1,288 research outputs found

    Spontananfragen auf Datenströmen

    Get PDF
    Many modern applications require processing large amounts of data in a real-time fashion. As a result, distributed stream processing engines (SPEs) have gained significant attention as an important new class of big data processing systems. The central design principle of these SPEs is to handle queries that potentially run forever on data streams with a query-at-a-time model, i.e., each query is optimized and executed separately. However, in many real applications, not only long-running queries but also many short-running queries are processed on data streams. In these applications, multiple stream queries are created and deleted concurrently, in an ad-hoc manner. The best practice to handle ad-hoc stream queries is to fork input stream and add additional resources for each query. However, this approach leads to redundant computation and data copy. This thesis lays the foundation for efficient ad-hoc stream query processing. To bridge the gap between stream data processing and ad-hoc query processing, we follow a top-down approach. First, we propose a benchmarking framework to analyze state-of-the-art SPEs. We provide a definition of latency and throughput for stateful operators. Moreover, we carefully separate the system under test and the driver, to correctly represent the open-world model of typical stream processing deployments. This separation enables us to measure the system performance under realistic conditions. Our solution is the first benchmarking framework to define and test the sustainable performance of SPEs. Throughout our analysis, we realize that the state-of-the-art SPEs are unable to execute stream queries in an ad-hoc manner. Second, we propose the first ad-hoc stream query processing engine for distributed data processing environments. We develop our solution based on three main requirements: (1) Integration: Ad-hoc query processing should be a composable layer that can extend stream operators, such as join, aggregation, and window operators; (2) Consistency: Ad-hoc query creation and deletion must be performed consistently and ensure exactly-once semantics and correctness; (3) Performance: In contrast to modern SPEs, ad-hoc SPEs should not only maximize data throughput but also query throughout via incremental computation and resource sharing. Third, we propose an ad-hoc stream join processing framework that integrates dynamic query processing and query re-optimization techniques with ad-hoc stream query processing. Our solution comprises an optimization layer and a stream data processing layer. The optimization layer periodically re-optimizes the query execution plan, performing join reordering and vertical and horizontal scaling at runtime without stopping the execution. The data processing layer enables incremental and consistent query processing, supporting all the actions triggered by the optimizer. The result of the second and the third contributions forms a complete ad-hoc SPE. We utilize the first contribution not only for benchmarking modern SPEs but also for evaluating the ad-hoc SPE.Eine Vielzahl moderner Anwendungen setzten die Echtzeitverarbeitung großer Datenmengen voraus. Aus diesem Grund haben neuerdings verteilte Systeme zur Verarbeitung von Datenströmen (sog. Datenstrom-Verarbeitungssysteme, abgek. "DSV") eine wichtige Bedeutung als neue Kategorie von Massendaten-Verarbeitungssystemen erlangt. Das zentrale Entwurfsprinzip dieser DSVs ist es, Anfragen, die potenziell unendlich lange auf einem Datenstrom laufen, jeweils Eine nach der Anderen zu verarbeiten (Englisch: "query-at-a-time model"). Das bedeutet, dass jede Anfrage eigenständig vom System optimiert und ausgeführt wird. Allerdings stellen vielen reale Anwendungen nicht nur lang laufende Anfragen auf Datenströmen, sondern auch kurz laufende Spontananfragen. Solche Anwendungen können mehrere Anfragen spontan und zeitgleich erstellen und entfernen. Das bewährte Verfahren, um Spontananfragen zu bearbeiten, zweigt den eingehenden Datenstrom ab und belegt zusätzliche Ressourcen für jede neue Anfrage. Allerdings ist dieses Verfahren ineffizient, weil Spontananfragen damit redundante Berechnungen und Daten-Kopieroperationen verursachen. In dieser Arbeit legen wir das Fundament für die effiziente Verarbeitung von Spontananfragen auf Datenströmen. Wir schließen in den folgenden drei Schritten die Lücke zwischen verteilter Datenstromanfrage-Verarbeitung und Spontananfrage-Verarbeitung. Erstens stellen wir ein Benchmark-Framework zur Analyse von modernen DSVs vor. In diesem Framework stellen wir eine neue Definition für die Latenz und den Durchsatz von zustandsbehafteten Operatoren vor. Zudem unterscheiden wir genau zwischen dem zu testenden System und dem Treibersystem, um das offene-Welt Modell, welches den typischen Anwendungsszenarien in der Datenstromverabeitung entspricht, korrekt zu repräsentieren. Diese strikte Unterscheidung ermöglicht es, die Systemleistung unter realen Bedingungen zu messen. Unsere Lösung ist damit das erste Benchmark-Framework, welches die dauerhaft durchhaltbare Systemleistung von DSVs definiert und testet. Durch eine systematische Analyse aktueller DSVs stellen wir fest, dass aktuelle DSVs außerstande sind, Spontananfragen effizient zu verarbeiten. Zweitens stellen wir das erste verteilte DSV zur Spontananfrageverarbeitung vor. Wir entwickeln unser Lösungskonzept basierend auf drei Hauptanforderungen: (1) Integration: Spontananfrageverarbeitung soll ein modularer Baustein sein, mit dem Datenstrom-Operatoren wie z.B. Join, Aggregation, und Zeitfenster-Operatoren erweitert werden können; (2) Konsistenz: die Erstellung und Entfernung von Spontananfragen müssen konsistent ausgeführt werden, die Semantik für einmalige Nachrichtenzustellung erhalten, sowie die Korrektheit des Anfrage-Ergebnisses sicherstellen; (3) Leistung: Im Gegensatz zu modernen DSVs sollen DSVs zur Spontananfrageverarbeitung nicht nur den Datendurchsatz, sondern auch den Anfragedurchsatz maximieren. Dies ermöglichen wir durch inkrementelle Kompilation und der Ressourcenteilung zwischen Anfragen. Drittens stellen wir ein Programmiergerüst zur Verbeitung von Spontananfragen auf Datenströmen vor. Dieses integriert die dynamische Anfrageverarbeitung und die Nachoptimierung von Anfragen mit der Spontananfrageverarbeitung auf Datenströmen. Unser Lösungsansatz besteht aus einer Schicht zur Anfrageoptimierung und einer Schicht zur Anfrageverarbeitung. Die Optimierungsschicht optimiert periodisch den Anfrageverarbeitungsplan nach, wobei sie zur Laufzeit Joins neu anordnet und vertikal sowie horizontal skaliert, ohne die Verarbeitung anzuhalten. Die Verarbeitungsschicht ermöglicht eine inkrementelle und konsistente Anfrageverarbeitung und unterstützt alle zuvor beschriebenen Eingriffe der Optimierungsschicht in die Anfrageverarbeitung. Zusammengefasst ergeben unsere zweiten und dritten Lösungskonzepte eine vollständige DSV zur Spontananfrageverarbeitung. Wir verwenden hierzu unseren ersten Beitrag nicht nur zur Bewertung moderner DSVs, sondern auch zur Evaluation unseres DSVs zur Spontananfrageverarbeitung

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft

    Multi-tenant Admission Control for future networks

    Get PDF
    The global telecommunications landscape is going to shift considerably due to the impact of the new generation of future networks. It is estimated that by 2025, one-third of the global population will use 5G. Accordingly, all industry players are searching to develop new business cases. One of the main capabilities of 5G to answer these new requirements is Network Slicing since it allows splitting a common infrastructure into several virtual networks, enabling Multi-tenancy. In this case, the admission control function plays a vital role in ensuring the correct operation of these virtual networks by providing the required QoS to the services by allocating radio resources to them. Consequently, the purpose of this thesis is to study a new method to implement the admission control function, which allows optimizing the use of radio resources, to increase the available capacity of tenants, and offer flexibility under different traffic loads. Several simulations are performed to evaluate the algorithm within a multi-tenant, multi-cell environment using MATLAB, where the simplicity and flexibility of our proposal are assessed in each cell and the whole scenario. We obtain a 127% improvement in the bit rate when compared with a baseline scheme, and a gain of 17% when compared to a reference scheme that allows using extra capacity left by other tenants

    Toward Customizable Multi-tenant SaaS Applications

    Get PDF
    abstract: Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically scalable, virtualized manner. However, the current industrial cloud computing implementations promote segregation among different cloud providers, which leads to user lockdown because of prohibitive migration cost. On the other hand, Service-Orented Computing (SOC) including service-oriented architecture (SOA) and Web Services (WS) promote standardization and openness with its enabling standards and communication protocols. This thesis proposes a Service-Oriented Cloud Computing Architecture by combining the best attributes of the two paradigms to promote an open, interoperable environment for cloud computing development. Mutil-tenancy SaaS applicantions built on top of SOCCA have more flexibility and are not locked down by a certain platform. Tenants residing on a multi-tenant application appear to be the sole owner of the application and not aware of the existence of others. A multi-tenant SaaS application accommodates each tenant’s unique requirements by allowing tenant-level customization. A complex SaaS application that supports hundreds, even thousands of tenants could have hundreds of customization points with each of them providing multiple options, and this could result in a huge number of ways to customize the application. This dissertation also proposes innovative customization approaches, which studies similar tenants’ customization choices and each individual users behaviors, then provides guided semi-automated customization process for the future tenants. A semi-automated customization process could enable tenants to quickly implement the customization that best suits their business needs.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Contributing to the pathway towards 5G experimentation with an SDN-controlled network box

    Get PDF
    Καθώς η απαίτηση σε ευρυζωνικές υπηρεσίες κινητών επικοινωνιών αυξάνεται ραγδαία, τα υπάρχοντα δίκτυα κινητών επικοινωνιών πλησιάζουν τα όριά τους κάνοντας επιτακτική την ανάγκη εξέλιξής τους η οποία θα επέλθει με την τεχνολογική άφιξη της επόμενης γενιάς κινητών επικοινωνιών, ευρέως γνωστής ως 5G. Το 5G μεταφέρει όλες εκείνες τις δυνατότητες οι οποίες είναι απαραίτητες για να καλυφθούν οι συνεχώς αυξανόμενες ανάγκες σε ευρυζωνικές υπηρεσίες, να υποστηρίξουν το Internet of Things καθώς και να ενοποιήσουν ετερογενείς υπηρεσίες σε διαφορετικές βιομηχανίες. Η παρούσα διπλωματική εργασία στοχεύει να παρουσιάσει το “Network in a box”, ένα καινοτόμο εργαλείο που αναπτύξαμε στο εργαστήριο, το οποίο βασίζεται επάνω στους θεμέλιους λίθους του 5G, το SDN και το NFV. Με το SDN να είναι η νέα προσέγγιση στα δίκτυα κινητών επικοινωνιών, ο έλεγχος διαχωρίζεται από τα δεδομένα παρέχοντας τη δυνατότητα οποιεσδήποτε αποφάσεις ελέγχου, να λαμβάνονται κεντρικά, μετατρέποντας έτσι τις κλασικές δικτυακές συσκευές σε απλά προωθητικά στοιχεία του δικτύου. Η συγκεκριμένη διάταξη μιμείται ένα πραγματικό δίκτυο, το οποίο διαθέτει δυνατότητες αυτο-οργάνωσης και αυτο-βελτίωσης, προσομοιώνοντας τη λειτουργία του 5G δικτύου. Το συγκεκριμένο εργαλείο είναι επίσης ικανό να παράσχει KPI μετρικές του 5G δικτύου κάτω από πραγματικές συνθήκες ενόσω αληθινές δικτυακές συσκευές είναι συνδεδεμένες σε αυτό. Η δομή της παρούσας διπλωματικής εργασίας αναλύεται σε πέντε κεφάλαια. Το πρώτο κεφάλαιο παρουσιάζει τις προκλήσεις που σύντομα θα κληθούν να αντιμετωπίσουν τα δίκτυα κινητών επικοινωνιών και πώς αυτές μπορούν να καλυφθούν με την τεχνολογία του 5G. Το δεύτερο κεφάλαιο εισάγει την τάση στην αγορά των κινητών επικοινωνιών που διαφένεται πίσω από την επερχόμενη άφιξη του 5G, αποκαλύπτοντας το επιχειρηματικό πλαίσιο για επιχειρήσεις, καταναλωτές και συνεργασίες όπως επίσης και κάποιες περιπτώσεις χρήσης που αντικατοπτρίζουν την διαρκή εξέλιξη στις ευρυζωνικές υπηρεσίες κινητών επικοινωνιών. Το τρίτο κεφάλαιο εμπεριέχει μια μικρή επισκόπηση των τρέχοντων έργων πάνω στο 5G, τα οποία ξεκίνησαν υπό την αιγίδα της Ευρωπαϊκής Επιτροπής με τη συνεργασία προμηθευτών τεχνολογίας επικοινωνιών, παρόχων υπηρεσιών, μικρομεσαίων επιχειρήσεων και πανεπιστημίων. Γίνεται επίσης αναφορά στις βασικές τεχνολογίες του 5G και στις δραστηριότητες προτυποποίησής του. Προχωρώντας στο τέταρτο κεφάλαιο, περιγράφουμε σε βάθος την αρχιτεκτονική του 5G δικτύου, αναλύοντας τα SDN, NFV, MANO και εξετάζουμε πώς αυτά συνεισφέρουν στη βιωσιμότητα του δικτύου. Τέλος, στο πέμπτο κεφάλαιο εισάγουμε μια καινοτόμο ιδέα που αναπτύξαμε στο εργαστήριο δικτύων του πανεπιστημίου μας, ένα πλήρως αυτόνομο δικτυακό εργαλείο, το “Network in a box”. Παρουσιάζουμε σε βάθος πώς αυτός ο server μπορεί να εγκατασταθεί και να λειτουργήσει καθώς και τις δυνατότητές του κάτω από πραγματικές συνθήκες λειτουργίας του δικτύου, ενώ λαμβάνουν χώρα υποβάθμιση ποιότητας ή μη-διαθεσιμότητα στις δικτυακές ζεύξεις, παρέχοντας επίσης μετρικές από τη λειτουργία του δικτύου σε πραγματικό χρόνο.As the demand in mobile broadband is tremendously increased and the heterogeneity of the services to be covered is growing rapidly, current mobile networks are close to their limits imposing the need of an evolution which is going to be introduced by the next generation technology, the ITU IMT-2020, well known as 5G. 5G brings all those capabilities required to cover the increased mobile broadband needs, support the Internet of Things and bind heterogeneous services in different industries. This diploma thesis aims at presenting the “Network in a box”, an innovative tool we developed which is based on the key 5G principles, SDN and NFV. With Software Defined Networking (SDN) being the new approach in mobile networks, control and data plane are decoupled providing the ability to make any control related decisions centrally and transform legacy network devices to simple forwarding elements. This testbed is a portable emulated network device which is self-managed and self-optimised and can be connected between any real network devices, emulating how the 5G network will perform. This plug & play black-box testbed is also capable of providing KPI metrics of the 5G network under real circumstances when real network devices are connected to it. The structure of this diploma thesis is decomposed in five chapters. Chapter 1 presents the challenges mobile networks will shortly face due to the growing heterogeneous demands in communications towards the year 2020 and beyond and how these can be met with the upcoming 5G technology. Chapter 2 introduces the market trend behind the new era of 5G, revealing the business context for enterprises, consumers, verticals and partnerships as well as some use cases which reflect the continuous mobile broadband evolution. Chapter 3 includes a short overview of the ongoing 5G projects, initiated under the umbrella of the European Commission, with the collaboration of communications technology vendors, telecommunications operators, service providers, small and medium-sized enterprises (SMEs) and universities. There is also a reference in 5G key enabling technologies and standardisation activities as we move towards the next generation mobile networks technology. Moving forward, chapter 4 describes in detail the technological components of 5G network architecture such as SDN, NFV, MANO and examines how these 5G key enabling technologies contribute to the overall networks’ sustainability. Finally, in chapter 5 we introduce an innovative idea developed in our university’s communications network research laboratory, an autonomous emulated portable network testbed, the “Network in a box”. We present in-depth how this portable server is deployed, operates and demonstrate the way it can be connected to real network elements emulating a real 5G end-to-end customer network. Moreover, in this last chapter we present “Network in a box” capabilities under real network circumstances when link degradations or failures take place, providing also real-time network metrics

    Enhanced connectivity in wireless mobile programmable networks

    Get PDF
    Mención Interancional en el título de doctorThe architecture of current operator infrastructures is being challenged by the non-stop growing demand of data hungry services appearing every day. While currently deployed operator networks have been able to cope with traffic demands so far, the architectures for the 5th generation of mobile networks (5G) are expected to support unprecedented traffic loads while decreasing costs associated with the network deployment and operations. Indeed, the forthcoming set of 5G standards will bring programmability and flexibility to levels never seen before. This has required introducing changes in the architecture of mobile networks, enabling different features such as the split of control and data planes, as required to support rapid programming of heterogeneous data planes. Network softwarisation is hence seen as a key enabler to cope with such network evolution, as it permits controlling all networking functions through (re)programming, thus providing higher flexibility to meet heterogeneous requirements while keeping deployment and operational costs low. A great diversity in terms of traffic patterns, multi-tenancy, heterogeneous and stringent traffic requirements is therefore expected in 5G networks. Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have emerged as a basic tool-set for operators to manage their infrastructure with increased flexibility and reduced costs. As a result, new 5G services can now be envisioned and quickly programmed and provisioned in response to user and market necessities, imposing a paradigm shift in the services design. However, such flexibility requires the 5G transport network to undergo a profound transformation, evolving from a static connectivity substrate into a service-oriented infrastructure capable of accommodating the various 5G services, including Ultra-Reliable and Low Latency Communications (URLLC). Moreover, to achieve the desired flexibility and cost reduction, one promising approach is to leverage virtualisation technologies to dynamically host contents, services, and applications closer to the users so as to offload the core network and reduce the communication delay. This thesis tackles the above challengeswhicharedetailedinthefollowing. A common characteristic of the 5G servicesistheubiquityandthealmostpermanent connection that is required from the mobile network. This really imposes a challenge in thesignallingproceduresprovidedtogettrack of the users and to guarantee session continuity. The mobility management mechanisms will hence play a central role in the 5G networks because of the always-on connectivity demand. Distributed Mobility Management (DMM) helps going towards this direction, by flattening the network, hence improving its scalability,andenablinglocalaccesstotheInternet and other communication services, like mobile-edge clouds. Simultaneously, SDN opens up the possibility of running a multitude of intelligent and advanced applications for network optimisation purposes in a centralised network controller. The combination of DMM architectural principles with SDN management appears as a powerful tool for operators to cope with the management and data burden expected in 5G networks. To meet the future mobile user demand at a reduced cost, operators are also looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The increasing stress on mobile radio access performance in a context of declining revenues for operators is hence requiring the evolution of backhaul and fronthaul transport networks, which currently work decoupled. The heterogeneity of the nodes and transmisión technologies inter-connecting the fronthaul and backhaul segments makes the network quite complex, costly and inefficient to manage flexibly and dynamically. Indeed, the use of heterogeneous technologies forces operators to manage two physically separated networks, one for backhaul and one forfronthaul. In order to meet 5G requirements in a costeffective manner, a unified 5G transport network that unifies the data, control, and management planes is hence required. Such an integrated fronthaul/backhaul transport network, denoted as crosshaul, will hence carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies, which are software-controlled so as to adapt to the fluctuating capacity demand of the 5G air interfaces. Moreover, 5G transport networks will need to accommodate a wide spectrum of services on top of the same physical infrastructure. To that end, network slicing is seen as a suitable candidate for providing the necessary Quality of Service (QoS). Traffic differentiation is usually enforced at the border of the network in order to ensure a proper forwarding of the traffic according to its class through the backbone. With network slicing, the traffic may now traverse many slice edges where the traffic policy needs to be enforced, discriminated and ensured, according to the service and tenants needs. However, the very basic nature that makes this efficient management and operation possible in a flexible way – the logical centralisation – poses important challenges due to the lack of proper monitoring tools, suited for SDN-based architectures. In order to take timely and right decisions while operating a network, centralised intelligence applications need to be fed with a continuous stream of up-to-date network statistics. However, this is not feasible with current SDN solutions due to scalability and accuracy issues. Therefore, an adaptive telemetry system is required so as to support the diversity of 5G services and their stringent traffic requirements. The path towards 5G wireless networks alsopresentsacleartrendofcarryingoutcomputations close to end users. Indeed, pushing contents, applications, and network functios closer to end users is necessary to cope with thehugedatavolumeandlowlatencyrequired in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure-focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. By further utilising pervasive computational resources in proximity to users, edge and fog can be merged to construct a computing platform, which can also be used as a common stage for multiple radio access technologies (RATs) to share their information, hence opening a new dimension of multi-RAT integration.La arquitectura de las infraestructuras actuales de los operadores está siendo desafiada por la demanda creciente e incesante de servicios con un elevado consumo de datos que aparecen todos los días. Mientras que las redes de operadores implementadas actualmente han sido capaces de lidiar con las demandas de tráfico hasta ahora, se espera que las arquitecturas de la quinta generación de redes móviles (5G) soporten cargas de tráfico sin precedentes a la vez que disminuyen los costes asociados a la implementación y operaciones de la red. De hecho, el próximo conjunto de estándares 5G traerá la programabilidad y flexibilidad a niveles nunca antes vistos. Esto ha requerido la introducción de cambios en la arquitectura de las redes móviles, lo que permite diferentes funciones, como la división de los planos de control y de datos, según sea necesario para soportar una programación rápida de planos de datos heterogéneos. La softwarisación de red se considera una herramienta clave para hacer frente a dicha evolución de red, ya que proporciona la capacidad de controlar todas las funciones de red mediante (re)programación, proporcionando así una mayor flexibilidad para cumplir requisitos heterogéneos mientras se mantienen bajos los costes operativos y de implementación. Por lo tanto, se espera una gran diversidad en términos de patrones de tráfico, multi-tenancy, requisitos de tráfico heterogéneos y estrictos en las redes 5G. Software Defined Networking (SDN) y Network Function Virtualisation (NFV) se han convertido en un conjunto de herramientas básicas para que los operadores administren su infraestructura con mayor flexibilidad y menores costes. Como resultado, los nuevos servicios 5G ahora pueden planificarse, programarse y aprovisionarse rápidamente en respuesta a las necesidades de los usuarios y del mercado, imponiendo un cambio de paradigma en el diseño de los servicios. Sin embargo, dicha flexibilidad requiere que la red de transporte 5G experimente una transformación profunda, que evoluciona de un sustrato de conectividad estática a una infraestructura orientada a servicios capaz de acomodar los diversos servicios 5G, incluso Ultra-Reliable and Low Latency Communications (URLLC). Además, para lograr la flexibilidad y la reducción de costes deseadas, un enfoque prometedores aprovechar las tecnologías de virtualización para alojar dinámicamente los contenidos, servicios y aplicaciones más cerca de los usuarios para descargar la red central y reducir la latencia. Esta tesis aborda los desafíos anteriores que se detallan a continuación. Una característica común de los servicios 5G es la ubicuidad y la conexión casi permanente que se requiere para la red móvil. Esto impone un desafío en los procedimientos de señalización proporcionados para hacer un seguimiento de los usuarios y garantizar la continuidad de la sesión. Por lo tanto, los mecanismos de gestión de la movilidad desempeñarán un papel central en las redes 5G debido a la demanda de conectividad siempre activa. Distributed Mobility Management (DMM) ayuda a ir en esta dirección, al aplanar la red, lo que mejora su escalabilidad y permite el acceso local a Internet y a otros servicios de comunicaciones, como recursos en “nubes” situadas en el borde de la red móvil. Al mismo tiempo, SDN abre la posibilidad de ejecutar una multitud de aplicaciones inteligentes y avanzadas para optimizar la red en un controlador de red centralizado. La combinación de los principios arquitectónicos DMM con SDN aparece como una poderosa herramienta para que los operadores puedan hacer frente a la carga de administración y datos que se espera en las redes 5G. Para satisfacer la demanda futura de usuarios móviles a un coste reducido, los operadores también están buscando soluciones tales como C-RAN y diferentes divisiones funcionales para disminuir el coste de implementación y mantenimiento de emplazamientos celulares. El creciente estrés en el rendimiento del acceso a la radio móvil en un contexto de menores ingresos para los operadores requiere, por lo tanto, la evolución de las redes de transporte de backhaul y fronthaul, que actualmente funcionan disociadas. La heterogeneidad de los nodos y las tecnologías de transmisión que interconectan los segmentos de fronthaul y backhaul hacen que la red sea bastante compleja, costosa e ineficiente para gestionar de manera flexible y dinámica. De hecho, el uso de tecnologías heterogéneas obliga a los operadores a gestionar dos redes separadas físicamente, una para la red de backhaul y otra para el fronthaul. Para cumplir con los requisitos de 5G de manera rentable, se requiere una red de transporte única 5G que unifique los planos de control, datos y de gestión. Dicha red de transporte fronthaul/backhaul integrada, denominada “crosshaul”, transportará tráfico de fronthaul y backhaul operando sobre tecnologías heterogéneas de plano de datos, que están controladas por software para adaptarse a la demanda de capacidad fluctuante de las interfaces radio 5G. Además, las redes de transporte 5G necesitarán acomodar un amplio espectro de servicios sobre la misma infraestructura física y el network slicing se considera un candidato adecuado para proporcionar la calidad de servicio necesario. La diferenciación del tráfico generalmente se aplica en el borde de la red para garantizar un reenvío adecuado del tráfico según su clase a través de la red troncal. Con el networkslicing, el tráfico ahora puede atravesar muchos fronteras entre “network slices” donde la política de tráfico debe aplicarse, discriminarse y garantizarse, de acuerdo con las necesidades del servicio y de los usuarios. Sin embargo, el principio básico que hace posible esta gestión y operación eficientes de forma flexible – la centralización lógica – plantea importantes desafíos debido a la falta de herramientas de supervisión necesarias para las arquitecturas basadas en SDN. Para tomar decisiones oportunas y correctas mientras se opera una red, las aplicaciones de inteligencia centralizada necesitan alimentarse con un flujo continuo de estadísticas de red actualizadas. Sin embargo, esto no es factible con las soluciones SDN actuales debido a problemas de escalabilidad y falta de precisión. Por lo tanto, se requiere un sistema de telemetría adaptable para respaldar la diversidad de los servicios 5G y sus estrictos requisitos de tráfico. El camino hacia las redes inalámbricas 5G también presenta una tendencia clara de realizar acciones cerca de los usuarios finales. De hecho, acercar los contenidos, las aplicaciones y las funciones de red a los usuarios finales es necesario para hacer frente al enorme volumen de datos y la baja latencia requerida en las futuras redes 5G. Los paradigmas de “edge” y “fog” han surgido recientemente para abordar este desafío. Mientras que el edge está más centrado en la infraestructura y más orientado al operador móvil, el fog es más ubicuo e incluye cualquier nodo (fijo o móvil), incluidos los dispositivos finales. Al utilizar recursos de computación de propósito general en las proximidades de los usuarios, el edge y el fog pueden combinarse para construir una plataforma de computación, que también se puede utilizar para compartir información entre múltiples tecnologías de acceso radio (RAT) y, por lo tanto, abre una nueva dimensión de la integración multi-RAT.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Carla Fabiana Chiasserini.- Secretario: Vincenzo Mancuso.- Vocal: Diego Rafael López Garcí

    Cloud Cost Optimization: A Comprehensive Review of Strategies and Case Studies

    Full text link
    Cloud computing has revolutionized the way organizations manage their IT infrastructure, but it has also introduced new challenges, such as managing cloud costs. This paper explores various techniques for cloud cost optimization, including cloud pricing, analysis, and strategies for resource allocation. Real-world case studies of these techniques are presented, along with a discussion of their effectiveness and key takeaways. The analysis conducted in this paper reveals that organizations can achieve significant cost savings by adopting cloud cost optimization techniques. Additionally, future research directions are proposed to advance the state of the art in this important field
    corecore