular form digital image in computing today is the JPEG

(Joint Photographic Experts Group) image. JPEG images are found in every digital

camera, photo editing suites, MPEG video, internet browsers, and video games to

name a few. As all of the photo albums, and every photo taken become digitized into

JPEGs, being able to comfortably view the images becomes necessary.

1.1 History of JPEG Images

Early in computing history a need for viewing digital images arose. However, with

limited memory and storage space, raw image data was not a feasible solution. In

1986 a committee, the Joint Photographic Experts Group (JPEG) [4], was formed

to create a standard for digitized images. The JPEG group worked to standardize

a method of coding still pictures, known as JPEGs. The JPEG standard outlines a

codec that defines how an image is compressed into a stream of bytes and decom-

pressed back into an image.

The JPEG standard was first publicly released in 1992, which was approved as

ITU-T Recommendation T.81 and in 1994 as ISO/IEC 10918-1. Two years later the

standard was updated to include rules and checks for software conformance. Several

parts of the standard have been added in the years since, which introduce features

such as the JPEG File Interchange Format(JFIF), that outlines the structure of the

raw data in the file.

2

1. INTRODUCTION

The focus of the JPEG codec is to preserve as much data as possible while com-

pressing it into a much smaller file size. Due to this fact, JPEG images are considered

a lossy compression. By default they have a high degree of compression, with min-

imal perceptible loss in image quality but this can be adjusted. Adjustment of the

compressions ratio results in a tradeoff between data losses and file size. Higher com-

pression ratio have smaller file size, and vice versa. The JPEG standard provides

a framework for image compression and decompression, but depending on the algo-

rithms used determines the different types of JPEGs. A few types are progressive

sequential, lossless and baseline sequential. By far the most common type is Baseline

Sequential. The standard provides a simple and efficient algorithm which makes it

suitable for all digital cameras.

1.2 Overview of Research, Motivation

The accelerating popularity of mobile devices, and exploding pixel counts found in

consumer grade digital cameras have lead to an issue when attempting to view ones

own images. Many software applications have employed techniques when display-

ing larger images, such as pre-computing display sized thumbnails. However pre-

computation of a digital photo album does not resolve the problem, nor are these

techniques future proof against large device screen sizes, resolution, and increasing

pixel count.

3

1. INTRODUCTION

The focus of this thesis is to present an alternative architecture to relieve compu-

tations from the CPU and therefore improve upon the delay mobile devices undergo

when accessing large JPEG images. Currently there are dedicated hardware modules

for audio and video playback, but nothing has been done for still images. This work

is implemented on an embedded FPGA Linux platform using a JPEG decoding soft-

ware library found in the majority of mobile devices.

This thesis demonstrates the capability of dedicated hardware to assist the CPU

in computational workloads. It primarily focuses on reducing delays from the mathe-

matically challenging two-dimensional inverse discrete cosine transform (IDCT), and

the colour conversion from the luminance, and chrominance channels to the red, green,

blue colour system frequently used in digital displays. It achieves improvements from

hardware and software optimizations.

1.3 Organization of Thesis

Chapter 1 begins with an introduction to JPEG images and the JPEG ISO Standard,

then continues with a brief introduction to digital photography and trends in the

mobile market. Chapter 2 elaborates on the JPEG standard, describing the necessary

steps used to compress and decompress raw data to and from a viewable image.

Chapter 3 discusses previous works which aid in specific algorithms used by the JPEG

standard. Chapter 4 proposes a new software-hardware hybrid architecture used to

improve upon the JPEG decoding time. Chapter 5 presents the testing methodology,

4

1. INTRODUCTION

timing results, and verification of the hybrid architecture. Chapter 6 concludes this

thesis by making recommendations on future improvements for this work.

5

Chapter 2

The JPEG Standard

The JPEG standard for compression of still images [13], outlines the processes which

must be utilized to complete the JPEG compression or decompression. The standard

is comprised of 3 primary transformations which are reversible. In this chapter, the

methods and guidelines of the JPEG standard are reviewed, followed by a brief in-

troduction to Field Programmable Gate Arrays (FPGAs) and embedded systems.

The JPEG compression process consists of the Forward Discrete Cosine Trans-

form(FDCT), quantization of the DCT coefficients, and encoding the remaining val-

ues into binary representations as shown in Figure 2.1.

The JPEG decompression process consists of the same components as compres-

6

2. THE JPEG STANDARD

Figure 2.1: JPEG Compression Process [13]

Figure 2.2: JPEG Decompression Process [13]

sion in the reverse and inverse order. Decoding the binary values, dequantization, and

the Inverse Discrete Cosine Transform(IDCT) to obtain the original image content as

shown in Figure 2.2.

2.1 Discrete Cosine Transform

The Forward Discrete Cosine Transform(FDCT) is commonly referred to as the Dis-

crete Cosine Transform (DCT). It is a mathematical transform that achieves a high

7

2. THE JPEG STANDARD

degree of compression with minimal losses. Equation 2.1 shows the 1 dimensional

DCT (1D-DCT) of length 8. In JPEG image processing, Figure 2.1, the DCT is per-

formed 2 dimensionally (2D-DCT) on 8x8 blocks as shown in Equation 2.2, in which

the 1D-DCT is applied to each row, followed by each column.

F (k) = α(k)
7∑

x=0

f(x) cos(
(2x+ 1)kπ

16
)

α(k) =

√
1

8
for k = 0

α(k) =
1

2
otherwise

(2.1)

F (u, v) =
1

4
C(u)C(v)

7∑
x=0

7∑
y=0

f(x, y) cos(
(2x+ 1)uπ

16
) cos(

(2y + 1)vπ

16
)

C(u), C(v) =
1√
2
for u, v = 0

C(u), C(v) = 1 otherwise

(2.2)

As a result the output of the 2D-DCT focuses its energy in the upper left corner

of the 8x8 block, causing most of the 8x8 block to be zero. Figure 2.3 illustrates the

energy compaction of one row of pixels. Encoding of the DCT block can then be

optimized with the zig-zag pattern in Figure 2.4. Thus the trailing zeros can further

assist in the high compression in JPEG images.

8

2. THE JPEG STANDARD

Figure 2.3: Energy Compaction of the DCT

Figure 2.4: Zig Zag order of a DCT block [13]

In the JPEG decompression, Figure 2.2, process the Inverse Discrete Cosine Trans-

form (IDCT) is utilized to transform the dequantized Huffman coefficients back into

useable image data. Equation 2.3 shows the 2D-IDCT, which is the inverse of the

9

2. THE JPEG STANDARD

2D-DCT. Similar to the DCT, the IDCT is a row-column transformation.

f(x, y) =
1

4

7∑
u=0

7∑
v=0

C(u)C(v)F (u, v) cos(
(2x+ 1)uπ

16
) cos(

(2y + 1)vπ

16
)

C(u), C(v) =
1√
2
for u, v = 0

C(u), C(v) = 1 otherwise

(2.3)

2.2 Quantization

The quantization transformation shifts the output of the DCT down with integer

rounded division to increase the compression shown in Equation 2.4. Smaller num-

bers use fewer bits which achieves higher compression. The factor at which the DCT

coefficients are divided is determined by the quantization matrix. The quantization

matrix is a statistically determined matrix where the higher valued coefficients at the

top left of the matrix receive more scaling than the rest. This is due to the fact that

the output of the DCT focuses its energy at this corner. In most JPEGs the quanti-

zation matrices are not statistically determined for that particular image, instead a

generic set of tables based on the human vision system and trends from the DCT are

used.

10

2. THE JPEG STANDARD

FQ(u, v) = IntegerRound(
F (u, v)

Q(u, v)
) (2.4)

Dequantization is the reverse of quantization where the inputs to the IDCT are

multiplied by the same quantization matrix to scale up the coefficients to the original

intended value as shown in Equation 2.5.

FQ′
(u, v) = FQ(u, v) ∗Q(u, v) (2.5)

2.3 Huffman Encoding and Decoding

The final component of the JPEG compression/decompression process is entropy en-

coding/decoding. Encoding is the process of converting data from one format to

another for the purposes of speed, security or space saving. The purpose of entropy

encoding/decoding used in JPEG images is to compress the data without any losses.

The most common type of JPEG image is baseline sequential, which use Huffman

encoding/decoding [6]. Huffman encoding achieves lossless compression by allocating

the most frequently used symbols with the fewest number of bits. The example data

set in Table 2.1 illustrates how this process functions.

11

2. THE JPEG STANDARD

Symbol Frequency Code Code Length

A 24 0 1

B 12 100 3

C 10 101 3

D 8 110 3

E 8 111 3

Table 2.1: Example Huffman data

Based on the frequency of the symbol, a Huffman tree in Figure 2.5 is constructed.

Most frequently used symbols are near the top of the tree, and the less frequent are

at the bottom. A ”move” down the right branch of the tree represents a ”1”, and a

”move” down the left branch represents a ”0”

Eg: Symbol ’C’ is allocated the bits ”101”, while the most common symbol ’A’

uses only 2 bits.

12

2. THE JPEG STANDARD

Figure 2.5: Huffman Tree

Using this method the Huffman encoding creates a much smaller encoded bit

stream. Instead of building a Huffman tree each time, the JPEG image includes a

set of tables giving the bit to number translations. For decoding a set of 4 tables

are created. The tables are categorized by the colour channel, and frequency type:

Luminance DC, Luminance AC, Chrominance DC, and Chrominance AC. The two

Chrominance channels(Cb, Cr) share the AC and DC tables.

Huffman decoding is the reverse process of encoding. With the provided tables

and compressed bitstream the values can be perfectly reconstructed during JPEG

decompression. In many digital imaging devices such as digital cameras, the Huff-

man symbol calculations for that image are not calculated and a set of statistically

determined tables are used instead. Utilizing the default set of tables allows for faster

image compression, but can create a larger file size. In programs such as image edi-

tors, these settings can be changed to calculate the Huffman tables for a given image,

13

2. THE JPEG STANDARD

which result in a smaller file size, but more computation time.

2.4 Field Programmable Gate Array

A Field Programmable Gate Array (FPGA) is an integrated circuit designed to be

configurable after manufacture. Using design tools, an FPGA can be programmed to

generate the logic for virtually any hardware configuration. Unlike common CPU ar-

chitectures, since FPGAs are effectively programmable hardware it has the capability

to perform computations in parallel. This attribute greatly enhances speed over the

conventional methodology.

Many embedded systems, specifically those in mobile devices consist of a complete

system on chip (SOC). Additional hardware such as peripherals, are added either in-

ternally or externally. The use of FPGAs provide a flexible development platform

without the cost of a conventional SOC design. This work utilizes an FPGA which

models a SOC and its peripherals. The FPGA platform makes this work a suitable

platform and allows testing in real time.

2.4.1 Soft Processor

A soft processor is a microprocessor core that can be entirely implemented in using

logic synthesis. For FPGAs a soft processor design can mimic the Reduced Instruction

Set Computer(RISC) architectures found in many embedded systems. The MicroB-

14

2. THE JPEG STANDARD

laze processor [1] used in this work is a soft processor designed for Xilinx FPGAs. The

MicroBlaze is implemented entirely in the general-purpose memory and logic fabric

of Xilinx FPGAs.

2.5 Summary

This chapter discussed the methods outlined in the JPEG standard used to compress

and decompress JPEG image data, as well as gave an introduction to FPGAs in em-

bedded systems.

Due to the fact that the JPEG is highly complex, this research focuses on opti-

mizing individual components of the JPEG decompression process rather than the

entire algorithm. Utilizing the configurability of FPGAs a hardware architecture can

be designed to improve the software functions. This hybrid software-hardware archi-

tecture will be a beneficial replacement for the conventional software only approach.

15

Chapter 3

Existing Work in Hardware JPEG

Algorithms

The JPEG ISO standard, described in Chapter 2, outlines the transforms that are

needed in order to compress and decompress JPEG images. It does not describe the

specific algorithms that need to be used to achieve the end product. There hasn’t

been much publicized work on the complete decompression of a JPEG, but there

has been some work in the individual algorithms used to decompress a JPEG image.

This chapter will begin with an introduction to libjpeg, the most commonly used

JPEG software library used in mobile systems, followed by the state of the art in the

algorithms applicable to JPEG images, as well as their advantages and disadvantages.

16

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

3.1 libjpeg

There has been much work done in the software compression and decompression of

JPEG images. In 1986, shortly after the JPEG standard was created a group called

the Independent JPEG Group [7] (IJG) created the free open-source C library called

”libjpeg”. The library is multi-platform configurable, and follows all of the JPEG

ISO standards, and as such libjpeg is credited by the JPEG group to being a reliable

source to use in software applications. Due to its longevity and popularity libjpeg

has found itself as the primary JPEG encoder/decoder in mobile device applications,

as well as desktop applications. For this reason, this work uses the libjpeg ported for

the Xilinx MicroBlaze architecture as the starting point and control for testing.

Chapter 2 outlined the three primary steps used in compression and decompres-

sion, however these algorithms are not necessarily the most costly functions in the

digital domain. Therefore, the libjpeg library was profiled (a process of timing the

functions in software to find where the most significant bottlenecks reside) and ex-

amined.

To acquire an approximate function benchmark a 20 MP image was profiled on

a desktop PC running a Pentium-4 3GHz processor, 32-bit GNU/Linux operating

system, and 2GB of RAM. The image was profiled 100 times and averaged to achieve

statistical accuracy. Figure 3.1 displays the profiling results.

The profiling results show that the most expensive functions are the IDCT, the

17

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

Figure 3.1: Desktop JPEG Profiling

colour space conversion, and the Huffman transform with 46%, 13%, and 14% respec-

tively. The focus of this work centres on optimizing the IDCT and colour conversion

to enhance the JPEG decompression time.

3.2 Inverse Discrete Cosine Transform (IDCT)

First introduced in Section 2.1 the IDCT is the Inverse of the Discrete Cosine Trans-

form which used to transform the output of raw dequantized Huffman coefficients.

For JPEG images the pixels are split into 8x8 blocks prior to applying the DCT. The

2D-IDCT consists of 16 1D-IDCTs over the 8 rows and 8 columns of the DCT blocks.

Equation 3.1 demonstrates the formal definition of the 2D-IDCT as it applies to the

18

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

8x8 JPEG blocks.

f(x, y) =
1

4

7∑
u=0

7∑
v=0

C(u)C(v)F (u, v) cos(
(2x+ 1)uπ

16
) cos(

(2y + 1)vπ

16
)

C(u), C(v) =
1√
2
for u, v = 0

C(u), C(v) = 1 otherwise

(3.1)

The traditional IDCT in equation 3.1 shows the iterative multiplication process.

3.2.1 Distributed Arithmetic DCT

The Distributed Arithmetic DCT (DA-DCT) proposed by Pan [10] attempts to reduce

the complexity of the DCT by exploiting the binary representations of the 2D-DCT

matrix. The number of additions in this transform are reduced by a factor of 22.

On average 1 multiplication, 40 additions, and 16 binary shifts are required for each

DCT coefficient. Equations 3.2 - 3.6 illustrate how the transform is performed.

Y = A ∗X =

(
A1 A2 · · · AL

)

X1

X2

...

XL

(3.2)

Ak = −AMk 2M +
M−1∑
i=N

Aik2
i

where Aik is 0 or 1

(3.3)

19

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

Y = 2N ∗
(
−2M−N 2M−N−1 · · · 2 1

)
︸ ︷︷ ︸

S

∗

AM1 AM2 · · · AML

AM−1
1 AM−1

2 · · · AM−1
L

...
... · · · ...

AN1 AN2 · · · ANL

︸ ︷︷ ︸

B

∗

X1

X2

...

XL

︸ ︷︷ ︸

X

(3.4)

Let C = B ∗X =

(
CM CM−1 · · · CN

)T
(3.5)

Y = S ∗ C (3.6)

The multiplicative complexity is significantly reduced at the cost of additions and

shift operations, however; the DA-DCT word length must be ≥ 9 in order to be con-

sidered indistinguishable from floating point, and it must be ≥ 16 to be numerically

equivalent.

3.2.2 Loeffler Algorithm

By far the most popular algorithm for the DCT is the The Loeffler Algorithm [8]

used in [12]. The Loeffler Algorithm takes a similar approach to the DCT as the

Fast Fourier Transform (FFT) takes to the Discrete Fourier Transform(DFT). The

Algorithm is mapped to a set of ”Butterfly” and ”Rotator” blocks. It reduces the

DCT down to 29 additions and 11 multiplications, shown in Figure 3.2 and Table 3.1.

20

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

Figure 3.2: Loeffler Algorithm for 1D DCT

where

diagram equation

O0
I1 O1

O0 = I0 + I1

O1 = I0 − I1

O0
I1 O1

O0 = I0 ∗ k ∗ cos(nπ
16

) + I1 ∗ k ∗ sin(nπ
16

)

O1 = I1 ∗ k ∗ cos(nπ
16

)− I0 ∗ k ∗ sin(nπ
16

)

O = I ∗
√

1
2

Table 3.1: Butterfly[B], Rotator[R], and constant Multiplication Blocks for Loeffler’s

Algorithm

Due to the reversibility of the DCT, the IDCT Loeffler algorithm is mapped out

as in Figure 3.3.

21

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

Figure 3.3: Loeffler Algorithm for 1D IDCT

Since the complexity of the algorithm significantly reduces the complexity of the

IDCT to fewer multiplications and additions, it makes this algorithm the most suitable

method for the JPEG process. Consequently, this is the current IDCT algorithm

implemented in the libjpeg library.

3.3 YCC to RGB Colour Space Conversion

The colour scheme of the JPEG standard is based on the Luminance and Chrominance

channels (YCC). The YCC colour scheme has minimal redundancy, unlike RGB,

which makes it suitable for JPEG images. ”Y” is the Luminance component and

”Cb” and ”Cr” are the blue-difference, and red-difference chroma components. Figure

3.4 illustrates the chroma colour plane at a constant luma value.

Most displays use the Red-Green-Blue (RGB) colour scheme, so conversion be-

tween the two colour schemes is necessary. The colour space conversion is a simple

process, Equation 3.7, but is an intensive operation due to the fact that each pixel

22

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

Figure 3.4: Cb-Cr colour plane at a constant luma value

has 3 colour channels, which have 4 multiplications and 4 additions. For example, a

20MP image has 60 million individual colour channels, which possibly has 80 million

multiplications, and 80 million additions.

R = Y + 1.402 ∗ (Cr − 128) (3.7a)

B = Y + 1.772 ∗ (Cb− 128) (3.7b)

G = Y − 0.34414 ∗ (Cb− 128)− 0.71414 ∗ (Cr − 128) (3.7c)

23

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

3.3.1 Look Up Table

The Look-up Table (LUT) method is one of the most efficient methods, especially

for embedded systems, for computing a large number of calculations for limited mul-

tiplications. Since the colour conversion utilizes constant multiplications, and the

chrominance colour channels are limited to 256 values many systems pre-compute

every possible value. These values are stored in a table to be referenced when needed.

Typical YCbCr LUT implementation calculates the 4 base multiplications, Cr * 1.402,

Cr * 0.71414, Cb * 1.772 and Cb * 0.34414, and stores the values in tables. When

calculation is needed the Cr and Cb values are used as indices in these tables, and

additions are the only operation to calculate.

Cr-Red Cr-Green Cb-Blue Cb-Green

index (Cr * 1.402) (Cr * 0.71414) (Cb * 1.772) (Cb * 0.34414)

1 1.402 0.714 1.772 0.344

2 2.804 1.428 3.544 0.688

...
...

...
...

...

255 357.51 182.106 451.86 87.756

Table 3.2: Colour Space Look Up Table example

libjpeg uses LUTs for the YCC to RGB conversion. The LUTs are computed once

and stored upon startup. This allows a table look up and addition to calculate the

colour conversion. The advantage of this method is speed, but the disadvantage is

accuracy.

24

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

Indexing and accessing large tables occupies time, but the amount of time isn’t

necessarily consistent. Data caching problems, such as cache misses can arise with

these large data sets. Most CPU caches use an n-way associative cache, which can

cause replacement issues with using many table lookups, found in JPEG colour con-

version. This can result in more cache misses and slower time, which is not ideal for

this work.

3.3.2 Shift and Add

To reduce on the cumbersome floating point multiplications needed for colour space

conversion Yang et al [14] proposed a Fast Algorithm for YCbCr to RGB. On Digital

Signal Processors (DSPs), floating point multiplications, multiplications by a deci-

mal number, are simplified with multiple shift and add operations. The more unique

the decimal value of the multiplicand, the more shifts and adds are required, con-

suming processor resources and time. Colour conversion algorithms contain unique

decimal values, and are typically carried out thousands to millions of times. Yang et

al proposed to reduce the complexity of the multiplications in colour conversion with

minimal quantification error while maintaining the image quality.

Their algorithm selects the most significant fixed-point shift and add operations

to take place of the floating point multiplication. As such, the processor has fewer

operations to compute and thus time consumption is reduced.

25

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

R = Y + Cr + Cr � 2 + Cr � 3 + Cr � 5 (3.8a)

B = Y + Cb� 1 + Cb� 2 + Cb� 6 (3.8b)

G = Y−(Cb� 2+Cb� 4+Cb� 5)−(Cr � 1+Cr � 3+Cr � 4+Cr � 5) (3.8c)

The YCC to RGB conversion in Equation 3.8 proposed were tested with video

sequences comparing against floating point method. The maximum error observed

was 0.02% of all the images in the video. This method is ideal for YCC to RGB

approximation in JPEG applications, but the error in the colour may increase when

data propagates through the DCT.

3.3.3 Integer Based Transform

Pei et al [11] proposed a Reversible Integer Color Transform With Bit-Constraints to

optimize colour transforms. This method looks at redesigning the input coefficients

to floating point calculations completely. As a result the colour conversion transform

will be lossless, and can be implemented with only fixed-point operations.

The transformation process relies on the basis that most colour transformations

consist of 3x3 matrices. YCbCr, RGB, Karhunen-Loeve Average (KLA), and In-

tensity Hue Saturation (IHS) are all examples of 3x3 matrix colour schemes. The

process to generate the integer based transform involves normalizing the input ma-

trix and extracting the binary valued matrix which depends on 8 fixed point-values

26

3. EXISTING WORK IN HARDWARE JPEG ALGORITHMS

that approximate floating-point values. After the transformation is generated, using

the integer transform in forward and reverse applications becomes a simple set of

matrix operations.

Pei et al, tested this transform for RGB to YCbCr achieving 0.288% normalized

root mean square error. The advantage of this method eliminates all floating-point

operations, but the pre-computation and encoding of the colours this way is neces-

sary, and not applicable for JPEG applications.

3.4 Summary

This chapter presented several existing techniques that were developed to optimize

and accelerate the individual components of the JPEG process. As discussed some

of these techniques are more applicable to JPEG decompression than others. The

Loeffler algorithm, colour conversion LUTs, and the shift and add methods for YCC

to RGB conversion are the most advantageous procedures for JPEG implementation.

In the work presented herein, a novel hybrid architecture between software and

hardware was designed to provide hardware acceleration of large JPEG images.

27

Chapter 4

Proposed Hybrid Architecture

This chapter illustrates the proposed hybrid software-hardware architecture used to

accelerate the time it takes to decompress a JPEG image with libjpeg. This hybrid

approach is applied to the IDCT and the colour conversion components of the JPEG

decompression scheme. This chapter describes the architecture and the reasoning in

each domain; hardware and software.

In the proposed design, the IDCT and colour conversion were implemented in

hardware to aid the software library in its most expensive operations. This novel

design incorporates the advantages of using parallelism in hardware along with a few

software memory techniques to expedite the JPEG decompression time.

28

4. PROPOSED HYBRID ARCHITECTURE

4.1 Development Board Specs

In order to emulate the conditions of a real world mobile device this work used an em-

bedded GNU/Linux variant on an FPGA. The FPGA development board used was a

Xilinx XUPV5-LX110T development board [3], which has the following specifications:

• Xilinx Vertex R©-5 XC5VLX110T FPGA

• 64-bit wide 256MB DDR2 small outline DIMM(SODIMM) module

• On-board 32-bit ZBT synchronous SRAM and Intel P30 StrataFlash

• 10/100/1000 tri-speed Ethernet PHY

• Programmable system clock generator

• RS-232 port

• JTAG programming interface

For this proposed architecture the development board is programmed with a 125

MHz MicroBlaze soft-core processor. The operating system is the GNU/Linux vari-

ant, Petalinux [2], which is targeted at FPGA-based embedded MicroBlaze and Pow-

erPC systems. Petalinux allows C /C++ application development and debugging

using its provided compilers. Included in the Petalinux kernel is a host of standard

libraries and applications, one of which is a recent version of libjpeg.

29

4. PROPOSED HYBRID ARCHITECTURE

4.2 Hardware Software Communication

The desired goal of the hybrid architecture is to optimize software by moving the

expensive operations to dedicated hardware, but the communication link between

hardware and software is a vital component in and of itself. There are a few methods

available for interaction between the software and the hardware, each with their own

pros and cons.

With respect to memory in a memory managed Linux kernel, the privileges can

be envisioned as a set of layers as in Figure 4.1. The top most layer is the user-space.

This layer is what the typical user interacts with, here the compiled applications are

executed, and present the input and output. In this layer there exists a dynamic

amount of memory available, which are virtually indexed by the kernel. This pro-

tection prevents the user from corrupting any valuable memory locations. The next

layer down is the kernel. The kernel is the memory limited control centre. Device

drivers exist in the kernel which communicate between the user-space and kernel,

and between kernel and the physical memory or hardware. The bottom-most layer is

the hardware. The hardware is the physical aspect such as DDR2 RAM, hardware

registers, ports, and logic elements.

The kernel protection layer becomes an added bottleneck for the hardware acceler-

ation of software, especially for multiple transactions. As a result the careful consid-

eration of this communication is taken into account. There are two primary methods

of inter-system interaction; through DDR2 RAM, or through hardware mapped reg-

isters, each of which utilize a memory controller driver found in ”/dev/mem”.

30

4. PROPOSED HYBRID ARCHITECTURE

Figure 4.1: Layers of a GNU/Linux based embedded system

4.2.1 Communication through DDR2 RAM

The first method for software-hardware communication can be done through the

system’s available DDR2 RAM. The user-space application requests access to a sector

of RAM from the memory driver, and receives a pointer that can be used to read and

write to the RAM.

On the hardware side, the logic must provide the control signals at the correct

timing to read and write to the RAM module. The control signals must be accurate

to transmit the data correctly. Unlike software, the hardware has full control over

how much data can be transmitted in one transaction. This advantage is through

what is called Burst reading and writing. For this transaction a multi-port memory

controller(MPMC) is available to the MicroBlaze processor. The MPMC supports

Burst reads and writes up to 32 32-bit words per transaction. This greatly speeds up

memory access time.

31

4. PROPOSED HYBRID ARCHITECTURE

Utilizing Burst reading and writing in a design is beneficial, however there is too

much data copying, which is too costly. Data is copied from software to RAM, from

RAM to hardware logic elements to operate on, and then back.

4.2.2 Communication through Hardware Registers

The alternative method for communication is directly through the hardwares memory

mapped registers, eliminating the need for additional RAM accesses. For software,

the data transfer is similar to the process with RAM. The software reads and writes

to a pointer allocated to it by the /dev/mem driver.

On the hardware side, the register which has been written to by software can

be directly operated on without needing any additional copying. Additionally, the

hardware has the ability to react immediately after a register has been written. This

provides an ”interrupt on change” type of interface eliminating the need for a ”start”

command.

Utilizing direct communication through registers is limited by the resources and

the property that these software accessible registers cannot be bidirectional, however

there is far less data copying than communication through RAM.

There are pros and cons for each method, but direct communication through

registers provides faster throughput. The register only process is simpler to use for

the hardware, faster, less copying of data, and it allows for concurrent processing

between software and hardware. Concurrent processing is achieved when the software

is writing to register ”n” while the hardware operates on registers ”n-1”, ”n-2”, ...,

etc.

32

4. PROPOSED HYBRID ARCHITECTURE

4.3 Hardware Design

In this work the software layout must be considered when designing the hardware for

the 2D-IDCT and colour conversion. The most optimal hardware designs relieve as

much processing from the Software as possible. The input and output data structures

on the software level must remain the same, and any data manipulation must be done

on the hardware level.

4.3.1 IDCT

The 2D-IDCT hardware design relieves the software from three operations found in

libjpeg; dequantization, the 2D-IDCT, and range-limiting. Dequantization is the

multiplication of the IDCT input coefficients by the quantization matrix, scaling up

the coefficients back to the original post-DCT value. After dequantization, the 2D-

IDCT is carried out. As mentioned in Chapter 2 and 3, the 2D-IDCT transform is

separable into its rows and columns. In the JPEG architecture DCT blocks of 8x8

are used. Eight row 1D-IDCTs followed by eight column 1D-IDCTs are needed to

complete a full 2D-IDCT. The last step, range-limiting is a simple process to suppress

out of range corrupt values.

The separability of the rows and columns allows the hardware design of the 2D-

IDCT to accept the input matrices, IDCT and quantization matrix, coefficients row-

by-row. Upon receipt of an input and quantization row, the hardware IDCT module

immediately computes the simple multiplication for the dequantization. The dequan-

tized values are the input to the row 1D-IDCTs. The most efficient IDCT algorithm

to date is the modified Loefller Algorithm [8], and is the most suitable for hardware

33

4. PROPOSED HYBRID ARCHITECTURE

implementation. Since this algorithm not only uses fewer multiplications than the

standard IDCT algorithm, the multiplications are also in parallel which is ideal for

hardware implementation. Natively libjpeg uses integer based multiplication for its

IDCT. Floating point is possible, but is costly. To keep the accuracy found with float-

ing point the integer based IDCT shifts all of its multiplication factors up, performs

the calculation, and shifts the product back down. This process truncates its less

significant digits, but retains accuracy and speed in integer form. The 1D-IDCT im-

plementation in this hardware design utilizes the shift and multiply technique carried

through the entire 1D-IDCT.

Once a complete row has been written by software to the hardware registers, the

1D-IDCTs compute the row IDCTs. After all of the 8 rows have been written to

the hardware registers, the hardware module transposes the rows and computes the

8 column IDCTs for a full 2D-IDCT. The final step is range limiting the output.

Range limiting shifts and truncates the output to an 8 bit range of 0 to 255, and is

the data type libjpeg uses for these values. Data corruption in JPEG compression is

possible, so range limiting prevents out of range pixel values from wrapping around

to an invalid number. The design layout is illustrated in Figure 4.2.

34

4. PROPOSED HYBRID ARCHITECTURE

Figure 4.2: Dequantization and 2D-IDCT Hardware Design

35

4. PROPOSED HYBRID ARCHITECTURE

4.3.2 Colour Conversion

The colour conversion hardware design in this work relieves the software from three

operations found in libjpeg; YCC to RGB table pre-computation, YCC to RGB

conversion, and range limiting.

The majority of digital displays use the RGB colour scheme. As mentioned in

Chapter 3, libjpeg uses the YCC colour scheme to optimize storage capacity. The con-

version from YCC to RGB libjpeg utilizes a set of lookup tables for the Chrominance

components; Cr-red, Cb-blue, Cr-green, Cb-green, of each colour channel. LUTs are

the most efficient method, but the access speed can be inconsistent due to the pos-

sibility of cache misses. As the data set increases, the probability of a cache miss

increases as well. As a result, this is not a suitable method for this work.

The hardware design of the colour conversion in this work performs a straight YCC

to RGB calculation, eliminating the need for pre-computed table. This is possible

because the number of cycles hardware uses to perform a multiplication by the Cr-red,

Cb-blue, Cr-green, and Cb-green constants is fewer than the number of cycles used

in software to reference the look up tables. The multiplications by the constants in

Table 4.1 are performed using fixed point multiplication while retaining the accuracy

of floating point multiplication with decimal truncation.

36

4. PROPOSED HYBRID ARCHITECTURE

Colour Channel Decimal Value Binary Representation

Cr-red 1.402 10110011011101001

Cr-green 0.71414 01011011011010010

Cb-green 0.34414 00101100000011010

Cb-blue 1.772 11100010110100010

Table 4.1: YCC - RGB constants

The last optimization the hardware colour conversion makes is multi pixel con-

version. Since each colour channel, Y, Cb, Cr, R, G, and B, are 8 bits each and the

software accessible registers are 32 bits the hardware converts 4 pixels at once, filling

each register with 4 colour channels. The RGB output range-limited to 8 bit values

of 0 to 255 and is rearranged to match the order in libjpeg as shown in Figure 4.3.

37

4. PROPOSED HYBRID ARCHITECTURE

Figure 4.3: YCC to RGB Hardware Design

4.4 Software Design

In this work, libjpeg was modified to utilize the hardware components. Since most

of the workload is being transferred into the hardware domain, all data copying was

carefully thought out and minimized. Minimizations are performed by maintaining

the layout of arrays, pointer manipulation and word size consistency.

4.4.1 IDCT

Libjpeg computes the IDCT using the Modified Loeffler algorithm. Pointers to the

input coefficients are passed to the function along with a reference to the quantization

38

4. PROPOSED HYBRID ARCHITECTURE

matrix. The function dequantizes the coefficients by multiplication, performs the

IDCT, and range limits the output to 8 bits. These three processes were moved to

hardware.

For this architecture the software IDCT component’s functions are limited to writ-

ing rows to the hardware registers, and reading rows from the registers. The software

writes in the quantization matrix and IDCT coefficients into the hardware registers

row by row. The same registers are used because the hardware can manipulate the

data faster than the software can change it. To maximize the data transfer from

software to hardware the rows are moved into the fewest amount of 32 bit registers as

possible. Casting the rows into integer pointers permits using 2 hardware register for

8 entries of the IDCT input, and 4 registers for 8 entries of the quantization matrix.

After computation in hardware, the software reads in the output registers row by row

from 2 hardware registers. Figure 4.4 illustrates the data compaction.

Figure 4.4: IDCT array-register data compaction

39

4. PROPOSED HYBRID ARCHITECTURE

4.4.2 Colour Conversion

Upon starting, libjpeg calculates all the possible chrominance combinations for the

conversion from YCC to RGB colour space. These calculations are stored in 4 tables:

Cr-red, Cb-blue, Cr-green, Cb-green. When called, the YCC-RGB colour conversion

function gets passed a 3 dimensional array which represents the deconstructed image

in the YCC colour channels. Figure 4.5 shows a visual representation of this image.

the x-y coordinates of the image represent the x-y coordinates of the source image,

where each layer represents the different colour channels of each pixel.

Figure 4.5: 3D image array

Each array of colour channels are passed in as 8 bit unsigned values. Natively, 32-

bit CPU architectures function optimally with 32-bit words, additionally the software

accessible hardware registers are 32 bits. As a result in this architecture for the

colour conversion, a technique is used to cast a 32 bit integer pointer to the array

of 8 bit bytes. This allows the software to access 4 values of Y, Cb, or Cr with one

variable, and one write to the hardware register. Figure 4.6 illustrates this technique.

40

4. PROPOSED HYBRID ARCHITECTURE

Figure 4.6: Colour Conversion array-register data compaction

Similarly, after conversion the RGB registers are read in the same manner. This

data compaction utilizes 3 registers for input, and 3 registers for output to transmit

24 colour channels. Using this technique the software loops through all the pixels

in the image, in 4 pixel increments, writing YCC and reading RGB without any

need for control registers. No control registers are required, due to the fact that

this conversion is very simple, and the hardware computes the conversion on 4 pixels

before the software can read it.

4.5 Summary

This chapter presents the techniques, and structure of the proposed software-hardware

hybrid architecture for the decompression of JPEG images. The JPEG software li-

41

4. PROPOSED HYBRID ARCHITECTURE

brary is accelerated with hardware components for the 2D-IDCT and YCC to RGB

colour conversion. Huffman decoding, the next logical step in JPEG decompression

acceleration, is outlined in Appendix E.

In the following chapter, this work is timed, and tested. The results show how fast

the decompression time has increased as well as the accuracy of the decompression

with respect to a software only decompressed image.

42

Chapter 5

Results

This chapter presents the testing setup and procedures used to test the proposed

hardware accelerated components of libjpeg, as well as the timing analysis. The con-

clusions that may be derived from the results are described, and then compared to

the widely used software library, libjpeg.

5.1 Testing Setup and Procedure

Testing for this work was carried out on the Xilinx XUPV5-LX110T FPGA devel-

opment board. The board was loaded with the GNU/Linux variant, Petalinux. The

base design, hardware and software only included the most basic and crucial compo-

43

5. RESULTS

nents. The hardware designed for the system includes the IDCT and colour conversion

modules. These modules are linked into the MicroBlaze design, and accessed through

input and output registers.

Petalinux includes the libjpeg source files which can be cross-compiled to run on

the target. This library is the base in which this work is built on. The Petalinux

kernel was configured for the Xilinx target hardware, MicroBlaze processor, and built

for a Memory Management Unit (MMU) system. Once the Hardware is downloaded

to the board, it is loaded with the Petalinux image. User built binaries can be loaded

into the image, but for the purposes of this work the binaries and test JPEG images

were executed through the network due to their size. Utilizing the network permits

for faster development, testing, and eliminates the need to build the large test JPEG

images from being built into the Petalinux flash image.

For this work, the necessary libjpeg files were modified and cross-compiled into a

static library. Shared library compilation is possible, however it requires the Petal-

inux to be rebuilt and downloaded to the target which is not a productive solution.

Upon generation of the static JPEG libray the main program files are cross-compiled

with the library into a binary suitable for the target.

On the FPGA target, the binary is run by providing the path to JPEG image.

Timing of the images is a difficult task. The work done in the areas of timing and

profiling software applications on a soft processor, is underdeveloped and not readily

available. As a result, this work depends on using the Petalinux ”time” function.

44

5. RESULTS

The time function provides the real, user, and system time execution of a binary with

a resolution of 10 milliseconds. This work uses the user time which is presented in 5.2.

To verify the decompression of the images were accurate, a subjective test and

objective test were performed. After decompression, the raw RGB data was writ-

ten to the system’s frame-buffer, which is displayed on an attached monitor. Visual,

subjective inspection for artifacts, and similarity to the original was carried out on

the image. Objective verification was implemented by comparing the decompressed

and converted raw RGB values output from this work compared to the software only

output. The verification results are presented in 5.3.

Not all images are the same, but will posses the same decompression scheme. For

this work, 3 separate images with varying image metrics at 3 different pixel densities,

5 MP, 10 MP, and 20 MP were tested. To maintain statistical accuracy each image

was tested 100 times and averaged using the scripts in Appendix B and a spread-

sheet program. The three images, found in Appendix A, hereby referred to as the

bookstore, dog, and beach images were the test images used in this work. The images

began at an approximate 20MP, and were scaled down to 10MP, and 5MP to observe

the versatility of this work. Each image was saved with no colour sub-sampling, and

no Huffman optimizations to emulate the ideal settings observed in digital cameras.

Table 5.1 gives the dimensional details of each image used.

45

5. RESULTS

Image Width(px) Height(px) Size(MP) Size(MB)

2686 1862 5.0 1.5

bookstore 3799 2634 10.0 2.6

5400 3744 20.2 4.1

2560 1920 4.9 1.8

dog 3653 2740 10.01 3

5164 3873 20.0 4.8

2503 1998 5.0 1.8

beach 3540 2826 10.0 3.1

5040 4024 20.2 4.9

Table 5.1: Test Image Dimensions

5.2 Timing Results

After each image was tested and timed, it was compared to the software only bench-

mark. Comparing to the benchmark, the timing improvement (∆t), and percentage

of the benchmark was calculated (% SW) as shown in Tables 5.2, 5.3, and 5.4.

% of Software =
Hardware time(s)

Software time(s)
∗ 100 (5.1)

46

5. RESULTS

5MP 10MP 20MP

Time(s) ∆t(s) % SW Time(s) ∆t(s) % SW Time(s) ∆t(s) % SW

Software Only 49.18 - - 96.71 - - 184.54 - -

Colour HW 46.66 2.52 94.87 91.87 4.84 94.99 174.08 10.46 94.33

IDCT HW 35.97 13.21 73.14 71.16 25.55 73.58 139.78 44.76 75.75

IDCT + Colour HW 33.28 15.91 67.66 65.73 30.98 67.97 128.72 55.82 69.75

Table 5.2: Bookstore Image Results

5MP 10MP 20MP

Time(s) ∆t(s) % SW Time(s) ∆t(s) % SW Time(s) ∆t(s) % SW

Software Only 48.44 - - 95.88 - - 188.86 - -

Colour HW 45.84 2.60 94.62 90.64 5.24 94.54 176.91 11.95 93.67

IDCT HW 33.95 14.49 70.08 71.16 24.72 74.22 141.29 47.57 74.81

IDCT + Colour HW 32.93 15.52 67.97 65.63 30.25 68.45 130.31 58.55 69

Table 5.3: Dog Image Results

5MP 10MP 20MP

Time(s) ∆t(s) % SW Time(s) ∆t(s) % SW Time(s) ∆t(s) % SW

Software Only 49.73 - - 96.30 - - 189.40 - -

Colour HW 46.85 2.87 94.22 91.72 4.58 95.24 177.02 12.37 93.47

IDCT HW 36.84 12.88 74.1 71.58 24.73 74.33 142.21 47.18 75.09

IDCT + Colour HW 33.89 15.83 68.16 66.22 30.08 68.76 131.19 58.21 69.27

Table 5.4: Beach Image Results

47

5. RESULTS

Tables 5.2, 5.3, and 5.4 illustrate that the hardware accelerated colour conver-

sion provided an approximate 4% increase in timing, hardware accelerated 2D-IDCT

provided an approximate 25% increase in timing, and the combined hardware com-

ponents provided an approximate 31% increase in the timing over the software only

approach for decompression. Furthermore, the individual as well as combined hard-

ware acceleration of these components exhibits a near linear timing improvement as

image size grows as shown in Figure 5.1 and 5.2.

Figure 5.1: Image Decompression Timing

48

5. RESULTS

Figure 5.2: Image Decompression Timing

5.2.1 Hardware Timing

The primary source of improvement in this work is due to the speed of the hardware

modules. Hardware has little to no overhead. Analyzing the hardware performance

without the software overhead; the 2D-IDCT Hardware takes 186 clocks to achieve

a full 8x8 transformation, and the YCC to RGB colour conversion takes 9 clocks to

transform 4 pixels with 3 colour components. At 125 MHz, the IDCT takes 1.44 µs

for one 8x8 block, and the colour conversion transforms 4 pixels in 7 2ns. Applying

these calculations to each 20 MP test image can be found in Table 5.5.

49

5. RESULTS

Image # 8x8 Blocks # pixels/4 IDCT HW(s) Colour HW(s) % HW Time

bookstore 947700 15163200 1.36 1.09 1.90

dog 937509 15000129 1.35 1.08 1.86

beach 950670 15210720 1.37 1.10 1.88

Table 5.5: Hardware Only Timing per test image

5.3 Image Verification

Since both of the IDCT and Colour Conversion algorithms use fixed point arithmetic,

some error will be introduced. This work aims to improve the timing of the entire

JPEG decompression process while maintaining a valid output with minimal error.

As a result the output of the image needs to be verified. The accuracy for this work

was verified using subjective and objective comparisons against the original, software

only, decompression.

For the subjective verification, the images were written to the system’s frame

buffer, a reserved region of memory that is processed with a video controller to be

displayed on an attached monitor. The displayed images were then visually inspected

for any image artifacts, and any differences in colour, shade, and orientation com-

pared to the original.

For the objective verification the 5MP images were tested. The raw RGB bytes

from the software only and software-hardware methods were saved to files. The ap-

50

5. RESULTS

proximate 15 million bytes of each image were then compared side by side to find the

offsets. The byte offsets were calculated and plotted in the histograms in Figures 5.3,

5.4, and 5.5.

Figure 5.3: Bookstore image byte offset histogram

51

5. RESULTS

Figure 5.4: Dog image byte offset histogram

52

5. RESULTS

Figure 5.5: beach image byte offset histogram

A zero byte offset is ideal, meaning the decompressed version matches the software

decompressed image perfectly. In the Figures 5.3, 5.4, and 5.5 the highest frequencies

occur at the lowest offsets, and lowest frequencies occur at the highest offsets. Inter-

estingly the highest frequency peaks exist at the offset of 1, likely from a rounding

that appears during integer truncation. The worst case scenario in all cases is a byte

offset of 9 at an extremely low frequency of 111. Quantifying the image data of the

histograms can be performed using equations 5.2 and 5.3, which will find the similar-

53

5. RESULTS

ity between the software decompressed image versus the proposed method.

Byte Accuracy (%) = (1−
∣∣∣∣byte offset

255

∣∣∣∣) ∗ 100 (5.2)

Image Accuracy(%) =

∑M
i=N

(
1−

∣∣∣byte offseti

255

∣∣∣) ∗ byte offset frequencyi

total # of bytes
∗ 100

where :

N = minimum byte offset

M = maximum byte offset

(5.3)

Table 5.6 shows that the hardware decompressed test images are nearly 100% of

their software decompressed counterpart.

Image Percentage of SW Image (%)

bookstore 99.3914

dog 99.357

beach 99.4129

Table 5.6: Test Image Verification

54

5. RESULTS

5.4 Summary

This chapter presents the results of the proposed design. The hybrid software-

hardware architecture was timed against a software only method providing 31% in-

crease in timing in the decompression of a 20MP image, while maintaining over 99%

accuracy. The timing was analyzed with 5MP, 10MP and 20MP images to observe

that this design is superior to that of software as image size increases.

The following chapter concludes this work, and proposes design improvements for

future work.

55

Chapter 6

Conclusion and Recommendations

The evolution of technology has greatly affected everyday consumers in the areas of

mobile computing, and digital multimedia. The size of an image in digital photogra-

phy, in terms of pixels, is constantly increasing as sensors, processors, and memory

are improved. Mobile devices are approaching and meeting the processor speeds and

architectures of their desktop counterparts. However, the methodology and algo-

rithms used to decompress digital JPEG images on these powerful embedded systems

is outdated and ineffective with the growing image sizes.

Since the invention of the JPEG image, software methods have been the sole

answer for decompression. The JPEG decompression process contains many com-

putations which increase with the image size. As computations increase so will the

56

6. CONCLUSION AND RECOMMENDATIONS

decompression time. To assist the software it is imperative to consider hardware ac-

celeration in the mobile system to improve the decompression time of these images.

The research presented in this thesis focuses on the most cumbersome process-

ing found in the software decompression of JPEG images. Hardware acceleration of

the 2D-IDCT, YCC to RGB colour space conversion, and Huffman decoding pro-

cesses were examined. The proposed solution to expedite slow JPEG decompression

is hardware acceleration proven with the use of an FPGA. This novel design proves to

combine the flexibility of software with the speed of hardware, resulting in a hybrid

approach which accelerates the JPEG decompression significantly, while maintaining

more than 99% of the original image.

The novelty of this architecture is the hybridization of the hardware and software

to calculate the 2D-IDCT, and the YCC to RGB colour conversion. Multiplications in

both components are calculated in parallel to optimize the throughput from software

to hardware, preventing the need for the software to wait for the hardware to com-

plete. The optimizations produced an average of 31% decrease in decompression time

of a 20MP colour image, with no chroma-subsampling and no Huffman optimizations.

6.1 Recommendations

This design has greatly improved the JPEG decompression process, but bottlenecks

in the system do remain. The JPEG process is natively sequential, which limits some

57

6. CONCLUSION AND RECOMMENDATIONS

parallelization optimizations from being possible. The most significant bottleneck in

this design, proved to be the software design and layout. Specifically the linearity of

the library as well as memory management and data transfer from software to hard-

ware. A memory managed GNU/Linux kernel, which many embedded systems are

based off, has limitations on the user-space from accessing its own physical memory

addresses. This requires the need for kernel involvement, at the cost of time. Mem-

ory management is a concern in a typical software implementation to avoid lagging

or crashing the system. Hardware would have the ability to act like a co-processor,

but in this implementation the memory access is limited by the library layout. For

these reasons, my recommendation for future improvement involves rewriting the lib-

jpeg library with these considerations in mind. The library would need to implement

a shared memory pool between software and hardware for direct access to the raw

JPEG as well as the output buffer. This would allow less data copying, permit the

hardware to relieve more workload from software, as well as access raw data for the

Huffman decoding process.

58

References

[1] Microblaze soft processor core @ONLINE, January 2011.
http://www.xilinx.com/tools/microblaze.htm.

[2] Petalinux software development kit @ONLINE, January 2011.
http://www.xilinx.com/tools/petalinux-sdk.htm.

[3] Xilinx university program xupv-lx110t development platform @ONLINE,
January 2011. http://www.xilinx.com/products/boards-and-kits/XUPV5-
LX110T.htm.

[4] Joint photographic experts group @ONLINE, January 2012.
http://www.jpeg.org.

[5] Calvin Hass. Impulse adventure - jpeg huffman coding tutorial @ONLINE, March
2011. http://www.impulseadventure.com/photo/jpeg-huffman-coding.html.

[6] D.A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[7] Tom Lane. Independent jpeg group @ONLINE, October 2010.
http://www.ijg.org/.

[8] C. Loeffler, A. Ligtenberg, and G.S. Moschytz. Practical fast 1-d dct algo-
rithms with 11 multiplications. In Acoustics, Speech, and Signal Processing,
1989. ICASSP-89., 1989 International Conference on, pages 988 –991 vol.2, may
1989.

[9] G.E. Moore. Cramming more components onto integrated circuits. Proceedings
of the IEEE, 86(1):82–85, 1998.

[10] Wendi Pan. A fast 2-d dct algorithm via distributed arithmetic optimization.
In Image Processing, 2000. Proceedings. 2000 International Conference on, vol-
ume 3, pages 114 –117 vol.3, 2000.

59

REFERENCES

[11] Soo-Chang Pei and Jian-Jiun Ding. Reversible integer color transform with
bit-constraint. In Image Processing, 2005. ICIP 2005. IEEE International Con-
ference on, volume 3, pages III – 964–7, sept. 2005.

[12] R. Swamy, M. Khorasani, Yongjie Liu, D. Elliott, and S. Bates. A fast, pipelined
implementation of a two-dimensional inverse discrete cosine transform. In Electri-
cal and Computer Engineering, 2005. Canadian Conference on, pages 665 –668,
may 2005.

[13] G.K. Wallace. The jpeg still picture compression standard. Consumer Electron-
ics, IEEE Transactions on, 38(1):18 –19, feb 1992.

[14] Yang Yang, Peng Yuhua, and Liu Zhaoguang. A fast algorithm for ycbcr to rgb
conversion. Consumer Electronics, IEEE Transactions on, 53(4):1490 –1493,
nov. 2007.

60

Appendix A

Source Images

61

A. SOURCE IMAGES

Figure A.1: Sample 20MP images

62

Appendix B

Testing Scripts

#!/bin/bash
#
This script times and runs the Secondary scripts with the given parameters
#
COUNT = The number of times to run the secondary script
RESULT_FILE = the files to store the timing results in
PROG = precompiled program name
0 = Software only
1 = IDCT HW accelerated
2 = Colour Conversion HW accelerated
3 = IDCT + Colour Conversion HW accelerated
ARG1 = the path to the image to be decoded
Available images:
5MP_1.jpg , 5MP_2.jpg , 5MP_3.jpg ,
10MP_1.jpg , 10MP_2.jpg , 10MP_3.jpg ,
20MP_1.jpg , 20MP_2.jpg , 20MP_3.jpg
ARG2 = boolean to write the resultant image to the system ’s framebuffer
ARG3 = factor to scale the image down

Variables
COUNT =20 # user -defined
RESULT_FILE0=results_SW_timing.txt
RESULT_FILE1=results_idct_timing.txt
RESULT_FILE2=results_colour_timing.txt
RESULT_FILE3=results_total_timing.txt
PROG0 =./ Image_SW_control
PROG1 =./ ImageHw_idct
PROG2 =./ ImageHw_colour
PROG3 =./ ImageHw_total
ARG2=0 # fb: 0 = no , 1 = yes
ARG3=1 # scale factor: 1-8
ARG1=pics/pic.jpg # path to image file

63

B. TESTING SCRIPTS

list of available images
10 MPimage.jpg 20 MPimage.jpg asdf.jpg Jaggies_test.jpg maxx2.jpg soheil.jpg

remove the old result files
echo "--- removing $RESULT_FILE0 ---"
rm $RESULT_FILE0
echo "--- removing $RESULT_FILE1 ---"
rm $RESULT_FILE1
echo "--- removing $RESULT_FILE2 ---"
rm $RESULT_FILE2
echo "--- removing $RESULT_FILE3 ---"
rm $RESULT_FILE3

############### 5MPimages.jpg ####################
ARG1=pics/5MP_1.jpg # path to image file
echo "================ $ARG1 ================"

sh secondary_test.sh $PROG0 $ARG1 $ARG2 $ARG3 $RESULT_FILE0 $COUNT
sh secondary_test.sh $PROG1 $ARG1 $ARG2 $ARG3 $RESULT_FILE1 $COUNT
sh secondary_test.sh $PROG2 $ARG1 $ARG2 $ARG3 $RESULT_FILE2 $COUNT
sh secondary_test.sh $PROG3 $ARG1 $ARG2 $ARG3 $RESULT_FILE3 $COUNT

ARG1=pics/5MP_2.jpg # path to image file
echo "================ $ARG1 ================"

sh secondary_test.sh $PROG0 $ARG1 $ARG2 $ARG3 $RESULT_FILE0 $COUNT
sh secondary_test.sh $PROG1 $ARG1 $ARG2 $ARG3 $RESULT_FILE1 $COUNT
sh secondary_test.sh $PROG2 $ARG1 $ARG2 $ARG3 $RESULT_FILE2 $COUNT
sh secondary_test.sh $PROG3 $ARG1 $ARG2 $ARG3 $RESULT_FILE3 $COUNT

ARG1=pics/5MP_3.jpg # path to image file
echo "================ $ARG1 ================"

sh secondary_test.sh $PROG0 $ARG1 $ARG2 $ARG3 $RESULT_FILE0 $COUNT
sh secondary_test.sh $PROG1 $ARG1 $ARG2 $ARG3 $RESULT_FILE1 $COUNT
sh secondary_test.sh $PROG2 $ARG1 $ARG2 $ARG3 $RESULT_FILE2 $COUNT
sh secondary_test.sh $PROG3 $ARG1 $ARG2 $ARG3 $RESULT_FILE3 $COUNT

############### 10 MPimages.jpg ####################
ARG1=pics /10 MP_1.jpg # path to image file
echo "================ $ARG1 ================"

sh secondary_test.sh $PROG0 $ARG1 $ARG2 $ARG3 $RESULT_FILE0 $COUNT
sh secondary_test.sh $PROG1 $ARG1 $ARG2 $ARG3 $RESULT_FILE1 $COUNT
sh secondary_test.sh $PROG2 $ARG1 $ARG2 $ARG3 $RESULT_FILE2 $COUNT
sh secondary_test.sh $PROG3 $ARG1 $ARG2 $ARG3 $RESULT_FILE3 $COUNT

ARG1=pics /10 MP_2.jpg # path to image file
echo "================ $ARG1 ================"

sh secondary_test.sh $PROG0 $ARG1 $ARG2 $ARG3 $RESULT_FILE0 $COUNT
sh secondary_test.sh $PROG1 $ARG1 $ARG2 $ARG3 $RESULT_FILE1 $COUNT
sh secondary_test.sh $PROG2 $ARG1 $ARG2 $ARG3 $RESULT_FILE2 $COUNT
sh secondary_test.sh $PROG3 $ARG1 $ARG2 $ARG3 $RESULT_FILE3 $COUNT

ARG1=pics /10 MP_3.jpg # path to image file
echo "================ $ARG1 ================"

sh secondary_test.sh $PROG0 $ARG1 $ARG2 $ARG3 $RESULT_FILE0 $COUNT
sh secondary_test.sh $PROG1 $ARG1 $ARG2 $ARG3 $RESULT_FILE1 $COUNT
sh secondary_test.sh $PROG2 $ARG1 $ARG2 $ARG3 $RESULT_FILE2 $COUNT
sh secondary_test.sh $PROG3 $ARG1 $ARG2 $ARG3 $RESULT_FILE3 $COUNT

############### 20 MPimages.jpg ####################
ARG1=pics /20 MP_1.jpg # path to image file
echo "================ $ARG1 ================"

sh secondary_test.sh $PROG0 $ARG1 $ARG2 $ARG3 $RESULT_FILE0 $COUNT

64

B. TESTING SCRIPTS

sh secondary_test.sh $PROG1 $ARG1 $ARG2 $ARG3 $RESULT_FILE1 $COUNT
sh secondary_test.sh $PROG2 $ARG1 $ARG2 $ARG3 $RESULT_FILE2 $COUNT
sh secondary_test.sh $PROG3 $ARG1 $ARG2 $ARG3 $RESULT_FILE3 $COUNT

ARG1=pics /20 MP_2.jpg # path to image file
echo "================ $ARG1 ================"

sh secondary_test.sh $PROG0 $ARG1 $ARG2 $ARG3 $RESULT_FILE0 $COUNT
sh secondary_test.sh $PROG1 $ARG1 $ARG2 $ARG3 $RESULT_FILE1 $COUNT
sh secondary_test.sh $PROG2 $ARG1 $ARG2 $ARG3 $RESULT_FILE2 $COUNT
sh secondary_test.sh $PROG3 $ARG1 $ARG2 $ARG3 $RESULT_FILE3 $COUNT

ARG1=pics /20 MP_3.jpg # path to image file
echo "================ $ARG1 ================"

sh secondary_test.sh $PROG0 $ARG1 $ARG2 $ARG3 $RESULT_FILE0 $COUNT
sh secondary_test.sh $PROG1 $ARG1 $ARG2 $ARG3 $RESULT_FILE1 $COUNT
sh secondary_test.sh $PROG2 $ARG1 $ARG2 $ARG3 $RESULT_FILE2 $COUNT
sh secondary_test.sh $PROG3 $ARG1 $ARG2 $ARG3 $RESULT_FILE3 $COUNT

master test.sh

#!/bin/bash
This script decodes JPEG images with the 6 parameters passed to it.
#
It times and runs the
<PROGRAM > with <ARG#>
<COUNT > number of times logging/appending the data to <RESULT_FILE >
#
This script is called by master_test.sh with:
sh secondary_test $PROGNAME $PIC $FB $SCALE_FACTOR $RESULT_FILE $COUNT

PROGRAM=$1
ARG1=$2
ARG2=$3
ARG3=$4
RESULT_FILE=$5
COUNT=$6

echo "************ $ARG1 ********">>$RESULT_FILE # append the picture name to the
result file

echo "************ $PROGRAM ********" #echo the progress to the terminal

i=1

while [$i -le $COUNT]
do

echo "$i"
i=‘expr $i + 1‘

(time $PROGRAM $ARG1 $ARG2 $ARG3) 2>>$RESULT_FILE # append the timing information to
the result file

echo -e "\012" >>$RESULT_FILE # add extra line to the result file

done

secondary test.sh

65

Appendix C

C Code

C.1 libjpeg modifications

/*
* jpeglib.h
*
* Copyright (C) 1991 -1998 , Thomas G. Lane.
* Modified 2002 -2009 by Guido Vollbeding.
* This file is part of the Independent JPEG Group’s software.
* For conditions of distribution and use , see the accompanying README file.
*
* This file defines the application interface for the JPEG library.
* Most applications using the library need only include this file ,
* and perhaps jerror.h if they want to know the exact error codes.
*
* Modified 2012 by Dan MacDonald
* Added hardware register pointers for the jpeg_decompress_struct
*/

#ifndef JPEGLIB_H
#define JPEGLIB_H

...

/* Master record for a decompression instance */

struct jpeg_decompress_struct {
jpeg_common_fields; /* Fields shared with jpeg_compress_struct */

/* Source of compressed data */

66

C. C CODE

struct jpeg_source_mgr * src;

/* Hardware mmap’d variables
* c_convert_reg = the pointer to the colour converter register space (use

appropriate Register offsets)
* idct_reg = the pointer to the idct register space (use appropriate Register

offsets)
*/

volatile void *c_convert_reg;
volatile void *idct_reg;

/* Basic description of image --- filled in by jpeg_read_header (). */
/* Application may inspect these values to decide how to process image. */

JDIMENSION image_width; /* nominal image width (from SOF marker) */
JDIMENSION image_height; /* nominal image height */
int num_components; /* # of color components in JPEG image */
J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */

jpeglib.h

/*
* jidctint.c
*
* Copyright (C) 1991 -1998 , Thomas G. Lane.
* Modification developed 2002 -2009 by Guido Vollbeding.
* This file is part of the Independent JPEG Group’s software.
* For conditions of distribution and use , see the accompanying README file.
*
* This file contains a slow -but -accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code , this routine
* must also perform dequantization of the input coefficients.
*
* ...
*
* Modified 2012 by Dan MacDonald.
* Implemented the 8x8 2D-IDCT in Hardware
*/

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */

...

/*
* Perform dequantization and inverse DCT on one block of coefficients.
* IN HARDWARE
*/

GLOBAL(void)
jpeg_idct_islow (j_decompress_ptr cinfo , jpeg_component_info * compptr ,

JCOEFPTR coef_block ,
JSAMPARRAY output_buf , JDIMENSION output_col)

{
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
volatile JSAMPROW outptr;
// 32 bit pointers to improve throughput
volatile unsigned int * int_outptr;
unsigned int *int_inptr;
unsigned int *reg_outptr;
volatile unsigned int *inregptr;
volatile unsigned int *outregptr;
volatile unsigned int *doneptr;

// allocate pointers
inptr = coef_block;

67

C. C CODE

int_inptr = (unsigned int *)inptr; // integer version of the inptr
quantptr = (ISLOW_MULT_TYPE *) compptr ->dct_table;

// register transfer pointers
inregptr = (unsigned int *)(cinfo ->idct_reg); // pointer for quantization

and input matrices
outregptr = (unsigned int *)(cinfo ->idct_reg + 52); // pointer for output matrix
doneptr = (unsigned int *)(cinfo ->idct_reg + 84); // pointer to see if the hw is

done

// write in the input DCT coefficients and the quantization matrix
// into the hardware registers row by row
// loop is unrolled to prevent any unwanted compiler optimizations

// ------------------row0 ------------------
inregptr [0] = *quantptr ++;
inregptr [1] = *quantptr ++;
inregptr [2] = *quantptr ++;
inregptr [3] = *quantptr ++;
inregptr [4] = *quantptr ++;
inregptr [5] = *quantptr ++;
inregptr [6] = *quantptr ++;
inregptr [7] = *quantptr ++;

inregptr [8] = *int_inptr ++;
inregptr [9] = *int_inptr ++;
inregptr [10] = *int_inptr ++;
inregptr [11] = *int_inptr ++;

// ------------------row1 ------------------
inregptr [0] = *quantptr ++;
inregptr [1] = *quantptr ++;
inregptr [2] = *quantptr ++;
inregptr [3] = *quantptr ++;
inregptr [4] = *quantptr ++;
inregptr [5] = *quantptr ++;
inregptr [6] = *quantptr ++;
inregptr [7] = *quantptr ++;

inregptr [8] = *int_inptr ++;
inregptr [9] = *int_inptr ++;
inregptr [10] = *int_inptr ++;
inregptr [11] = *int_inptr ++;

// ------------------row2 ------------------
inregptr [0] = *quantptr ++;
inregptr [1] = *quantptr ++;
inregptr [2] = *quantptr ++;
inregptr [3] = *quantptr ++;
inregptr [4] = *quantptr ++;
inregptr [5] = *quantptr ++;
inregptr [6] = *quantptr ++;
inregptr [7] = *quantptr ++;

inregptr [8] = *int_inptr ++;
inregptr [9] = *int_inptr ++;
inregptr [10] = *int_inptr ++;
inregptr [11] = *int_inptr ++;
// ------------------row3 ------------------
inregptr [0] = *quantptr ++;
inregptr [1] = *quantptr ++;
inregptr [2] = *quantptr ++;
inregptr [3] = *quantptr ++;
inregptr [4] = *quantptr ++;
inregptr [5] = *quantptr ++;
inregptr [6] = *quantptr ++;
inregptr [7] = *quantptr ++;

68

C. C CODE

inregptr [8] = *int_inptr ++;
inregptr [9] = *int_inptr ++;
inregptr [10] = *int_inptr ++;
inregptr [11] = *int_inptr ++;

// ------------------row4 ------------------
inregptr [0] = *quantptr ++;
inregptr [1] = *quantptr ++;
inregptr [2] = *quantptr ++;
inregptr [3] = *quantptr ++;
inregptr [4] = *quantptr ++;
inregptr [5] = *quantptr ++;
inregptr [6] = *quantptr ++;
inregptr [7] = *quantptr ++;

inregptr [8] = *int_inptr ++;
inregptr [9] = *int_inptr ++;
inregptr [10] = *int_inptr ++;
inregptr [11] = *int_inptr ++;
// ------------------row5 ------------------
inregptr [0] = *quantptr ++;
inregptr [1] = *quantptr ++;
inregptr [2] = *quantptr ++;
inregptr [3] = *quantptr ++;
inregptr [4] = *quantptr ++;
inregptr [5] = *quantptr ++;
inregptr [6] = *quantptr ++;
inregptr [7] = *quantptr ++;

inregptr [8] = *int_inptr ++;
inregptr [9] = *int_inptr ++;
inregptr [10] = *int_inptr ++;
inregptr [11] = *int_inptr ++;
// ------------------row6 ------------------
inregptr [0] = *quantptr ++;
inregptr [1] = *quantptr ++;
inregptr [2] = *quantptr ++;
inregptr [3] = *quantptr ++;
inregptr [4] = *quantptr ++;
inregptr [5] = *quantptr ++;
inregptr [6] = *quantptr ++;
inregptr [7] = *quantptr ++;

inregptr [8] = *int_inptr ++;
inregptr [9] = *int_inptr ++;
inregptr [10] = *int_inptr ++;
inregptr [11] = *int_inptr ++;
// ------------------row7 ------------------
inregptr [0] = *quantptr ++;
inregptr [1] = *quantptr ++;
inregptr [2] = *quantptr ++;
inregptr [3] = *quantptr ++;
inregptr [4] = *quantptr ++;
inregptr [5] = *quantptr ++;
inregptr [6] = *quantptr ++;
inregptr [7] = *quantptr ++;

inregptr [8] = *int_inptr ++;
inregptr [9] = *int_inptr ++;
inregptr [10] = *int_inptr ++;
inregptr [11] = *int_inptr ++;

// wait for the hardware to finish
while(* doneptr !=1);

// unrolled reading of each row of the output registers
int_outptr = (int *)(output_buf [0] + output_col);
int_outptr [0] = outregptr [0];

69

C. C CODE

int_outptr [1] = outregptr [1];

int_outptr = (int *)(output_buf [1] + output_col);
int_outptr [0] = outregptr [0];
int_outptr [1] = outregptr [1];

int_outptr = (int *)(output_buf [2] + output_col);
int_outptr [0] = outregptr [0];
int_outptr [1] = outregptr [1];

int_outptr = (int *)(output_buf [3] + output_col);
int_outptr [0] = outregptr [0];
int_outptr [1] = outregptr [1];

int_outptr = (int *)(output_buf [4] + output_col);
int_outptr [0] = outregptr [0];
int_outptr [1] = outregptr [1];

int_outptr = (int *)(output_buf [5] + output_col);
int_outptr [0] = outregptr [0];
int_outptr [1] = outregptr [1];

int_outptr = (int *)(output_buf [6] + output_col);
int_outptr [0] = outregptr [0];
int_outptr [1] = outregptr [1];

int_outptr = (int *)(output_buf [7] + output_col);
int_outptr [0] = outregptr [0];
int_outptr [1] = outregptr [1];

}

jidctint.c

/*
* jdcolor.c
*
* Copyright (C) 1991 -1997 , Thomas G. Lane.
* This file is part of the Independent JPEG Group’s software.
* For conditions of distribution and use , see the accompanying README file.
*
* This file contains output colorspace conversion routines.
* ...
*
* Modified 2012 by Dan MacDonald.
* Implemented the YCC to RGB Conversion in Hardware , and removed Software table

generation
*/

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"

/* Private subobject */
/* REMOVED. Hardware does not use tables
*

typedef struct {
struct jpeg_color_deconverter pub;

// Private state for YCC ->RGB conversion
int * Cr_r_tab; // => table for Cr to R conversion
int * Cb_b_tab; // => table for Cb to B conversion
INT32 * Cr_g_tab; // => table for Cr to G conversion
INT32 * Cb_g_tab; // => table for Cb to G conversion

} my_color_deconverter;

typedef my_color_deconverter * my_cconvert_ptr;
*/

70

C. C CODE

/* *************** YCbCr -> RGB conversion: most common case ************* */

/*
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
* normalized to the range 0.. MAXJSAMPLE rather than -0.5 .. 0.5.
* The conversion equations to be implemented are therefore
* R = Y + 1.40200 * Cr
* G = Y - 0.34414 * Cb - 0.71414 * Cr
* B = Y + 1.77200 * Cb
* where Cb and Cr represent the incoming values less CENTERJSAMPLE.
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June -92.)
*
* To avoid floating -point arithmetic , we represent the fractional constants
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
* the products by 2^16, with appropriate rounding , to get the correct answer.
* Notice that Y, being an integral input , does not contribute any fraction
* so it need not participate in the rounding.
*
* For even more speed , we avoid doing any multiplications in the inner loop
* by precalculating the constants times Cb and Cr for all possible values.
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
* for 12-bit samples it is still acceptable. It’s not very reasonable for
* 16-bit samples , but if you want lossless storage you shouldn ’t be changing
* colorspace anyway.
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the
* values for the G calculation are left scaled up, since we must add them
* together before rounding.
*/

...

/*
* REMOVED. Hardware does not use tables
*

LOCAL(void)
build_ycc_rgb_table (j_decompress_ptr cinfo)
{

my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo ->cconvert;
int i;
INT32 x;
SHIFT_TEMPS

cconvert ->Cr_r_tab = (int *)
(*cinfo ->mem ->alloc_small) ((j_common_ptr) cinfo , JPOOL_IMAGE ,

(MAXJSAMPLE +1) * SIZEOF(int));
cconvert ->Cb_b_tab = (int *)

(*cinfo ->mem ->alloc_small) ((j_common_ptr) cinfo , JPOOL_IMAGE ,
(MAXJSAMPLE +1) * SIZEOF(int));

cconvert ->Cr_g_tab = (INT32 *)
(*cinfo ->mem ->alloc_small) ((j_common_ptr) cinfo , JPOOL_IMAGE ,

(MAXJSAMPLE +1) * SIZEOF(INT32));
cconvert ->Cb_g_tab = (INT32 *)

(*cinfo ->mem ->alloc_small) ((j_common_ptr) cinfo , JPOOL_IMAGE ,
(MAXJSAMPLE +1) * SIZEOF(INT32));

for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
// i is the actual input pixel value , in the range 0.. MAXJSAMPLE
// The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE
// Cr=>R value is nearest int to 1.40200 * x
cconvert ->Cr_r_tab[i] = (int)

RIGHT_SHIFT(FIX (1.40200) * x + ONE_HALF , SCALEBITS);
// Cb=>B value is nearest int to 1.77200 * x
cconvert ->Cb_b_tab[i] = (int)

RIGHT_SHIFT(FIX (1.77200) * x + ONE_HALF , SCALEBITS);
// Cr=>G value is scaled -up -0.71414 * x
cconvert ->Cr_g_tab[i] = (- FIX (0.71414)) * x;
// Cb=>G value is scaled -up -0.34414 * x
// We also add in ONE_HALF so that need not do it in inner loop

71

C. C CODE

cconvert ->Cb_g_tab[i] = (- FIX (0.34414)) * x + ONE_HALF;
}

}
*/

/*
* Perform YCC colour space to RGB conversion row by row
* IN HARDWARE
*/

METHODDEF(void)
ycc_rgb_convert (j_decompress_ptr cinfo , JSAMPIMAGE input_buf , JDIMENSION input_row ,

JSAMPARRAY output_buf , int num_rows)
{

my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo ->cconvert;
register JSAMPROW outptr;
register JSAMPROW inptr0 , inptr1 , inptr2;
register JDIMENSION col;
unsigned int* yptr; // integer pointer at the y array
unsigned int* cbptr; // integer pointer at the cb array
unsigned int* crptr; // integer pointer at the cr array
volatile unsigned int* rgbptr; // integer pointer for rgb array

unsigned int *ycc_reg;
unsigned int *rgb_reg;

// Since 4 pixels are computed at once the loop has fewer iterations
JDIMENSION num_cols = (cinfo ->output_width) >>2;

// register pointers
ycc_reg = (unsigned int *)(cinfo ->c_convert_reg);
rgb_reg = (unsigned int *)(cinfo ->c_convert_reg + 12);

while (--num_rows >= 0) {
yptr = (unsigned int*)(input_buf [0][input_row]); // y
cbptr = (unsigned int*)(input_buf [1][input_row]); // cb
crptr = (unsigned int*)(input_buf [2][input_row]); // cr

input_row ++;
outptr = *output_buf ++;

rgbptr = (unsigned int*) outptr;

for (col = 0; col < num_cols; col++)
{

// write in the YCC values
ycc_reg [0] = *yptr ++;
ycc_reg [1] = *cbptr ++;
ycc_reg [2] = *crptr ++;

// read the RGB values
*rgbptr ++ = rgb_reg [0];
*rgbptr ++ = rgb_reg [1];
*rgbptr ++ = rgb_reg [2];

} // for loop
} // while loop

}

GLOBAL(void)
jinit_color_deconverter (j_decompress_ptr cinfo)
{

my_cconvert_ptr cconvert;
int ci;

cconvert = (my_cconvert_ptr)
(*cinfo ->mem ->alloc_small) ((j_common_ptr) cinfo , JPOOL_IMAGE ,

72

C. C CODE

SIZEOF(my_color_deconverter));
cinfo ->cconvert = (struct jpeg_color_deconverter *) cconvert;
cconvert ->pub.start_pass = start_pass_dcolor;

/* Make sure num_components agrees with jpeg_color_space */
switch (cinfo ->jpeg_color_space) {
case JCS_GRAYSCALE:

if (cinfo ->num_components != 1)
ERREXIT(cinfo , JERR_BAD_J_COLORSPACE);

break;

case JCS_RGB:
case JCS_YCbCr:

if (cinfo ->num_components != 3)
ERREXIT(cinfo , JERR_BAD_J_COLORSPACE);

break;

case JCS_CMYK:
case JCS_YCCK:

if (cinfo ->num_components != 4)
ERREXIT(cinfo , JERR_BAD_J_COLORSPACE);

break;

default: /* JCS_UNKNOWN can be anything */
if (cinfo ->num_components < 1)

ERREXIT(cinfo , JERR_BAD_J_COLORSPACE);
break;

}

/* Set out_color_components and conversion method based on requested space.
* Also clear the component_needed flags for any unused components ,
* so that earlier pipeline stages can avoid useless computation.
*/

switch (cinfo ->out_color_space) {
case JCS_GRAYSCALE:

cinfo ->out_color_components = 1;
if (cinfo ->jpeg_color_space == JCS_GRAYSCALE ||

cinfo ->jpeg_color_space == JCS_YCbCr) {
cconvert ->pub.color_convert = grayscale_convert;
/* For color ->grayscale conversion , only the Y (0) component is needed */
for (ci = 1; ci < cinfo ->num_components; ci++)

cinfo ->comp_info[ci]. component_needed = FALSE;
} else

ERREXIT(cinfo , JERR_CONVERSION_NOTIMPL);
break;

case JCS_RGB:
cinfo ->out_color_components = RGB_PIXELSIZE;
if (cinfo ->jpeg_color_space == JCS_YCbCr) {

cconvert ->pub.color_convert = ycc_rgb_convert;
// build_ycc_rgb_table(cinfo); // REMOVED. Hardware does not use tables

} else if (cinfo ->jpeg_color_space == JCS_GRAYSCALE) {
cconvert ->pub.color_convert = gray_rgb_convert;

} else if (cinfo ->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
cconvert ->pub.color_convert = null_convert;

} else
ERREXIT(cinfo , JERR_CONVERSION_NOTIMPL);

break;

case JCS_CMYK:
cinfo ->out_color_components = 4;
if (cinfo ->jpeg_color_space == JCS_YCCK) {

cconvert ->pub.color_convert = ycck_cmyk_convert;
// build_ycc_rgb_table(cinfo);

} else if (cinfo ->jpeg_color_space == JCS_CMYK) {
cconvert ->pub.color_convert = null_convert;

} else

73

C. C CODE

ERREXIT(cinfo , JERR_CONVERSION_NOTIMPL);
break;

default:
/* Permit null conversion to same output space */
if (cinfo ->out_color_space == cinfo ->jpeg_color_space) {

cinfo ->out_color_components = cinfo ->num_components;
cconvert ->pub.color_convert = null_convert;

} else /* unsupported non -null conversion */
ERREXIT(cinfo , JERR_CONVERSION_NOTIMPL);

break;
}

if (cinfo ->quantize_colors)
cinfo ->output_components = 1; /* single colormapped output component */

else
cinfo ->output_components = cinfo ->out_color_components;

}

jdcolor.c

C.2 ReadImage.c

/*
* ReadImage.c
*
* Created 2012, Dan MacDonald.
* This file serves as the entry point for utilizing the software library , libjpeg ,
* Developed by the Independent JPEG Group , and modified for hardware acceleration
* by Dan MacDonald
*
* This program accepts image arguments , decompresses the JPEG image and optionally
* writes the image to the systems frame buffer , or writes the output to a file to
* test its validity
*
*/

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include "/opt/petalinux -v2.1-final -full/software/petalinux -dist/stage/usr/include/

jpeglib.h"
#include <stdlib.h> // used for malloc
#include <memory.h> // used for memcpy
#include <unistd.h>
#include <fcntl.h>
#include <linux/fb.h>
#include <sys/mman.h>
#include <sys/ioctl.h>

/* MACROS */
#define C_CONVERT_PHYSADDR 0xA6E30000
#define IDCT_PHYSADDR 0xA6E20000

#define MAP_SIZE 4096UL // 4k (one page size)
#define MAP_MASK (MAP_SIZE - 1)

unsigned char *raw_image = NULL;

/* Function prototypes */
int read_jpeg_file(char *filename , int scale_factor);
int write_jpeg_file(char *filename);
void write_to_fb(void);

/* Global Parameters */

74

C. C CODE

int width;
int height;
int bytes_per_pixel = 3;
int color_space = JCS_RGB;

/* main
* Entry point for decompressing an image using libjpeg , modified and not modified
*
* Acceptable arg sequence:
* <program > <image > <show fb(1 or 0)> <scale factor (1-8)>
*/

int main(int argc , char * argv [])
{

char *outfilename = "image_output.jpg";
int fb_tf;
int scale_factor;

if (argc >3)
{

scale_factor = atoi(argv [3]);
fb_tf = atoi(argv [2]);

if (read_jpeg_file(argv[1], scale_factor) >0)
{

printf("\n");
// write the output file to compare with original
//if (write_jpeg_file(outfilename) <0)
// return -1;

//write the output to the framebuffer
if (fb_tf == 1)
write_to_fb ();

}
else
return -1;

}
else
{

printf("Invalid arguments: \nFormat: \n%s [photo.jpg] <fb > <Scale -factor > \n\
photo.jpg = image to decompress \n\
fb = 1 to show , 0 dont show\n\
Scale -factor = 1-8\n", argv [0]);

}

return 0;
}

/* read_jpeg_file
* This function Reads from a jpeg file on disk specified by filename and saves into

the
* raw_image buffer in an uncompressed format.
*
* returns positive integer if successful , -1 otherwise
*/

int read_jpeg_file(char *filename , int scale_factor)
{

struct jpeg_decompress_struct cinfo;
struct jpeg_error_mgr jerr;
JSAMPROW row_pointer [1];

FILE *infile = fopen(filename , "rb");
unsigned long location = 0;
int i = 0;
int fd;
void *c_convert_reg_map_base;

75

C. C CODE

void *idct_reg_map_base;

if (!infile)
{

printf("Error opening jpeg file %s\n!", filename);
return -1;

}

cinfo.err = jpeg_std_error(&jerr);

jpeg_create_decompress(&cinfo);
jpeg_stdio_src(&cinfo , infile);

jpeg_read_header(&cinfo , TRUE);

// Uncomment the following to output image information , if needed. */
/*
printf("JPEG File Information: \n");
printf("Image width and height: %d pixels and %d pixels .\n", cinfo.image_width ,

cinfo.image_height);
printf("Color components per pixel: %d.\n", cinfo.num_components);
printf("Color space: %d.\n", cinfo.jpeg_color_space);
*/

// scale on the decompression (numerator/denominator)
cinfo.scale_num = 1;
cinfo.scale_denom = scale_factor;

// Hardware Register memory mapping
fd = open("/dev/mem",O_RDWR | O_SYNC);

if (fd <0)
{

printf("Failure to open the file /dev/mem \n");
fclose(infile);
return -1;

}
else
{

// allocate memory mappings in jpeg decompress structure
c_convert_reg_map_base = mmap(0, MAP_SIZE , PROT_READ | PROT_WRITE , MAP_SHARED ,

fd, C_CONVERT_PHYSADDR & ~MAP_MASK);

if(c_convert_reg_map_base <0)
goto fail_mmap2;

idct_reg_map_base = mmap(0, MAP_SIZE , PROT_READ | PROT_WRITE , MAP_SHARED , fd,
IDCT_PHYSADDR & ~MAP_MASK);

if(idct_reg_map_base <0)
goto fail_mmap3;

cinfo.c_convert_reg = c_convert_reg_map_base + (C_CONVERT_PHYSADDR & MAP_MASK);
cinfo.idct_reg = idct_reg_map_base + (IDCT_PHYSADDR & MAP_MASK);

goto continue_with_image;

fail_mmap3:
munmap(c_convert_reg_map_base , MAP_SIZE);
printf("Failure to mmap idct registers\n");

fail_mmap2:
printf("Failure to mmap colour converter registers\n");

fclose(infile);
fclose(fd);
return -1;

}

76

C. C CODE

continue_with_image:

/* Start decompression of the JPEG */

jpeg_start_decompress(&cinfo);

// allocate the image dimensions to the global variables for other functions
width = cinfo.output_width;
height = cinfo.output_height;

// allocate memory to hold the uncompressed image
raw_image = (unsigned char*) malloc(cinfo.output_width*cinfo.output_height*cinfo.

num_components);
row_pointer [0] = (unsigned char *) malloc(cinfo.output_width*cinfo.num_components

);

while(cinfo.output_scanline < cinfo.output_height)
{

jpeg_read_scanlines(&cinfo , row_pointer , 1);
for(i=0; i<width*cinfo.num_components;i++)

raw_image[location ++] = row_pointer [0][i];
}

// wrap up decompression , destroy objects , free pointers and close open files
jpeg_finish_decompress(&cinfo);

// unmap the memory
munmap(c_convert_reg_map_base , MAP_SIZE);
munmap(idct_reg_map_base , MAP_SIZE);

fclose(fd);

jpeg_destroy_decompress(&cinfo);
free(row_pointer [0]);
fclose(infile);

return 1;
}

/* write_jpeg_file
* This function writes the raw image data stored in the raw_image buffer
* to a jpeg image with default compression and smoothing options in the file
* specified by *filename.
*
* returns positive integer if successful , -1 otherwise
*
*/

int write_jpeg_file(char *filename)
{

struct jpeg_compress_struct cinfo;
struct jpeg_error_mgr jerr;

JSAMPROW row_pointer [1];
FILE *outfile = fopen(filename , "wb");

if (!outfile)
{

printf("Error opening output jpeg file %s\n!", filename);
return -1;

}
cinfo.err = jpeg_std_error(&jerr);
jpeg_create_compress (&cinfo);
jpeg_stdio_dest (&cinfo , outfile);

// Setting the parameters of the output file
cinfo.image_width = width;
cinfo.image_height = height;
cinfo.input_components = bytes_per_pixel;

77

C. C CODE

cinfo.in_color_space = color_space;

jpeg_set_defaults(&cinfo);

// Now do the compression ..
jpeg_start_compress(&cinfo , TRUE);

while(cinfo.next_scanline < cinfo.image_height)
{

row_pointer [0] = &raw_image[cinfo.next_scanline * cinfo.image_width * cinfo.
input_components];

jpeg_write_scanlines(&cinfo , row_pointer , 1);
}
// Clean up
jpeg_finish_compress(&cinfo);
jpeg_destroy_compress(&cinfo);

fclose(outfile);
return 1;

}

/* write_to_fb
* This function writes the raw image to the frame buffer to be displayed on the

screen
*/

void write_to_fb ()
{

int fbfd = 0;
struct fb_var_screeninfo vinfo;
struct fb_fix_screeninfo finfo;
long int screensize = 0;
char *fbp = 0;
int x = 0, y = 0;
int x_limit;
long int location = 0;
long int count =0;
int xoffset = 0;
int yoffset =0;
int crop_offset = 0;

// Open the file for reading and writing
fbfd = open("/dev/fb0", O_RDWR);
if (fbfd == -1) {

perror("Error: cannot open framebuffer device");
exit (1);

}

// Get fixed screen information
if (ioctl(fbfd , FBIOGET_FSCREENINFO , &finfo) == -1) {

perror("Error reading fixed information");
exit (2);

}

// Get variable screen information
if (ioctl(fbfd , FBIOGET_VSCREENINFO , &vinfo) == -1) {

perror("Error reading screen information");
exit (3);

}

screensize = vinfo.xres_virtual * vinfo.yres * vinfo.bits_per_pixel /8;

// Map the device to memory
fbp = (char *)mmap(0, screensize , PROT_WRITE , MAP_SHARED , fbfd , 0);
if ((int)fbp == -1) {

perror("Error: failed to map framebuffer device to memory");
exit (4);

}

78

C. C CODE

// do any necessary cropping
if (height >vinfo.yres)
height = vinfo.yres;

if(width > vinfo.xres)
{

crop_offset = width - vinfo.xres;
x_limit = vinfo.xres;

}
else

x_limit = width;

// raw image counter
count =0;

for (y=0 ; y < height; y++)
{

for (x=0 ; x < x_limit; x++)
{

location = (x+vinfo.xoffset) * (vinfo.bits_per_pixel /8) + (y+vinfo.yoffset)
* finfo.line_length;

// colour the pixels from the image
*(fbp + location + 1) = raw_image[count]; // red
*(fbp + location + 2) = raw_image[count +1]; // green
*(fbp + location + 3) = raw_image[count +2]; // blue
*(fbp + location + 0) = 0; // alpha is ignored

// increment raw_image pointer
count +=3;

}
count += 3* crop_offset;

}

munmap(fbp , screensize);
close(fbfd);

}

ReadImage.c

79

Appendix D

VHDL Code

D.1 2D IDCT

--
-- Company: University of Windsor
-- Engineer: Dan MacDonald
--
-- Create Date: 02/14/2012
-- Design Name:
-- Module Name: idct
-- Project Name: jpeg_idct
-- Target Devices:
-- Tool versions:
-- Description: This is an 8 point 1D-IDCT (row or column) which is used to compute

the 2D-IDCT for libjpeg
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Revision 1.01 - Edited to allow one idct to do a row and column idct
-- Revision 1.50 - Removed clocking. Asynchronous idct
-- Revision 2.00 - Redesigned to be clocked to improve longest path
-- Revision 2.20 - Increased resolution with constant ’m’
-- Additional Comments:
--
--

library ieee;
use ieee.std_logic_1164.all;

80

D. VHDL CODE

use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

entity idct is
port (

idct_clk : in std_logic;
idct_reset : in std_logic;
idct_done : out std_logic;
in0: in signed (15 downto 0);
in1: in signed (15 downto 0);
in2: in signed (15 downto 0);
in3: in signed (15 downto 0);
in4: in signed (15 downto 0);
in5: in signed (15 downto 0);
in6: in signed (15 downto 0);
in7: in signed (15 downto 0);
out0: out signed (15 downto 0);
out1: out signed (15 downto 0);
out2: out signed (15 downto 0);
out3: out signed (15 downto 0);
out4: out signed (15 downto 0);
out5: out signed (15 downto 0);
out6: out signed (15 downto 0);
out7: out signed (15 downto 0));

attribute use_dsp48 : string;
attribute use_dsp48 of idct : entity is "no";

end idct;

architecture idct_arc of idct is

-- types , signals and constants
-- idct_array = array type used to do intermediate calculations

constant m : integer := 32;
type idct_array is array(0 to 7) of signed(m-1 downto 0);
type state_type is (IDCT_STAGE1 , IDCT_STAGE2 , IDCT_STAGE3 , ADJUSTMENTS);
signal idct_state : state_type;

signal stage1 ,stage2 , stage3 , stage4: idct_array;
signal temp1 , temp2: signed(m-1 downto 0);
signal idct_done2 : std_logic;

begin

------------------- 1D -IDCT process ------------------------

idct_proc: process(in0 , in1 , in2 , in3 , in4 , in5 , in6 , in7 , idct_clk , idct_reset)

begin
if (rising_edge(idct_clk)) then

if(idct_reset = ’1’) then
--reset/initial conditions
idct_done2 <= ’0’;
idct_state <= IDCT_STAGE1;

else

case(idct_state) is
when IDCT_STAGE1 =>

------------------- stage 1 -------------------
stage1 (2) <= resize ((in2 * 139) - (in6 * 335),m); -- stage1 (2) = in2*

cos6 - in6*sin6 (<<8)
stage1 (3) <= resize ((in2 * 335) + (in6 * 139),m); -- stage1 (3) = in2*

sin6 + in6*cos6 (<<8)

81

D. VHDL CODE

stage1 (4) <= resize (181 * in1 - 181 * in7 ,m); --stage1 (4) = temp1 -
temp2 (<<8)

stage1 (7) <= resize (181 * in1 + 181 * in7 ,m); --stage1 (7) = temp1 +
temp2 (<<8)

idct_state <= IDCT_STAGE2;

when IDCT_STAGE2 =>
------------------- stage 2 -------------------

stage3 (0) <= resize((in0 & x"00") + (in4 & x"00") + stage1 (3),m);
-- stage3 (0) = in0(<<8) + in4(<<8) + stage1 (3)(<<8)

stage3 (3) <= resize((in0 & x"00") + (in4 & x"00") - stage1 (3),m);
-- stage3 (3) = in0(<<8) + in4(<<8) - stage1 (3)(<<8)

stage3 (1) <= resize((in0 & x"00") - (in4 & x"00") + stage1 (2),m);
-- stage3 (1) = in0(<<8) - in4(<<8) + stage1 (3)(<<8)

stage3 (2) <= resize((in0 & x"00") - (in4 & x"00") - stage1 (2),m);
-- stage3 (2) = in0(<<8) - in4(<<8) - stage1 (3)(<<8)

stage2 (4) <= resize(stage1 (4) + (in5 & x"00"), m); -- stage2 (4) =
stage1 (4)(<<8) + in5(<<8)

stage2 (6) <= resize(stage1 (4) - (in5 & x"00"), m); -- stage2 (6) =
stage1 (4)(<<8) - in5(<<8)

stage2 (7) <= resize(stage1 (7) + (in3 & x"00"), m); -- stage2 (7) =
stage1 (7)(<<8) + in3(<<8)

stage2 (5) <= resize(stage1 (7) - (in3 & x"00"), m); -- stage2 (5) =
stage1 (7)(<<8) - in3(<<8)

idct_state <= IDCT_STAGE3;

when IDCT_STAGE3 =>
------------------- stage 3 -------------------

stage3 (4) <= resize ((stage2 (4) *301) - (stage2 (7) *201),m); -- stage3 (4)
= stage2 (4)*cos3(<<16) - stage2 (7)*sin3(<<16)

stage3 (7) <= resize ((stage2 (4) *201) + (stage2 (7) *301),m); -- stage3 (7)
= stage2 (4)*sin3(<<16) + stage2 (7)*cos3(<<16)

stage3 (5) <= resize ((stage2 (5) *355) - (stage2 (6) *71),m); -- stage3 (5)
= stage2 (3)*cos1(<<16) - stage2 (6)*sin1(<<16)

stage3 (6) <= resize ((stage2 (5) *71) + (stage2 (6) *355),m); -- stage3 (6)
= stage2 (3)*sin1(<<16) + stage2 (6)*cos1(<<16)

idct_state <= ADJUSTMENTS;

WHEN ADJUSTMENTS =>
----- stage 4 & final adjustments mult by(1/ sqrt (8)) ------

out0 <= resize(signed(shift_right (((stage3 (0) & x"00") + stage3 (7)) *
91, 24)) ,16);

out1 <= resize(signed(shift_right (((stage3 (1) & x"00") + stage3 (6)) *
91, 24)) ,16);

out2 <= resize(signed(shift_right (((stage3 (2) & x"00") + stage3 (5)) *
91, 24)) ,16);

out3 <= resize(signed(shift_right (((stage3 (3) & x"00") + stage3 (4)) *
91, 24)) ,16);

out4 <= resize(signed(shift_right (((stage3 (3) & x"00") - stage3 (4)) *
91, 24)) ,16);

out5 <= resize(signed(shift_right (((stage3 (2) & x"00") - stage3 (5)) *
91, 24)) ,16);

out6 <= resize(signed(shift_right (((stage3 (1) & x"00") - stage3 (6)) *
91, 24)) ,16);

out7 <= resize(signed(shift_right (((stage3 (0) & x"00") - stage3 (7)) *
91, 24)) ,16);

idct_done2 <= ’1’;

82

D. VHDL CODE

end case;

end if; -- end of else reset ==0
end if; -- end of clk edge

end process idct_proc;

-- a non -clock dependent done signal
DONE_PROC : process(idct_done2 , idct_reset) is
begin

if(idct_reset = ’1’) then
idct_done <= ’0’;

else
idct_done <= idct_done2;

end if;

end process;

end architecture idct_arc;

idct.vhd

--
-- idct_2d.vhd - entity/architecture pair
--
-- Filename: idct_2d.vhd
-- Version: 4.00.a
-- Description: Top level design , instantiates library components and user

logic.
-- Date: Mon Jul 23 16:25:13 2012 (by Create and Import Peripheral

Wizard)
-- VHDL Standard: VHDL ’93
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;
use proc_common_v3_00_a.ipif_pkg.all;

library plbv46_slave_single_v1_01_a;
use plbv46_slave_single_v1_01_a.plbv46_slave_single;

library idct_2d_v4_00_a;
use idct_2d_v4_00_a.user_logic;

entity idct_2d is
generic
(

--USER generics added here

-- Bus protocol parameters , do not add to or delete
C_BASEADDR : std_logic_vector := X"FFFFFFFF";
C_HIGHADDR : std_logic_vector := X"00000000";
C_SPLB_AWIDTH : integer := 32;
C_SPLB_DWIDTH : integer := 128;
C_SPLB_NUM_MASTERS : integer := 8;
C_SPLB_MID_WIDTH : integer := 3;
C_SPLB_NATIVE_DWIDTH : integer := 32;
C_SPLB_P2P : integer := 0;
C_SPLB_SUPPORT_BURSTS : integer := 0;
C_SPLB_SMALLEST_MASTER : integer := 32;

83

D. VHDL CODE

C_SPLB_CLK_PERIOD_PS : integer := 10000;
C_INCLUDE_DPHASE_TIMER : integer := 0;
C_FAMILY : string := "virtex5"

);
port
(

--USER ports added here

-- Bus protocol ports , do not add to or delete
SPLB_Clk : in std_logic;
SPLB_Rst : in std_logic;
PLB_ABus : in std_logic_vector (0 to 31);
PLB_UABus : in std_logic_vector (0 to 31);
PLB_PAValid : in std_logic;
PLB_SAValid : in std_logic;
PLB_rdPrim : in std_logic;
PLB_wrPrim : in std_logic;
PLB_masterID : in std_logic_vector (0 to C_SPLB_MID_WIDTH -1);
PLB_abort : in std_logic;
PLB_busLock : in std_logic;
PLB_RNW : in std_logic;
PLB_BE : in std_logic_vector (0 to C_SPLB_DWIDTH /8-1);
PLB_MSize : in std_logic_vector (0 to 1);
PLB_size : in std_logic_vector (0 to 3);
PLB_type : in std_logic_vector (0 to 2);
PLB_lockErr : in std_logic;
PLB_wrDBus : in std_logic_vector (0 to C_SPLB_DWIDTH -1);
PLB_wrBurst : in std_logic;
PLB_rdBurst : in std_logic;
PLB_wrPendReq : in std_logic;
PLB_rdPendReq : in std_logic;
PLB_wrPendPri : in std_logic_vector (0 to 1);
PLB_rdPendPri : in std_logic_vector (0 to 1);
PLB_reqPri : in std_logic_vector (0 to 1);
PLB_TAttribute : in std_logic_vector (0 to 15);
Sl_addrAck : out std_logic;
Sl_SSize : out std_logic_vector (0 to 1);
Sl_wait : out std_logic;
Sl_rearbitrate : out std_logic;
Sl_wrDAck : out std_logic;
Sl_wrComp : out std_logic;
Sl_wrBTerm : out std_logic;
Sl_rdDBus : out std_logic_vector (0 to C_SPLB_DWIDTH -1);
Sl_rdWdAddr : out std_logic_vector (0 to 3);
Sl_rdDAck : out std_logic;
Sl_rdComp : out std_logic;
Sl_rdBTerm : out std_logic;
Sl_MBusy : out std_logic_vector (0 to C_SPLB_NUM_MASTERS -1);
Sl_MWrErr : out std_logic_vector (0 to C_SPLB_NUM_MASTERS -1);
Sl_MRdErr : out std_logic_vector (0 to C_SPLB_NUM_MASTERS -1);
Sl_MIRQ : out std_logic_vector (0 to C_SPLB_NUM_MASTERS -1)

);

attribute SIGIS : string;
attribute SIGIS of SPLB_Clk : signal is "CLK";
attribute SIGIS of SPLB_Rst : signal is "RST";

end entity idct_2d;
--
-- Architecture section
--

architecture IMP of idct_2d is
--
-- Array of base/high address pairs for each address range
--
constant ZERO_ADDR_PAD : std_logic_vector (0 to 31) := (others =>

’0’);

84

D. VHDL CODE

constant USER_SLV_BASEADDR : std_logic_vector := C_BASEADDR;
constant USER_SLV_HIGHADDR : std_logic_vector := C_HIGHADDR;

constant IPIF_ARD_ADDR_RANGE_ARRAY : SLV64_ARRAY_TYPE :=
(

ZERO_ADDR_PAD & USER_SLV_BASEADDR , -- user logic slave space base address
ZERO_ADDR_PAD & USER_SLV_HIGHADDR -- user logic slave space high address

);

--
-- Array of desired number of chip enables for each address range
--
constant USER_SLV_NUM_REG : integer := 22;
constant USER_NUM_REG : integer := USER_SLV_NUM_REG;

constant IPIF_ARD_NUM_CE_ARRAY : INTEGER_ARRAY_TYPE :=
(

0 => pad_power2(USER_SLV_NUM_REG) -- number of ce for user logic slave space
);

--
-- Ratio of bus clock to core clock (for use in dual clock systems)
-- 1 = ratio is 1:1
-- 2 = ratio is 2:1
--
constant IPIF_BUS2CORE_CLK_RATIO : integer := 1;

--
-- Width of the slave data bus (32 only)
--
constant USER_SLV_DWIDTH : integer :=

C_SPLB_NATIVE_DWIDTH;
constant IPIF_SLV_DWIDTH : integer :=

C_SPLB_NATIVE_DWIDTH;

--
-- Index for CS/CE
--
constant USER_SLV_CS_INDEX : integer := 0;
constant USER_SLV_CE_INDEX : integer :=

calc_start_ce_index(IPIF_ARD_NUM_CE_ARRAY , USER_SLV_CS_INDEX);
constant USER_CE_INDEX : integer := USER_SLV_CE_INDEX

;

--
-- IP Interconnect (IPIC) signal declarations
--
signal ipif_Bus2IP_Clk : std_logic;
signal ipif_Bus2IP_Reset : std_logic;
signal ipif_IP2Bus_Data : std_logic_vector (0 to IPIF_SLV_DWIDTH -1);
signal ipif_IP2Bus_WrAck : std_logic;
signal ipif_IP2Bus_RdAck : std_logic;
signal ipif_IP2Bus_Error : std_logic;
signal ipif_Bus2IP_Addr : std_logic_vector (0 to C_SPLB_AWIDTH -1);
signal ipif_Bus2IP_Data : std_logic_vector (0 to IPIF_SLV_DWIDTH -1);
signal ipif_Bus2IP_RNW : std_logic;
signal ipif_Bus2IP_BE : std_logic_vector (0 to IPIF_SLV_DWIDTH /8-1);
signal ipif_Bus2IP_CS : std_logic_vector (0 to ((

IPIF_ARD_ADDR_RANGE_ARRAY ’length)/2) -1);
signal ipif_Bus2IP_RdCE : std_logic_vector (0 to calc_num_ce(

IPIF_ARD_NUM_CE_ARRAY) -1);
signal ipif_Bus2IP_WrCE : std_logic_vector (0 to calc_num_ce(

IPIF_ARD_NUM_CE_ARRAY) -1);
signal user_Bus2IP_RdCE : std_logic_vector (0 to USER_NUM_REG -1);
signal user_Bus2IP_WrCE : std_logic_vector (0 to USER_NUM_REG -1);
signal user_IP2Bus_Data : std_logic_vector (0 to USER_SLV_DWIDTH -1);
signal user_IP2Bus_RdAck : std_logic;
signal user_IP2Bus_WrAck : std_logic;

85

D. VHDL CODE

signal user_IP2Bus_Error : std_logic;

-- IDCT connections
signal idct_out0 , idct_out1 , idct_out2 , idct_out3 , idct_out4 , idct_out5 ,

idct_out6 , idct_out7 : signed (15 downto 0);
signal idct_in0 , idct_in1 , idct_in2 , idct_in3 , idct_in4 , idct_in5 , idct_in6 ,

idct_in7 : signed(15 downto 0);
signal idct_reset , idct_done : std_logic;

component idct
port (

idct_clk : in std_logic;
idct_reset : in std_logic;
idct_done : out std_logic;
in0: in signed (15 downto 0);
in1: in signed (15 downto 0);
in2: in signed (15 downto 0);
in3: in signed (15 downto 0);
in4: in signed (15 downto 0);
in5: in signed (15 downto 0);
in6: in signed (15 downto 0);
in7: in signed (15 downto 0);
out0: out signed (15 downto 0);
out1: out signed (15 downto 0);
out2: out signed (15 downto 0);
out3: out signed (15 downto 0);
out4: out signed (15 downto 0);
out5: out signed (15 downto 0);
out6: out signed (15 downto 0);
out7: out signed (15 downto 0)
);

end component;
begin

--
-- instantiate plbv46_slave_single
--

PLBV46_SLAVE_SINGLE_I : entity plbv46_slave_single_v1_01_a.plbv46_slave_single
generic map
(

C_ARD_ADDR_RANGE_ARRAY => IPIF_ARD_ADDR_RANGE_ARRAY ,
C_ARD_NUM_CE_ARRAY => IPIF_ARD_NUM_CE_ARRAY ,
C_SPLB_P2P => C_SPLB_P2P ,
C_BUS2CORE_CLK_RATIO => IPIF_BUS2CORE_CLK_RATIO ,
C_SPLB_MID_WIDTH => C_SPLB_MID_WIDTH ,
C_SPLB_NUM_MASTERS => C_SPLB_NUM_MASTERS ,
C_SPLB_AWIDTH => C_SPLB_AWIDTH ,
C_SPLB_DWIDTH => C_SPLB_DWIDTH ,
C_SIPIF_DWIDTH => IPIF_SLV_DWIDTH ,
C_INCLUDE_DPHASE_TIMER => C_INCLUDE_DPHASE_TIMER ,
C_FAMILY => C_FAMILY

)
port map
(

SPLB_Clk => SPLB_Clk ,
SPLB_Rst => SPLB_Rst ,
PLB_ABus => PLB_ABus ,
PLB_UABus => PLB_UABus ,
PLB_PAValid => PLB_PAValid ,
PLB_SAValid => PLB_SAValid ,
PLB_rdPrim => PLB_rdPrim ,
PLB_wrPrim => PLB_wrPrim ,
PLB_masterID => PLB_masterID ,
PLB_abort => PLB_abort ,
PLB_busLock => PLB_busLock ,
PLB_RNW => PLB_RNW ,
PLB_BE => PLB_BE ,

86

D. VHDL CODE

PLB_MSize => PLB_MSize ,
PLB_size => PLB_size ,
PLB_type => PLB_type ,
PLB_lockErr => PLB_lockErr ,
PLB_wrDBus => PLB_wrDBus ,
PLB_wrBurst => PLB_wrBurst ,
PLB_rdBurst => PLB_rdBurst ,
PLB_wrPendReq => PLB_wrPendReq ,
PLB_rdPendReq => PLB_rdPendReq ,
PLB_wrPendPri => PLB_wrPendPri ,
PLB_rdPendPri => PLB_rdPendPri ,
PLB_reqPri => PLB_reqPri ,
PLB_TAttribute => PLB_TAttribute ,
Sl_addrAck => Sl_addrAck ,
Sl_SSize => Sl_SSize ,
Sl_wait => Sl_wait ,
Sl_rearbitrate => Sl_rearbitrate ,
Sl_wrDAck => Sl_wrDAck ,
Sl_wrComp => Sl_wrComp ,
Sl_wrBTerm => Sl_wrBTerm ,
Sl_rdDBus => Sl_rdDBus ,
Sl_rdWdAddr => Sl_rdWdAddr ,
Sl_rdDAck => Sl_rdDAck ,
Sl_rdComp => Sl_rdComp ,
Sl_rdBTerm => Sl_rdBTerm ,
Sl_MBusy => Sl_MBusy ,
Sl_MWrErr => Sl_MWrErr ,
Sl_MRdErr => Sl_MRdErr ,
Sl_MIRQ => Sl_MIRQ ,
Bus2IP_Clk => ipif_Bus2IP_Clk ,
Bus2IP_Reset => ipif_Bus2IP_Reset ,
IP2Bus_Data => ipif_IP2Bus_Data ,
IP2Bus_WrAck => ipif_IP2Bus_WrAck ,
IP2Bus_RdAck => ipif_IP2Bus_RdAck ,
IP2Bus_Error => ipif_IP2Bus_Error ,
Bus2IP_Addr => ipif_Bus2IP_Addr ,
Bus2IP_Data => ipif_Bus2IP_Data ,
Bus2IP_RNW => ipif_Bus2IP_RNW ,
Bus2IP_BE => ipif_Bus2IP_BE ,
Bus2IP_CS => ipif_Bus2IP_CS ,
Bus2IP_RdCE => ipif_Bus2IP_RdCE ,
Bus2IP_WrCE => ipif_Bus2IP_WrCE

);

--
-- instantiate User Logic
--

USER_LOGIC_I : entity idct_2d_v4_00_a.user_logic
generic map
(

--USER generics mapped here

C_SLV_DWIDTH => USER_SLV_DWIDTH ,
C_NUM_REG => USER_NUM_REG

)
port map
(

-- idct input ports
IDCT_IN0 => idct_in0 , IDCT_IN1 => idct_in1 ,
IDCT_IN2 => idct_in2 , IDCT_IN3 => idct_in3 ,
IDCT_IN4 => idct_in4 , IDCT_IN5 => idct_in5 ,
IDCT_IN6 => idct_in6 , IDCT_IN7 => idct_in7 ,
-- idct output ports
IDCT_OUT0 => idct_out0 , IDCT_OUT1 => idct_out1 ,
IDCT_OUT2 => idct_out2 , IDCT_OUT3 => idct_out3 ,
IDCT_OUT4 => idct_out4 , IDCT_OUT5 => idct_out5 ,
IDCT_OUT6 => idct_out6 , IDCT_OUT7 => idct_out7 ,

87

D. VHDL CODE

IDCT_RESET => idct_reset ,
IDCT_DONE => idct_done ,

Bus2IP_Clk => ipif_Bus2IP_Clk ,
Bus2IP_Reset => ipif_Bus2IP_Reset ,
Bus2IP_Data => ipif_Bus2IP_Data ,
Bus2IP_BE => ipif_Bus2IP_BE ,
Bus2IP_RdCE => user_Bus2IP_RdCE ,
Bus2IP_WrCE => user_Bus2IP_WrCE ,
IP2Bus_Data => user_IP2Bus_Data ,
IP2Bus_RdAck => user_IP2Bus_RdAck ,
IP2Bus_WrAck => user_IP2Bus_WrAck ,
IP2Bus_Error => user_IP2Bus_Error

);

idct_I: idct port map(
in0 => idct_in0 , out0 => idct_out0 ,
in1 => idct_in1 , out1 => idct_out1 ,
in2 => idct_in2 , out2 => idct_out2 ,
in3 => idct_in3 , out3 => idct_out3 ,
in4 => idct_in4 , out4 => idct_out4 ,
in5 => idct_in5 , out5 => idct_out5 ,
in6 => idct_in6 , out6 => idct_out6 ,
in7 => idct_in7 , out7 => idct_out7 ,

idct_clk => ipif_Bus2IP_Clk ,
idct_reset => idct_reset ,
idct_done => idct_done
);

--
-- connect internal signals
--
ipif_IP2Bus_Data <= user_IP2Bus_Data;
ipif_IP2Bus_WrAck <= user_IP2Bus_WrAck;
ipif_IP2Bus_RdAck <= user_IP2Bus_RdAck;
ipif_IP2Bus_Error <= user_IP2Bus_Error;

user_Bus2IP_RdCE <= ipif_Bus2IP_RdCE(USER_CE_INDEX to USER_CE_INDEX+USER_NUM_REG -1)
;

user_Bus2IP_WrCE <= ipif_Bus2IP_WrCE(USER_CE_INDEX to USER_CE_INDEX+USER_NUM_REG -1)
;

end IMP;

idct 2d.vhd

--
-- user_logic.vhd - entity/architecture pair
--
-- Filename: user_logic.vhd
-- Version: 4.00.a
-- Description: User logic design. Interface to Software accessible registers ,
-- dequantization multiplication , and computation of 16 1D-IDCTs to form the 2D-IDCT
-- Date: Mon Jul 23 16:25:13 2012 (by Create and Import Peripheral

Wizard)
-- VHDL Standard: VHDL ’93
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;

entity user_logic is

88

D. VHDL CODE

generic
(

C_SLV_DWIDTH : integer := 32;
C_NUM_REG : integer := 22

);
port
(
-- dct i/o ports
IDCT_IN0 , IDCT_IN1 , IDCT_IN2 , IDCT_IN3 , IDCT_IN4 , IDCT_IN5 , IDCT_IN6 , IDCT_IN7 :

out signed (15 downto 0);
IDCT_OUT0 , IDCT_OUT1 , IDCT_OUT2 , IDCT_OUT3 , IDCT_OUT4 , IDCT_OUT5 , IDCT_OUT6 ,

IDCT_OUT7 : in signed (15 downto 0);
IDCT_DONE : in std_logic;
IDCT_RESET : out std_logic;

-- Bus protocol ports , do not add to or delete
Bus2IP_Clk : in std_logic;
Bus2IP_Reset : in std_logic;
Bus2IP_Data : in std_logic_vector (0 to C_SLV_DWIDTH -1);
Bus2IP_BE : in std_logic_vector (0 to C_SLV_DWIDTH /8-1);
Bus2IP_RdCE : in std_logic_vector (0 to C_NUM_REG -1);
Bus2IP_WrCE : in std_logic_vector (0 to C_NUM_REG -1);
IP2Bus_Data : out std_logic_vector (0 to C_SLV_DWIDTH -1);
IP2Bus_RdAck : out std_logic;
IP2Bus_WrAck : out std_logic;
IP2Bus_Error : out std_logic
-- DO NOT EDIT ABOVE THIS LINE ---------------------

);

attribute SIGIS : string;
attribute SIGIS of Bus2IP_Clk : signal is "CLK";
attribute SIGIS of Bus2IP_Reset : signal is "RST";

end entity user_logic;

--
-- Architecture section
--

architecture IMP of user_logic is

-- data type definitions
type coef_matrix is array(0 to 7, 0 to 7) of signed (0 to 15); -- 2d array(matrix)

for holding row idct ’s
type short_arr is array (0 to 7) of std_logic_vector (0 to 15); -- array of 16 bit

std_logic_vectors
type int_arr is array(0 to 7) of std_logic_vector (0 to 31); -- array of 32 bit

std_logic_vectors
type char_arr is array(0 to 7) of std_logic_vector (0 to 7); -- array of 8 bit

std_logic_vectors

signal arr_matrix :coef_matrix;
signal arr_input :short_arr;
signal arr_quant :int_arr;
signal arr_output :char_arr;

-- counter for the rows & for the cols
signal s_row_cnt :integer;
signal s_col_cnt :integer;
signal s_trans_cnt : integer ;
signal s_reset :std_logic;
signal s_lastRow :std_logic_vector (2 downto 0);
signal s_done :std_logic;

-- post 2d-IDCT range limiting
signal s_range_lim0 : unsigned (0 to 7);
signal s_range_lim1 : unsigned (0 to 7);
signal s_range_lim2 : unsigned (0 to 7);

89

D. VHDL CODE

signal s_range_lim3 : unsigned (0 to 7);
signal s_range_lim4 : unsigned (0 to 7);
signal s_range_lim5 : unsigned (0 to 7);
signal s_range_lim6 : unsigned (0 to 7);
signal s_range_lim7 : unsigned (0 to 7);

--
-- Signals for user logic slave model s/w accessible register example
--
signal slv_reg_write_sel : std_logic_vector (0 to 21);
signal slv_reg_read_sel : std_logic_vector (0 to 21);
signal slv_ip2bus_data : std_logic_vector (0 to C_SLV_DWIDTH -1);
signal slv_read_ack : std_logic;
signal slv_write_ack : std_logic;

begin

slv_reg_write_sel <= Bus2IP_WrCE (0 to 21);
slv_reg_read_sel <= Bus2IP_RdCE (0 to 21);
slv_write_ack <= Bus2IP_WrCE (0) or Bus2IP_WrCE (1) or Bus2IP_WrCE (2) or

Bus2IP_WrCE (3) or Bus2IP_WrCE (4) or Bus2IP_WrCE (5) or Bus2IP_WrCE (6) or
Bus2IP_WrCE (7) or Bus2IP_WrCE (8) or Bus2IP_WrCE (9) or Bus2IP_WrCE (10) or
Bus2IP_WrCE (11) or Bus2IP_WrCE (12) or Bus2IP_WrCE (13) or Bus2IP_WrCE (14) or
Bus2IP_WrCE (15) or Bus2IP_WrCE (16) or Bus2IP_WrCE (17) or Bus2IP_WrCE (18) or
Bus2IP_WrCE (19) or Bus2IP_WrCE (20) or Bus2IP_WrCE (21);

slv_read_ack <= Bus2IP_RdCE (0) or Bus2IP_RdCE (1) or Bus2IP_RdCE (2) or
Bus2IP_RdCE (3) or Bus2IP_RdCE (4) or Bus2IP_RdCE (5) or Bus2IP_RdCE (6) or
Bus2IP_RdCE (7) or Bus2IP_RdCE (8) or Bus2IP_RdCE (9) or Bus2IP_RdCE (10) or
Bus2IP_RdCE (11) or Bus2IP_RdCE (12) or Bus2IP_RdCE (13) or Bus2IP_RdCE (14) or
Bus2IP_RdCE (15) or Bus2IP_RdCE (16) or Bus2IP_RdCE (17) or Bus2IP_RdCE (18) or
Bus2IP_RdCE (19) or Bus2IP_RdCE (20) or Bus2IP_RdCE (21);

-- Register Write Process

SLAVE_REG_WRITE_PROC : process(Bus2IP_Clk) is

begin

if Bus2IP_Clk ’event and Bus2IP_Clk = ’1’ then
if Bus2IP_Reset = ’1’ then

arr_output (0) <= (others => ’0’);
arr_output (1) <= (others => ’0’);
arr_output (2) <= (others => ’0’);
arr_output (3) <= (others => ’0’);
arr_output (4) <= (others => ’0’);
arr_output (5) <= (others => ’0’);
arr_output (6) <= (others => ’0’);
arr_output (7) <= (others => ’0’);

arr_quant (0) <= (others => ’0’);
arr_quant (1) <= (others => ’0’);
arr_quant (2) <= (others => ’0’);
arr_quant (3) <= (others => ’0’);
arr_quant (4) <= (others => ’0’);
arr_quant (5) <= (others => ’0’);
arr_quant (6) <= (others => ’0’);
arr_quant (7) <= (others => ’0’);

arr_input (0) <= (others => ’0’);
arr_input (1) <= (others => ’0’);
arr_input (2) <= (others => ’0’);
arr_input (3) <= (others => ’0’);
arr_input (4) <= (others => ’0’);
arr_input (5) <= (others => ’0’);
arr_input (6) <= (others => ’0’);
arr_input (7) <= (others => ’0’);

90

D. VHDL CODE

s_row_cnt <= -1;
s_reset <= ’0’;
s_trans_cnt <= 0;

s_lastRow <= (others => ’0’);
s_done <= ’0’;
-- 1D IDCT initial conditions
IDCT_RESET <= ’1’;

else

case slv_reg_write_sel is
when "1000000000000000000000" => arr_quant (0) <= Bus2IP_Data (0 to C_SLV_DWIDTH

-1);
if(s_col_cnt > 6) then

s_reset <= ’1’;
s_row_cnt <= -1;
s_trans_cnt <= 0;

else
s_reset <= ’0’;

end if;

s_lastRow <= (others => ’0’);

when "0100000000000000000000" => arr_quant (1) <= Bus2IP_Data (0 to C_SLV_DWIDTH
-1);

when "0010000000000000000000" => arr_quant (2) <= Bus2IP_Data (0 to C_SLV_DWIDTH
-1);

when "0001000000000000000000" => arr_quant (3) <= Bus2IP_Data (0 to C_SLV_DWIDTH
-1);

when "0000100000000000000000" => arr_quant (4) <= Bus2IP_Data (0 to C_SLV_DWIDTH
-1);

when "0000010000000000000000" => arr_quant (5) <= Bus2IP_Data (0 to C_SLV_DWIDTH
-1);

when "0000001000000000000000" => arr_quant (6) <= Bus2IP_Data (0 to C_SLV_DWIDTH
-1);

when "0000000100000000000000" => arr_quant (7) <= Bus2IP_Data (0 to C_SLV_DWIDTH
-1);

when "0000000010000000000000" =>
arr_input (0) <= Bus2IP_Data (0 to 15);
arr_input (1) <= Bus2IP_Data (16 to 31);

when "0000000001000000000000" =>
arr_input (2) <= Bus2IP_Data (0 to 15);
arr_input (3) <= Bus2IP_Data (16 to 31);

when "0000000000100000000000" =>
arr_input (4) <= Bus2IP_Data (0 to 15);
arr_input (5) <= Bus2IP_Data (16 to 31);

when "0000000000010000000000" =>

IDCT_IN0 <= resize(signed(arr_input (0)) * signed(arr_quant (0)) ,16)(15 downto
0);

IDCT_IN1 <= resize(signed(arr_input (1)) * signed(arr_quant (1)) ,16)(15 downto
0);

IDCT_IN2 <= resize(signed(arr_input (2)) * signed(arr_quant (2)) ,16)(15 downto
0);

IDCT_IN3 <= resize(signed(arr_input (3)) * signed(arr_quant (3)) ,16)(15 downto
0);

IDCT_IN4 <= resize(signed(arr_input (4)) * signed(arr_quant (4)) ,16)(15 downto
0);

IDCT_IN5 <= resize(signed(arr_input (5)) * signed(arr_quant (5)) ,16)(15 downto
0);

IDCT_IN6 <= resize(signed(Bus2IP_Data (0 to 15)) * signed(arr_quant (6)) ,16)
(15 downto 0);

IDCT_IN7 <= resize(signed(Bus2IP_Data (16 to 31)) * signed(arr_quant (7)) ,16)
(15 downto 0);

if(IDCT_DONE = ’0’) then

91

D. VHDL CODE

IDCT_RESET <= ’0’;

-- increment row counter when the idct is ready
s_row_cnt <= s_row_cnt +1;

end if;

when others => null;
end case;

-- control the output of the idct
if(s_row_cnt > -1 and s_row_cnt <8) then

if(s_col_cnt = 0 and s_lastRow < "111") then
s_done <= ’0’;

if(IDCT_DONE = ’1’) then
-- read the outputs if its ready
arr_matrix(s_row_cnt ,0) <= IDCT_OUT0;
arr_matrix(s_row_cnt ,1) <= IDCT_OUT1;
arr_matrix(s_row_cnt ,2) <= IDCT_OUT2;
arr_matrix(s_row_cnt ,3) <= IDCT_OUT3;
arr_matrix(s_row_cnt ,4) <= IDCT_OUT4;
arr_matrix(s_row_cnt ,5) <= IDCT_OUT5;
arr_matrix(s_row_cnt ,6) <= IDCT_OUT6;
arr_matrix(s_row_cnt ,7) <= IDCT_OUT7;

-- reset the 1D-IDCT
IDCT_RESET <= ’1’;

end if;

elsif(s_trans_cnt < 8) then

if(IDCT_DONE = ’1’) then
-- store the column idcts into the matrix
arr_matrix (0, s_trans_cnt) <= IDCT_OUT0;
arr_matrix (1, s_trans_cnt) <= IDCT_OUT1;
arr_matrix (2, s_trans_cnt) <= IDCT_OUT2;
arr_matrix (3, s_trans_cnt) <= IDCT_OUT3;
arr_matrix (4, s_trans_cnt) <= IDCT_OUT4;
arr_matrix (5, s_trans_cnt) <= IDCT_OUT5;
arr_matrix (6, s_trans_cnt) <= IDCT_OUT6;
arr_matrix (7, s_trans_cnt) <= IDCT_OUT7;

s_trans_cnt <= s_trans_cnt + 1;

-- reset the 1D-IDCT
IDCT_RESET <= ’1’;

end if;
end if;

end if;

------ column delay from lastrow ------
if (s_row_cnt = 7) then

if(s_lastRow = "111" and s_trans_cnt < 8) then

if(IDCT_DONE = ’0’) then
IDCT_RESET <= ’0’; -- start the idct

IDCT_IN0 <= arr_matrix (0, s_trans_cnt);
IDCT_IN1 <= arr_matrix (1, s_trans_cnt);
IDCT_IN2 <= arr_matrix (2, s_trans_cnt);
IDCT_IN3 <= arr_matrix (3, s_trans_cnt);
IDCT_IN4 <= arr_matrix (4, s_trans_cnt);
IDCT_IN5 <= arr_matrix (5, s_trans_cnt);
IDCT_IN6 <= arr_matrix (6, s_trans_cnt);
IDCT_IN7 <= arr_matrix (7, s_trans_cnt);

92

D. VHDL CODE

end if; -- end of idct_done =0

elsif (s_trans_cnt = 8) then
s_done <= ’1’;

else
s_lastRow <= s_lastRow + "001";

end if;

end if;

-------------- range limiting -----------------
if (s_col_cnt <8) then -- the user shouldn ’t start reading until s_done = 1

if(arr_matrix(s_col_cnt ,0) < -128) then arr_output (0) <= x"00";
elsif(arr_matrix(s_col_cnt ,0) > 127) then arr_output (0) <= x"FF";
else arr_output (0) <= std_logic_vector(resize(unsigned(arr_matrix(s_col_cnt ,0)

+ x"0080") ,8));
end if;

if(arr_matrix(s_col_cnt ,1) < -128) then arr_output (1) <= x"00";
elsif(arr_matrix(s_col_cnt ,1) > 127) then arr_output (1) <= x"FF";
else arr_output (1) <= std_logic_vector(resize(unsigned(arr_matrix(s_col_cnt ,1)

+ x"0080") ,8));
end if;

if(arr_matrix(s_col_cnt ,2) < -128) then arr_output (2) <= x"00";
elsif(arr_matrix(s_col_cnt ,2) > 127) then arr_output (2) <= x"FF";
else arr_output (2) <= std_logic_vector(resize(unsigned(arr_matrix(s_col_cnt ,2)

+ x"0080") ,8));
end if;

if(arr_matrix(s_col_cnt ,3) < -128) then arr_output (3) <= x"00";
elsif(arr_matrix(s_col_cnt ,3) > 127) then arr_output (3) <= x"FF";
else arr_output (3) <= std_logic_vector(resize(unsigned(arr_matrix(s_col_cnt ,3)

+ x"0080") ,8));
end if;

if(arr_matrix(s_col_cnt ,4) < -128) then arr_output (4) <= x"00";
elsif(arr_matrix(s_col_cnt ,4) > 127) then arr_output (4) <= x"FF";
else arr_output (4) <= std_logic_vector(resize(unsigned(arr_matrix(s_col_cnt ,4)

+ x"0080") ,8));
end if;

if(arr_matrix(s_col_cnt ,5) < -128) then arr_output (5) <= x"00";
elsif(arr_matrix(s_col_cnt ,5) > 127) then arr_output (5) <= x"FF";
else arr_output (5) <= std_logic_vector(resize(unsigned(arr_matrix(s_col_cnt ,5)

+ x"0080") ,8));
end if;

if(arr_matrix(s_col_cnt ,6) < -128) then arr_output (6) <= x"00";
elsif(arr_matrix(s_col_cnt ,6) > 127) then arr_output (6) <= x"FF";
else arr_output (6) <= std_logic_vector(resize(unsigned(arr_matrix(s_col_cnt ,6)

+ x"0080") ,8));
end if;

if(arr_matrix(s_col_cnt ,7) < -128) then arr_output (7) <= x"00";
elsif(arr_matrix(s_col_cnt ,7) > 127) then arr_output (7) <= x"FF";
else arr_output (7) <= std_logic_vector(resize(unsigned(arr_matrix(s_col_cnt ,7)

+ x"0080") ,8));
end if;

end if;
end if; -- end of clk event

end if; -- end of reset
end process SLAVE_REG_WRITE_PROC;

-- Register Read Process

93

D. VHDL CODE

SLAVE_REG_READ_PROC : process(Bus2IP_Clk , slv_reg_read_sel , arr_quant (0), arr_quant
(1), arr_quant (2), arr_quant (3), arr_quant (4), arr_quant (5), arr_quant (6),
arr_quant (7), arr_input (0),arr_input (1),arr_input (2),arr_input (3),arr_input (4),
arr_input (5),arr_input (6),arr_input (7), arr_output (0), arr_output (1), arr_output
(2), arr_output (3), arr_output (4), arr_output (5), arr_output (6), arr_output (7))
is

begin
if Bus2IP_Clk ’event and Bus2IP_Clk = ’0’ then

if Bus2IP_Reset = ’1’ then
s_col_cnt <= 0;

else
case slv_reg_read_sel is

when "0000000010000000000000" => slv_ip2bus_data <= arr_input (0) & arr_input
(1); -- inptr (0) & inptr (1)

when "0000000001000000000000" => slv_ip2bus_data <= arr_input (2) & arr_input
(3); -- inptr (2) & inptr (3)

when "0000000000100000000000" => slv_ip2bus_data <= arr_input (4) & arr_input
(5); -- inptr (4) & inptr (5)

when "0000000000010000000000" => slv_ip2bus_data <= arr_input (6) & arr_input
(7); -- inptr (6) & inptr (7)

when "0000000000001000000000" => slv_ip2bus_data <= x"00000000";
-- Not used

when "0000000000000100000000" =>
slv_ip2bus_data <= arr_output (0) & arr_output (1) & arr_output (2) &

arr_output (3); -- outptr (0-3)
when "0000000000000010000000" =>
slv_ip2bus_data <= arr_output (4) & arr_output (5) & arr_output (6) &

arr_output (7); -- outptr (4-7)

-- update the col count
s_col_cnt <= s_col_cnt + 1;
when "0000000000000000000001" => slv_ip2bus_data <= "000000000000000000000"

& s_done;
when others => slv_ip2bus_data <= (others => ’0’);

end case;

-- reset the column counter
if (s_reset = ’1’) then

s_col_cnt <= 0;
end if;

end if;

end if; -- end of clk event

end process SLAVE_REG_READ_PROC;

--
-- Example code to drive IP to Bus signals
--
IP2Bus_Data <= slv_ip2bus_data when slv_read_ack = ’1’ else

(others => ’0’);

IP2Bus_WrAck <= slv_write_ack;
IP2Bus_RdAck <= slv_read_ack;
IP2Bus_Error <= ’0’;

end IMP;

user logic idct.vhd

94

D. VHDL CODE

D.2 Colour Converter

--
-- c_converter.vhd - entity/architecture pair
--
-- Filename: c_converter.vhd
-- Version: 3.00.b
-- Description: Top level design , instantiates library components and user

logic.
-- Date: Thu Aug 16 14:31:08 2012 (by Create and Import Peripheral

Wizard)
-- VHDL Standard: VHDL ’93
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;
use proc_common_v3_00_a.ipif_pkg.all;

library plbv46_slave_single_v1_01_a;
use plbv46_slave_single_v1_01_a.plbv46_slave_single;

library c_converter_v3_00_b;
use c_converter_v3_00_b.user_logic;

entity c_converter is
generic
(

--USER generics added here

-- Bus protocol parameters , do not add to or delete
C_BASEADDR : std_logic_vector := X"FFFFFFFF";
C_HIGHADDR : std_logic_vector := X"00000000";
C_SPLB_AWIDTH : integer := 32;
C_SPLB_DWIDTH : integer := 128;
C_SPLB_NUM_MASTERS : integer := 8;
C_SPLB_MID_WIDTH : integer := 3;
C_SPLB_NATIVE_DWIDTH : integer := 32;
C_SPLB_P2P : integer := 0;
C_SPLB_SUPPORT_BURSTS : integer := 0;
C_SPLB_SMALLEST_MASTER : integer := 32;
C_SPLB_CLK_PERIOD_PS : integer := 10000;
C_INCLUDE_DPHASE_TIMER : integer := 0;
C_FAMILY : string := "virtex5"

);
port
(

--USER ports added here

-- Bus protocol ports , do not add to or delete
SPLB_Clk : in std_logic;
SPLB_Rst : in std_logic;
PLB_ABus : in std_logic_vector (0 to 31);
PLB_UABus : in std_logic_vector (0 to 31);
PLB_PAValid : in std_logic;
PLB_SAValid : in std_logic;
PLB_rdPrim : in std_logic;
PLB_wrPrim : in std_logic;
PLB_masterID : in std_logic_vector (0 to C_SPLB_MID_WIDTH -1);
PLB_abort : in std_logic;
PLB_busLock : in std_logic;
PLB_RNW : in std_logic;
PLB_BE : in std_logic_vector (0 to C_SPLB_DWIDTH /8-1);
PLB_MSize : in std_logic_vector (0 to 1);

95

D. VHDL CODE

PLB_size : in std_logic_vector (0 to 3);
PLB_type : in std_logic_vector (0 to 2);
PLB_lockErr : in std_logic;
PLB_wrDBus : in std_logic_vector (0 to C_SPLB_DWIDTH -1);
PLB_wrBurst : in std_logic;
PLB_rdBurst : in std_logic;
PLB_wrPendReq : in std_logic;
PLB_rdPendReq : in std_logic;
PLB_wrPendPri : in std_logic_vector (0 to 1);
PLB_rdPendPri : in std_logic_vector (0 to 1);
PLB_reqPri : in std_logic_vector (0 to 1);
PLB_TAttribute : in std_logic_vector (0 to 15);
Sl_addrAck : out std_logic;
Sl_SSize : out std_logic_vector (0 to 1);
Sl_wait : out std_logic;
Sl_rearbitrate : out std_logic;
Sl_wrDAck : out std_logic;
Sl_wrComp : out std_logic;
Sl_wrBTerm : out std_logic;
Sl_rdDBus : out std_logic_vector (0 to C_SPLB_DWIDTH -1);
Sl_rdWdAddr : out std_logic_vector (0 to 3);
Sl_rdDAck : out std_logic;
Sl_rdComp : out std_logic;
Sl_rdBTerm : out std_logic;
Sl_MBusy : out std_logic_vector (0 to C_SPLB_NUM_MASTERS -1);
Sl_MWrErr : out std_logic_vector (0 to C_SPLB_NUM_MASTERS -1);
Sl_MRdErr : out std_logic_vector (0 to C_SPLB_NUM_MASTERS -1);
Sl_MIRQ : out std_logic_vector (0 to C_SPLB_NUM_MASTERS -1)
-- DO NOT EDIT ABOVE THIS LINE ---------------------

);

attribute SIGIS : string;
attribute SIGIS of SPLB_Clk : signal is "CLK";
attribute SIGIS of SPLB_Rst : signal is "RST";

end entity c_converter;

--
-- Architecture section
--

architecture IMP of c_converter is

--
-- Array of base/high address pairs for each address range
--
constant ZERO_ADDR_PAD : std_logic_vector (0 to 31) := (others =>

’0’);
constant USER_SLV_BASEADDR : std_logic_vector := C_BASEADDR;
constant USER_SLV_HIGHADDR : std_logic_vector := C_HIGHADDR;

constant IPIF_ARD_ADDR_RANGE_ARRAY : SLV64_ARRAY_TYPE :=
(

ZERO_ADDR_PAD & USER_SLV_BASEADDR , -- user logic slave space base address
ZERO_ADDR_PAD & USER_SLV_HIGHADDR -- user logic slave space high address

);

--
-- Array of desired number of chip enables for each address range
--
constant USER_SLV_NUM_REG : integer := 6;
constant USER_NUM_REG : integer := USER_SLV_NUM_REG;

constant IPIF_ARD_NUM_CE_ARRAY : INTEGER_ARRAY_TYPE :=
(

0 => pad_power2(USER_SLV_NUM_REG) -- number of ce for user logic slave space
);

96

D. VHDL CODE

--
-- Ratio of bus clock to core clock (for use in dual clock systems)
-- 1 = ratio is 1:1
-- 2 = ratio is 2:1
--
constant IPIF_BUS2CORE_CLK_RATIO : integer := 1;

--
-- Width of the slave data bus (32 only)
--
constant USER_SLV_DWIDTH : integer :=

C_SPLB_NATIVE_DWIDTH;

constant IPIF_SLV_DWIDTH : integer :=
C_SPLB_NATIVE_DWIDTH;

--
-- Index for CS/CE
--
constant USER_SLV_CS_INDEX : integer := 0;
constant USER_SLV_CE_INDEX : integer :=

calc_start_ce_index(IPIF_ARD_NUM_CE_ARRAY , USER_SLV_CS_INDEX);

constant USER_CE_INDEX : integer := USER_SLV_CE_INDEX
;

--
-- IP Interconnect (IPIC) signal declarations
--
signal ipif_Bus2IP_Clk : std_logic;
signal ipif_Bus2IP_Reset : std_logic;
signal ipif_IP2Bus_Data : std_logic_vector (0 to IPIF_SLV_DWIDTH -1);
signal ipif_IP2Bus_WrAck : std_logic;
signal ipif_IP2Bus_RdAck : std_logic;
signal ipif_IP2Bus_Error : std_logic;
signal ipif_Bus2IP_Addr : std_logic_vector (0 to C_SPLB_AWIDTH -1);
signal ipif_Bus2IP_Data : std_logic_vector (0 to IPIF_SLV_DWIDTH -1);
signal ipif_Bus2IP_RNW : std_logic;
signal ipif_Bus2IP_BE : std_logic_vector (0 to IPIF_SLV_DWIDTH /8-1);
signal ipif_Bus2IP_CS : std_logic_vector (0 to ((

IPIF_ARD_ADDR_RANGE_ARRAY ’length)/2) -1);
signal ipif_Bus2IP_RdCE : std_logic_vector (0 to calc_num_ce(

IPIF_ARD_NUM_CE_ARRAY) -1);
signal ipif_Bus2IP_WrCE : std_logic_vector (0 to calc_num_ce(

IPIF_ARD_NUM_CE_ARRAY) -1);
signal user_Bus2IP_RdCE : std_logic_vector (0 to USER_NUM_REG -1);
signal user_Bus2IP_WrCE : std_logic_vector (0 to USER_NUM_REG -1);
signal user_IP2Bus_Data : std_logic_vector (0 to USER_SLV_DWIDTH -1);
signal user_IP2Bus_RdAck : std_logic;
signal user_IP2Bus_WrAck : std_logic;
signal user_IP2Bus_Error : std_logic;

begin

--
-- instantiate plbv46_slave_single
--
PLBV46_SLAVE_SINGLE_I : entity plbv46_slave_single_v1_01_a.plbv46_slave_single

generic map
(

C_ARD_ADDR_RANGE_ARRAY => IPIF_ARD_ADDR_RANGE_ARRAY ,
C_ARD_NUM_CE_ARRAY => IPIF_ARD_NUM_CE_ARRAY ,
C_SPLB_P2P => C_SPLB_P2P ,
C_BUS2CORE_CLK_RATIO => IPIF_BUS2CORE_CLK_RATIO ,
C_SPLB_MID_WIDTH => C_SPLB_MID_WIDTH ,
C_SPLB_NUM_MASTERS => C_SPLB_NUM_MASTERS ,
C_SPLB_AWIDTH => C_SPLB_AWIDTH ,
C_SPLB_DWIDTH => C_SPLB_DWIDTH ,

97

D. VHDL CODE

C_SIPIF_DWIDTH => IPIF_SLV_DWIDTH ,
C_INCLUDE_DPHASE_TIMER => C_INCLUDE_DPHASE_TIMER ,
C_FAMILY => C_FAMILY

)
port map
(

SPLB_Clk => SPLB_Clk ,
SPLB_Rst => SPLB_Rst ,
PLB_ABus => PLB_ABus ,
PLB_UABus => PLB_UABus ,
PLB_PAValid => PLB_PAValid ,
PLB_SAValid => PLB_SAValid ,
PLB_rdPrim => PLB_rdPrim ,
PLB_wrPrim => PLB_wrPrim ,
PLB_masterID => PLB_masterID ,
PLB_abort => PLB_abort ,
PLB_busLock => PLB_busLock ,
PLB_RNW => PLB_RNW ,
PLB_BE => PLB_BE ,
PLB_MSize => PLB_MSize ,
PLB_size => PLB_size ,
PLB_type => PLB_type ,
PLB_lockErr => PLB_lockErr ,
PLB_wrDBus => PLB_wrDBus ,
PLB_wrBurst => PLB_wrBurst ,
PLB_rdBurst => PLB_rdBurst ,
PLB_wrPendReq => PLB_wrPendReq ,
PLB_rdPendReq => PLB_rdPendReq ,
PLB_wrPendPri => PLB_wrPendPri ,
PLB_rdPendPri => PLB_rdPendPri ,
PLB_reqPri => PLB_reqPri ,
PLB_TAttribute => PLB_TAttribute ,
Sl_addrAck => Sl_addrAck ,
Sl_SSize => Sl_SSize ,
Sl_wait => Sl_wait ,
Sl_rearbitrate => Sl_rearbitrate ,
Sl_wrDAck => Sl_wrDAck ,
Sl_wrComp => Sl_wrComp ,
Sl_wrBTerm => Sl_wrBTerm ,
Sl_rdDBus => Sl_rdDBus ,
Sl_rdWdAddr => Sl_rdWdAddr ,
Sl_rdDAck => Sl_rdDAck ,
Sl_rdComp => Sl_rdComp ,
Sl_rdBTerm => Sl_rdBTerm ,
Sl_MBusy => Sl_MBusy ,
Sl_MWrErr => Sl_MWrErr ,
Sl_MRdErr => Sl_MRdErr ,
Sl_MIRQ => Sl_MIRQ ,
Bus2IP_Clk => ipif_Bus2IP_Clk ,
Bus2IP_Reset => ipif_Bus2IP_Reset ,
IP2Bus_Data => ipif_IP2Bus_Data ,
IP2Bus_WrAck => ipif_IP2Bus_WrAck ,
IP2Bus_RdAck => ipif_IP2Bus_RdAck ,
IP2Bus_Error => ipif_IP2Bus_Error ,
Bus2IP_Addr => ipif_Bus2IP_Addr ,
Bus2IP_Data => ipif_Bus2IP_Data ,
Bus2IP_RNW => ipif_Bus2IP_RNW ,
Bus2IP_BE => ipif_Bus2IP_BE ,
Bus2IP_CS => ipif_Bus2IP_CS ,
Bus2IP_RdCE => ipif_Bus2IP_RdCE ,
Bus2IP_WrCE => ipif_Bus2IP_WrCE

);

--
-- instantiate User Logic
--
USER_LOGIC_I : entity c_converter_v3_00_b.user_logic

generic map

98

D. VHDL CODE

(
-- MAP USER GENERICS BELOW THIS LINE ---------------
--USER generics mapped here
-- MAP USER GENERICS ABOVE THIS LINE ---------------

C_SLV_DWIDTH => USER_SLV_DWIDTH ,
C_NUM_REG => USER_NUM_REG

)
port map
(

-- MAP USER PORTS BELOW THIS LINE ------------------
--USER ports mapped here
-- MAP USER PORTS ABOVE THIS LINE ------------------

Bus2IP_Clk => ipif_Bus2IP_Clk ,
Bus2IP_Reset => ipif_Bus2IP_Reset ,
Bus2IP_Data => ipif_Bus2IP_Data ,
Bus2IP_BE => ipif_Bus2IP_BE ,
Bus2IP_RdCE => user_Bus2IP_RdCE ,
Bus2IP_WrCE => user_Bus2IP_WrCE ,
IP2Bus_Data => user_IP2Bus_Data ,
IP2Bus_RdAck => user_IP2Bus_RdAck ,
IP2Bus_WrAck => user_IP2Bus_WrAck ,
IP2Bus_Error => user_IP2Bus_Error

);

--
-- connect internal signals
--
ipif_IP2Bus_Data <= user_IP2Bus_Data;
ipif_IP2Bus_WrAck <= user_IP2Bus_WrAck;
ipif_IP2Bus_RdAck <= user_IP2Bus_RdAck;
ipif_IP2Bus_Error <= user_IP2Bus_Error;

user_Bus2IP_RdCE <= ipif_Bus2IP_RdCE(USER_CE_INDEX to USER_CE_INDEX+USER_NUM_REG -1)
;

user_Bus2IP_WrCE <= ipif_Bus2IP_WrCE(USER_CE_INDEX to USER_CE_INDEX+USER_NUM_REG -1)
;

end IMP;

c converter.vhd

--
-- user_logic.vhd - entity/architecture pair
--
-- Filename: user_logic.vhd
-- Version: 3.00.b
-- Description: User logic design. Interface to Software accessible registers ,
-- and computation of RGB from YCC input of 4 pixels
-- Date: Thu Aug 16 14:31:08 2012 (by Create and Import Peripheral

Wizard)
-- VHDL Standard: VHDL ’93
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;

entity user_logic is
generic
(

C_SLV_DWIDTH : integer := 32;
C_NUM_REG : integer := 6

99

D. VHDL CODE

);
port
(

Bus2IP_Clk : in std_logic;
Bus2IP_Reset : in std_logic;
Bus2IP_Data : in std_logic_vector (0 to C_SLV_DWIDTH -1);
Bus2IP_BE : in std_logic_vector (0 to C_SLV_DWIDTH /8-1);
Bus2IP_RdCE : in std_logic_vector (0 to C_NUM_REG -1);
Bus2IP_WrCE : in std_logic_vector (0 to C_NUM_REG -1);
IP2Bus_Data : out std_logic_vector (0 to C_SLV_DWIDTH -1);
IP2Bus_RdAck : out std_logic;
IP2Bus_WrAck : out std_logic;
IP2Bus_Error : out std_logic

);

attribute SIGIS : string;
attribute SIGIS of Bus2IP_Clk : signal is "CLK";
attribute SIGIS of Bus2IP_Reset : signal is "RST";

-- use DSP48 slices for speed
attribute use_dsp48 : string;
attribute use_dsp48 of user_logic : entity is "yes";

end entity user_logic;

--
-- Architecture section
--

architecture IMP of user_logic is
-- data types and constants
type state_type is (IDLE ,YCC_SETUP ,YCC0 , YCC1 , YCC2 , YCC3);

constant CrR : signed (23 downto 0) := x"0166E9"; -- 1.402 << 16
constant CbB : signed (23 downto 0) := x"01C5A2"; -- 1.772 << 16
constant CrG : signed (23 downto 0) := x"00B6D2"; -- 0.71414 << 16
constant CbG : signed (23 downto 0) := x"00581A"; -- 0.34414 << 16
constant ONE_HALF : signed (23 downto 0) := x"008000"; -- "fudge factor" to

assist rounding
signal convert_state : state_type;

--
-- Signals for user logic slave model s/w accessible register example
--

signal s_Y0 : std_logic_vector (0 to 7);
signal s_Y1 : std_logic_vector (0 to 7);
signal s_Y2 : std_logic_vector (0 to 7);
signal s_Y3 : std_logic_vector (0 to 7);

signal s_Cb0 : std_logic_vector (0 to 7);
signal s_Cb1 : std_logic_vector (0 to 7);
signal s_Cb2 : std_logic_vector (0 to 7);
signal s_Cb3 : std_logic_vector (0 to 7);

signal s_Cr0 : std_logic_vector (0 to 7);
signal s_Cr1 : std_logic_vector (0 to 7);
signal s_Cr2 : std_logic_vector (0 to 7);
signal s_Cr3 : std_logic_vector (0 to 7);

signal s_R0 : std_logic_vector (0 to 7);
signal s_R1 : std_logic_vector (0 to 7);
signal s_R2 : std_logic_vector (0 to 7);
signal s_R3 : std_logic_vector (0 to 7);

signal s_G0 : std_logic_vector (0 to 7);
signal s_G1 : std_logic_vector (0 to 7);
signal s_G2 : std_logic_vector (0 to 7);
signal s_G3 : std_logic_vector (0 to 7);

100

D. VHDL CODE

signal s_B0 : std_logic_vector (0 to 7);
signal s_B1 : std_logic_vector (0 to 7);
signal s_B2 : std_logic_vector (0 to 7);
signal s_B3 : std_logic_vector (0 to 7);

signal slv_reg_write_sel : std_logic_vector (0 to 5);
signal slv_reg_read_sel : std_logic_vector (0 to 5);
signal slv_ip2bus_data : std_logic_vector (0 to C_SLV_DWIDTH -1);
signal slv_read_ack : std_logic;
signal slv_write_ack : std_logic;

begin

slv_reg_write_sel <= Bus2IP_WrCE (0 to 5);
slv_reg_read_sel <= Bus2IP_RdCE (0 to 5);
slv_write_ack <= Bus2IP_WrCE (0) or Bus2IP_WrCE (1) or Bus2IP_WrCE (2) or

Bus2IP_WrCE (3) or Bus2IP_WrCE (4) or Bus2IP_WrCE (5);
slv_read_ack <= Bus2IP_RdCE (0) or Bus2IP_RdCE (1) or Bus2IP_RdCE (2) or

Bus2IP_RdCE (3) or Bus2IP_RdCE (4) or Bus2IP_RdCE (5);

-- implement slave model software accessible register(s)
SLAVE_REG_WRITE_PROC : process(Bus2IP_Clk) is

variable s_Y : std_logic_vector (0 to 7);
variable s_Cb : std_logic_vector (0 to 7);
variable s_Cr : std_logic_vector (0 to 7);
variable s_R : std_logic_vector (0 to 7);
variable s_G : std_logic_vector (0 to 7);
variable s_B : std_logic_vector (0 to 7);
variable tempR , tempG , tempB: signed (31 downto 0);
variable Red_raw , Green_raw , Blue_raw: signed (31 downto 0);

begin

if Bus2IP_Clk ’event and Bus2IP_Clk = ’1’ then
if Bus2IP_Reset = ’1’ then

-- set initial values

convert_state <= IDLE;

s_Y0 <= (others => ’0’);
s_Y1 <= (others => ’0’);
s_Y2 <= (others => ’0’);
s_Y3 <= (others => ’0’);

s_Cb0 <= (others => ’0’);
s_Cb1 <= (others => ’0’);
s_Cb2 <= (others => ’0’);
s_Cb3 <= (others => ’0’);

s_Cr0 <= (others => ’0’);
s_Cr1 <= (others => ’0’);
s_Cr2 <= (others => ’0’);
s_Cr3 <= (others => ’0’);

s_R0 <= (others => ’0’);
s_R1 <= (others => ’0’);
s_R2 <= (others => ’0’);
s_R3 <= (others => ’0’);

s_G0 <= (others => ’0’);
s_G1 <= (others => ’0’);
s_G2 <= (others => ’0’);
s_G3 <= (others => ’0’);

s_B0 <= (others => ’0’);
s_B1 <= (others => ’0’);
s_B2 <= (others => ’0’);

101

D. VHDL CODE

s_B3 <= (others => ’0’);

else
case slv_reg_write_sel is

when "100000" =>
s_Y0 <= Bus2IP_Data (0 to 7);
s_Y1 <= Bus2IP_Data (8 to 15);
s_Y2 <= Bus2IP_Data (16 to 23);
s_Y3 <= Bus2IP_Data (24 to 31);

when "010000" =>
s_Cb0 <= Bus2IP_Data (0 to 7);

s_Cb1 <= Bus2IP_Data (8 to 15);
s_Cb2 <= Bus2IP_Data (16 to 23);
s_Cb3 <= Bus2IP_Data (24 to 31);

when "001000" =>
s_Cr0 <= Bus2IP_Data (0 to 7);

s_Cr1 <= Bus2IP_Data (8 to 15);
s_Cr2 <= Bus2IP_Data (16 to 23);
s_Cr3 <= Bus2IP_Data (24 to 31);

convert_state <= YCC_SETUP;
when others => null;

end case;

------- Multiplex the inputs and outputs of the colour conversion -----
case(convert_state) is

when (IDLE) =>
null;

when (YCC_SETUP) =>
s_Y := s_Y0;
s_Cb := s_Cb0;
s_Cr := s_Cr0;
convert_state <= YCC0;

when(YCC0) =>
s_R0 <= s_R;
s_G0 <= s_G;
s_B0 <= s_B;

s_Y := s_Y1;
s_Cb := s_Cb1;
s_Cr := s_Cr1;

convert_state <= YCC1;

when(YCC1) =>
s_R1 <= s_R;
s_G1 <= s_G;
s_B1 <= s_B;

s_Y := s_Y2;
s_Cb := s_Cb2;
s_Cr := s_Cr2;
convert_state <= YCC2;

when(YCC2) =>
s_R2 <= s_R;
s_G2 <= s_G;
s_B2 <= s_B;

s_Y := s_Y3;
s_Cb := s_Cb3;
s_Cr := s_Cr3;
convert_state <= YCC3;

when(YCC3) =>
s_R3 <= s_R;
s_G3 <= s_G;
s_B3 <= s_B;

102

D. VHDL CODE

convert_state <= IDLE;
when others => null;

end case;

-------------------conversion ------------------------
-- RED Calculations
tempR := resize(shift_right (((signed(x"000000" & unsigned(s_Cr))- x"00000080")

* CrR) + ONE_HALF ,16) ,32);
Red_raw := tempR + signed(x"000000" & unsigned(s_Y));

-- BLUE Calculations
tempB := resize(shift_right (((signed(x"000000" & unsigned(s_Cb))- x"00000080")

* CbB) + ONE_HALF ,16) ,32);
Blue_raw := tempB + signed(x"000000" & unsigned(s_Y));

-- GREEN Calculations
tempG := resize(shift_right(
-CrG * (signed(x"000000" & unsigned(s_Cr))- x"00000080")
-CbG * (signed(x"000000" & unsigned(s_Cb))- x"00000080") + ONE_HALF , 16) ,32);
Green_raw := tempG + signed(x"000000" & unsigned(s_Y));

end if; -- end of reset event
end if; -- end of clk event

-------------- Asynchronous range limiting -----------
-- Range limit Reds

if (Red_raw < 0) then s_R := x"00";
elsif (Red_raw > 255) then s_R := x"FF";
else
s_R := std_logic_vector(Red_raw (7 downto 0));
end if;

-- Range limit Blues
if (Blue_raw < 0) then s_B := x"00";
elsif (Blue_raw > 255) then s_B := x"FF";
else
s_B := std_logic_vector(Blue_raw (7 downto 0));
end if;

-- Range limit Greens
if (Green_raw < 0) then s_G := x"00";
elsif (Green_raw > 255) then s_G := x"FF";
else
s_G := std_logic_vector(Green_raw (7 downto 0));
end if;

end process SLAVE_REG_WRITE_PROC;

-- implement slave model software accessible register(s) read mux
SLAVE_REG_READ_PROC : process(slv_reg_read_sel ,

s_Y0 , s_Y2 , s_Y3 ,
s_Cb0 , s_Cb1 , s_Cb2 , s_Cb3 ,
s_Cr0 , s_Cr1 , s_Cr2 , s_Cr3 ,
s_R0 , s_R1 , s_R2 , s_R3 ,
s_G0 , s_G1 , s_G2 , s_G3 ,
s_B0 , s_B1 , s_B2 , s_B3) is

begin

case slv_reg_read_sel is
when "100000" => slv_ip2bus_data <= s_Y0 & s_Y1 & s_Y2 & s_Y3;
when "010000" => slv_ip2bus_data <= s_Cb0 & s_Cb1 & s_Cb2 & s_Cb3;
when "001000" => slv_ip2bus_data <= s_Cr0 & s_Cr1 & s_Cr2 & s_Cr3;

when "000100" => slv_ip2bus_data <= s_R0 & s_G0 & s_B0 & s_R1;
when "000010" => slv_ip2bus_data <= s_G1 & s_B1 & s_R2 & s_G2;
when "000001" => slv_ip2bus_data <= s_B2 & s_R3 & s_G3 & s_B3;

103

D. VHDL CODE

when others => slv_ip2bus_data <= (others => ’0’);
end case;

end process SLAVE_REG_READ_PROC;

--
-- Example code to drive IP to Bus signals
--
IP2Bus_Data <= slv_ip2bus_data when slv_read_ack = ’1’ else

(others => ’0’);

IP2Bus_WrAck <= slv_write_ack;
IP2Bus_RdAck <= slv_read_ack;
IP2Bus_Error <= ’0’;

end IMP;

user logic c converter.vhd

104

Appendix E

Huffman Decoding Example

This appendix demonstrates the Huffman decoding of JPEG images [5]. Using the

Huffman tables provided within the JPEG image, the raw bitstream can be decoded

back into the DCT coefficients. JPEG images contain three colour channels (one lu-

minance and two chrominance channels). Each of the three channels must be decoded

to reconstruct the image.

E.1 Source Image

To simplify this example an image of 16x8 pixel image consisting of only black and

white is used as shown in Figure E.1. This image was created with photo editing

software, saving it as a grayscale JPEG image with no colour sub-sampling, and no

105

E. HUFFMAN DECODING EXAMPLE

Figure E.1: Sample image

Figure E.2: HEX dump from sample image

Optimizations. With the default settings the image uses the set of default Huffman

tables, and samples the chrominance channels for each 8x8 block. These settings are

what you’d find in most digital cameras.

The next step is to decode the raw image data to analyze. There are several

software applications that can perform a HEX dump to view the bitstream. Decoding

the image data by hand is not practical, but is educational for this purpose. In the

dump the Start of Scan, SOS, marker (0xFFDA) is the starting point to look

for (Figure E.2) highlighted in yellow. Following the SOS marker are a few bytes

for additional details about the image highlighted in green, the actual scan data

highlighted in blue, and finally terminated with an End of Scan, EOS, marker

(0xFFD9).

The scan data to decode is

106

E. HUFFMAN DECODING EXAMPLE

Figure E.3: DCT Frequency domain of an 8x8 JPEG block

FC FF 00 E2 AF EF F3 15 7F

To improve JPEG resiliency, JPEG markers are permitted to reside any part of

the raw encoded data. Therefore a JPEG decoder must watch out for any occurrence

of the 0xFF byte. In the example scan there exists an 0xFF byte followed by a 0x00

byte. This is known as the stuff byte, alerting the decoder that this is image data

and not a JPEG marker. As a result FF00 can be replaced with FF reformatting the

scan data to:

FC FF E2 AF EF F3 15 7F

Conventional images have three components (Y, Cb, and Cr). Within each 8x8

block there is one DC component, followed by 63 AC components. Figure E.3 shows

this arrangement within an 8x8 block of no chroma sub-sampling.

The DC component represents the average value of all pixels in the block. For

107

E. HUFFMAN DECODING EXAMPLE

this example, the DC value will represent either black or white. Worth mentioning,

but demonstrated later is that the DC component is encoded as a relative value with

respect to the value of the DC component in the previous block. The first block in a

JPEG image is assumed to have a previous value of 0.

Following the DC entry, are 1-63 entries used to describe the low and high fre-

quency components of the DCT frequency domain (AC components). Early AC

components represent low frequency, later ones represent high frequency image con-

tent. Since the 2D-DCT focuses its energy in the upper left corner of the 8x8 block

many of the high frequency components in the image are zero.Due to the fact that

the image used in this example has constant colour across each 8x8 block there are

no non-zero AC components.

E.2 Huffman Table Extraction

From the bitstream Huffman Code tables can also be extracted from the JPEG image

(Tables E.2 - E.5 at the end of this appendix). The tables are separated by the JPEG

DHT marker. The following 4 tables were extracted from this sample image. Note

using the Optimization feature, when creating the image, will create vastly different

tables. The tables in the JPEG only provide length and code values, not the actual

bit-string mapping. It is up to the decoder to build the binary tree representation of

the DHT tables to derive the bit-strings.

The Huffman tree representation for this can be computed, but there is a simple

pattern many encoders/decoders use. The pattern is:

1. Start at the lowest length of bits for the first code, and give it 0 with the

108

E. HUFFMAN DECODING EXAMPLE

appropriate number of bits.

2. Increment the binary number by one for each additional code within the same

bit length

3. When moving on to the next bit length; increment the binary number and shift

left by one.

The Huffman DC Value Encoding table E.6 is the last table needed to fully decode

the Huffman stream, but it is not included in the JPEG data. It must be generated,

but is applicable to any JPEG file.

E.3 Image Decoding

Returning to the scan data, now converted into its binary representation.

F C F F E 2 A F E F F 3 1 5 7 F

1111 1100 1111 1111 1110 0010 1010 1111 1110 1111 1111 0011 0001 0101 0111 1111

E.3.1 Block 1 - Luminance

Luminance DC

Referring to the Luminance DC Table E.2, the bits of the bitstream are read one-by-

one until a match is found.

1111 1100 1111 1111 1110 0010 1010 1111 1110 1111 1111 0011 0001 0101 0111

1111

109

E. HUFFMAN DECODING EXAMPLE

Code = 0A. Code 0A (10 in decimal) implies that the next 10 bits in the stream

represent the signed value of the DC component. The next ten bits are:

1111 1100 1111 1111 1110 0010 1010 1111 1110 1111 1111 0011 0001 0101 0111

1111

Using Table E.6 0 1111 1111 1 has a DC Value of -512.

Luminance AC

Moving on to the Luminance AC component, the bitstream is matched to an entry

in TableE.3.

1111 1100 1111 1111 1110 0010 1010 1111 1110 1111 1111 0011 0001 0101

0111 1111

Code = 00 (EOB), meaning the 63 AC entries are all zero, and the Luminance

channel is complete.

E.3.2 Block 1 - Chrominance

Chrominance(Cb) DC

Continue bit matching for the Chrominance DC component using Table E.4.

1111 1100 1111 1111 1110 0010 1010 1111 1110 1111 1111 0011 0001 0101

0111 1111

Code = 00 (EOB).

Chrominance(Cb) AC

Bit match for Chrominance AC using Table E.5.

110

E. HUFFMAN DECODING EXAMPLE

1111 1100 1111 1111 1110 0010 1010 1111 1110 1111 1111 0011 0001 0101

0111 1111

Code = 00 (EOB). Continue with Chrominance Cr in the same manner.

Chrominance(Cr) DC

1111 1100 1111 1111 1110 0010 1010 1111 1110 1111 1111 0011 0001 0101 0111

1111

Code = 00 (EOB).

Chrominance(Cr) AC

1111 1100 1111 1111 1110 0010 1010 1111 1110 1111 1111 0011 0001 0101 0111

1111

Code = 00 (EOB). Block 1 is finished. Decoding scheme continues with Block 2.

E.3.3 Block 2 - Luminance

Luminance DC

1111 1100 1111 1111 1110 0010 1010 1111 1110 1111 1111 0011 0001 0101 0111

1111

Code = 0A. This implies the value is stored in the next 10 bits of the stream.

1111 1100 1111 1111 1110 0010 1010 1111 11101111 1111 0011 0001 0101

0111 1111

Using Table E.6 1111 1111 00 has a DC Value of +1020. As previously men-

tioned, since the DC values are relative to the preceding blocks, the final DC value

111

E. HUFFMAN DECODING EXAMPLE

of this block is +1020 + (-512) = +508.

Luminance AC

1111 1100 1111 1111 1110 0010 1010 1111 11101111 1111 0011 0001 0101

0111 1111

Code = 00 (EOB).

E.3.4 Block 2 - Chrominance

Chrominance(Cb) DC

1111 1100 1111 1111 1110 0010 1010 1111 11101111 1111 0011 0001 0101

0111 1111

Code = 00 (EOB).

Chrominance(Cb) AC

1111 1100 1111 1111 1110 0010 1010 1111 11101111 1111 0011 00010101

0111 1111

Code = 00 (EOB).

Chrominance(Cr) DC

1111 1100 1111 1111 1110 0010 1010 1111 11101111 1111 0011 0001 0101

0111 1111

Code = 00 (EOB).

112

E. HUFFMAN DECODING EXAMPLE

Chrominance(Cr) AC

1111 1100 1111 1111 1110 0010 1010 1111 11101111 1111 0011 0001 01010111

1111

Code = 00 (EOB).

E.4 Finalizing

The remaining bits are discarded. This is because the scan data must end on a byte

boundary. The Huffman conversion is now complete and these results can be passed

to the IDCT.

Table E.1: Huffman Decoding Results

Block 1 Block 2

Y Cb Cr Y Cb Cr

DC -512 0 0 +508 0 0

AC 0 0 0 0 0 0

113

E. HUFFMAN DECODING EXAMPLE

E.5 Huffman Tables

Table E.2: Huffman Luminance (Y) DC table

Length Bits Code

3 bits

000 04

000 05

001 03

010 02

011 06

100 01

101 00 (End of Block)

4 bits 1110 07

5 bits 1111 0 08

6 bits 1111 10 09

7 bits 1111 110 0A

8 bits 1111 1110 0B

114

E. HUFFMAN DECODING EXAMPLE

Table E.3: Huffman Luminance (Y) AC table

Length Bits Code

2 bits
00 01

01 02

3 bits 100 03

4 bits

1010 11

1011 04

1100 00 (End of Block)

5 bits

1101 0 05

1101 1 21

1110 0 12

6 bits
1110 10 31

1110 11 41

...

12 bits

... ...

1111 1111 0011 F0 (ZRL)

... ...

16 bits
... ...

1111 1111 1111 1110 FA

115

E. HUFFMAN DECODING EXAMPLE

Table E.4: Huffman Chrominance (Cb and Cr) DC table

Length Bits Code

2 bits
00 01

01 00 (End of Block)

3 bits
100 02

101 03

4 bits

1100 04

1101 05

1110 06

5 bits 1111 0 0 07

6 bits 1111 10 08

7 bits 1111 110 09

8 bits 1111 1110 0A

9 bits 1111 1111 0 0B

116

E. HUFFMAN DECODING EXAMPLE

Table E.5: Huffman Chrominance (Cb and Cr) AC table

Length Bits Code

2 bits
00 01

01 00 (End of Block)

3 bits
100 02

101 11

4 bits 1100 03

5 bits
1101 0 04

1101 1 21

6 bits

1110 00 12

1110 01 31

1110 10 41

...

9 bits

... ...

1111 1100 0 F0 (ZRL)

... ...

...

16 bits
... ...

1111 1111 1111 1110 FA

117

E. HUFFMAN DECODING EXAMPLE

Table E.6: Huffman DC Value Encoding

DC Code Size Additional Bits DC Value

00 0 0

01 1 0 1 -1 1

02 2 00, 01 10, 11 -3, -2 2,3

03 3 000,001,010,011 100,101,110,111 -7,-6,-5,-4 4,5,6,7

04 4 0000,...,0111 1000,...,1111 -15,...,-8 8,...,15

05 5 0000 0,... ...,1111 1 -31,...,-16 16,...31

06 6 0000 00,... ...,1111 11 -63,...,-32 32,...,63

07 7 0000 000,... ...,1111 111 -127,...,-64 64,...,127

08 8 0000 0000,... ...,1111 1111 -255,...,-128 128,...,255

09 9 0000 0000 0,... ...,1111 1111 1 -511,...,-256 256,...,511

0A 10 0000 0000 00,... ...,1111 1111 11 -1023,...,-512 512,...,1023

0B 11 0000 0000 000,... ...,1111 1111 111 -2047,...,-1024 1024,...,2047

118

Vita Auctoris

Dan was born and raised in Windsor, Ontario. After completing his Bachelor

of Applied Science Degree in Electrical Engineering at the University of Windsor,

he pursued his Masters of Applied Science. With an undergraduate background

focussed in the field of digital communications, he expanded his experience in the

field of Embedded System Design.

119

	University of Windsor
	Scholarship at UWindsor
	2013

	Hardware JPEG Decompression
	Dan MacDonald
	Recommended Citation

	tmp.1377876056.pdf.v6ECk

