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ABSTRACT 

 

Nowadays, Computing is so pervasive that it has become indeed the 5th utility [1] (after 

water, electricity, gas, telephony) as Leonard Kleinrock [2] once envisioned.  Evolved 

from utility computing, cloud computing has emerged as a computing infrastructure that 

enables rapid delivery of computing resources as a utility in a dynamically scalable, 

virtualized manner. However, the current industrial cloud computing implementations 

promote segregation among different cloud providers, which leads to user lockdown 

because of prohibitive migration cost. On the other hand, Service-Orented Computing 

(SOC) including service-oriented architecture (SOA) and Web Services (WS) promote 

standardization and openness with its enabling standards and communication protocols. 

This thesis proposes a Service-Oriented Cloud Computing Architecture by combining the 

best attributes of the two paradigms to promote an open, interoperable environment for 

cloud computing development. Mutil-tenancy SaaS applicantions built on top of SOCCA 

have more flexibility and are not locked down by a certain platform.  Tenants residing on 

a multi-tenant application appear to be the sole owner of the application and not aware of 

the existence of others. A multi-tenant SaaS application accommodates each tenant’s 

unique requirements by allowing tenant-level customization. A complex SaaS application 

that supports hundreds, even thousands of tenants could have hundreds of customization 

points with each of them providing multiple options, and this could result in a huge 

number of ways to customize the application. This dissertation also proposes innovative 

customization approaches, which studies similar tenants’ customization choices and each 

individual users hehaviors, then provides guided semi-automated customization process 



   

ii 

for the future tenants. A semi-automated customization process could enable tenants to 

quickly implement the customization that best suits their business needs. The approach is 

then enhanced to enable self-adaptive customization for mobile SaaS applications, which 

will result experiences that are better tailored to users’ babits and the capacity of their 

devices.  
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1 SERVICE ORIENTED CLOUD COMPUTING ARCHITECTURE 

Clouds have emerged as a computing infrastructure that enables rapid delivery of 

computing resources as a utility in a dynamically scalable, virtualized manner.  The 

advantages of cloud computing over traditional computing include: agility, lower entry 

cost, device independency, location independency, and scalability [3].  

There are many cloud computing initiatives from IT giants such as Google, Amazon, 

Microsoft, IBM as well as startups such as Parascale [4], Elastra [5] and Appirio [6]. 

However, there exist many different interpretations of what cloud computing is. This 

chapter attempts to establish the connections between SOA and cloud computing by 

presenting related issues, and proposes a Service Oriented Cloud Computing Architecture 

(SOCCA).  

This chapter is organized as the follows: Section 1.1 provides a brief survey on cloud 

computing hierarchy and presents a survey on existing cloud computing architectures and 

their issues; Section 1.2 proposes the SOCCA; Section 1.3 discusses multi-tenancy 

architecture; Section 1.4 application development on SOCCA; Section 1.5 shows an 

initial prototype and experiment; Section 1.6 concludes this chapter.   

1.1 A Survey on Cloud Computing 

1.1.1 A Hierarchical View of Cloud Computing 

Most of the current clouds are built on top of modern data centers. It incorporates 

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service 

(SaaS), and provides these services like utilities, so the end users are billed by how much 

they used. Figure 1 shows a tiered view for cloud computing. 
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    Data Centers: This is the foundation of cloud computing which provides the hardware 

the clouds run on. Data centers are usually built in less populated areas with cheaper 

energy rate and lower probability of natural disasters. Modern data centers usually consist 

of thousands of inter-connected servers.  

 

Everything as a Service 
XaaS X = ?

Data Centers

Infrastructure as a Service

Platform as a Service

Software as a Service

X = Computing
X = Storage

X = Testing

X = Modeling

X = Email
X = Office

X = CRM
X = ERP

X = Communication

X = Design

X = Development

X = User Interface

 

Figure 1 Hierarchical View of Cloud Computing 

    Infrastructure as a Service: Built on top of data centers tier, IaaS tier virtualizes 

computing power, storage and network connectivity of the data centers, and offers it as 

provisioned services to consumers. Users can scale up and down these computing 

resources on demand dynamically. Typically, multiple tenants coexist on the same 

infrastructure resources [3].  Examples of this tier include Amazon EC2, Microsoft Azure 

Platform.  

    Platform as a Service: PaaS, often referred as cloudware, provides a development 

platform with a set of services to assist application design, development, testing, 

deployment, monitoring, hosting on the cloud.  It usually requires no software download 
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or installation, and supports geographically distributed teams to work on projects 

collaboratively. Google App Engine, Microsoft Azure, Amazon Map Reduce/Simple 

Storage Service are among examples of this tier.  

    Software as a Service: In SaaS, Software is presented to the end users as services on 

demand, usually in a browser. It saves the users from the troubles of software deployment 

and maintenance. The software is often shared by multiple tenants, and automatically 

updated from the clouds, and no additional license needs to be purchased. Features can be 

requested on demand, and are rolled out more frequently. Because of its service 

characteristics, SaaS can often be easily integrated with other mashup applications. An 

example of SaaS is Google Maps, and its mashups across from the Internet. Other 

examples include Salesforce.com and Zoho productivity and collaboration suite.  

The dividing lines for the four layers are not distinctive. Components and features of 

one layer can also be considered to be in another layer. For example, data storage service 

can be considered to be either in as IaaS or PaaS. Figure 1 suggests a hierarchical 

relationship among the different layers; however, it does not mean the upper layer has to 

be built on top its immediate lower layer.  For example, a SaaS application can be built 

directly over IaaS, instead of PaaS. 

In cloud computing environment, everything can be implemented and treated as a 

service. Figure 1 shows a few examples of what can be treated as a service in different 

tiers.  

1.1.2 Existing Cloud Computing Architectures 

Both academia and industry have been active on cloud computing research, and several 

cloud computing architectures have been proposed. In [7], IBM considers current single-



   

 4 

providers cloud as limited resource, and the lack of interoperability among cloud 

providers prevents deployment across different clouds. A cloud computing architecture 

named Reservoir was proposed to create a federation from multiple cloud providers, 

which acts as a global fabric of resources that can guarantee the required SLA. In 

Reservoir architecture, the computational resources within a site are partitioned by a 

virtualization layer into virtual execution environments (VEEs). A service application is 

decomposed into a set of software components/services running on VEEs on the same or 

different VEEs within a site or across from different sites. However, Reservoir 

architecture does not allow a component/service to run on its duplicate on different 

VEEs; Moreover, computing resources are abstracted as hosting service which might not 

be necessarily true for all clouds.  In  [8], a software platform for .NET based cloud 

computing named Aneka was introduced. Aneka is a customizable and extensible service 

oriented runtime environment that enables developers to build .NET applications with the 

supports of APIs and multiple programming models.  Aneka is a service-oriented, pure 

PaaS cloud solution. In  [1], Rajkumar and his colleagues explained a market-oriented 

cloud architecture in detail used by Aneka, which regulates the supply and demand of 

cloud resources to achieve market equilibrium, adds economic incentives for both cloud 

consumers and providers, and promotes QoS-based resource allocation mechanisms that 

differentiates service request based on their utility. The key component of this 

architecture is SLA (Service Level Agreement) Resource Allocator, which is consisted of 

Service Request Examiner and Access Control, VM (Virtual Machines) monitor, Service 

Request Monitor, and Request Dispatcher.  Based on the feedback from VM and Service 

Request monitors, the dispatcher routes the requests from users/brokers to the cloud 



   

 5 

resources that can fulfill their QoS requirements.  In  [9], Huang and her colleagues from 

IBM described a service-oriented cloud computing platform that enables web-delivery of 

application-based services with a set of common business and operational services. The 

platform supports multi-tenancy feature by utilizing single application instance model. 

The isolation among tenants is taken care by the underline design. Other services include 

subscription management, federated ID management, application firewall, etc.  

1.1.3 Issues with Current Clouds 

Current cloud computing have the following characteristics: 

• Users are often tied with one cloud provider.  Even though up-front cost for a cloud 

computing deployment is reduced and long-term lease is eliminated, much effort and 

money is spent on developing the application for a specific cloud platform, which 

makes it difficult to migrate the same application onto a different cloud. Often, 

migration simply may mean redevelopment. For example, applications deployed on 

Amazon EC2 cannot be migrated easily due its particular storage framework  [10].   

• Computing components are tightly coupled. This can be clearly explained using an 

analogy. Suppose one wants a new computer, this person has the choices of either 

buying a ready-to-use computer from a manufacturer (buying) or purchasing the 

components separately and building the computer in a DIY style (building). The 

advantages of building over buying include wider selection of components, flexibility 

to customize, and cheaper cost [11]. However, as the computing resources over the 

Internet, current cloud implementations do not allow this kind of flexibility. If a 

customer opts to use Amazon S3 storage service, he is then stuck with other cloud 

computing services Amazon provides, such as EC2, Elastic Map Reduce.  



   

 6 

• Lack of SLA supports. Currently, SLA is an obstacle that prevents wide adoption for 

cloud computing. Cloud computing infrastructure services such as EC2 are not yet 

able to sign the SLA needed by companies that want to use cloud computing for 

serious business deployment  [12].  Moreover, business is dynamic. Static SLA is not 

able to adapt to the changes in business needs as cloud computing promises to.  

• Lack of Multi-tenancy supports. Multi-tenancy can support multiple client tenants 

simultaneously to achieve the goal of cost effectiveness. Currently, one has three 

types of multi-tenancy enablement approaches: virtualization, mediation and sharing  

[13].  To achieve the full potential of multi-tenancy, three issues remain to be solved 

[13]:  

o Resource sharing: To reduce the hardware, software and management cost of each 

tenant. 

o Security isolation: To prevent the potential invalid access, conflict and interference 

among tenants. 

o Customization: To support tenant-specific UI, access control, process, data, etc.  

• Lack of Flexibility for User Interface. UI is an important part of the application, and 

user experience can be a major evaluation factor for a business application. However, 

cloud/SaaS users are limited with UI choices because UI composition frameworks, 

such as the one proposed in  [14], have not been integrated with cloud computing.  

1.2 Service Oriented Cloud Computing Architecture (SOCCA) 

1.2.1 Cloud Computing and SOA 

SOA and cloud computing are related, specifically, SOA is an architectural pattern that 

guides business solutions to create, organize and reuse its computing components, while 
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cloud computing is a set of enabling technology that services a bigger, more flexible 

platform for enterprise to build their SOA solutions.  In other words, SOA and cloud 

computing will co-exist, complement, and support each other.  

There have been several initiatives at attempting bridging SOA and cloud computing. 

Noticeably, the works in  [8]  [9] have more service-oriented features than the other 

mentioned in section 1. 

1.2.2 Layered Architecture of SOCCA 

SOCCA is a layered architecture that has the following layers: 

Individual Cloud Provider Layer: This layer resembles the current cloud 

implementations. Each cloud provider builds its own data centers that power the cloud 

services it provides. Each cloud may have its own proprietary virtualization technology 

or utilize open source virtualization technology, such as Eucalyptus  [15]. Similar to 

Market-Oriented Cloud Architecture proposed in  [1], within each individual cloud, there 

is a request dispatcher working with Virtual Machine Monitor and Service/App 

Governance Service to allocate the requests to the available recourses. The distinction 

from current cloud implementations is that the cloud computing resources in SOCCA are 

componentized into independent services such as Storage Service, Computing Service 

and Communication Service, with open-standardized interfaces, so they can be combined 

with services from other cloud providers to build a cross-platform virtual computer on the 

clouds. In order to achieve maximum interoperability, uniform standards need to be 

implemented. For example, SQL is de facto standard for RDBMS data management, and 

many database vendors have their own implementations. A cloud version of SQL needs 

to be defined, so data manipulation logic of an application that works on one cloud can 
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also work other clouds. A distributed computing framework standard to unify all different 

implementations of Map/Reduce is also in need for the same reason.  

Cloud Ontology Mapping Layer: Cloud providers might not conform to the standards 

rigidly; they might also have implemented extra features that are not included in the 

standards. Cloud Ontology Mapping Layer exists to mask the differences among the 

different individual cloud providers and it can help the migration of cloud application 

from one cloud to another. Several important ontology sytem are needed:  

1.Storage Ontology: It defines the concepts and terms related to data manipulation on 

the clouds, such as data update, date insert, data delete, and data select, etc.  

2.Computing Ontology: It defines the concepts and terms related to distribute computing 

on the clouds, such as Map/Reduce Framework.  

3.Communication Ontology: It defines the concepts and terms related Communication 

Schema among the clouds, such as data encoding schema, message routing.  

Cloud Broker Layer: Cloud brokers serve as the agents between individual cloud 

providers and SOA layer. Each major cloud service has an associated service broker type.  

Generally, cloud brokers need to fulfill the following tasks: 

1.Cloud Provider Information Publishing: Individual cloud providers publish 

specifications and pricing info to the cloud brokers. Important provider information 

includes: 

• Cloud Provider Basic Information: Company Name, Company Address, Company 

Website, Company Contact Info, etc. 
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• Resource Type and Specifications:  Whether it is computer/storage/communication 

resource and its specification and limitation. For example, for the data storage service, 

the data transmission rate can be as high as 2Gb/s.  

• Pricing Information:  How the services charge.  This varies the most among different 

cloud provider. For example, currently, Google does not charge for the first 500MB 

storage, and $0.15 per GB of data after, while Amazon charges $0.11 per GB-month 

for its EBS Volumes service. Even within a cloud provider, the pricing info might 

change as the market’s dynamic changes.  

2.Ranking: Like the service brokers in SOA, cloud brokers also rank the cloud 

resources published. Services can be ranked in several categories such as price, 

reliability, availability, and security, etc.  Ranking can be achieved through user voting 

or historical service governance records.  

3.Dynamic SLA Negotiation: Business is often dynamic, and the IT infrastructure has 

to be adaptive to accommodate the business needs, therefore to achieve the optimal 

ROI (Return of Investment). It’s often the case that the IT resources a business 

demands can be predicted. Cloud service brokers can help cloud users and cloud 

providers negotiate on a SLA dynamically.  

4.On-Demand Provision Model: Most services experience seasonal or other periodic 

demand variation as well as some unexpected demand bursts due to external events. 

The only way to provide “on-demand” services is to provision for them in advance. 

Accurate demand prediction and provision become critical for the successful of the 

cloud computing, which reduces the waste of utility purchase and can therefore save 

money using utility computing. We are investigating a demand prediction model and 
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model the evolution of multi-tenant as a discrete time stochastic process. We have 

investigated several macroeconomic factors in a real mortgage service platform  [16] 

[17], and the initial results show that the underlying stochastic process may depend on 

a number of external factors such as macroeconomic variables, as well as service 

internal features. Some analysis results from real applications demonstrate the 

effectiveness of our models. Due to the space limitation, more details can be found in  

[16]. Specifically, the process needs to answer the following question: What is the 

forecast of tenant many days into the future? How to predict the workload distribution 

at different services?  How to optimize the service provision process and minimize 

customers' dissatisfaction? 

 

Figure 2 Service-Oriented Cloud Computing Architecture 
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  SOA Layer: This layer fully takes the advantages of the existing research and 

infrastructure from traditional SOA. Many existing SOA frameworks, such as CCSOA  

[18], UCSOA  [19], GSE  [20] and UISOA  [14] can be integrated into this layer.  Figure 

2 shows a possible SOA layer for SOCCA. Similar to CCSOA, not only services but also 

many other artifacts can be published and shared, such as workflow templates, 

collaboration templates and test cases.  The registry for each type of artifacts is indexed 

and organized by its according ontology. The fundamental difference of the SOA layer of 

SOCCA from traditional SOA is that the service providers no longer host the published 

services anymore. Instead, they publish the services in deployable packages, which can 

be easily redeployed to different cloud hosting environments.  Application developers can 

decide which clouds they want to these services to run based a set of criteria. The details 

will be discussed in section 1.4. Another major improvement is multi-tenancy support 

that allows more flexibility, which will be discussed in section 1.3. SOA layer of SOCCA 

allows more flexibility than traditional SOA; it further separates the roles of service 

providers and cloud providers, and the service logics and its running environments.  

1.3 Multi-tenancy Architecture (MTA) 

As shown in Figure 2, SOCCA allows 3 different main multi-tenancy patterns. In  [9], the 

authors discussed the left two multi-tenancy patterns: Multiple Application Instance 

(MAI) and Single Application Instance (SAI). The authors pointed out, the former does 

not scale as well as the latter, but it provides better isolation among different tenants.  

Within SOCCA, a new multi-tenant pattern becomes possible: Single Application 

Instance and Multiple Service Instances (SAIMSI). The motivation behind this pattern is 

that the workloads among different application components are often not distributed 
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evenly among application components, and the performance of the single application 

instance is limited by the application components having lower throughput. Moreover, to 

enhance scalability, we want to reduce unnecessary duplications as much as possible as 

opposed to Multiple Application Instances pattern.  Figure 3 shows a simplified example. 

The example application is composed by A, B, S, three services with S being the 

computing intensive component. With S being the bottleneck to support multiple tenants, 

3 instances of S are created to balance the workloads. Note that the 3 instances of the 

services can also reside on different clouds.   

 

Figure 3 Single Application Instance Multiple Service Instances 

Better scalability is not only benefit from the SAIMSI pattern, easy customizability is 

another gain. Suppose in the sample application, S is a payment service.  Different 

tenants might have different payment method requirements, such as credit card, Paypal, 

or check.  The application runtime environment (not described in this chapter) will direct 

users of each tenant to the correct service instance according to tenants’ individual 

configuration. In the case that a future tenant has a payment requirement that cannot be 
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met by the existing service instances, say money order, an according service instance can 

be easily plugged into the existing service instances group. The upcoming chapters on 

multi-tenancy from this dissertation will provide more details on this topic.  

1.4 Application Development on SOCCA 

1.4.1 Service Package 

Service providers of traditional SOA develop the logic of a service and provide its 

running environment. In SOCCA, services are published as re-deployable packages, 

namely service package. A service package contains the following required/ optional 

information and files: 

Compiled Code: If service providers only use the standard APIs and protocols, a single 

version of complied code is enough; if service providers optimize the performance of 

their services by utilizing some platform unique APIs and features, complied code for 

each platform is needed.  

Source Code: This is optional. It is useful to help its user to understand the service 

better, also gives the freedom to its users to tweak the services to accommodate their 

specific requirement.  

Configuration File: Services might use external basic services. For example, a 

computing intensive scientific service which also uses a lot of storage might deploy its 

computing logic on a cloud that provides high performance computing power, but use the 

cheaper storage service provided by another cloud. This requires a configuration file, 

which specifies the external service’s locations, partner link, etc. This can also be 

achieved in a BPEL manner, however, since basic services such as storage services, have 
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a widely adopted standards, and are frequently used, so it is more efficient to handle in a 

database connection configuration file style.   

Resource Files: Any resource files that the service depends on, such as images, 

documents.  

1.4.2 SOCCA Applications  

Application development in SOCCA is similar to the development in CCSOA.  

Developers first search if there is a workflow template that matches the requirement. A 

workflow template is composed of service stubs/specifications, which specify the 

functionalities and interfaces of services. Later a service stub is bound with a service 

package.  Depending on the QoS requirements and the budget for the application, cloud 

brokers will negotiate with cloud providers on SLA, and deploy the service packages on 

one or multiple clouds. An algorithm for request dispatching for a service across its 

deployments on different clouds needs to be applied. Figure 4 shows a typical application 

architecture on SOCCA. 

 

Figure 4 SOCCA Application Architecture 
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1.5 Initial Prototype and Experiment 

   This section shows an initial prototype and experiment to demonstrate the possibility of 

SOCCA. The demonstration web application has one easy requirement: When each user 

visits the web page, he/she will be greeted by a random message retrieved from a motto 

database.  

1. We developed the application by using Google App Engine. Note that a number of 

mottos are retrieved and stored from and to Google cloud by using Datastore with JDO. 

Figure 5 shows a screenshot of motto application running on Google App Engine.  

 

 

Figure 5 Motto Application with GAE Database 

2. We created a web service that wraps the Azure SQL service that allows retrieving and 

storing mottos from the motto databases deployed on Azure.  

3. We utilized the Web Service Connector (WSC) tool provided by  [21] to generate 

Google App Engine compatible client code in java to access the web service developed 

by step 2. WSC is a code-generation tool that takes a WSDL file and generates an 

optimized java library that provides access to the web service.  
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4. We created a class that implements “javax.jdo.PersistenceManagerFactory”, which is 

the interface GAE Datastore uses to manipulate the data on the cloud.  

5. We created a class called SQLPersistenceManagerFactory that implements 

“javax.jdo.PersistenceManagerFactory”, which is the interface GAE Datastore uses to 

manipulate the data on the cloud. Figure 6, a code snippet, shows that depending on the 

config file, the application will be connected with either GAE Datastore database or 

Azure SQL database. Figure 7 shows that after changing the config file, the motto app is 

now connected with Azure SQL database.  

 

 

Figure 6 Code snippet for Database Service Configuration 

 

Figure 7 Motto App with Azure Database 
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   The prototype demonstrates that a service package deployed on one cloud can be 

configured to collaborate with services from other clouds. However, it does not show that 

a service package can be redeployed on a different cloud and the instances for the same 

services can live on multiple clouds. This is due to that currently, different clouds support 

different language sets, and there is no powerful modeling language to support 

developments for multiple platforms. We are currently developing this feature using a 

modeling language PSML  [22]. 

1.6 Conclusion 

This chapter proposed a service-oriented cloud computing architecture SOCCA that 

allows an application to run on different clouds and interoperate with each other. The 

SOCCA is a 4-layer architecture that supports both SOA and cloud computing. SOCCA 

supports easy application migration from one cloud to another and service redeployment 

to different clouds by separating the roles of service logic provider and service 

hosting/cloud providers. It promotes an open platform on which open standards, ontology 

are embraced. The chapter also introduced related topics for future research, such as 

service customization, service demand prediction and service request dispatching 

algorithms. In chapter 2, 3, more focus will be given on how to perform customization for 

SaaS, mobile SaaS applications. In chapter 4, a two-tier dynamic resource allocation 

algorithm is discussed to solve the service request dispatching problem under SOCCA. In 

chapter 5, a customizable ontology-based service-oritented simuation framework for 

robotic studio is propsed based on SOCCA. 
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2 SAAS MULTI-TENANT APPLICATION CUSTOMIZATION 

Cloud computing often uses the multi-tenancy architecture where tenants share system 

software. It is one of the key features of Software as a Service (SaaS) that enables higher 

profit margin by leveraging the economics of scale [23]. Tenants residing on a multi-

tenant application appear to be the sole owner of the application and not aware of the 

existence of others. A multi-tenant SaaS application accommodates each tenant’s unique 

requirements by allowing tenant-level customization. A complex SaaS application that 

supports hundreds, even thousands of tenants could have hundreds of customization 

points with each of them providing multiple options, and this could result in a huge 

number of ways to customize the application. This chapter proposes an innovative 

customization approach that studies similar tenants’ customization choices and provides 

guided semi-automated customization process for the future tenants. A semi-automated 

customization process could enable tenants to quickly implement the customization that 

best suits their business needs. 

2.1 Introduction 

Cloud Computing has emerged as a new infrastructure that enables rapid delivery of 

computing resources as a utility in a dynamically scalable virtualized manner.  Typically, 

SaaS applications allow multiple tenants to reside on single or multiple instances of the 

software at the same time, which helps brings down the cost. Though tenants co-exist on 

multi-tenant software, each of them might have its own branding, GUI, data, and 

workflow, etc, appearing as the sole owner of the software. A multi-tenant SaaS 

application is also referred as configurable SaaS, and achieved by customization [24]. A 

multi-tenant SaaS application usually provides a solution for common enterprise needs, 
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which can be domain-independent, such as Enterprise Resource Planning (ERP), 

Customer Relationship Management (CRM), Human Resource Management (HRM), or 

domain specific, such as Inventory Management for retailers, Practice Management for 

medical practices. Though enterprises and businesses’ requirements for software overlap 

greatly, each of them has some unique requirements that distinguish them from each 

other. Customization is needed to meet specific requirements for each tenant. Moreover, 

the pace of business process change is increasing ever faster with more globalized market 

[25]. This, in return, requires, SaaS applications to be customizable to adapt to 

businesses’ ever changing needs.  

However, customizing a complex SaaS application requires much manual work which 

can delay the time to market. Sometimes, tenants do not necessarily know which 

customization choices suit their needs the best either.  

The chapter proposes an innovative customization approach that studies existing tenants’ 

customization choices and provides guided semi-automated customization process for 

future tenants. The contributions of this chapter include: 

• Applying hierarchical template design philosophy by modeling the customization 

process using orthogonal variability model 

• Combining ontology and Inputs, Outputs, Preconditions and Effects (IOPE) for 

variants definition, organization or and discovery 

• Specifically distinguishing tenants’ inherent characteristics and application 

specific characteristics.  

• A guided semi-automated customization process based on mining existing 

tenants’ customization decisions to improve efficiency 
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• Consistency checking tenant’s customization plan using soft and hard rules mined 

existing customization decisions 

    The chapter is organized as the following:  Section 2.2 discusses the customizability of 

SaaS applications; Section 2.3 discusses the complexity of the workflow and service 

customization; Section 2.4 explains how to ontology to help discover and organize 

variants. Section 2.5 discusses a tenant based customization algorithm. Section 2.6 

proposes a guided customization approach based on tenant mining; Section 2.7 

demonstrates the customization process using a case study. 

2.2 SaaS Customization 

Customizability, used to describe the level of customization an application could have, 

typical involves the following aspects.   

What: Typically, for SaaS applications, the following assets can be customized:  

• GUI: GUI customization is the most elementary and visible customization. 

Typical GUI customization includes logo, theme, layout, fonts, interaction etc.  

• Workflow: Workflow customization generally controls the business process 

logic. Tenants can compose their own workflow templates using existing type 

services, or choose the ones stored in the workflow templates repository.   

• Service: Service customization usually involves two steps: service selection and 

service configuration.  

o Service Selection: In SaaS applications, service selection is the process to 

choose a concrete service implementation and bind with the service type 

used in workflow template.  
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o Service Configuration: The tenant should configure the different 

properties a concrete service has to achieve the desired behavior and 

performance.  

• Data: Data customization involves data storage, encryption, compression, schema 

enhancement, etc.  Different multi-tenant data architectures might have different 

levels of isolation, sharing, and scalability. Three common data architectures are: 

separate databases, shared databases, separated schemas and shared databases 

shared schemas [26].  

• QoS: QoS requirements are usually formalized using SLA between tenants and 

SaaS application providers. QoS customization is deeper level customization as it 

usually involves allocating corresponding amount of resource and choosing 

appropriate service and workflow customization, even the data architectures.  

The customization assets actually follow a layered architecture with QoS affected 

by all the layers. The architecture can be illustrated by the following figure.   

 

Figure 8 Layered Architecture 

Who: The following parties can conduct customizations for SaaS applications: 



   

 22 

• SaaS application developers/designers: The primary goal of application 

developers/designers is to provide a high customizability for the application. This 

could be achieved by the following practices: 

o Collecting the common requirements for a domain and considering 

possible variations.  

o Making the framework extensible.  

The developers/designers could customize the application to a certain level to reduce the 

targeted tenants’ customization work.  

• SaaS application tenants: Considering an online retail SaaS application as an 

example. The application developers/designers can reduce each tenant’s 

customization efforts by providing a number of pre-configured customized 

templates for merchants from different domains, such as electronics, clothing, 

grocery, etc. Each merchant (tenant) would continue the customization based on 

the chosen template.  

• SaaS application consultants: For complex applications, such as enterprise ERP, 

HRM, CRM, the customization efforts could be so high that sometimes, the 

tenants would hire consultants specialized at customization to reduce the cost of 

training people to do it in-house, and to reduce the time shipped to market.   

• SaaS application users: Users of each tenant could further customize the 

application according to their own personal preference. However, their 

customization should be rather superficial, and limited by the customizations done 

by the developers/designers, tenants.  

How: Customization could be performed in the following manners: 
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• Source Code: For an extensible SaaS application, new source code can be added 

and integrated with the existing features by implementing a pre-defined interface 

or contract.  

• Composition: Recomposing workflows could modify the business logics, 

catering different tenants’ need.  

• Configuration: Customization can be done by simply providing different 

configuration parameters in the config files this way.  

How Easy: The level of easiness for customization could be simply categorized into the 

followings: 

• Manual: Tenants have to manually make decisions at each customization point.  

• Automated: All the customization choices are made automatically based on 

tenants’ requirements inputs. The final customization results might not meet all 

tenants’ requirements.  

• Guided: For each customization point, automated customization will return a few 

top matching customization choices, and the tenant will manually review these 

choices and make a decision based on their judgment. This approach minimizes 

manual work greatly while eliminating unnecessary errors introduced by the 

automated customization. 

2.2.1 Related Work 

Software customization has been a research problem for a long time, however, the 

specific problems such as multi-tenancy, cost-awareness, present new challenges for 

SaaS customization. R. Mietzner etel demonstrated how to use BPEL to generate 

customization BPEL processes for tenants and deployment scripts to provision new 
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tenants [27] [28]. Their approach helps SaaS developers to find a balance between 

catering to every single requirement of tenants and achieving economy of scale by 

reusing components among tenants. Zhang [29] proposed a novel SaaS customization 

framework using policy through design-time tooling and a runtime environment. A 

validation algorithm was also proposed for customization rules propagation. A grapevine 

model is used to provide customization recommendations to tenants by analyzing the 

similarities between tenants’ application requirements and existing application templates. 

Instead of just identifying individual component, an application template has links to 

various components that can be used together. Thus when a full or partial match has been 

identified, a collection of components with their linkage information will be available for 

tenant developers to save time and effort. In other words, this is an approach where 

customization can be done on a collection of components with their linkage relationship, 

rather than at the component level.  

Workday [30], a cloud-based enterprise application company, adopts a pure object-

oriented development methodology and implements a metadata-based framework to 

enable non-code-based business logic changes. The metadata definitions are used to 

define the logic by customers. Selectica [31], a SaaS based sales and contract 

management software provider, uses a guided customization process to help sales people 

build custom deals while still enforcing the constraints set by the management. This 

process is similar to the AURA process where end users can participate in requirement 

acquisition directly. The essence of the AURA project is to ask users questions, and 

based on input received to ask more questions to complete a requirement model behind 

the scene. Selectica also used a model-based approach but a configurable one where each 
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item may have multiple options to choose from with constraints built into the system. 

Thus, once all the items have been selected, a newly configured sale package is 

completed. Similar approach can be applied to SaaS customization. In [24], Tsai 

exploited a multi-layer structure of SaaS applications, analyzes their inherent 

relationships, as well as cross-layer relationship using ontology information. Tsai also 

briefly exploits a recommendation solution based on tenants’ similarities. This chapter 

continues the work, and extends the recommendation solution. 

Table 1 shows a brief comparison among these approaches. 

Table 1 Customization Approaches Comparison 
 R. Mietzner  Zhang Grapevine Workday Selectica Proposed  

approach  
 

Model-based yes(OVM) can be added yes yes(OO) yes yes (OVM) 
Hierarchical 
Workflow 
Design 

yes can be added yes can be 
added 

can be added yes 

Guided 
Process 

can be added can be added can be 
added 

can be 
added 

yes yes 

Consistency 
checking 

can be added yes can be 
added 

can be 
added 

yes yes 

Recommenda
tion 
Generation 

can be added can be added  can be 
added 

can be added yes 

Tenant 
inherent 
characteristic
s 

can be added can be added can be 
added 

can be 
added 

can be added yes 

Ontology and 
IOPE variant  
filtering  

can be added can be added can be 
added 

can be 
added 

can be added yes 

New template 
generation 

yes 
(automated) 

can be added yes 
(automate
d) 

can be 
added 

can be added Yes  

 
 
2.3 Complexity of Customization 

According to last section, there were three approaches to perform customization: source 

code, workflow composition and configuration. In a mature CCSOA [18], GSE [32] like 
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environment, there are seldom need to write new source code, or to create new services 

as the service repository are comprehensive enough to include almost all use scenarios. 

Therefore, customization is mainly consisted of workflow composition and service 

configuration.   

2.3.1 Hierarchical Workflow Template Design 

In SOA development, a workflow refers how two or more web services interact. 

Workflow designs often follow the template design pattern. Originally, the core idea of 

template design [33] is to use a template to define the program skeleton of an algorithm 

and one or more of the algorithm steps can be overridden subclasses to allow different 

behaviors. Hierarchical workflow template design (HWTD) is an application of template 

design for SOA software development.  In HWTD, when application designers design 

workflows, for places where customizations are possible, they use “abstract methods” as 

placeholders. Application/Customization designers will implement these placeholders 

(“concrete methods”) as sub-workflows. Sub-workflows can still have “abstract method”.  

In SOA, these placeholders are actually, atomic or composite type services. Type 

services/service specifications define service interfaces, functionalities.   Since most SaaS 

apps use SOA model and services are loosely coupled, there is no compiling, linking. 

Therefore, hierarchical workflow template design does not require OO features, such as 

inheritance and polymorphism.  

2.3.2 Orthogonal Variability Model 

Hierarchical workflow template design can be modeled by Orthogonal Variability Model 

[28].  In OVM, a variation point (VP) documents a variable item. A variant (V) 

documents the possible instances of a variable item. In workflow customization, a 
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variation point is a component that can be replaced by one or multiple sub-workflow 

templates. A variant is sub-workflow template. A sub-workflow can still have variation 

points.  

Definition: 

Customizable Workflow: A workflow that has at least one VP. A single VP is also a 

customizable workflow. 

Customized Workflow: A workflow that has no VP.  

 

Figure 9 shows a customizable workflow with two variation points. VP1 has variations 

v1, v2, etc.  

 

 

Figure 9 Customizable Workflow 
Variation points can have a parent-child relationship defined as the following: 

Parent/Child: Suppose a variation point (vp0) and one of its variants v0; v0 has a variation 

point (vp1), vp1 is the child of vp0, and vp0is the parent of vp1.  
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Level of Variation Points: If a variation point has no parent, then it is a root level 

variation point whose level is 0. The children of a level i variation point are level i+1 

variation points. In Figure 2, vp1 and vp2 are both root level variation points; vp3 and vp4 

are level 1 variation points.  

Leaf Variation Point: If a variation point’s all variants have no variation point, then this 

VP is the leaf VP 

Depth of Workflow: The level of deepest leaf VP is the depth of the customizable 

workflow.  

2.3.3  Complexity of Customization 

Suppose a customizable workflow’s level is h, and on average each variation point has x 

variants, and each variant has y variation points. CPi represents how many customization 

possibilities for a level i variation point.  

 
CPi = x·(CPi+1) y 

 
If h = 2, x = 3, y = 2, CP0 = 2187. This example shows that there could be thousands of 

variations even for a fairly simple customizable workflow. For a complex SaaS 

application, the number of variations could be exponential; therefore, a full manual 

approach is probably not the most optimal approach, and sometimes it is impossible   

2.4 Defining, Organizing and Finding Variants Using Ontology 

As discussed in section 2.2, the available assets for SaaS customization are: GUI, 

Workflow, Service, Data, and QoS. A customizable asset could have one or multiple 

variation points, and each variation point could have multiple variants. However, what 

qualifies an asset to be the variant of a certain variation point? How a variation point is 
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defined? To solve these questions, an ontology-based specification is introduced to define 

variation points, and assist discovery, fuzzy matching.  

2.4.1 Data Ontology: 

Data ontology is defined first because it is the core of most SaaS applications. Whether it 

is the data presented in the UI, or data persisted in the storage, or even intermediate data 

passed through among different components, they all need a systematic way to be 

described. Data-related customizable assets include: data schema, data encryption, data 

storage, data load balancing.  

2.4.2  Conceptual Data Modeling 

For the interested domain, a conceptual data model can be constructed using an ontology 

system. A conceptual data model is a map of concepts and their relationships. It describes 

things of significance to the applications. Data modeling is similar to the OO design 

concept; however, it does not define actions/methods for each entity class. In Conceptual 

Data Modeling, the following relationships and concepts are defined: 

Relationships: 

is-a:  A is-a B, written is-a(A, B), is a relationship where class A is a subclass of 

another class B. In other words, concept A is a specification of concept B, and concept B 

is a generalization of concept A [34].  

has-a: A has-a B, written has-a(A, B), is a relationship where B belongs to A. In 

simple words, B is a member field of A.  

Note that both is-a and has-a are reflexive and transitive, but not symmetric.  

Based on the above two relationship, we define a third relationship.  
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is-has: is-has(A, B) if either is-a(A, B) or has-a(A, B). For example, if a service has an 

input B, providing A is sufficient for this service if is-has(A, B), because A has enough 

information for the service to finish its work.  

Atomic data entity: It is the lowest level of details. Atomic data entities are usually 

numeric data or string literals that have no internal structures. For example, FirstName is 

an atomic data entity, and its value is string literals.  

Composed data entity: A composed entity is a structured data that are built by using 

“has-a” relationship with atomic data or other composed data. For example, composed 

data entity Name could be composed by two atomic data entities, FirstName and 

LastName.  

Conceptual data models can be described using OWL [35]. A sample data model is 

created for HRM is created using protégé, a free, open source OWL editor.  In the HRM 

data model, each data entity is modeled as an OWL class; has-a and is-a relationships are 

modeled using object properties, and they are transitive, asymmetric and irreflexive. 

Atomic data entities are also constrained by datatype proterties, which specify the types 

of data that are allowed.  

Figure 10 shows a part of the HRM data model. The brown dotted line indicates an is-a 

relationship, and yellow dotted lines indicate a has-a relationship.    
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Figure 10 HRM Data Model 
Data entities could be used to compose a more complex entity. For example, the Asset 

entity can be used to compose Customer as shown in the figure, or compose generic data 

schema Person.  

Person

Age Gender Occupation Asset

Customer

Credit Score Income Liability Asset

Asset

Investment
Account

Investment
Fund

Saving 
Account Loan Amout

 

Figure 11 Data Schema Reuse and Composition 
2.4.2.1 Data Storage  

Storage can also be customizable. Depending on their requirement, tenants can choose 

different data pattern such as B-Tree, Binary Tree, or Distributed Hash Table. Depending 

on the sensitivity the data it stores, different encryption algorithms, such as DES, AES, or 
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SHA, can be applied. Different data serialization and data storage also exit. Table 2 

shows what can be customized for data storage, and the available options.  

Table 2 Data Storage Customization 

Customizable Aspect Customization Options 
Data Pattern B-Tree, Binary Tree, Distributed Hash Table 
Encryption Algorithm DES, AES, SHA.  
Data Serialization Protocol Buffer, Avro, Thrift 
Data Infrastructure GFS, HFS, DYNAMO,EC2, Azure 

 

2.4.3 GUI Ontology:  

2.4.3.1 GUI Component: 

To expedite GUI development and customization, SaaS GUI development employs the 

core idea from SOA [36]: composition. GUI is servicetized into smaller, reusable, 

composable unit named GUI components, which can be used to compose into full, 

interactive GUI. GUI components can be classified into atomic GUI components and 

composed GUI components. Atomic GUI components could be basic user/password 

forms, a search bar, a navigation menu, a list view, etc. Composed GUI components are 

GUI composed by several atomic GUI to achieve a more complex function. For example, 

a fully functional flight search GUI components might include two date selectors, from 

and to city input forms, etc. To created rich end user experience, multiple technologies, 

such HTML, HTML5, Flash, Silverlight, components are supported.   

 

Similar to [36], a GUI data specification can be described using the UI Data Profile. 

Unlike [36], Data profile is modeled in two categories: 

1.Data Collection: the raw data collected from the end user.  
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2.Data Presentation: the data that the UI present to the end users.                                                                                                                                                                                    

2.4.3.2 GUI Interaction Template: 

GUI interaction templates often correspond to certain workflows. However, a workflow 

can be achieved by more than one GUI interactions and a successful GUI interaction 

sequence is often the result of extensive user experience research and experiments. The 

difference sometimes could be as small whether to load web page in a new window or 

refresh the current window. The GUI interaction templates are published and stored in 

GUI interaction template repository so that the proven successful designs of UI flows can 

be reused by similar applications in the future.  

2.4.4 Service and Workflow Ontology: 

According to [36] [32], services are the basic building blocks in SOA. Service developers 

implement services according to service specification and publish them in the service 

repository. Application developers use services to construct workflows that meet the 

business requirements. Workflow templates can be stored in the workflow template 

repository for future reuse.  Service and workflows can be ranked according to quality, 

price and other various factors. These concepts still remain the same for cloud computing 

and SaaS development. What distinguishes cloud computing from SOA is the level of 

customization it needs.  

2.4.5 Inputs, Outputs, Preconditions and Effects 

Services and workflows all have inputs, outputs, preconditions and effects. OWL-S [37], 

formerly DAML-S, is an OWL-based web service ontology that be used to describe the 

properties and capabilities of web services in unambiguous, computer-interpretable form. 

Specifically, OWL-S could be used to describe the IOPEs of services and workflows. 
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Combined with conceptual data model, it could be used to define variation points for 

workflow customization. Many web services do not specify preconditions, nor do they 

have physical effects on the system, therefore, to simplify the problem, a variation point 

is specified as an input/output pair.  

Let D be the set of all the data entities of a conceptual data model for domain A. A 

workflow variation point VPworkflow can be defined as following. 

VPworkflow = (I, O) , where I⊆D, O⊆D 

Similarly, all the possible workflows and services can be defined as following: 

S = (I’, O’) , ∀ i’∈I’, ∃ i∈I, where is-has(i, i’) and ∀ o∈O, ∃ o’∈O’, where is-has(o’, 

o) 

Basically, the above notations mean that if a variation point has all the input data a 

service requires, and the service produces more than the variation point asks for output, 

the this service could be a variant for this variation point.   

For example, a variation point is defined as GET_DEGREE = ({Student}, {Degree}). 

The intention of this variation point is for a given person, return his/her degree if he/she 

has one. There is a service defined as GET_BACHELOR= ({Person}, {Bachelor}). 

According to the above definition, GET_BACHELOR could be a variant for 

GET_DEGREE variation point because is-has(Student, Person) and is-has(Bachelor, 

Degree).  

If the concept of variation points is introduced after a domain has established, meaning 

there are many existing, but unorganized services and workflows, the above definition 

can serve as a classifier to find all possible variants for a given variation point. Using the 

result as a starting point, semantic matching using ontology [38] or manual selection can 
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be used to further reduce variants number for a variation point. It can also help to quickly 

locate which possible variation point a newly added service belongs to. 

2.5 Tenant Mining Based Customization 

To better illustrate the ideas and concepts discussed in the chapter, a multi-tenant Human 

Resource Management (HRM) system is employed as a running example. A HRM 

system is the strategic and coherent approach to the management of an organization's 

most valued assets, its employees [39]. A HRM system usually supports features such as 

employing people, developing their capacities, utilizing, maintaining and compensate 

their services. Our goal is to design a simplified version of multi-tenant HRM SaaS 

application, and help the tenants to quickly customize the application according to their 

unique needs. 

2.5.1 Presumption 

The customization of SaaS application for a tenant is determined by its requirements; the 

requirements could be classified into two categories: Tenant-Inherent Requirements and 

Application-Specific Requirements. Tenant-Inherent Requirements are bound by the 

tenants’ inherent characteristics, and usually are the same across different applications 

that a tenant might have. For example, company X requires its HRM system to support 

IE6; it is likely that it requires CRM system to support IE6 too; because its browser 

requirement is based on the company’s current hardware and software stack, which could 

not be easily changed. Application-Specific Requirements are associated with a specific 

application that a tenant deploys. For example, the functional requirements for a HRM 

system are certainly very different from a CRM system.  
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Though each tenant might have its own inherent characteristic and application specific 

requirements for a SaaS application, similar tenants might share similar customization 

needs. The proposed customization approach is built upon this presumption, using data 

mining techniques to find out what the deciding characteristics and requirements in the 

terms of customization.  Additionally, a large SaaS application might have hundreds even 

thousands of tenants. Therefore, when a new tenant joins the SaaS application, 

customization recommendation can be given based on the customization choices that 

previous tenants had.  

2.5.2 Tenant Inherent Characteristics 

Tenant’s Characteristics can be classified using the ontology shown in Figure 12. The 

characteristics discussed below are not exhaustive, but rather explanatory.  

 

Tenant

Hardware Software Environment

Size Access 
Group Language

CPU MemoryHard 
Drive

Video
Card

Geo 
Location DNSNetwork

OS FirewallBrowser

Organization

 
Figure 12 Tenant Characteristics Ontology 

 
Organization Related: 

Size: The total number of the users a tenant has or the estimated number of concurrent 

users. Generally, the size of tenant plays an important role for application’s traffic and 

SLA. 

Culture-Related Preference: Tenants from different culture background could have 

different software requirements. For example, different language options can result in 
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different behaviors of software sometimes. For example, right-to-left written languages 

such as Arabic cause web page presentation error sometimes; Special characters in 

certain languages might require certain encoding.  

Access Group: Each organization might have different structures. People with different 

roles might have different access to the system. A multi-tenant SaaS application should 

be able to handle the different access groups from various tenants.  

Hardware Stack: 

Tenant’s hardware stack could affect both functionalities and SLA of a SaaS application. 

For example, a graphic intensive application might run faster on a computer that has 

better video card; an application might utilize the middle button of a mouse, while some 

mice might not have a middle button. Generally, it is impossible to standardize all 

hardware running within an organization; however, it is feasible to have all the working 

hardware to meet a lowest spec. Important hardware factors include CPU, Memory, Hard 

Diver and Video Card etc.  

Software Stack: 

Similarly, a tenant’s software stack could also affect the functionalities and SLA of a 

SaaS application. Due to different integrations and implementations of web standards, 

some web applications might behave differently across from modern web browsers. For 

example, IE7 has minimal support for CSS3, a SaaS application that utilizes a lot of 

CSS3 features might appear broken running on IE7. JavaScript engine is another 

important distinctive feature for web browsers, as a lot of SaaS applications, such as 

Gmail, Facebook, use extensive JavaScript scripts to enrich client side user experience. A 

web browser with efficient JavaScript engine might improve a SaaS application greatly. 
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Moreover, in a corporate environment, certain security software might be installed on all 

the computers to enforce company-wide security policies.  Certain actions, scripts that 

might violate the security policies might be disabled, blocked by the security software. 

For example, due to security concern, certain corporate environment might disable flash 

player. Therefore, a flash based implementation should be chosen for customization.  

External Environment: 

External environment factors could also affect how a SaaS application runs. For example, 

most cloud infrastructure providers have data centers in multiple locations. If a SaaS 

application in deployed in a data center in the US, tenants from the US and Europe might 

experience different response time, because a request originated from Europe might be 

routed more time and go through a slower inter-continent cable.  

2.5.3 Application-Specific Requirements  

Tenants also have application-specific requirements that also affect their customizations. 

For example, different organizations might have different hiring processes; therefore 

need to customize the HRM application accordingly. Generally, application-specific 

requirements are not as easy to capture as tenants’ inherent characteristics. It usually 

requires working with the tenants closely to find out their business needs and translate to 

software requirements. There are cases that, tenants, such as small business owners, do 

not really know what to expect until SaaS application providers show them what is 

available. Sometimes, clients might express the same business needs in different wording, 

which results seemly very different software requirements.   However, as application 

providers work with more and more tenants, these issues can be overcome. For example, 

advanced text analysis and ontology can map requirements in different wordings into 
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standardized, unified requirements, which can be stored and reused. Tenant’s application-

specific requirement can then be described by answering standardized questions, such as 

“How many rounds of interviews will you have per candidate?”, “Who makes the final 

hiring decisions?”.  Answers to these questions are either a values in a given range, or 

choices from a predefined set.  

2.5.4 Guided Customization Algorithm 

When a substantial amount of tenants joined the SaaS and completed their 

customizations, their choices can be used as training data to help future tenants make 

their customization decision. As shown in section 2.3, starting from level 0 VP, a tenant 

makes its decision on which variant to use from lower level VP to higher level VP, until 

all leaf VPs. The decisions are guided by the mining results from the existing tenants.   

Suppose for a SaaS application customization, tenants’ characteristics set is C= {ci|i = 1, 

2, 3…, n, n ∈N} 

A variation point’s variants set is V= {vi| i = 1, 2, 3…,n, n ∈N} 

Therefore, the problem of finding a SaaS application customization for a tenant can be 

formulated in the following: 

For a variation point (vp), V is its variant set.  

For a variant, VP is the set of the variation points it contains. 

A customization decision (d) for a vp is defined as (vp, v), meaning, at variation point 

vp, variant v is chosen.  

A customization decision for a workflow D is a set of d.  

VPi is the set of level i variation point.  
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The goal of the algorithm: Find a D for a tenant t given an h level customizable 

workflow whose root variation point is vproot.  

Standard data mining algorithms can be applied here to assist a new tenant to make a 

choice at each variation points. The algorithm can be described as the following.  

Algorithm: 
 VP0= { vproot  } 
 D = ∅ 
 for (i = 0; i <=h ;i ++)  
 begin: 
       VPi+1 = ∅ 
      for each vp ∈  VPi,  and its variant set V  
  v = run_tenant_mining_decisioning();  
  D = D ∪ {(vp, v)} 
  VPi+1 = VPi+1 ∪ VP  
 End 

2.5.4.1 Feature Selection 

As discussed in section 2.4.2, the number of tenants’ characteristics at interest could be 

huge; some of them could be irrelevant to the decision making, therefore generate noises 

and degrade the quality of discovered patterns for the data mining algorithm. Feature 

selection algorithms can be used to reduce the number of relevant characteristics and 

improve the training data quality. In general, feature selection works by calculating a 

score for each attribute, then select the attributes with the best scores [40]. Popular 

feature selection methods include interestingness score, Shannon’s Entropy, Bayesian 

with K2 Prior, etc.  

2.5.4.2 Customization Constraints & Suggestions 

There could be situations where a decision at one variation point might have side-effects 

to decisions at other variation points. For example, at one subflow, tenant chooses a 

variant that does not support SSL, while it chooses variants that support SSL for other 
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subflows.  However, the application is only as secure as the weakest part, so only one of 

the choices reflects the tenant’s real intent. Similarly, a decision at one variation point 

might prompt a decision at another variation point. For example, a variant that supports 

both windows/Linux is chosen for one variation point, most likely, within the same 

workflow, the tenant will probably choose variants that support both Windows/Linux.  

To formally capture the effects the decision made for one variation point might have to 

the decision making of other variation points; two types of customization rules are 

defined: 

Hard Rules 

• Can’t be violated 

• When violated, the customization decision set is voided, and needs to be modified.  

Some of the basic hard rules are defined as below: 

Constraints (hard rules): 
• (vp, v) → (vp’, v’) 
o It means, decision (vp, v) entails decision (vp’, v’). 
o If (vp, v) exists, not only vp’ must be in view, but v’ should be its chosen variant. 

• (vp, v) → − (vp’, v’) 
o It means, decision (vp, v)  must not coexist with (vp’, v’) (mutually exclusive) 

• (vp0, v0) ∧(vp1, v1)→ (vp2, v2) 
o If (vp0, v0) and (vp1, v1) exist, it infers (vp2, v2) 

• (vp0, v0) ∨(vp1, v1)→ (vp2, v2) 
o (vp1, v1) → (vp2, v2) and (vp1, v1)→ (vp2, v2)  

Soft Rules 

• It is more of a guideline. 

• It gives tenant suggestions, warnings.  

• It does not fail a customization decision set.  

Formally, soft rules can be defined as the following.  

Suggestions (soft rules) : 
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• Given d, the probability that d’ exists is p. P(d’|d) = p, it can also be written 
as 𝑑

!
𝑑′, when p = 1,   𝑑

!
𝑑′and → are equivalent.  

• Only when p is greater than a threshold, the rule is stored.  
2.5.4.3 Rules Deduction 

Hard Rules Attributes: 

• → is transitive 
    d1 → d2 , d2 → d3, then d1 → d3 
• → is self-reflexive 
    d → d 
• → is not symmetric 
    d1 → d2, but it might not be true necessarily that d2 → d1 

Soft Rules Attributes: 

• 
!

 is transitive 
       d1 

!
 d2, and d2 

!
 d3, then d1 

!"
 d3 

• 
!

 is not self-reflexive and symmetric. 
Constraints and suggestions can be based on variation points and mixed with decisions 

Rule Operation: 

• For a vp, and its variant set V={vi| i = 1, 2, 3…,n, n ∈N}, if ∀ vi ∈V, (vp, vi ) → 
d, the vp → d 

• For a vp, and its variant set V={vi| i = 1, 2, 3…,n, n ∈N}, d 
!!  (vp, vi), and   

p!!
!!!   = 1, the d → VP 

 

2.6 Guided Customization Framework 

Based on a discussed definitions and algorithms, a guided customization framework is 

proposed.  
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Figure 13 Guided Customization Framework 

2.6.1 Guided Customization Framework 

• Training Data Repositories: As discussed in section 2.5, the training data are consisted 

of three repositories: 

o Tenant Inherent Characteristics Repository: It stores each tenant’s inherent 

characteristics, such as number of employees, preferred languages. The inherent 

characteristics can be categorized into Organization Related, Hardware Stack, 

Software Stack and External Environment.  

o Tenant Application-Specific Characteristics Repository: Application-specific 

characteristics are, in another word, application-specific requirements, consisted of 

functional requirements and QoS requirements.  
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o Tenant Customization Repository: Existing tenants’ choices at each variation point 

are their customization decision.  

• Data Mining Layer: 

o Decision Recommendation Engine: Based on historical tenant’s data and the 

characteristics of tenant at interest, customization recommendation can be generated 

by applying algorithm in section 2.5.4. 

o Rule Engine: Traditional Association Rule generation algorithms such as apriori 

algorithm, eclat algorithm, FP-growth algorithm, can be applied to generate the base 

rules. The rule set can be further expanded by applying the rule deduction formulas 

introduced in section 2.5.4.3. 

2.6.2 Guided Customization Process 

1. When a tenant joins the SaaS, it needs to provide some basic information about its 

inherent characteristics and its requirements for the application. This could be achieved 

by having the tenant answer a predesigned questionnaire, or having the SaaS provider 

send people over to tenant’s origination: they can observe tenant’s organization, inspect 

tenant’s software and hardware stack and other inherent characteristics, and talk to 

tenant’s stakeholder to gather their requirements for the software, and translated to 

standardized application specific characteristics. The collected information will be stored 

into tenant general characteristics repository and tenant app specification repository.  

2. The customizable workflow repository contains all workflows that the SaaS supports. 

Each workflow would contain variation points, which could again contain variation 

points as explained in previous sections. Based on the historical data, decision trees will 
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be generated for each variation points. An automated process will help the tenant make 

the decision at each variation point and return a fully customized workflow.  

3. By default, the customized workflows returned will confirm to all the hard rules in 

constraint rule set. The tenant would examine or test, or experiment with them, then 

makes necessary modifications. Consistency check will be performed on the modified 

workflow again against the constraint rule set. If there are hard violations, the workflow 

needs to be further modified to resolve the violations; if there are only soft violations, 

they will be brought to tenant’s attention, and tenant can make the decision on whether to 

fix them or not.  

4. The finalized workflow will be stored to tenant’s customization repository, and 

decision tree and rule set will be updated using this data.  

2.7 Case Study 

This section will show a simplified but complete example from HRM domain to 

demonstrate how guided customization using data mining techniques can improve the 

customization for SaaS application. Section 2.7.1 will give a repository of variation 

points and all possible variants for the hiring process for an HRM system.  Section 2.7.2 

shows the initial training data collected by the simulation process and selected examples 

of the decision trees and constraint sets using the data minng techniques. Section 2.7.4 

shows how a guided customization is achieved.  

2.7.1 Sample Orthogonal Variability Models 

The section gives an example of OVM in section 2.3. The process to model here is the 

hiring process. Based on each company’s specific policies, the hiring process can contain 
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the following activities: resume filtering, phone screening, onsite interview, and 

regretting/offering processes.  

The root variation point is VProot, which has 3 variants shown in the figure.  

 
 
There are four level 2 variation points: VPresume-filtering, VPphone, VPonsite, VPreject.  

VPresume-filtering has three variants.  

 
VPphone has three variants: one has one phone interview; one has a phone-screening 

followed by the phone interviewing; one has two phone interviews.  



   

 47 

 
VPonsite has three variants: Some companies will take care of the booking travel and 

accommodations for remote candidates then bring them onsite; Some might let the 

candidates do the booking, then reimburse them for the cost; some might just consider 

local candidates and there is no booking involved at all. 

 

VPbook has two variants: One has flight booking followed by the hotel booking; the other 

has training booking followed by the hotel booking.  

 
VPreject has two variants: One has phone reject; the other has email reject. 
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The complexity of the OVM is:  

• Number of VPs: 6 

• On Average, number of vagrants for each VP: 2.67 

• Number of possible customizations: 372 

2.7.2 Data Collection 

Data collection is completed through simulation. The process can be described as the 

following:  

1.Define a set of tenant inherent characteristics and application characteristics specific for 

the hiring process for HRM system. 

2.Create a set of simulated tenants and assign them with predefined values for their tenant 

inherent characteristics and application specific characteristics. 

3.Create a survey for each tenant on what the customization choices should be made, and 

distribute the surveys to experienced software engineers and program managers or other 

capable individuals.  

4.For each particular tenant, the most popular customization will be used as the final 

customization choices.  

The inherent characteristics for each tenant should be kept as a profile; once created, it 

can be shared by multiple applications. The inherent characteristics set should be 

complete and cover the four categories described in section 2.5.2. However, to simplify 



   

 49 

the process, only the following inherent characteristics from organization-related 

category are considered for the simulation:  

Organization related = {country, domain, size, years of history, annual revenue} 

 

Application specific characteristics and possible values are defined in Table 3. 10 

simulated tenants shown in Table 5 were created for the survey. The surveyed audience 

was asked how they would customize the HRM system for each tenant with the specific 

inherent and application characteristics. The most popular results were chosen as the final 

customization for the tenants. The results are shown in Table 6. 

Table 3 Application Specific Characteristics 
Name Description Possible Values 
localOnly Only consider local candidates or not Yes, No 
phone screening 
cost 

The cost of conducting one phone screening translated into 
dollars.  

0-100$, 100$-200$, 200-500$, 500-
1000$ 

phone 
interviewing cost 

The cost of conducting one phone interview cost 0-100$, 100$-200$, 200-500$, 500-
1000$ 

Onsite interview 
cost 

The cost of conducting one onsite interview excluding 
candidate’s travel cost 

0-100$, 100$-200$, 200-500$, 500-
1000$ 

Resume Volume The expected incoming resume volume per opening 0-10,10-50,50-100, 100-500, 500-
1000,1000- 

Table 4 Simulated Tenants 
Tenants Country Domain Size History AR LO PSC PIC OIC RV 
T1 US IT 10-50 3 100M NO 0-100$ 100-200$ 500-1000$ 0-10 
T2 US IT 50-100 10 500M NO 0-100$ 100-200$ 500-1000S 100-500 
T3 US IT 5K-10K 20 10B NO 100-200$ 200-500$ > 1000$ > 1000 
T4 CH IT 100-200 5 10M Yes 0-100$ 0-100$ 200-500$ 500-1K 
T5 CH IT 5K-10K 5 100M Yes 0-100$ 0-100$ 200-500$ > 1000 
T6 CH IT 5K-10K 10 500M No 0-100$ 100-200$ 100-200$ > 1000 
T7 US Car Sale 10-50 10 5M Yes 0-100$ 200-500$ 500-1000$ 0-10 
T8 US Car Sale 50-100 20 15M Yes 0-100$ 200-500$ 500-1000$ 50-100 
T9 CH Car Sale 10-50 5 2M Yes 0-100$ 0-100$ 100-200$ 200-500 
T10 CH Car Sale 50-100 10 10M Yes 0-100$ 0-100$ 100-200$ > 1000 

Table 5 Existing Tenants (Training Data) 
Tenants VProot VPresume-filtering  VPphone VPonsite VPreject VPbooking 

T1 Vonsite-only Vhuman-only N/A Vbooking-before Vphone-rej Vflight-hotel 

T2 Vphone-only Vcomputer-only V2-phone-inter N/A Vemail-rej N/A 
T3 Vphone+onsite Vcomputer+human V1-phone-inter Vb Vphone-rej Vflight-hotel 
T4 Vphone+onsite Vcomputer+human V2-phone-inter Vno-booking Vphone-rej N/A 
T5 Vphone+onsite Vcomputer+human V2-phone-inter Vno-booking Vphone-rej N/A 
T6 Vphone+onsite Vcomputer+human Vphone-screen+inter Vreimburse-after Vphone-rej Vtrain-hotel 
T7 Voniste-only Vhuman-only N/A Vno-booking Vemail-rej N/A 
T8 Vphone+onsite Vhuman-only V2-phone-inter Vonsite-only Vemail-rej N/A 
T9 Vphone+onsite Vcomputer-only V2-phone-inter Vonsite-only Vemail-rej N/A 
T10 Vphone+onsite Vcomputer-only V2-phone-inter Vonsite-only Vemail-rej N/A 
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Table 6 New Tenants 
Tenants Country Domain Size History AR LO PSC PIC OIC RV 
T11 CH IT 10-50 5 5M NO 0-100$ 100-200$ 500-1000$ 200-500 
T12 US IT 100-500 10 15M NO 0-100$ 100-200$ 500-1000$ 200-500 

A decision tree can then be constructed accordingly at each variation point. For example, 

VPresume-filtering has the following decision tree: 

 

Country

RV

Vhuman-only

0-1
0,	
10
-50 100-200,	

200-500

500-1000,		>1000

Vcomputer+human

Vcomputer-only

Vcomputer-only

US
CH

 

Figure 14 Decision Tree Example 
Suppose new tenants T11, T12 with the characteristics described in Table 6 is trying to 

join the SaaS. Based on the decision tree, at variation point VPresume-filtering, T11 should 

choose Vcomputer-only, while T12 should choose Vcomputer+human. Because a decision tree can 

be created for each variation points, one can create a customization for each new tenant.  

Constraints and suggestions can also be mined from the training data set. For example, 

whenever Vbooking-before is choosen, Vflight-hotel is also choosen. Therefore, a hard rule 

(VPonsite, Vbooking-before) → (VPbooking, Vflight-hotel). 
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2.8 Conclusion 

This chapter discussed the different aspects of tenant-level customization for SaaS 

applications, and then proposed to use OVM to model it. A tenant-based guided 

customization framework was proposed to reduce the typical manual work involved.  

This framework mines relationships between tenants customization decisions and tenants 

inherent characteristics, their application-specific requirements and uses this knowledge 

to automate the customization for the future tenants. A case study using HRM system 

was shown to demonstrate how guided framework works.  
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3 SELF-ADAPTIVE CUSTOMIZATION FOR MOBILE APPLICATIONS 

The proliferation of mobile devices has transformed us into an app-driven society in 

recent years. Mobile apps have evolved from basic calculators to high-fidelity 3D games. 

People find themselves complete more tasks on their mobile devices than on their 

computers. Native mobile apps are preferred by the consumers due to their better 

performance, fluid UI transitions, etc, however, once a native mobile app is downloaded 

and installed on a device, it is required another update from the store, which often results 

in user loss. Mobile user base is large and diverse, and users have different behaviors. 

One version of an application might not be best suited for all users. In this chapter, we 

propose an architecture that can adapt to these variants and customize an application that 

fits each group of users. 

3.1 Introduction 

According to a study from Nielsen in July 2014, U.S Android and iPhone users age 18 

and over spend over 30 hours each month using mobile apps, a 65 percent increase 

compared just two years ago [41]. However, mobile app developers face challenges that 

desktop and web applications developers didn’t have to.  

1. There are two prominent mobile platforms. While Android is leading iOS in terms 

of market share, iOS continues to be the more profitable platform, where often new 

ideas, new apps are first released. For a globally successful mobile application, 

ignoring either of the platforms will lose a significant amount of users automatically.  

2. Mobile devices have different capabilities [42]. Mobile devices have different 

models, manufactured by different vendors, targeted at different price ranges, 
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support a various range of sensors. Using the most advanced sensors might result in 

the app providing a less satisfying experience for devices with less capability.  

3. Mobile devices are mobile. The users are often on the go when they use the mobile 

devices. The network connectivity can go from being excellent to being spotty or 

none in one user session. The GPS signal strength can also change greatly when a 

user goes indoor from outdoor. 

4. Mobile devices have limit battery [43]. Even with huge advancements in battery 

technology, power is still a limited resource. Mobile apps should use power 

conservatively, and react and adapt when the battery level drops to a certain level. 

5. Mobile data is usually metered which means mobile users are very data-conscious 

[44]. Using network excessively might anguish users with very limited data quota, 

on the contrary, being too thrift when the users have abundant or unlimited data 

might result in suboptimal experience.  

6. More and more mobile apps need to support multi-tenancy [45]. The same app 

might be deployed to different enterprises, organizations. It needs to be branded 

properly, customized for each tenant’s specific requirements.  

In addition, the number of mobile users grew exponentially in recent years. With the 

huge user base comes with great variants of user behaviors. Take the news reading app 

for example, some users might only open the app in the morning, while some users might 

choose to do that in the evening; Some users might only use the app briefly and 

sporadically through the day, while some users only use it once or twice a day but with 

long sessions.  
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Clearly, one size doesn’t fit all. To provide the best experience to all the users while 

being aware of and considerate to the limits and constraints of their devices, and their 

individual habits, a mobile app needs to be more customizable and adaptive. In this 

chapter we will discuss a self-adaptive mobile apps customization, and the approaches 

could be used to test these apps. In 3.2, related work is presented. In section 3.3, a self-

adaptive mobile customization architecture is proposed and illustrated; In section 3.4, the 

analytical process is discussed in details; In section 3.5, we will demonstrate a metric-

driven A/B testing framework to iteratively customize mobile apps. 

3.2 Related Work 

In [46], Tsai and his colleagues established the SaaS-based BIB performance and 

benchmark architecture and proposed the SaaS-based BIB Database Model (SaaS-BIB-

DM), the architecture layer (SaaS-BIB-AL), the data flow view (SaaS-BIB-DF) and the 

representative transaction model (SaaS-BIB-TM). The architecture can be applied 

directly to mobile BIB applications. To provide customization support, Yvette E. Gelogo 

and Haeng-Kon Kim proposed that developing mobile ERP application using Adaptive 

Object Model (AOM). An Adaptive Object Model (AOM) is a common architectural 

style for systems in which classes, attributes, relationships and behaviors of applications 

are represented as metadata, allowing them to be changed at runtime not only by 

programmers, but also by end users. In [47], Chen et al proposed a process customization 

framework that can customize and configure processes while guarantee the tenancy 

isolation. Multiple versions of processes might be generated based on one basic template 

process after the customization. The collection of customized processes is necessary for 

ISVs because customized processes reflect demanding information of tenants. In [48], 
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Ren et al recognized the importance of preservation for tenancy history metadata. They 

proposed a method for adjusting template objects dynamically based on XML structured 

features for tenancy metadata that improves the convenience of on-demand customization 

and user experience, shortens the tenants' customization time and improves QoS. In the 

event of tenants requirement change, the template can update accordingly by analyzing 

tenancy history metadata from Graphic User Interface (GUI), workflow, service, and data 

layer. However, all the customization processes mentioned above did not take mobile 

applications unique characterstics into consideration. Their approaches also did not 

consider similar tenant share similar requirements and each individual’s behaviors of 

each tenant. There is also no way to evaluate how a customization is successful or not.  

3.3 Customizable Mobile Applications Architecture 

To successfully support customization for mobile applications, the architecture of mobile 

client and server have been specifically design. This section proposes the customizable 

architectures for mobile clients and servers, and compares them to the traditional mobile 

client and server architectures.  

3.3.1 Traiditional Mobile Application Client-Side Architecture 

Figure 15 shows the traditional client side architecture for mobile applications, which has 

following layers and components: 

Presentation Layer: There is where users directly intereact with the mobile applications. 

The information and data are rendered by typical mobile views, such as labels, lists, 

carousels, hyperlinks, buttons, etc. The UI are generally touch based, accepting user 

inputs through clicks, scrolls, swipes, etc. Developers can create custom views and view 

groups to build more advanced UI rendering and interactions.  
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Business Layer: Traditional UI based applications generally follow the Model-View-

Controller (MVC) pattern [49].  The Business layer contains both the models and the 

controllers. The controllers, which contain the business logic generally in the format of 

workflows, transform, decorate, aggregate the data fetched from the data layer so that the 

presentation layer can consume them. Workflows are composed by components, which 

are reusable, shareable.  

Data Layer: The data layer abstracts the common data operations, and exposes them to 

business layer for data fetching, data deletion and data manipulation.  To improve the 

perceived speed to the end users and ensure the responsiveness of mobile applications, in-

memory cache and disk cache can be used. The data layer is also responsible for 

unmarshaling the data received from network, and marshaling the data models used in the 

applications to the wire transfer format used in by the network.  

Network: The network component implements a simple network protocol, usually http or 

https. The layer is fundamental as its communication channel between the mobile client 

and server. It downloads data from the server, and when sends data back to the server.  

Storage: Storage layer is used to persist user data on the device. Generally, the user data 

is also saved on the server side for a network-based mobile application, and the server 

maintains the consistency as well. The client storage serves as a local storage to improve 

the perceived speed. Typical on-device storages are default phone storage, add-on mobile 

sd cards. The size of mobile storages ranges from a few gigabytes to hundreds of 

gigabytes nowadays.  
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User Settings: User Settings, built on top of the on-device storage, generally save the 

preferences of a user for using the app. Typical settings include push notification settings, 

network setting, tab layouts, language setting, etc. These settings can be perceived as 

simple customization done by the users.  

Event Handlers: Touch-based mobile applications respond to events generated by the 

users, servers, and devices. Typical events include user touches, receiving a push 

notification, location changes through geo-fencing, speed/direction changes detected by 

highly advanced sensors, etc. These events can trigger an application workflow even the 

application is not running when the events happened.  

               

Figure 15 Traditional Client Side Architecture 
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As one can see, the existing mobile architecture supports building a functional, usable 

mobile application, however, it has the following drawbacks: 

1. There is no way to understand how the users are using the app. Are users heavily 

engaged with apps? Do they use the app on a daily basis?  

2. There is no way to understand the device condition when users are using the app. 

Whats the battery level? Did the user turn off the location service? How much available 

memory left?  

3. Once the app is installed, and if users don’t turn on the auto-update feature provided by 

the mobile platforms, it is generally very difficult to change the behavior of a mobile 

application.  

3.3.2 Customizable Mobile Application Client-Side Architecture 

To solve these issues, new mobile client architecture is proposed to support 

customizations for mobile applications. Figure 16 shows the customizable client side 

architecture with the newly added component highlighted in yellow color.  

Tracking: This component collects the data on how a user uses app by recording all 

users activities on the app, such as clicks, scrolling, swiping, etc, then batch these data 

and send them back to the server. It measures all performance potential bottlenecks, such 

as network round trip, image processing, storage/memory size, etc. Each tracking request 

is also sent with meta data, such as device manufacture, device model, OS version, app’s 

version, location, network type, etc. These data will be stored and analyzed on the server, 

which in the end will help provider the appropriate customization for a user.  

Monitoring: The monitoring component collects all the device information, such as used 

memory, available memory, CPU utilization rate, battery level, location setting, push 
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notification setting, etc. The information will be sent as meta data through tracking events 

sent by the tracking component.  

Logging: In addition to sending all the tracking events to the server, these events, along 

with other general logging, such as debug logs, error logs should also be logged onto the 

device storage for troubleshooting purpose. In the case, where a user encounters an 

exception, a crash, or an error, these logs on the devices can be sent to developers to help 

them diagnose the problem.  

Template Loader: Template loader is a component that queries the server if there are 

alternative implementations for a variation point. If there exists one, it will download it, 

then unpack it into the format that can be executed by the template executor.   

Template Executor:  For each variation point, it can intelligently select which 

implementation to load for a user, and then execute it based on the customization 

information sent back by the server.  

                             
Figure 16 Customizable Client Side Architecture 
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3.3.3 Dynamic Code Execution 

This process is possible for both iOS and Android.  

iOS: JSPatch is an open source library on iOS that bridges Objective-C and JavaScript 

using the Objective-C runtime. Once included, the app can call any Objective-C class and 

method in JavaScript, which makes the APP obtaining the power of script language: add 

modules or replacing Objective-C code to fix bugs and add features dynamically. 

Android: Grab’n Run is an open source library on Android that can securely load code 

dynamically into your Android application from APK containers or JAR libraries 

translated to be executable by both the Dalvik Virtual Machine (DVM) and the Android 

Runtime (ART). This gives an android application the freedom to potentially change 

everything after the app is installed. Figure 17 explains this process in a little more details.  

1. The Android app, specifically the template loader will contact the remote server 

to ask if there exists a template for a certain variation point. If the server responds 

yes, the template loader will fetch the “template.jar” from a remote URL.  

2. After the template.jar is downloaded, the template loader will store it on the 

phone storage.  

3. The template loader will then prepare a direction for the optimized dex files 

4. The template executor will dynamically load and execute the template once the 

variation point is encountered in the workflow. 
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Figure 17 Dynamic Code Execution 

3.3.4 Traditional Service Side Architecture 

Figure 18 shows the traditional server side architecture for mobile applications, which 

has following layers and components: 

Front End Service: Front end services typically serve the mobile clients with the data 

that need to be rendered to the end users. Front end services usually fetch raw data from 

multiple mid tier services, and aggregate and massage the data into a format that can be 

easily consumed by the mobile clients. Some front end service examples are: 

1. Services that return profile data with basic profile information, enducation 

background, job experience, etc.  

2. Services that return a stream of new feeds 

3. Services that authenticate and authorize a user to a member based service 

application 
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Mid Tier Service: The mid-tier services usually act as a bridge between data storage and 

front end services. It usually includes the data persistence mechanisms (database servers, 

file shares, etc.) and the data access layer that encapsulates the persistence mechanisms 

and exposes the data. The mid-tier layer should provide an API to the front-end services 

that exposes methods of managing the stored data without exposing or creating 

dependencies on the data storage mechanisms.  

Online Storage: The data storage that supports online, real time usage. It requires high 

throughput with low latency, with multi-threading support. Typical online storages 

include RMDB, such as MySQL, Oracle, or NoSql database, such as MongoDb, 

CouchDB.  

 
Figure 18 Traditional Server Side Architecture 

Similarly to traditional client side architecture, traditional server side architecture has the 

following drawbacks:  

1. There is no support to track user behavior, and device states.  

2. There is no support to return different users with different dynamic template 

therefore provide personalized customization for the users.  
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3. There is no analytical support to understand the user behaviors based on the 

tracking data, and there is no support to understand how the performance of 

applications.  

3.3.5 Customizable Service Side Architecture 

To solve these issues, customizable server side architecture is proposed. Figure 19 shows 

customizable server side architecture with the newly added components in yellow color.  

Authentication: This component is responsible to authenticate a user. If a user doesn’t 

have an account, it will first onboard the user by taking him/her through the registration 

process.  

Tracking: Tracking services receive the tracking event sent by the mobile clients, and 

persist them in the offline storage. Because of the huge volume of the tracking data, and 

lower requirement for transactional accuracy, the persistence of the tracking data is 

usually achieved in a fire-and-forget manner.  

Analytical: A/B Testing is a more explicit approach to help the app developers to find 

out which approach/UED (User Experience Design) would achieve a set goal, for 

example, how to make the users to share more feed. To isolate the influence of other 

factors, A/B testing often targets at a user group with similar attributes, for example, 

users share less 10 jokes in a month. The goal is to find out which one of pre-design 

approach can achieve better result. These more targeted learning would affect the 

customization significantly.  

Offline Storage: Offline storage needs to support a huge amount of data, typically over 

hudreds of thousands of petabytes. The data is stored in a distributed manner. There is no 
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requirement to access the data in real time. The data stored on offline storage is primarily 

for analytical usage.  

Machine Learning: The data collected by the tracking component can also be used for 

machine learning to improve user experience. For example, using machine learning 

algorithm can improve the relevancy of the content delivered to the users, thus enhances 

user engagement. It can also be used to generate new customized templates that can be 

loaded by the Template Loader from the client, and later used for dynamic code 

execution.  

 
Figure 19 Customizable Server Side Architecture 

3.4 Analytical Process 

The data collected by the tracking component is huge, and have many dimensions.  

Moreover, to support analysis of user behaviors, the metrics are often needed to sliced or 

aggregated to support SQL-like queries. Figure 20 shows full analytical process from 

data collection to query serving.  

1. Data Collection: Everytime a user performs an action of the interest of tracking, a user 

event is generated. The event is annotated with the auxiliary information for that 
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particular action. For example, if a user clicks on an ariticle link, the id of that article is 

included in the user event. In addition, basic device information is also included, such 

memory usage, CPU utilization, location, etc. To prevent from interfercing user’s normal 

activities in the app, these events are batched on the client side, are only sent to the server 

when app is backgrounded or the user has been idle for than a certain threshold, for 

example, 30 seconds.  

When the server receives the user events sent by the tracking component of the clients, it 

puts them in a message queue, such a Kakfa [50]. The messge queue acts as a broker, and 

broadcasts the received messages. Consumers subscribed to these messages will be 

notified once new messages are received. There are two primiary consumers of these user 

events, offline data processing and real-time data processing 

2. Offline Data Processing 

User tracking events are ETLed and stored in offline storage, such as Hadoop [51]. These 

data are then run through customized Hadoop job to restore needed dimensions to support 

the required queries. For example, to answer the questions, what type of news a particular 

user is most interested in, we need know all the news a user opens, and their types. The 

user event for opening a news link only contains the id for that particular news, but not 

the meta data, the hadoop job will annotate the event with meta data of the news. The 

data will be saved in Online Analytical Processing (OLAP), such as Pinot [52]. However, 

offline processing has some delays, ranging from a few hours to a couple of days; to get 

the near real time support, online data processing becomes necessary.  

4. Online Data Processing 
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For the online data processing flow, user events are fed into a stream proessing 

component, such as Samza [53]. Samza has a callback-based “process message” API 

comparable to MapReduce, which can be used in a way similar to the offline data 

processing pipeline. For example, the new click event will be joined with the meta data of 

the news, and the joined event will be sent another message queue for online query.  

4. Online Query 

OLAP, such as Pinot, has two kinds of tables, offline and realtime. An offline table stores 

data that has been pushed from Hadoop, while a realtime sources data from Kafka. The 

offline and realtime tables are disjoints and may contain data of the same period.  When 

the OLAP receives a query, it is smart to enough to fan out the query to both the online 

and offline tables, and join the results from both tables.  

 
Figure 20 Analytical Process 

3.5 Metrics-Driven A/B Testing Customization 

As discussed in earlier section, different users have different behaviors, habits and 

devices, etc; therefore, having same app for everyone will result in sub-optimal results for 
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many people. In this section, a metrics-driven A/B testing customization process is 

proposed.  

3.5.1 News Reading App 

To better explain this process, we focus on a common network based app as a running 

example. In general, a network based app usually fetches some data from server, and 

presents them to the users, and the users can perform some actions which in return causes 

the data to change/update from the server. To make it more concrete, we use a simple 

social news reading app as a running example. The app has the following features: 

1. It allows a user to register an account and create a profile associated with it.  

2. It allows a user to browse all news or news of a certain category, or news published by 

certain publishers.  

3. A user can like, comment and share a news.  

4. The app can send users push notifications when breaking news happen, or a summary 

of the important news of the day.   

3.5.2 Metrics-Driven A/B Testing Customization Process 

Metric-driven A/B tests start with the following 

1. Identify top metrics 

Having clear-defined, easy-to-understand metrics can set attainable goals, and measure 

improvements over iterations. For example, for a news reading app, one of the most 

important metrics is to measture how much time people spend on the app to read news. 

Any UI changes, be it as small as color change, font change, or as big as UI navigation 

change,  if it can improve this metrics, it should be considered successful.  

2. Identify variation points 
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As discussed in Chapter 2, variation points can be used to identify places that can be 

changed or customized in an app. As the client side architecture shows, UI, business layer, 

data layer, network, storage, etc can all be customized.  

                              
Figure 21 Metric Driven A/B Tests Customization 

UI Customization: Some of the customizations can be exetremely easy, such as theme 

color, font, font size, tabs order. These easy customizations might not be implemented 

through dynamic code replacement and execution, but an easy config change. Some UI 

customizations need designers’ assistance and enginees to implement, such as UI layout 

changes, navigation changes, design language changes. 
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Business Layer Customization: Workflows, models and components are the interests of 

customization in this layer. For example, when a new user first signs up, he/she has to go 

through an onboarding process. In this onboarding process, the user will be asked what 

type of news he/she is interested in, which publishers that he/she is interested to subscribe 

and what writers that he/she interested to follow. The order of this onboarding flow can b 

shuffed, and each component can be tweaked to provide better results.  

Network Customization: A metered mobile user, data consumption is always on top of 

this mind. A network library can be customized to not download the images of an article 

until the user specificially asks it to. Or when a user on unlimited data plan or on wifi, the 

network can behave a little more aggressively by downloading more artcles in advance so 

when the user reads them, the response time would be exetremely low. Or just a different 

implementation of the protocol, because of the differnet chipsets on the different devices, 

the implementation on one type of devices might perform better than the rest, but it might 

not be true for another type of devices.  

3. Run the Tests and Monitor the Metrics 

As illustrated in Figure 21, for a particular variation point, we identify the user co-hort 

group with similar to identical traits. For example, if we want to test which network 

implementation is the best for users with slow network, all the users that are often on a 

slow network would become the test targets. If there are N variations points, we devide 

the user group into N co-hort, and run each of the variation on one of the co-hort. 

Through out the testing period, the tracking components continue to send tracking data 

back to server, run through the analytical process and generate the metrics that we 

monitor. In this case, time spent in the app is the metric of the interest.  
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After some time, the data will become statistically significant, then we can answer the 

question which variant has the best performance. We would then apply this variant to all 

the co-horts, thus conclude the experiment.  

3.6 Conclusion 

In this chapter we discussed a self-adaptive mobile apps customization framework. We 

achieved this by extending and improving both client side and server side architecture. 

We illustrated a dynamic code execution machenism that allows the behaviors of an app 

to be changed after it has been installed without reinstallation. An analytical process is 

discussed to transform the user tracking data into metrics that define success of each 

customization. Finally, a metric driven A/B testing cuatomization process is proposed to 

help adapt different users behaviors, habits and device capabilities.  
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4 TWO-TIER MULTI-TENANCY CCALING AND LOAD BALANCING 

Cloud computing often uses the multi-tenancy architecture where tenants share system 

software. To support dynamically increasing demands from multi-tenants, the cloud 

service providers have to duplicate computing resources to cope with the fluctuation of 

requests from tenants. This is currently handled by virtualization and duplication at the 

application level in the existing cloud environment, such as Google App Engine. 

However, duplicating at the application level may result in significant resource waste as 

the entire application is duplicated. This chapter proposes a two-tier SaaS scaling and 

scheduling architecture that works at both service and application levels to save 

resources, and the key idea is to increase the resources to those bottleneck components 

only. Several duplication strategies are proposed, including lazy duplication and pro-

active duplication to achieve better system performance. Additionally, a resource 

allocation algorithm is proposed in a clustered cloud environment. The experiment results 

showed that the proposed algorithms can achieve a better resource utilization rate. 

4.1 Introduction 

Cloud Computing has emerged as a new infrastructure that enables rapid delivery of 

computing resources as a utility in a dynamically scalable, virtualized manner.  To take 

advantages of the scale of economics, many service and application providers start 

offering their software-as-a-service (SaaS) over the clouds. Typically, SaaS applications 

allow multiple tenants to reside on single or multiple instances of the software at the 

same time, which helps brings down the licensing fee. Virtualization is widely used in 

current Cloud computing systems [54] [55], which allows the ability to run multiple 
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operating systems on a single physical system or one operating system on multiple 

physical systems as shown in  

Figure 22.  
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Figure 22 Virtualization in Cloud 

To cope with dynamically increasing demands from multiple tenants, Cloud service 

providers need to allocate computing resources for the application dynamically. Existing 

solutions often involve application instances duplication. For example, for a Google App 

Engine (GAE) application, as the traffic to the application increases, more instances of 

the application are duplicated and deployed on more servers to handle the increased 

workload. However, most applications are componentized as software services, and 

computing load might not be distributed evenly among application components. 

Therefore, duplicating at the application level may result in computing resource waste, as 

it is usually only the bottleneck component that needs more computing resource.  

Another challenge is that different server nodes (virtualized or not) can have diverse 

levels of computing power.  Given a resource request, it is necessary to choose the most 

suitable server nodes to run application/service duplicates.   

This chapter proposes a two-tier SaaS scaling and scheduling architecture that duplicates 

at both service and application levels along with a resource allocation algorithm that 
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takes different computing power of server nodes into consideration. The main 

contributions of this chapter are as follows: 

A two-tier SaaS scaling and scheduling architecture at both service and application 

levels; 

A greedy resource allocation algorithm that selects suitable server nodes to run 

application/service duplicates.  

Two duplication time strategies, lazy and pro-active are provided to be chosen according 

to application requirement  and experiment evaluation that shows the effectiveness of the 

proposed model. 

The chapter is organized as the following:  Section 4.2 discusses server level and 

application level duplication and proposes a two-tier SaaS scaling and scheduling 

architecture; in section 4.3, a clustered-based resource allocation algorithm is proposed; 

section 4.4 discusses two different duplication time strategies and how to choose between 

them; section 4.5 shows some simulation results to show the effectiveness of the resource 

allocation algorithm; section 4.6 concludes the chapter.  

4.2 Two-Tier SaaS Scaling and Scheduling Architecture 

In this section, a case study is used to further illustrate why duplication at service level is 

necessary. Several definitions are first introduced for purpose of discussion. 

Application Request (R) is a request sent by the end users to the application. For a 

service-oriented application, several intermediate requests to the composing services 

might be generated to process an application request. In Figure 2, intermediate requests, 

RA, RB, RC might be generated for service A, B, C for a RAPP. 
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Component Throughput (Thr) is the maximal number of requests a component can 

process in a second without violating the SLA.  

Overloaded/Underloaded Component: If more requests are sent to the component per 

second than the component throughput, the component is overloaded.  If the average 

number of requests processed by the component per second is smaller than component 

throughput, the component is underloaded.  

The overloaded components can affect the system’s performance and result in SLA 

violation. The underloaded components might bring down resource utilization rate. For 

example, suppose one has a service-oriented application as shown in Figure 23. The 

application is composed by three atomic services: A, B, C. The number in the brackets 

indicates throughput of each component. The SLA for this application requires that a 

request to the application needs to be returned within 2 seconds.  At a time snapshot, 15 

requests are sent the application per second.  Considering the following two cases of 

service requests of B and C: 

<Case 1>:  Twice as many intermediate requests are generated for B as C: RB = 2 Rc. 

After A, 10 RB are sent to B, 5 RC are sent to C, which are the throughputs for B and C 

accordingly, therefore, the application can return these requests within 2 seconds, thus 

successfully process 15 requests. The application is at the optimal condition, since all of 

its components are working at the maximal capacity.  

<Case 2>: if twice as many intermediate request are generated for C as B: RC = 2 RB. 

After A, 10 RC are sent to C, 5 RB are sent to B. All the requests to B can be processed in 

one second. Because C’s throughput is 5, it takes 2 seconds to process these 10 

intermediate requests, or it can only process 5 of them in 1 second. Therefore, only 10 
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RAPP are successfully returned in 2 seconds. In this situation, B is underloaded, and C is 

overloaded.  

For case 2, with GAE, to return all the 15 application requests within 2 seconds, the 

system needs to create another instance of the application, which leads to resource waste. 

If duplication can be operated at the service level, we can just duplicate C since C is the 

bottleneck of the application.  Moreover, if there are services underloaded, they can be 

moved to less powerful server nodes.  

B(10) C(5)

A(15)

 

Figure 23 Sample Service components in a workflow 
As one can see, application level duplication does not make the best use of resources, 

especially when some overloaded components become the bottleneck of the whole 

system.  

Duplication Strategies 

From coarse granularity to finer granularity, one can use diverse duplication strategies, 

including: 

Duplication Applications: This is a similar strategy to the one used with GAE.  

However, since applications are service-oriented, not only the application instance is 

duplicated, but also the service instances belonged to the application instance, as 

illustrated in Figure 24. 
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Figure 24 Application Duplication Strategy 

Duplication Services: When the volume of requests to an application increases, and the 

application fails to meet the SLA specified by its users, it means the application is 

overloaded. However, according to the analysis in section 4.2, this might be caused by an 

overloaded service. Therefore, under this strategy, new service instances will be created 

and deployed to servers if all existing instances for a service are overloaded as illustrated 

in Figure 25. In the initial application instance, B and C, marked by darker color, are 

overloaded, so new service instances of B and C are duplicated.  

Application 
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A

Application 
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B C
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balancer balancer

C1 C2  

Figure 25 Duplication Service 

Duplication at a mixture of Service/Application: One downside of the service 

duplication strategy is that the duplication always happens at the service level and if the 

request volume to an application keeps growing, too many service instances will be 

duplicated under one application instance, which will eventually overload the service 

balancers. If the duplication can happen at both application and service levels, shown in 

Figure 26, each load balancer might have fewer instances to manage, thus the balancing 
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workload is further distributed on the application level. A load balancer is needed for the 

application instances too.   
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Figure 26 Duplication mixture of Application/Service 

Two-Tier SaaS Scaling and Scheduling Architecture 

Based on the above analysis, we propose a two-tier SaaS scaling and scheduling 

architecture described in Figure 27. Several components are as follows: 

Application/Service Container:  a runtime environment for an application/service which 

includes security, lifecycle management, monitoring and other supporting features.  

Re-deployable Service Package:  a package that contains the source code/complied code 

of a service and related resources required to deploy the service on to a service container. 

A new service instance can be rapidly created on another service container using the re-

deployable package.  
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Figure 27 Two-Tier SaaS Scaling and Schedule Architecture 

Service Replica/Instance:  a concrete deployment of re-deployable service package on a 

service container, which is able to handle service requests. A service replica is also called 

service instance. A service replica might be customized to meet tenants’ specific 

requirements according to the tenant configuration files.  

Monitoring Service: It monitors the performance of a service/application instance 

closely.  Based on historical data, it can report whether a service instance on its node is 

underloaded, overloaded or at its optimal condition.  

Service Load Balancer: All the requests to a certain type of service are first routed to the 

load balancer for it. The load balancer manages all instances of a service belonged to an 

application instance. According to each service instance’s throughput, status and 

configuration combined with the characteristics of requests, the load balancer routes 

requests to the different instances. If all the service instances become overloaded, the 
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load balancer will create additional service instances on service containers running on 

newly provisioned server nodes using the re-deployable service package.  

Tenant Configuration Files: In a multi-tenancy architecture environment, requests to an 

application may come from different tenants. Each tenant might customize the 

application/service instances according to their specific requirements. Tenant 

configuration files contain the customization information for each tenant that the load 

balancer can use when creating new application/service instances.  

4.3 Cluster-Based Resource Allocation Algorithm 

Different server nodes (virtualized or not) can have diverse levels of computing power. 

When allocating server nodes to run application/service duplicates, this difference needs 

to be considered. For instance, suppose the throughput of an instance, A1, of service A is 

1000. When the number of requests sent to A1 per second increases to over 1000, the 

instance becomes overloaded. A2, a new instance of service A, will be created and 

deployed. If A2 is deployed to a similar server node like A1, the throughput for A2 will 

also be 1000, thus the throughput for service A is 2000 ideally. However, if we know that 

the frequency of the requests to service A will be no more than 1500/sec, there is no need 

to deploy A2 to a server node as powerful as the one that A1 is running.  In the following 

section, we further extend our duplication framework by taking the computing power of 

each server into consideration.  

Naturally, we expect that the server nodes in cloud computing clusters possess different 

degrees of computing power. It is easy to see that, one can cluster server nodes into 

different categories according their computing power. Moreover, virtualization 

techniques can slice or merge multiple machines computing power to allow finer-grained 
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resource allocation. Generally, the computing power of a server node/computer is 

determined by many factors, such as CPU speed, bus speed, cache size, RAM size and 

type, etc. When considering virtualization, certain overheads should also be considered, 

such as virtual network connectivity, scheduling, etc. However, the performance 

overhead of virtualization has diminished significantly over the past few years [56]. How 

to model a server node’s computing power is not the focus of this chapter. For the rest of 

the chapter, we assume that computation power of each server node can be modeled as a 

number. More details of modeling computers’ power can be found in [57] [58]. 

Clustering Servers using Computation Power Model 

Suppose on a cloud environment, there are N server nodes. For each server j, Pj is the 

computing power number for server node Sj. Pmin is the lowest computing power number 

of all the nodes. We define our clusters as the following: 

 
𝐶!! = 𝑆!   𝑃! ∈ 2! ∙ 𝑃!"#, 2!!! ∙ 𝑃!"# , 𝑖 ∈ 𝑁} 

 
For example, if 𝑆! ∈ 𝐶!,𝑃!"# ≤ 𝑃! ≤ 2𝑃!"#. 𝐶!!  is the total number of server nodes in 

cluster i. 

The motivation of this clustering schema is to acknowledge the computing power 

differences among the server nodes, yet reduce the complexity by grouping the sever 

nodes with similar computing power together. This also serves a guideline for cloud 

providers to build server nodes whose computing power increases in the power of 2. 

However, obviously, we cannot keep doubling the computing power for a server node 

infinitely in reality.  For example, in a cloud cluster deployment, the cluster with most 

powerful server nodes is C32, which means the i can only go as high as 5. We call this 

cloud cluster deployment a level l deployment where l is the highest i value. 	



   

 81 

Cloud monitoring service maintains two pools for each cluster. 𝐶!!!!""#$!%&' contains 

all the server nodes that have been allocated for an application/service in cluster  𝐶!!, 

𝐶!!!!"##, shortened as 𝐶!!, contains the server nodes free to allocate in cluster 𝐶!!. 
 

Cluster-Based Duplication Algorithm 

According to the clustering schema, the minimum allocatable resources are the server 

nodes belonging to cluster C1. We define a server node in C1 as a resource measurement 

unit, written as r1.  Accordingly, a server node in C4 represents 4 resource units, written 

as r4.  

Computing power requirements can be translated to the number of resource units 

needed by examining SLA, analyzing programs’ characteristics and comparing with 

historical data. In most of the cases, the request for computing recourse is proportional to 

the how many requests the applications/services serve per second. For the rest of the 

chapter, we use rx to present a resource request that needs X resource unit.  Accordingly, 

we have rx + ry = rx+y. 

Optimization Goal of Resource Allocation 

Let 𝑡!! be the number of server nodes chosen from cluster 𝐶!!, a set 𝑇 = {𝑡!!|𝑡!! ∈

𝑁, 𝑖 ∈ 𝑁}  represents one way to allocate the resource. 𝑡!"!#$ = 𝑡!!
!
!!!  is the total 

number of allocated server nodes of T, 𝑟!"!#$ = 𝑡!! ∙ 𝑟!!
!→!
!  is sum resources of all the 

selected nodes of T. T is the set that contains all T. Given a resource request rx, one first 

searches solutions with the least rtotal without going below rx; if there are multiple 

candidates, we choose the one that uses the fewest server nodes.  

The goal is set based the following two considerations: 
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• Avoid resource waste. For example, a resource request r15, and we have two possible 

resource allocations T1 and T2: T1 uses r16 resource, and T2 uses r18, we prefer T1 over T2 

as T1 uses less resources. 

• Avoid scheduling overheads. Generally, the more number of server nodes, the more 

scheduling overheads. For example, for a resource request r16, we have two allocations T1 

and T2 that both uses r16 resources. T1 only uses one server node from cluster C16; T2 uses 

two server nodes from cluster C8. We prefer T1 over T2 as T1 uses fewer server nodes.  

 

To formalize the computation goal of our allocation algorithm, we define Tcandidate= {T 

|T∈T, rtotal ≤rx} as all the possible allocations that satisfy the resource request. rmin = min 

{rtotal | T∈Tcandidate} and Tmin-R = {T|T∈ Tcandidate, rtotal= rmin} 

The optimal allocation can be defined as follows:  

Given a resource request Rx, find a set Topt∈Tmin-R , topt-total=min{ttotal | T∈ Tmin-R } 

Resource Allocation Algorithm 

Given a resource request rx, the algorithm needs to find an optimal allocation Topt.  The 

algorithm uses a greedy approach to achieve the optimization goal as shown in Algorithm 

1. Basically, the algorithm tries to allocate server nodes with computing power no greater 

than rx in a descending order, meaning it allocates more powerful server nodes first till 

the server nodes in C1.  

If the total resource of T is equal to rx, then it is the optimal allocation. However, some 

clusters might not have enough server nodes available, so it is possible that the total 

resource of T is less than rx. In this case, the algorithm retrieves back to the last level 

where adding one more server node would cause rtotal to be greater than rx. It releases all 
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the server nodes from lower levels, and adds one server node from this level. At this time, 

the rtotal is the rmin. The algorithm then releases all the server nodes, and uses rmin instead 

of rx to another round of allocation from the beginning and returns the allocation it finds.    

In table 1, each value represents the current available resources in cluster Cx (x = 1, 2, 

4.., 32).  The initial distribution of each cluster is shown in the “initial” column. When 

getting the request of r31, as step 1, the algorithm skips C32 as r32>r31. It checks if there is 

any free server nodes in cluster C16 and allocate one if there is. After this step, the values 

are shown in column “step 1”. Specially, we circle C16, as one server node is allocated in 

this cluster. As step 2, allocating another server node from C16 will cause rtotal  to be 

greater than r31, therefore the algorithm allocates a server node from C8 instead. Similarly, 

we keep allocating server nodes till C1. At this time, rtotal = r30 < r31, and the last level 

adding one more server node of which will cause rtotal to be greater than rx  is level 1, C2. 

The algorithm adds one server node from C2 to the allocation. 

Now, we have rtotal = r32= rmin. The algorithm then releases all the server nodes in the 

allocation, and uses r32 to return the algorithm.  Therefore, we cannot find an allocation 

that just meets the resource request r31, instead, we allocate 1 server node from C32. Note 

there are other possible allocations that also have r32 resource, however, our algorithm 

only returns the one with the fewest server nodes.    

Algorithm 1: Resource Allocation (RA) 

Input:  l level cloud clusters, given resource   rx. 

Output: An optimal allocation Topt 

Signature: T allocate(int rx)
 

for(int i = 0; i ≤ l; i++) //initialization 
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𝑡!!= 0; 

int j = l + 1; 

// j is the last level adding one more server node of which // will cause rtotal >  rx 

for(int i = l; i ≥0;i--) { 

     while ( 𝐶!! !=0 && rtotal+ 𝑟!! <rx) { 

           𝑡!!++; 𝐶!! --;  

      } 

      if ( 𝐶!! !=0)  j= i; 

} 

if(rtotal== rx) return T; 

for(int i = 0; i < j; i ++) { 

    𝑡!!--;  𝐶!! ++;  

} 

if (j == l + 1) return null; 

else {  

 𝑡!!++;   𝐶!! --; int rmin = rtotal; 

release(T);//release server nodes in  current allocation 

return allocate(rmin); 

} 

Example 1: Considering a level 5 cluster C = {C1, C2, C4, C8, C16, C32} in cloud 

deployment, a resource request r31, use the algorithm to find the optimal allocation Topt.  
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Table 7 Running Example for RA 

 initial Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

C1 0 0 0 0 0 0 0 

C2 3 3 3 3 2 1 3 

C4 10 10 10 9 9 9 10 

C8 2 2 1 1 1 1 2 

C16 2 1 1 1 1 1 2 

C32 2 2 2 2 2 2 1 

Resource Reallocation 

When the usage of an application/service increases/decreases, resource might be 

added/withdrawn. However, the additional resource might cause the allocation not to be 

optimal. For example, initially a resource request for an application/service is r6, an 

optimal allocation is to choose one server node from C4 and one server node from C2.  

When the usage increases, a r2 additional resource is needed.  One possible solution is to 

add another server node from C2; however, since the total resource needed now is r8, we 

could deploy an application/service instance onto a server node from C8, and retract the 

two nodes allocated previously.  

The algorithm for resource reallocation can be easily described based on the resource 

allocation algorithm.  

Algorithm 2: Resource Re-allocation (RR) 
Input: l level cloud cluster development, an existing allocation T whose rtotal=rx, an 
additional resource  ry. Output: An optimal allocation Topt 
Signature: T re-allocate(T , int ry)

 

T’ = allocate(rx+y).  
Compare the new allocation T’ with the old allocation T. Create application/service 
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instances on server nodes that were not in T, and retract the server nodes in T that are 
not in T’ now.  

4.4 Lazy or Pro-Active? 

All the discussions in 4.4 use a lazy way to handle service requests, which is “wait until 

needed”. While in some cases, when one can predict the demand request in the near 

future, pre-allocate resources can improve the system performance greatly.  For example, 

tax return services are burst from January to April 15 every year, in that case, one can 

duplicate the service earlier and pre-allocate the resources needed, which in turn can 

improve the tenant’s performance. In this section, we further propose a pro-active 

replication solution based on prediction models.  

To predict the future demand of services, multivariate exploratory techniques in data 

mining and machine learning can be applied to identify patterns for future service 

demand. Time Series Analysis is one commonly used method, which includes identifying 

the nature of the phenomenon represented by the sequence of observations, and 

forecasting future values of the time series variable. After identifying the pattern of 

observed time series data, one can interpret and integrate it with other data and 

extrapolate the identified pattern to predict future events.  

There are two types of time series patterns, trend analysis and seasonality. Those two 

general classes of time series components may coexist in cloud service demand. For 

example, service request of a tenant can rapidly grow over years but they still follow 

consistent seasonal patterns (e.g., as much as 95% of yearly tax return each year are made 

from January to early April, whereas only 5% in other months). Before trend analysis, 

data cleaning is necessary to remove the error using smoothing, such as using 

mean/median. Then one can fit a distribution function to the observed data, for example, 
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the fitting function could be a linear, logarithmic, exponential, or polynomial function.  

Hypothesis test can be used to evaluate the fitting function at last. 

Given the two possible models, lazy and pro-active ones, how to choose models 

according to specific application requirement is very interesting. Intuitively, one can see 

that the service requests can be coarsely classified into two categories according to their 

QoS (Quality of Services): low penalty task and high penalty task. The first type means 

even the service requirement could not be satisfied, the penalty is low and acceptable, one 

can use lazy model and duplicate until must do so. While the latter has a high penalty 

when short of service supply, it is highly recommended to use pro-active model to plan 

and duplicate ahead and reduce the penalty. Also it is easy to see, some service has a 

periodical pattern, for example, tax return services are always burst during Jan to April 

every year, it is better to use pro-active model and duplicate service earlier. 

In a word, customers can choose different model according to their service requirement, 

as well as their budgets, QoS, and other factors to make a decision. The model proposed 

in this chapter provides flexibility for model choices. 

4.5 Simulation Results 

We built a simulation framework that is able to simulate service composition, service 

invocation, cloud deployment, resource allocation, application/service duplication and 

load balancing.  Due to the page constraints, we only show the simulation results of 

resource allocation algorithm. Details of the simulation framework and other simulation 

results will appear in the extended version of this chapter.  

We compare our resource allocation algorithm with two straightforward algorithms.  
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• Small First (SF) Algorithm: It tries to allocate less powerful server nodes from lower 

level clusters first. Using the same example from section 4.3, it will return an allocation 

T = {t1 = 0, t2 = 3, t4 = 7, t8 = 0, t16 = 0, t32 = 0}, rtoatl  = r34. 

• Big First (BF) Algorithm: It tries to allocate more power server nodes from higher level 

clusters. Using the same example from section 4.3, it will return an allocation T = {t1 = 

0, t2 = 0, t4 = 0, t8 = 0, t16 = 0, t32 = 1}, rtoatl  = r32. 

Simulation Setup: We tested 3 three allocation algorithms with the following 5 level 

cloud deployments.  

|C1|=10 |C2|=20 |C4|=30 |C8|=50 |C16|=80 |C32|=100 

We first randomly generated 200 resource requests between r1 and r50. We tracked 3 

numbers that are the most interesting. The first is utilization rate (UR), which is defined 

as the ratio of total resource requested to total resource allocated. The UR is an indicator 

how effective computing resource is utilized. If the UR is too low it means that much 

more resource is allocated than needed, leading to resource waste. Figure 28 shows how 

UR changes as the request number increases to 100 for the three algorithms. 

As shown in the figure, the UR for RA decreases slowly as the request number increases 

and the lowest rate is around 0.94. This is because RA tries to meet the resource requests 

without going over, and when it has to, it only goes over the minimum possible. The UR 

for SF starts off strong then decreases sharply and the lowest comes at 0.72, because SF 

allocates server nodes from lower level clusters first, and as these server nodes quickly 

run out, it has no choices but to keep giving out more powerful server nodes even for 

smaller resource requests. The trend for UR of BF is to increase, which can be explained 

by the fact that BF first allocates server nodes from higher level clusters that possess 
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more computing power than requested, which results in low UR in the beginning. As 

these server nodes with higher computing power number run out, BF starts to return 

allocations with allocated resource closer to the requested resource.   

 

Figure 28 Utilization Rate Diagram 

The total allocated server node number (SNN) affects the performance of load 

balancers. More server nodes mean more workload for load balancer. Figure 29 shows 

how SSN grows as the resource request number increases for the three algorithms.   
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Figure 29 Server Node Number Diagram 

At the beginning, SNN for SF grows the fastest, followed by RA, then BF. This is 

expected as SF first allocates less powerful server nodes thus uses more of them for the 

same resource requests than RA, BF. BF has the lowest SNN initially, however, its 

increasing rate grows higher, and at around 130th request, it surpasses the SNN of RA. 

This is because BF aggressively allocates more powerful server nodes first, which leads 

to smaller SNN. When server nodes from higher level cluster become unavailable, it is 

forced to use more server nodes from lower level cluster. 

Each cloud deployment has limited resource; therefore, it can only serve up to a certain 

number of resource requests. Success Rate (SR) measures the percentage of the resource 

requests allocated successfully within the 200 resource requests generated. Figure 30 

shows the SR for the three allocation algorithms. RA successfully allocates 175 of 200 

resource requests, thus has the highest SR, while SF, BF only successfully allocates 135, 

140 resource requests respectively. The numbers shown in the curly brackets are the 

differences of SF, BF compared to the SR of RA.  
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Figure 30 Success Rate 

4.6 Related work 

Service Duplication and Architecture. In [59] Recardo and etc. first identified the 

importance of replication in enhancing multi-tier information system’s availability and 

scalability, then discussed several replication patterns in an architectural point of view.  

The authors only discuss replication in two major tiers: Application and Database, and 

they did not take the composable characteristic of SOA, and overlook the possibility of 

replicate parts of the applications. In [60], a redundancy protocol adapted from 3 phase 

commit protocol (3PC) for SOA is proposed to ensure that “at most one” service provider 

is executed when there are multiple service providers available. In [61], the authors 

proposed a Dynamic Service Replica Process (DSRP) system which has a mechanism to 

create and delete service automatically to achieve better load balancing and performance.  

Several studies that focus on the various replication strategies, such as ‘active’ and 

‘passive’ techniques, are presented by Maamar et al. [62], Guerraoui and Shipper [6]. 
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These papers discuss replication communities in Web Services, survey replication 

techniques, and evaluate temporal and special redundancy techniques. 

Architectures are described by Osrael et al. [63], who propose a generalized 

architecture for a service replication middleware, and Juszczyk et al. [64], who describe a 

modular replication architecture. Among the frameworks are those described by Salas et 

al. [65], Engelmann et al. [66], and Laranjeiro and Vieira [67]. They propose an active 

replication framework for Web Services, a virtual communication layer for transparent 

service replication, and a mechanism for specifying fault tolerant compositions of web 

services using diverse redundant services, respectively. 

The focus of these studies is on describing and implementing various strategies for 

invoking and maintaining replicated services. However, most do not treat services as 

autonomous components, and so their applicability is limited for an SOA system. 

     Virtualization: is widely used in Cloud computing, the benefit of VM covers many 

perspectives, e.g. it reduces expenses in money, power, and space and improves agility to 

meet changing requirements. Due to sited specified, loosely coupled, non-portable 

restrictions, it is hard to specify, communicate and manage diverse requirements. Virtual 

Machine Contracts (VMCs)  [55] is a platform, with three components such as Policy 

Language Processing, Rules Database, Enforcement Element Notification, and these 

three parts can automatic communicate to meet the requirement. SnowFlock [54] is 

provided to manage application state and cycle. In each window, arriving jobs are 

analyzed, producing a number of virtual machine according to the volume of incoming 

requests for each tenant. At the same time, each job is assigned to an available virtual 

machine class as it arrives, if one has been provisioned with sufficient resources to meet 
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its requirements. In this chaper, we propose a novel two-tier duplication model with VM 

at lower level to support flexible scheduling. 

4.7 Conclusion 

In this chapter, a two-tier SaaS scaling and scheduling architecture was proposed. In this 

architecture, duplication can happen at both service and application levels to avoid 

resource wastes. In addition, discussion was provided on how to choose between two 

duplication timing models, lazy and pro-active. To further improve resource utilization 

rate a cluster-based resource allocation algorithm was proposed. Simulation results 

showed that the resource allocation algorithm can provide better resource utilization rate 

while using fewer server nodes.   
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5 ONTOLOGY-BASED SERVICE-ORIENTED SIMULATION FRAMEWORK 

WITH MICROSOFT ROBOTICS STUDIO 

In Service-Oriented Architecture (SOA), the concepts that services can be discovered and 

application can be composed via service discovery bring great flexibility to application 

development. Microsoft Robotics Studio (MSRS) is a recent initiative in applying SOA 

to embedded systems and one of its key features is its 3-D simulation tool that allows 

applications to be simulated before deployment. This chapter proposes an ontology-based 

service-oriented simulation framework with MSRS by adding a set of ontology systems, 

i.e., service ontology, workflow ontology, entity ontology, and environment ontology. 

These ontology systems store relevant information useful to compose simulation 

applications, and items stored also cross reference to each other to facilitate reusability 

and rapid application composition, This chapter then provides a detailed case study on a 

popular robotic game Sumobot using MSRS to illustrate the key concepts and how they 

can support rapid simulation development. 

5.1 Introduction 

Service-Oriented Computing (SOC) using Service-Oriented Architecture (SOA) has 

received significant attention as major computer companies such as Oracle [68], Cisco 

[69], HP [70], IBM [71], Microsoft [72], SAP [73], as well as government agencies such 

as U.S. Department of Defense (DoD) [74]. SOA is characterized by loosely-coupled 

services, open standard interfaces, service publication, dynamic discovery of services, 

and dynamic composition using services discovered. SOA is being used not only for e-

commerce applications, but also for embedded applications. For example, DoD is 

developing several large IT projects based on SOA, and some of them for real-time 
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embedded applications. Microsoft Robotics Studio (MSRS) [75] is another example and 

this is a recent initiative by Microsoft to incorporate SOA into embedded system 

development.  

SOA has its own lifecycle models and processes such as IBM Foundation Lifecycle 

[76], and they are different from traditional software development processes. As services 

may be discovered and selected at runtime, it is important to verify these newly 

discovered services before they are used in applications. One important verification 

approach in SOA application development is simulation. Specifically, SOA simulation is 

considered a key technique for business modeling and process management for IBM 

WebSphere applications [77]. MSRS also uses simulation to verify the robotics 

application.  

As SOA computation, infrastructure, development processes, runtime environment 

and model-driven approach are different from traditional software, thus SOA simulation 

will also be different [78]. For example,  

• With respect to SOA computation, SOA simulation needs to simulate services, 

workflows, policies, and collaboration.  

• With respect to SOA infrastructure, SOA simulation needs to address SOAP [79], 

service publishing, discovery, composition, monitoring, deployment, and possibly 

even re-composition and reconfiguration. Furthermore, SOA hardware infrastructure 

can also be simulated including visualization, HasS (Hardware as Services) / IaaS 

(Infrastructure as a Service) [80] or PaaS (Platform as a Service) such as in the Intel 

SOI (Service-Oriented Infrastructure) project [81] [82].  

• With respect to SOA development processes, SOA software development process is 
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different, and simulation can play a significant role as SOA requirement model, 

design and design architecture, services, workflows, policies [83] [84], dynamic 

collaborations [38], monitoring mechanisms can be simulated. For example, the IBM 

Foundation lifecycle is different from the traditional software development process 

where software development and execution are all considered in the same 

development model. Previously, software lifecycle models only consider software 

development phases and do not consider execution issues at all [85]. 

• Due to the dynamic nature of SOA, static analysis may not be sufficient and dynamic 

simulation will be needed. Specifically, simulation should be able to perform the 

following tasks:  

o Dynamic application composition simulation: As SOA software can be composed 

at runtime with newly discovered services, the simulation task should be able to 

simulate the re-composition process.  

o Runtime behavior and performance simulation: The simulation task should be 

able to perform the runtime behavior and performance simulation to make sure 

the newly recomposed application workflow will behave as expected.  

o Dynamic collaboration simulation: With SOA Dynamic Collaboration Protocol 

(DCP), collaboration can be dynamically established at runtime between two 

parties not knowing each other earlier [38]. Simulation of this DCP can ensure 

that all dynamic collaboration can be properly established for actual deployment. 

• SOA development is model-driven; however, SOA models may be rather different 

from traditional software models. Specifically, SOA modeling language may need to 

model services, workflows, policies, SOA protocols, monitoring mechanisms, and 
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thus SOA simulation will also be model-driven. Each component in the simulation 

framework, including the simulation engines as well as the application components 

and tasks, are modeled as services or workflows using various modeling languages. 

Code may also be automatically generated from the model. One such modeling 

language is PSML (Process Specification and Modeling Language) [22] which can 

model processes as well as policies, and can be used to generate code.  

• The SOA simulation infrastructure can also be structured in a service-oriented 

manner, i.e., each component in the simulationinfrastructure, including the simulation 

engines as well as the application components and tasks, can be modeledas services 

or workflows using various modeling languages. 

• New SOA approaches such as cloud computing [3] pose new challenges to SOA 

simulation. In these environments, resources owned by different organizations are 

distributed geographically and interconnected via wide-area networksor Internet [86]. 

These introduce a series of problems such as resource management and application 

scheduling, resourceand policy heterogeneity, fault tolerance. Simulation can play a 

significant role in cloud computing by simulating itsbehavior and performance. The 

simulation can focus on aspects such as resource scheduling, performance, 

interactionsamong resource brokers and users over a network. 

• Another interesting approach is Software as a Service (SaaS) [87]. SaaS allows 

software access via networks, and softwarecan be continuously updated so that a user 

will always use the latest version of the software over the network. Essentially,a user 

may be able to make specific options about applications, and the system will return 

appropriate versions to fit customers’needs. Simulation can play a role in SaaS. 
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Before the software is uploaded in the SaaS site, it can be simulated toevaluate its 

performance and scalability. Different workloads and user requests can be modeled to 

see how the system willperform in the SaaS environment. 

This chapter is organized as followed: 5.2 will briefly overview the existing SOA 

simulation works; Section 5.3 introduces the MSRS architecture; Section 5.4 explains the 

collaborative SOA simulation framework with MSRS; Section 5.5 uses an example and 

simulation result to illustrate the effectiveness of the proposed framework. Section 5.6 

concludes this chapter.  

5.2 Previous SOA Simulation Research 

Service-oriented simulation is supported by a number frameworks, including XMSF 

(Extensible Modeling and Simulation Framework) [88] [89] and the simulation grid 

system Cosim-Grid [90] and GridSim [86]. XMSF creates a modeling and simulation 

framework that utilizes a set of web-enabled technologies to facilitate modeling and 

simulation applications. XMSF involves Web/XML, Web services, and 

internet/networking to improve the interoperability. A significant contribution by XMSF 

is its web-based RTI (Runtime Infrastructure). Cosim-Grid is a service-oriented 

simulation grid based on HLA, PLM (Product Lifecycle Management) [91], and grid/web 

services. It applies OGSA (Open Grid Services Architecture) [92] to modeling and 

simulation to improve HLA in terms of dynamic sharing, autonomy, fault tolerance, 

collaboration, and security mechanisms. However, both XMSF and Cosim-Grid utilize 

web services as components in the component-based development without fully taking 

the full potential of SOA [93]. For example, SOA offers dynamic composition, re-

composition, and reconfiguration, and these can be incorporated into the simulation 
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framework.  

Other related research includes INNOV8 [94], which is an IBM training simulator. It 

is a three-dimensional simulation video game that puts a business person in a virtual 

office with the task of constructing a more efficient company. Process improvement is a 

critical component to service-oriented architectures. INNOV8 is meant to resolve 

people’s lack of skills in understanding the business process management and improving 

a company’s internal business processes by offering a simulator to the end user. 

SIMPROCESS [95] is a process analysis tool commonly used to support business process 

improvement and operations research projects. It provides modeling, simulation and 

analysis capabilities. The models are used to define complex business process flows that 

are represented graphically as activity diagrams. SIMPROCESS can be used in SOA by 

providing simulation models as a callable service. However SIMPROCESS does not 

capture the dynamic features of SOC, thus the simulation is only at static level. ISTF 

(Interface Simulation and Testing Framework) [96] is an extensible SOA simulation tool 

offered by IONA. ISTF simulates the end-to-end distributed application scenarios and 

demonstrates how individual components will interface with each other in production. Its 

simulator simulates both the client and server side. It also has a set of shared test cases. 

The matching simulators provide a common, codified interpretation of interface behavior 

to both the server and client development groups. The use of shared test cases ensures a 

common interpretation of the data requirements for each interface. ISTF cannot simulate 

the workflow within the SOA environment and it does not have analyzing features and 

other dynamic features for the SOA. 

DDSOS (Dynamic Distributed Service-Oriented Simulation) [20] [97] is an SOA 
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simulation framework that provides simulation runtime services and supports. DDSOS 

has RTI like the one in HLA [98], however it extends RTI by introducing several new 

services so that it can provide on-demand simulation. Within this framework, simulation 

code can be dynamically generated and configured whenever demanded by the users. The 

DDSOS framework provides the following services and tools:  

• Two layers of modeling support. At the high layer, it allows a user to specify 

components and their relationships. At the low layer, it allows a user to specify 

processes, services, and workflows. Both are supported by PSML [22] modeling 

language. Models specified can be analyzed using various analysis tools such as C&C 

(Completeness and Consistency) tool. 

• An on-demand automated dynamic code generator (service) can generate executable 

code for simulation and for real applications directly from the model (specification) 

written in PSML.  

• An on-demand automated dynamic code deployment service can support rapid and 

automated simulation/real code deployment. 

• Simulation engines that carry out simulation tasks form a simulation federation. 

These engines can be geographically distributed on simulation services that are 

interconnected via network. 

• An extended runtime infrastructure (RTI) to support the simulation services’ 

operations. 

As SOA development is mainly model-driven, thus SOA simulation will be model-

driven. Each component in the simulation framework, including the simulation engines as 
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well as application components and tasks, are modeled as services or workflows using 

various modeling languages such as BPEL [99] or PSML-S [22]:  

• PSML-S is an SOA modeling language and it has the single-model-multiple-analysis 

(SMMA) capability [22]. PSML-S has three models. The Element Model specifies 

concepts and specific relations among them; The Structure Model defines connections 

among model elements; The Behavior Model defines the process of an action in 

response to an event. PSML uses a control flow to model system behaviors.  

• Simulation can be applied to various activities in each phase throughout the lifecycle of 

SOA application development using the model driven approach. The activities that can 

be simulated include service publishing, service discovery, service composition, 

dynamic architecture, reconfiguration, dynamic collaboration, policy enforcement.  

• In SOA application development, simulations may be done under different 

configurations such as: service simulation only, service and workflow simulation, 

hybrid simulation where real services participate and complete pure simulation 

PSML is used as the modeling language, and the modeling process and techniques are as 

follows: 

1) Model the identified services in an application: identified services can be mapped to 

PSML model elements and PSML structure elements; 

2) Model the identified workflows or collaboration: workflows can be mapped to PSML 

model elements and PSML behavior model. Furthermore, SOA software architecture 

can also be modeled by PSML; 

3) Perform analyses (such as completeness and consistency analysis) on the model;   
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4) Generate the simulation code based on the model: PSML uses three models to 

generate code: service model, system model, and environment model. The system 

model and the service model describe the platform-independent information, and the 

environment model provides the platform-specific information. Template-based 

approach and integration techniques are employed in the code generation process;  

5) Deploy simulation code in a service-oriented simulation framework such as DDSOS 

to run the simulation; 

6) Repeat this process until the system has shown satisfactory behaviors and 

performance. 

SOA allows services to be discovered and composed at runtime, and thus SOA 

behavior can be determined at runtime only. However, in this approach, collaboration 

workflow is still determined at design time, except that services participating in the 

workflow will be determined at runtime. A more complex scenario is that even the 

collaboration workflow will be determined at runtime. In this case, two applications 

need to establish their collaboration workflows and identify participating services at 

runtime. The Dynamic Service-Oriented Collaboration Simulation (DSOCS) 

framework [100] addresses this issue. The DSOCS framework integrates the SOA 

dynamic collaboration and simulation concepts. The framework supports modeling 

and simulating systems with the distributed, interactive, and discrete–event driven 

focuses. An important element of DSOCS is dynamic collaboration configuration 

service which generates the simulation application configuration at runtime based on 

the application template and the service collaboration specifications. 
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Another important feature of SOA is policy-based computing where constraints can be 

specified as policies and enforced at runtime. While some SOA systems may have the 

same workflows and services, their runtime behaviors can be rather different if different 

sets of policies are used. For example, a tightly controlled policy may stop every message 

flow, inspect the data going through to ensure security policies, however another set of 

policies may do only random sampling in the background, and system performance will 

be drastically different. Thus the overall SOA system behavior is not only determined by 

the system specifications and implementations, but also the policies used. Policies can be 

specified by an independent third party rather than the system developers. However, 

policies themselves also need to be verified, and their impacts to the overall system need 

to be evaluated, and in many cases their impacts need be determined by simulation before 

deployment because both the system software and policies must be running concurrently 

to evaluate their interactions. Specifically, an SOA application can be simulated with 

different sets of policies to see how the system will behave under the control of different 

sets of policies. This also introduced new and interesting problems to software 

verification as previously computation behavior can be mostly determined once the 

system specifications and implementations are completed and known, but SOA software 

needs to be evaluated with policies that may be developed by others. Several simulation 

frameworks have been proposed to address this policy-based computing to control data 

access [83] [84], service collaboration [101], temporal relations [102], and to verify the 

consistency and completeness of policies [101]. 
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5.3 Microsoft Robotics Studio  

MSRS is a service-oriented development and simulation platform to create robotics 

applications, and its architecture is shown in Figure 31. 

 

Figure 31 Rebotics Sutdio Simulation Architecture 

As shown in Figure 31, DSS and CCR are the two most important components that 

provide the facilities to run robotic programs and their simulations.  A brief explanation 

is given as follows: 

Concurrency and Coordination Runtime (CCR) provides a concurrent message-

oriented programming model for SOA application development, and it manages 

asynchronous operations, dealing with concurrency, exploiting parallel hardware and 

handling partial failure.   

Decentralized System Services (DSS) provides interoperability between simulation 

engine and CCR, and it allows application composition using remote services. The DSS 

runtime is built on top of CCR and does not rely on any other components in MSRS. 

It provides a hosting environment for managing services and a set of infrastructure 
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services that can be used for service creation, discovery, logging, debugging, monitoring, 

and security. 

5.4 MSRS Simulation Runtime 

For each simulation task, the user composes an application using the basic activities 

provided by MSRS, which are common programming constructs such as data, variable, 

if-then-else constructs, and other services that are related to collecting data from sensors 

and controlling the actuators of robots. When the users compose applications, they either 

compose with the actual services or generic services which can be bound to real services 

at runtime. Using generic services provides flexibility to the applications, because the 

users can run the same application in a simulated world on different simulated robots or 

in the real world on different robot hardware, with the generic services bound to different 

services using different configuration files. Figure 32 shows MSRS Simulation Runtime 

Workflow, and a sample configuration (manifest) file is shown in Figure 33. For 

example, a driving service is usually represented by the motor base entities or the wheel 

entities in the simulated world. When a simulation task starts, the manifest file is loaded 

first. The services listed in the manifest are started and configured accordingly, then 

bound to the generic services in the workflow. The simulation process is based on the 

logic described by the workflow. The entire simulation process can be monitored through 

a visualization service built in the simulation engine service.  
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Figure 32 MSRS Simulation Runtime Workflow 

 
Figure 33 Manifest File And Simulation Environment File 

This architecture provides flexibility such as composing with generic services gives the 

users the freedom of running it several times by using different configuration files. 

5.5 Collaborative Simulation Framework with MSRS 

Based on the existing MSRS architecture, this chapter proposes an ontology-based 

collaborative service-oriented simulation framework as shown in Figure 34. This 

framework is fully service-oriented as each component can be viewed as a service, and it 
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has common SOC elements such as ontology, service and workflow discovery, and 

service collaboration.   

 

Figure 34 Collaborative Simulation Framework 

Specifically, this framework has the following new features: 

1) This framework has more service-oriented features. Simulation entities, environments 

can also be published as services shared across the internet, so a simulation task can be 

easily modified to run in different environments with different simulated entities. 

2) This framework separates the simulation environment and simulation entities. With 

them separated, one does not need to create a new configuration file and a new initial 

state of the simulated world when running the simulation in a different environment with 

the same simulation entities. Moreover, new environments can be easily composed using 

simulation entities.  

3) The framework has a set of ontology systems that facilitate service matching and 

discovering for application development. Several domain-specific ontology systems were 
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added to classify function services, workflow templates, simulation entities, simulation 

environments. The reasoning abilities provided by the ontology systems can facilitate the 

service matching process, and provide a certain level of flexibilities by returning the most 

compatible services when a perfect match cannot be found, and reduce the manual work 

for a user. 

4) This framework is divided into platform dependent part and platform independent part. 

Users can use platform-independent modeling languages to specify their workflows and 

map them into specific platforms to perform simulation. In this way, users will be able to 

share platform-independent parts with others while performing simulation on specific 

platforms at the same time. This will be explained in detail in 5.4.2.  

5) The framework provides cross-referencing and traceability among all simulation assets 

such as services, workflows, simulation entities and simulation environments utilizing 

ontology systems, so it is relatively easy to adapt to changes.  

6) This framework is a collaborative framework. It can be empowered by the Web 2.0 

principles [103], specifically “users are treated as co-developers”. In other words, users 

are encouraged to publish their services, workflows, simulation environments and 

entities, or improved the ones published by others. As more people publish their work, a 

critical mass can be created collaboratively.  

Table 8 is comparison between the extended framework and MSRS from two different 

perspectives.  
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Table 8 Overview of Extended Framework and MSRS 

 MSRS Extended framework 
Level of service 

oriented 
Currently, it supports 
mainly service 
publication and 
discovery.  

In addition to service publication and 
discovery, it also allows other 
entities such as simulation entities 
and environments to be published 
and discovered.   

Number of services 152 services come with 
the installation and extra 
services need to be 
added manually.  

Service repository is centralized; 
More services will be available as 
service repository is maintained in a 
collaborative manner. 

Ontology support No explicit ontology 
support 

Explicit ontology support 

Collaboration 
support 

Less collaboration 
support 

More collaboration support 

Adaptability for 
changes 

Changes might result in 
unavailability of 
simulation tasks.  

Cross-referencing and ontology 
support reduced the probability of 
unavailability caused by the change 
of assets.  

Platform 
dependency 

Platform-dependent Both platform-independent and 
platform-dependent support 

	
 

5.5.1 Simulation Framework 

The proposed simulation framework has the following major services or facilities: 

- Simulation Engine: This manages the simulation time and keeps track of all the 

entities’ states in the entire simulation world. It gets and executes the application 

workflows from the workflow repository.  

- Visualization Services: These retrieve the states from the simulation engine and 

display or visualize them. A user can directly view the simulation results and because 

they are independent services, different rendering services, such as 2D or 3D, can be 

used.  

- Entity Services: These represent the simulated objects in the world. An entity 

service can either be a robot or an object in the environment. Each service contains all the 



   

 110 

information needed by the simulation engine and visualization service, such as shape, 

mass, position, and orientation. Some properties can be omitted for certain simulation 

tasks. A user can use the interfaces provided by the service to inquire the state of an 

entity, or update it. 

- Environment Services: These represent the simulated worlds. Each environment 

service is composed by entity services, and contains all the information needed by the 

simulation engine and visualization service.  

- Function services: These implement simulated basic actuator and sensor 

services, such as differential drive, light sensor, and bumper, or complex services 

composed from the basic services. Each service implements a service specification, 

which specifies the tasks provided.  

- Service Repository: This is a repository for users to publish and share their 

services.  As more services are accumulated in the repository, the application 

composition will reuse more assets. For the same service specification, there can be 

multiple implementations, so the user can compare them and choose the one that best 

suits their simulation needs. 

- Workflow Repository: This is a repository for users to share their simulation 

workflows. With the support of CCSOA [18], not only services, but also workflows can 

be published and shared. As more workflows are accumulated in the repository, users do 

not have to compose application from scratch. One can first search the workflow 

repository, find a workflow that they are interested and start from there. If no matching 

workflow is found, one can compose his own and publish it in the repository for future 

use. 
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- Entity Repository: This is a repository for users to publish and share simulated 

entities. Suppose a user did not find a simulated environment needed in the environment 

repository, he does not need to start from scratch. The user can search in the entity 

repository, and use the existing entities to compose the simulated world. In addition, one 

can also bind the services used in a workflow with the simulated objects (mostly robots 

for robotic simulation) found in the repository. 

- Environment Repository: This is a repository for users to publish and share 

simulated environments and use them to compose new simulation tasks.  

5.5.2 Collaborative Simulation 

In the environment, the users can be classified into different groups according to their 

concentrations or skills:  

- Service Designers: They are specialists of building services that control the robots 

or implement a particular functional component. 

- Workflow Designers: They are specialists of providing various workflows that 

implement different strategies or algorithms.  

- Simulation Entity Designers: They are specialists of designing visualized 

simulated robots and other objects. They also have to provide information of the 

simulated robots, such as how many wheels they have, the diameter of the wheels, or 

what additional functions it can support.  

- Simulation Environment Designers: They are specialists of building simulated 

environments in which a simulation is executed.  

Different specialists can work closely under this collaborative framework to accomplish a 

simulation task. For example, a workflow designer may publish his requests for desired 
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services, and service designers will implement the services according to the service 

descriptions. To build an environment, environment designers may need some particular 

simulation entities from entity designers. The ontology systems provided in the 

framework will facilitate the collaboration among the different specialists, as requests are 

well classified. Figure 35 shows the collaborative simulation with four groups of 

simulation specialists.  

 

Figure 35 Collaborative Simulation 

 
Figure 36 Relationships Among Assets 
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Table 9 How the Extended Framework Adapt to Changes 

Asset Change Description 

Services Add When a service is added, it is put in the repository, and 

classified by the service ontology. And workflow 

composed by this type of service, services called by this 

type of services, entities that this type of services was 

represented by will be notified that a new service is 

available.  

Remove When a service is about to be removed, the framework will 

issue a warning that the assets that reference this service, 

for example, the workflow composed by this service; the 

entities that the service was represented by. If the user 

still wants to remove the service, the assets that reference 

this service will be notified that this service is no longer 

available. 

Modify When a service is about to be modified, the framework will 

issue a warning that the assets that reference this service 

(see add and remove operation) may become unavailable. 

If the modification is major, such as interface change, the 

assets that reference this service will be notified that this 

service has been modified and according change should be 

made to maintain the availability.  
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Workflow

s 

Add When a workflow is added, it is put in the repository, and 

classified by the workflow ontology. And simulation tasks 

that were composed by workflows under this category will 

be notified that a new workflow becomes available.   

Remove When a workflow is removed, the framework will issue a 

warning that the simulation tasks composed by the 

workflow may become unavailable. If the user still wants 

to remove the workflow, the simulation tasks that reference 

this workflow will be notified that this workflow is no 

longer available.  

Modify Combination of remove and add.  

Simulation 

Entities 

Add When a simulation entity is added, it is put into the entity 

repository, and classified by the entity ontology. And all 

the assets, such as services represented by this type of 

entities, simulation environments composed by this type of 

entities will be notified that a new entity is available. 

Remove When an entity is about to be removed, the framework will 

issue a warning that the assets that reference this entity, 

such as services represented by this entity, environments 

composed by this entity) may become unavailable. If the 

user still wants to remove the entity, the assets that 

reference this service will be notified that this entity is no 
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longer available, and entities under the same category will 

be suggested. 

Modify Assets (see add and remove) that reference this entity will 

be notified that a modification has occurred to the entity, 

and they will have to check if the reference is still valid.  

Simulation 

Environm

ents 

Add When an environment is added, it is put in the repository, 

and classified by the environment ontology. And all the 

assets such as workflows executed in the environment, 

simulation tasks composed by the environment will be 

notified that a new environment is available. 

Remove When an environment is about to be removed, the 

framework will issue a warning that the assets that 

reference this environment (e.g. workflow executed in this 

environment, simulation tasks composed by the 

environment) may become unavailable. If the user still 

wants to remove the environment the assets that reference 

this environment will be notified that this environment is 

no longer available. 

Modify Combination of remove and add. 
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5.5.3 Change Management and Cross-Referencing among Simulation Assets 

There are various relationships among the different assets. For example, a simulation task 

is composed by services, workflows, simulation entities and simulation environments; a 

workflow is composed by multiple services; a service is called by other services; a 

simulation environment is composed by simulation entities; all the assets can be 

classified by the according ontology systems; a service can be represented by a 

simulation entity; a workflow can be executed in a simulation environment, etc. The 

relationships can be illustrated in Figure 36. 

The framework provides better adaptability to the changes of simulation tasks. A typical 

service-oriented robotic simulation task is composed by four major simulation assets: 

services, workflows, simulation entities, and simulation environments. Each type of 

simulation assets are published and stored in an according repository and classified based 

on the ontology system. By using standard SOA modeling, any asset can be easily 

changed and composed into the simulation task with the support of this framework. There 

are usually 3 types of changes: add, remove, and modify. Table 9 illustrates how this 

framework can lessen the impacts caused by the changes. 

The framework will keep tracking what other assets a specific simulation asset is 

referenced by. Therefore, when there is a change for this asset, the referencing assets will 

be notified and make changes accordingly.  

5.5.4 Platform-Independent Simulation 

The framework can be further extended by separating the platform-dependent part and 

the platform-independent part as suggested by the OMG (Object Management Group at 



   

 117 

www.omg.org). In this way, the platform-independent part can be shared among all users, 

and various analyses can be performed on it. Once the mappings from the platform-

independent part to platform-dependent part are available, a platform-independent system 

can be mapped to different platforms for execution. For example, a robotic application 

originally written for MSRS may be mapped to another platform, such as Intel robotic 

platform without changing the platform-independent part.  The extended framework is 

shown in Figure 37. 

 

Figure 37 Extended Collaborative Simulation Framework 
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dependent part. This framework gives user the flexibility to choose different platforms 

for simulation while using uniformed modeling language to specify the system model. 

Table 10 shows how PSML-S elements can be mapped to MSRS elements.  

 

Table 10 PSML-S Element Mapping 
Element Types Mapping to MSRS 
Actors MSRS activities 
Conditions Condition statements 
Data Data 
Actions Actions in activities 
Attributes Attributes or constraints in services 
Events Notifications 
Relations Messages or constraints between entities 

	
 

5.5.5 Service Ontology Modeling 

Service Ontology (SO): This stores concepts and relations among services, and it also 

has classification trees with reasoning mechanism. In SO, both atomic and composite 

services can be presented. As shown in Figure 38, all the services are divided into three 

groups depending on their usages. In the example, when the sensor service is requested, 

the services registered under the sensor service will be returned. If no exact matching 

service is available, the system will return a closely matching service. For example, the 

system may return ultra-sound sensor service to replace the infrared sensor service by 

using the information in the SO. Furthermore, one can apply semantic distance to identify 

those related concepts [104].  
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Figure 38 Rebot Services Ontology 

Workflow Ontology (WO): This defines the concepts and the relations among 

workflows.  For example, a goal keeper may have three different subclasses, defining 

three different kinds of behaviors, passive, active or patrolling as shown in Figure 39. 

Each different workflow may be used under different application contexts, and has 

different success rates. Figure 39 shows a classification tree for workflow services. 
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Figure 39 Workflow Ontology 

Environment Ontology (EO): This specifies the concepts and relations of different 

simulation environments. For example, in Figure 40, there are several environment 

classifications, such as maze, geometry, and nature. Under each category, they are 

divided into subclasses according to different environment types, such as rocky 

environment, flat ground, and watery surface.  

 

Figure 40 Environment Ontology 
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Entity Ontology (ETO): This specifies the concepts and relations of simulation entities. 

For example, in Figure 41, there are several major types of robots, such as car robot, and 

crawler robot. Under each category, they are divided into different providers, such as 

NXT, Lego, and IRobot. When an entity is registered in an entity registry, it will be 

placed under the corresponding concept. Once the application requires a specific entity 

service, the ontology can provide essential information to find the best candidate.   

 

Figure 41 Entity Ontology 
Part of the ontology axioms are listed as following in which A, B denote the concepts in 

the ontology: 
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4. ( ) ( ),  ,  OwnedBy A B OwnerOf B A↔  

5. ( ) ( ), ,  Compose A B ComposedBy B A⇔  

According to the 2nd axiom, any car producer should not belong to crawler producer, 

however most robot companies can produce both models; the consistency analysis would 

find the conflict with the "Disjoint" relation between car producers and crawler 

producers. Thus the "Disjoint" relation between the car producer and crawler producer 

should be replaced by "Overlapping". 

5.5.6 Simulation Application Composition 

In SOA, not only services can be discovered, but also workflows can be discovered and 

even composed at runtime [38]. However, implementation of this kind of dynamic 

workflow discovery and composition requires a much sophisticated infrastructure. This 

chapter instead focuses on static workflow modeling and discovery.   

 

Before running a robotic simulation task, one needs to know what workflows and which 

model of the robots, and what environment will be simulated. The user documents all 

these requirements into a simulation specification, and feeds it to the proposed simulation 

framework. The simulation specifications need to provide the following information for 

simulation.  

- A set of workflows; 

- A specific or a generic robot model;  

- A specific or a generic class of environments the simulation will run in;  

- A specific visualization service or a generic class of visualization services. 
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The simulation process can be described in the following steps:  

1)  Load workflow from Workflow Repository. 

Given a simulation specification, the simulation framework first looks for a workflow by 

referencing the workflow ontology. The search is done by a matching service, which uses 

key word matching, ontology reasoning as its searching algorithm. One needs to choose 

the one that best matches the application requirements. If there is no such match found, 

one needs to use an independent modeling language, such as PSML, to model the 

workflow.  

2)  Matching platform-independent workflow to platform-specific language.  

The workflow returned is written in platform-independent modeling language. To run the 

simulation on a specific platform, it needs to be mapped into a workflow written in a 

platform-dependent language. This is done by a mapping service discussed above.  

3)  Functional Service bounding using SO 

Once the workflow is decided, more detailed configuration needs to be done. As 

discussed in the previous sections, a workflow is an application template that models the 

working process of an application. It is not composed by the actual implementations of 

services, but service stubs (service specifications). Therefore, to make the workflow 

working, each service stub needs to be bound with an actual service on platform. MSRS 

uses manifest to statically bind one generic service with a real service, so the binding is 

fixed. Unlike MSRS, the binding process under the new framework is dynamic and 

flexible. Each service stub used in the workflow has a specification (similar to the 

contract used in MSRS) required to be implemented by each of its implementations. All 
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the specifications are classified by service ontology, and all the services are also 

classified according to the specification they implement. Suppose the service stub used in 

the workflow requires a service that implements the specification A, the matching service 

first checks if there is an implementation for specification A. If such implementations are 

not found, the matching service can use the ontology to check if the specification has any 

closely related ones, such as subclasses or siblings, and returns the closely related 

implementation that compatible with specification A. By doing this, the binding is no 

longer a literal key word matching, but a flexible reasoning process. This actually gives 

the workflow builders more flexibility because when the workflow builders compose the 

workflows, they may not know what services will be available when the workflow is 

actually executed.  Therefore, they would rather just use a more abstract service 

specification and let the matching service decide which real services this specification 

will be bound to at the run time.  

4)  Entity service bounding using ETO 

As to robotic simulation, each simulated service needs to be associated with a simulated 

entity that represents the service during the simulation process.  This can also be done 

automatically under the new framework.  For each service in the workflow, the matching 

service first searches for all the entities that can be used to represent the service. This 

could be done because the entities are categorized by the service specifications that they 

can be associated with. The matching service returns a set of entities for each service, and 

then it calculates the intersection of all the sets, returns it as the final result. Because each 

entity in the intersection can represent all the services used in the workflow, they all can 

be used in the simulation. As discussed earlier, each entity contains enough information 
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to initialize the service it represents. Therefore, all the services are fully configured after 

this step. 

5)  Simulation environment bounding with EO 

Similarly, by using the environment ontology, the matching service can return a list of 

environments that satisfy the users’ requirement. Each environment has several extension 

points where users can choose to place the simulated robots.  

6)  Visualization service configuration 

Similarly, by using the environment ontology, the matching service can return a list of 

environments that satisfy the users’ requirement.  

7)  Simulation  

After a visualization service is chosen, the simulation engine service starts to load the 

environment and simulated robots state, and run the simulation according to the 

workflow.  

5.6 Case Study 

This section illustrates the simulation framework using a case study. 

5.6.1 Mission Description 

SumoBot is a popular robotic competition. The main purpose of it is to have the robot 

stay inside of the arena while trying to push the opponent out. Suppose one wants to 

simulate a SumoBot competition. One needs to give a simulation configuration shown in 

Figure 42. One does not specify the workflow strategy at first (such as “Aggressive”) as 

shown in the workflow ontology to show the flexibility of the framework.    
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<!--Simulation Configuration--> 
<Strategy>SumoBot Competition</Strategy> 
<Robots> 
 <Robot1>SumoBot</Robot1> 
 <Robot2>SumoBot</Robot2> 
</Robots> 
<Environment>SumoBot arena</Environment> 
<Visualization>3D</Visualization> 

Figure 42 Sample Simulation Specification 
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Figure 43 Relationships Among Assets 

5.6.2 Relations among Simulation Assets 

As shown in Figure 43, the simulation task has four major components: services, 

workflows, simulation entities and simulation environments.  

Serivces:  
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- SearchOpponent Service Implementation. 

- ChaseOpponent Service Implementation. 

Workflow: 

- Aggressive-SearchChase workflow 

Entities: 

- Simulated IRobot Roomba SumoBot 

- SumoBot ring-shape arena 

- Sky 

- Ground 

- Light 

Environment: 

- Simulated SumoBot ring-shape arena environment 

Relations among the simulation assets: 

 In this sample, the workflow is composed by two service implementations of 

SearchOpponent, ChaseOpponent. The simulation environment is composed by 

Simulated IRobot Roomba SumoBot, SumoBot ring-shape arena, sky, ground, light. The 

workflow is executed in the simulation environment. The two services are represented 

by simulated IRobot Roomba SumoBot. The workflow is classified by the workflow 

ontology under the Workflow-Sumo-Aggressive-SearchChase category; the environment 

is classified by the environment ontology under the Environment-Sumo-Ring-Small 

category. Service implementation of SearchOpponent is classified by the service 

ontology under Service-Complex Service-Sumo-SearchOpponent category; Service 
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implementation of ChaseOpponent is classified by the service ontology under Service-

Complex Service-Sumo-ChaseOpponent. The simulated IRobot Roomba SumoBot is 

classified by the entity ontology under Entity-Robot-Sumo-IRobot; the ring-shape 

SumoBot arena is classified by the entity ontology under Entity-Geometry-Sumo-Arena-

Ring; Sky, ground and light are classified by the entity ontology under Entity-Nature. 

 With these relations stored and monitored, a cross reference is established. Empowered 

by this scheme, one can predict the effects of the possible changes on all the simulations 

assets. For example, at a later time, one wants to delete the simulated SumoBot ring-

shape arena environment. All the references to this environment including the one shown 

in this example will be returned to the user, and a warning will be issued to the user to let 

him/her know a deletion of this environment will result in unavailability of the assets that 

refer to it.  

5.6.3 Application Modeling 

This simulation uses the repositories presented in section 5.4.1 including Workflow 

Repository, Service Repository, Entity Repository and Environment Repository. The 

services stored in these repositories are classified using the ontology systems presented in 

section 5.4.3.  

5.6.4 Workflow Repository 

Figure 44 shows how workflows are classified in the workflow ontology. The workflows 

that are not related to SumoBot competitions are omitted.  

Descriptions for each workflow are given in Table 11. Different workflows will produce 

different robotic behaviors.  
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Table 11 Workflows for SumoBot Competition 

SubclassOf
(Disjoint)

SubclassOf
(Disjoint)

Workflow

Maze Sumo Goal Keeper

Aggressive Passive

SubclassOf
(Disjoint)

... ... ...Smart

SubclassOf
(Disjoint)

... ......

chaseAlways searchChase

SubclassOf
(Disjoint)

waitChase waitLure

SubclassOf
(Disjoint)

 

Figure 44 Sample Workflow Ontology 

5.6.5 Service Repository 

Figure 45 shows how services are classified in the service ontology. The services that are 

not related to SumoBot competitions are omitted.  

Workflow Description 

Aggressive-
ChaseAlways 

The robot will just speed up, and hope to hit the opponent by 
luck.   

Aggressive-
SearchChase 

The robot will actively search for its opponent; Once it locates 
the opponent, it will chase after it, trying to push it off the arena 

Smart The robot will switch back and forth between the Aggressive 
and Passive modes before it locates its opponent.  

Passive-WaitChase The robot will passively wait until being attacked by its 
opponent, then fight back.  

Passive-WaitLure The robot will passively wait until being attacked by its 
opponent, then run away from its opponent, trying to lure it to 
the edge, and then suddenly turn at the edge and start attacking.  
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SubclassOf
(Disjoint)

Owned

Robot Services

Sensor Actuator Complex Service

... ...
SubclassOf

(Disjoint)

Maze Sumo GoalKeeper

...
SubclassOf

(Disjoint)

... ......

SubclassOf
(Disjoint)

SearchOpponent LureOpponentChaseOpponent

SubclassOf
(Disjoint)

TA ...RR

SubclassOf
(Disjoint)

SF ...SFWPT

SubclassOf
(Disjoint)

SL SLWCSAL
 

Figure 45 Sample Service Ontology 

SearchOpponent: This is a group of services that implement the different search 

strategies listed in Table 12.  In a SumoBot competition, the robot that can find its 

opponent first will have a big advantage. In many times the losing robots were pushed out 

of field from side or back before seeing the enemy.  

Table 12 Service Implementation for Searching Opponents 
Search Strategy Description 

Turning Around (TA) Have the robot sitting still at a fixed place and turning around and around 
forever, expecting to see the opponent in this way. 

Randomly Roaming 
(RR) 

Have the robot roaming over the combat arena randomly. Such as go forward 
for a random distance, and turn a random angle and continue this loop. 

Randomly Roaming and  
Turning Around (RRTA) 

Have the robot roaming over the combat field randomly and turning around 
and around now and then. 

Border Patrol (BP) Patrol along the border of the field and look inside. 
Square Patrol (SQP) Starting from a point by the border, patrol on a square path. 
Zigzag Patrol (ZP) Start from anywhere, patrol on a zigzag route. 
Spiral Patrol (SPP) Starting from the center of the arena, patrol on a spiral route. 
	

ChaseOpponent: This is a group of services that implement the different chasing 

strategies. They calculate the distance between the robot and its opponent, and change the 

speed accordingly. Such as when the opponent is detected but still in a distance, the robot 
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needs to keep speed normal while employing fast turning algorithm, when it begins 

approaching the opponent and distance is short enough, it may speed up, using the speed 

momentum to push its opponent out of the field. 

 

lists the services in the repository under this category.  

Table 13 Service Implementations for Chasing Opponents 

 
LureOpponent: This is a group of services that implement the different luring strategies. 

The main purpose of the services is to lure its opponent to the edge of the arena, and trick 

it to fall off the arena. It might involve calculating the distance between the robot and its 

opponent, and changing the speed accordingly, so that it will keep its opponent close 

enough that it will keep following and far enough that it will not be able to attack. Table 

14 lists the services in the repository under this category. 

Chasing Algorithm Description 
Simple Follow (SF) Follow the target passively. Start searching when target lost. 
Simple Follow with Position 
Tracking (SFWPT) 

Follow the target passively. Turn for a fixed angle to the direction when 
it last saw the opponent. 

Simple Follow with Active 
Turning (SFWAT) 

Active turning by calculate proper turning angle. 

Active Turning and Full 
Speed Approaching 
(ATFSA) 

Active turning, chasing the opponent at full speed once on target. 

Active Turning and Active 
Approaching (ATAA) 

Approaching the opponent on normal speed, increase speed when 
distance is close enough. 

	

Chasing Algorithm Description 
Simple Follow (SF) Follow the target passively. Start searching when target lost. 
Simple Follow with Position 
Tracking (SFWPT) 

Follow the target passively. Turn for a fixed angle to the direction when 
it last saw the opponent. 

Simple Follow with Active 
Turning (SFWAT) 

Active turning by calculate proper turning angle. 

Active Turning and Full 
Speed Approaching 
(ATFSA) 

Active turning, chasing the opponent at full speed once on target. 

Active Turning and Active 
Approaching (ATAA) 

Approaching the opponent on normal speed, increase speed when 
distance is close enough. 
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Table 14 Service Implementation for Luring Opponents 
Luring Algorithm Description 

Simple Lure (SL) Just simply run away, suddenly turn left when getting close to 
the edge.  

Active Lure (AL) Calculate the distance between the robot and its opponent, and 
change the speed accordingly.  

Simple Lure with Changing 
Speed (SLWCS) 

Change the speed when it is running away 

	
 

5.6.6 Entity Repository 

Figure 46 shows how simulated entities are classified under the entity ontology system. 

The entities that are not related to SumoBot competitions are omitted.  

The entities listed in Figure 46 are the simulated entities that represent the corresponding 

real entities.   

SubclassOf
(Disjoint)

Owned

Entity Services

Robot Nature Geometry

... ...

SubclassOf
(Disjoint)

... ... ...
...

SubclassOf
(Disjoint)

sumoBot ...Crawler

SubclassOf
(Disjoint)

Tribot PioneerIRobot

SubclassOf
(Disjoint)

Spider ...Inchworm  

Figure 46 Sample Entity Ontology 

Table 15 Simulated Entities 

Entity Description 

Car-LegoNxt 
Tribot 

It simulates the appearance of the LegoNxt robot, which is 
equipped with 3 wheels, a touch sensor, an ultra-sonic senor and 
a light sensor. 

Car-Pioneer PDX3 It simulates the appearance of the Pioneer PDX3 robot, which is 
equipped with 3 wheels, a laser ranger finder, a front bumper 
and a rear bumper. 



   

 133 

Car-IRobot 
Roomba 

It simulates the appearance of the IRobot, which is equipped 
with 2 wheels, a series of light sensors and infrared sensors.  

Crawler-LegoNxt 
Spider 

It simulates the appearance of the LegoNxt Spider robot, which 
is equipped with 8 legs, a light sensor, a touch sensor and an 
ultra-sonic sensor 

Crawler-Inchworm It simulates the appearance of the Inchworm crawler robot, 
which is equipped with 4 legs, a light sensor, and an infrared 
sensor.  

 
5.6.7 Environment Repository 

Figure 47 shows how simulated environments are classified under the environment 

ontology system. The environments that are not related to SumoBot competitions are 

omitted.  

The environments listed in Figure 47 are SumoBot arenas with different sizes and shapes.  

SubclassOf
(Disjoint)

Owned

Environment 
Service

Maze Sumo Nature

Ring Square

SubclassOf
(Disjoint)

... ... ...

Ellipse

SubclassOf
(Disjoint)

... ......

SubclassOf
(Disjoint)

Big SmallMedium

SubclassOf
(Disjoint)
Big SmallMedium

SubclassOf
(Disjoint)

Big SmallMedium
 

Figure 47 Sample Environment Ontology 
 
 

Table 16 Simulation Environment for SumoBot Competition 

Environment Description 

Ring-Big This simulates a big size ring-shape SumoBot arena. 

Ring-Medium This simulates a medium size ring-shape SumoBot arena.   

Ring-Small This simulates a small size ring-shape SumoBot arena.   
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Ellipse-Big This simulates a big size ellipse-shape SumoBot arena. 

Ellipse-Medium This simulates a medium size ellipse-shape SumoBot arena. 

Ellipse-Small This simulates a small size ellipse-shape SumoBot arena. 

Square-Big This simulates a big size square-shape SumoBot arena. 

Square -Medium This simulates a medium size square-shape SumoBot arena. 

Square -Small This simulates a small size square-shape SumoBot arena. 

 
5.7 Simulation Execution 

The simulation task can be executed in the following steps.   

1)  Load workflow from the workflow repository 

When the simulation framework receives the simulation task request in the form of task 

specification, the matching service first searches in the workflow repository to find all the 

SumoBot strategy workflows based on the workflow ontology. If there is no workflow 

found, this process will stop and ask the user to compose a workflow and publish it in the 

workflow repository. In this case, the user has to model the workflow he wants to 

simulate using a platform-independent modeling language, such as PSML. Suppose the 

user wants to simulate the SumoBot algorithm in which the robot actively searches the 

opponent, and once it locates the opponent, it will chase after the opponent, trying to push 

it off the area. Table 17, 18, 19, 20 show how this modeling can be done.  

The desired workflow will use a set of services, such as the service to search the 

opponent and the service to chase after the opponent. Table 17 illustrates the mapping 

from the SearchOpponent service to PSML model elements.  
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Table 17 Map Search Opponent Service into PSML Model Elements 
SOA Systems PSML Elements PSML Element Description 

SumoBot System Actor This is the SumoBot system 
Search Opponent Service Actor SearchOpponentService 
Functions   
 search Action Search the opponent 
Parameters   
 Speed Data The spiral speed of the wheel 
 LeftWheelInfo Actor The left wheel information 
 RightWheelInfo Actor The right wheel information 
 LaserRangeFinderInfo Actor The laser range finder information 
Properties   
 ServiceNamespace Attribute Namespaces 
 ServiceURL Attribute URL Attributes 
	

 
Table 18 Map Search Opponent Service into PSML Structure Element 

PSML Elements Relations PSML Elements 
Search Opponent Service Own All elements, except itself 
Actions  Data or Actors 

 Chase Use  LeftWheelInfo, RightWheelInfo, 
LaserRangeFinderInfo 

Actors  Data 
 LeftWheelInfo Own  Speed, Diameter 
 RightWheelInfo Own  Speed, Diameter 
 LaserRangeFinderInfo Own  Degree, Distance 

	
 

Table 19 Map SOA Software Architecture by PSML 

Architecture PSML Model Elements Example 
Service Connection 
Architecture   

 Inquiring Services Actors Search Service 
 Response Services Actors Chase Service 

 Service Connections ServiceConnection Element Search Service Connect Chase 
Service 

 Service Connection 
Attributes Attributes ConnectedPrecondition 

Interface Connection 
Architecture   

 Inquiring Activities Events StartSearch 
 Response Activities  Actions StartChase 
 Interface Connections InterfaceConnection Element StartDistrict Connect StartChase 

 Interface Connection 
Attributes Attributes TriggeredPrecondition 

 Parameters Data Signal 
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Table 20 Model the Architecture of the Sample Application 
PSML Elements Relations PSML Elements 

Inquiring Service 
(Search Service) Own Event (StartSearch) 

Response Service 
(Chase Service) Own Action (StartChase) 

Owner System 
(SumoBot System) Own 

Inquiring Service (Search Service), Response Service 
(Chase Service), Service Connection (Search service 
Connect Chase service), 
Interface Connection (StartSearch connect StartChase) 

Inquiring Activity 
(StartSearch) Use Parameters (Signal) 

Response Activity 
(StartChase) Use Parameters (Signal) 

Service Connection 
(Search service connect 
chase service) 

Own Service Connection Attributes 
(ConnectedPrecondition) 

Interface Connection 
(StartSearch connect 
StartChase) 

Own Interface Connection Attributes 
(TriggeredPrecondition) 

!

The identified model elements in the example have relations defined in Table 17. 

SOA systems are a set of services communicated through messages and collaborated to 

fulfill specific missions. The software architecture of a system consists of software 

components, their external properties, and their relationships. For the example, in the 

example system, the Search service will search the component. When the opponent is 

located, the Chase service will be triggered.  The architecture of this example can be 

modeled by following elements as shown in Table 19. 

In this example, the connected precondition can be the “Opponent is detected”, and the 

triggered precondition is “Opponent is within a threshold”. Therefore, the event elements 

attach the signal as parameter, and the action elements take it as the input parameter. 

Among these elements, they have following relations defined in the structure model, as 

shown in Table 18. 
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The process of modeling of a workflow in PSML is mainly just in a drag and drop 

manner. The PSML models including the associated structural and behavior model are 

stored in XML format and can be visualized.  

As the repository grows, many existing workflows will be available for reuse. Assuming 

the discovering process is successful, several maze traversing workflows are returned. 

For example, one workflow may be the Passive-WaitChase and the other is Aggressive-

SearchChase.  The user needs to decide which workflow to use. Figure 48 shows how the 

Aggressive-SearchChase algorithm workflow is visualized in PSML.  

ChaseOpponent

TargetFound

SearchOpponent

Yes No

TargetLost

SearchOpponent ChaseOpponent

Yes No

SearchOpponent

 

Figure 48 PSML Model for Aggressive SumoBot Chase Algorithm 

2)  Matching the platform-independent workflow to platform-specific language.  

The Aggressive-SearchChase workflow needs to be mapped to MSRS. Specifically, the 

mapping layer of the framework will generate a program coded in VPL as shown in 

Figure 49 
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ChaseOpponent

TargetFound

SearchOpponent

Yes No

TargetLost

SearchOpponent ChaseOpponent

Yes No

SearchOpponent

Figure 49 Workflow Mapping Example 

3)  Discovering services using service ontology 

After the mapping, it finds out that the workflow contains two service specifications, one 

is SearchOpponet service, and the other is ChaseOpponent service. The matching service 

will search in the service repository using the service ontology. There are multiple 

implementations for the service specifications. The user is prompted to choose one to run 

the simulation. Users can choose different implementations in different runs of the 

simulation, and compare which implementation gives the most desired result.   

4)  Entity service bounding using ETO 

After the two service implementations are found, the system finds out that the two service 

implementations need to be run on simulated entities that support two-wheel service and 

sonar sensor service. The matching service searches for the possible entities that can 

represent these two service stubs. For the two-wheel drive service stub, the results 

returned are {LegoNxt Tribot, IRobot Roomba, Pioneer PDX3}; for the sonar sensor 

service stub, the results returned are {IRobot Roomba, Pioneer PDX3}. The intersection 

of the two sets is {IRobot Roomba, Pioneer PDX3} and both robots in the intersection 

are of “SumoBot” type entities, so they are used. The user will be prompted to choose 



   

 139 

one. Assuming the user chooses IRobot, the two services are then configured according 

to the IRobot Roomba, such the wheels’ size, and the distance between the two wheels, 

and the measurement limit of the sonar.  

Because a SumoBot competition involves two simulated robots, process 1 to 4 will be 

executed again for the second robot.  

5)  Select an environment using environment ontology 

After the two services are fully configured, the matching service searches the 

environments that meet the user’s requirement, e.g., a small arena, in the environment 

repository. Several small arenas with different shapes are returned. The users will be 

prompted to choose one from them. Assuming the user chooses the ring-shape arena.  

6)  Visualization service configuration 

Similarly, a 3D visualization service can be chosen.  

7)  Simulation execution 

After all the configurations have been set up, the simulation engine service loads the 

SumoBot arena and the two simulated robots, and then starts running simulation. The two 

simulated robots will behave according to the service implementations and workflow 

chosen for them. The simulation result is shown in Figure 50. One can compare the 

performance difference among the different service implementations by running the 

simulation multiple times using different service implementation for the two robots.  
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Figure 50 Simulation Snapshot: Player Lost 

To illustrate the benefits of the proposed fully service-oriented simulation environment, 

the same simulation task is run again. However, this time a different arena is chosen as 

shown in Figure 51. Notice that the user does not need to create a new configuration file 

or a new initial state file from the simulated world to run this new simulation. This 

scheme also opens the possibility of running simulation tasks in batch. The framework 

will run the simulation using different simulated entities in different environments. With 

a monitoring service added, one does not need to monitor the simulated robots’ behavior 

all the time. The simulation framework will run the simulations sequentially, and the 

results can be recorded by the monitoring service. 
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Figure 51 Simulation Snapshot: Ellipse ArenaSimulation Results 

5.8 Simulation Results 

The workflows for different strategies configured with different service implementations 

were run using the simulation techniques described in the previous sections.  The 

simulation results are given in the follows. 

 -  Searching services 

Two simulated robots, robot A and robot B, are placed in a ring-shape arena. Robot A is 

configured with searching service implementation, and Robot B will just randomly 

wander around the arena. The time used for robot A to locate robot B and the distance 

between them when robot A sees robot B were recorded. The simulation for each service 

implementation was run 10 times to get the average for the time and distance. The result 

is shown in Table 21. 
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Table 21 Simulation Results for Searching Service 
Search Strategy Time(sec) Distance 

(The diameter of the simulated IRobot is 1 
distance unit; the radius of the area is 20) 

Turning Around (TA) 3 15 
Randomly Roaming (RR) 6 12 
Randomly Roaming and  Turning 
Around (RRTA) 

8 14 

Border Patrol (BP) 6 8 
Square Patrol (SQP) 4 6 
Zigzag Patrol (ZP) 3 11 
Spiral Patrol (SPP) 3 7 

	

Because one wants to find the opponent as soon as possible, and the distance should not 

be too far as when it is accelerating, the opponent may locate you as well, or too short 

because it will not get enough speed. Therefore, the best searching service is zigzag 

patrol strategy.  

 -  Chasing services 

Two simulated robots, robot A and robot B, are placed in a ring-shape arena. Robot A is 

configured with chasing service implementation, and Robot B will just randomly wander 

around the arena.  The simulation for each service implementation was run 10 times. The 

times that Robot A lost the target are recorded. The result is shown in Table 22. 

Table 22 Simulation Results for Chasing Results 
Chasing Algorithm 
Simple Follow (SF) 
Simple Follow with Position Tracking (SFWPT) 
Simple Follow with Active Turning (SFWAT) 
Active Turning and Full Speed Approaching (ATFSA) 
Active Turning and Active Approaching (ATAA) 

	

As the result shows Simple Fellow with Active Turning (SFWAT) and Active Turning 

and Active Approaching (ATAA) have the fewest times of losing the target. Simple 

follow has the worst performance. 
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 -  Luring service: 

Two simulated robots, robot A and robot B, are placed in a ring-shape arena. Robot A is 

configured with Simple Following chasing service implementation, and Robot B is 

configured with various luring service implementations.  The simulation for each service 

implementation was run 10 times. Times that Robot B won and lost were recorded.  The 

result is shown in Table 23.  

Table 23 Simulation Results for Luring Services 
Luring Algorithm 

Simple Lure (SL) 
Active Lure (AL) 
Simple Lure with Changing Speed (SLWCS) 

	

As the result clearly shows, the Active Lure strategy has the most winning times, and 

fewest times of losing the target and fewest time of losing the game. Therefore it is the 

best luring strategy.  

 -  Workflows 

Here we only compare the performance of two selected workflows: Aggressive-

SearchChase (ASC) and Passive-WaitLure (PWL). Two simulated robots, robot A and 

robot B, are placed in a ring-shape arena. Robot A is using ASC, and Robot B is using 

PWL. ASC is configured with the most effective searching and chasing services from the 

previous results, and PWL is configured with the most effective luring service. The 

simulation was run 10 times. The times of each robot won the game were recorded and 

shown in Table 24. Figure 52 shows the winning rate.  
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Table 24 Simulation Results for Workflows 
Workflow Winning Times 

Aggressive-SearchChase (ASC) 7 
Passive-WaitLure (PWL) 3 

	

As the result shows, ASC won more times than PWL, so it is a more effective SumoBot 

strategy.   

 

Figure 52 Winning Rate 

5.9 Conclusion 

SOA simulation is an important verification approach and it can be applied to every 

phrase of the application lifecycle and different domains including embedded system 

development. Simulation is particularly useful because SOA may involve dynamic 

discovery and composition, and simulation may be one of few techniques available to 

address these issues. This chapter proposes an ontology-based collaborative SOA 

simulation framework with MSRS for service-oriented embedded system development.  

The framework extends the MSRS simulation runtime and provides flexibility to the 

simulation process. Ontology systems for services, workflows, simulated entities and 

simulated environments are introduced into the framework to facilitate the matching 

process. The framework is further extended to separate the platform-dependent and 
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platform-independent part, thus let people use general modeling languages like PSML-S 

or BPEL to model the SOA application, and map to different SOA embedded system 

development platforms to promote reusability. Another advantage of using a general 

model is that one can apply various kinds of analyses without creating different models, 

thus avoid the incompleteness and inconsistency between models. Services, workflow 

templates, simulation entities, simulation environments and ontology are published as 

shared assets from different contributors, and assets can be accumulated over time 

making the development a much faster process. The simulation process is illustrated 

using a case study. The distinct feature of the proposed work is that SOA simulation is 

fully integrated with various ontology systems. While ontology is often used in SOA, it is 

used mainly for publishing and discovery of services at the present time. This chapter 

extends these capabilities so that ontology is useful in the context of SOA software 

development and simulation including publishing of various simulation entities, 

workflows and even application templates. Furthermore, this approach is also ompatible 

with model-driven approach commonly used in SOA software development and 

simulation. 
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