165 research outputs found

    Recent Advances in Digital Image and Video Forensics, Anti-forensics and Counter Anti-forensics

    Full text link
    Image and video forensics have recently gained increasing attention due to the proliferation of manipulated images and videos, especially on social media platforms, such as Twitter and Instagram, which spread disinformation and fake news. This survey explores image and video identification and forgery detection covering both manipulated digital media and generative media. However, media forgery detection techniques are susceptible to anti-forensics; on the other hand, such anti-forensics techniques can themselves be detected. We therefore further cover both anti-forensics and counter anti-forensics techniques in image and video. Finally, we conclude this survey by highlighting some open problems in this domain

    Image counter-forensics based on feature injection

    Get PDF
    Starting from the concept that many image forensic tools are based on the detection of some features revealing a particular aspect of the history of an image, in this work we model the counter-forensic attack as the injection of a specific fake feature pointing to the same history of an authentic reference image. We propose a general attack strategy that does not rely on a specific detector structure. Given a source image x and a target image y, the adversary processes x in the pixel domain producing an attacked image (x) over tilde, perceptually similar to x, whose feature f((x) over tilde) is as close as possible to f (y) computed on y. Our proposed counter-forensic attack consists in the constrained minimization of the feature distance Phi(z) = vertical bar f (z) f (y) vertical bar through iterative methods based on gradient descent. To solve the intrinsic limit due to the numerical estimation of the gradient on large images, we propose the application of a feature decomposition process, that allows the problem to be reduced into many subproblems on the blocks the image is partitioned into. The proposed strategy has been tested by attacking three different features and its performance has been compared to state-of-the-art counter-forensic methods

    An Overview on Image Forensics

    Get PDF
    The aim of this survey is to provide a comprehensive overview of the state of the art in the area of image forensics. These techniques have been designed to identify the source of a digital image or to determine whether the content is authentic or modified, without the knowledge of any prior information about the image under analysis (and thus are defined as passive). All these tools work by detecting the presence, the absence, or the incongruence of some traces intrinsically tied to the digital image by the acquisition device and by any other operation after its creation. The paper has been organized by classifying the tools according to the position in the history of the digital image in which the relative footprint is left: acquisition-based methods, coding-based methods, and editing-based schemes

    AN EFFECTIVE STRATEGY FOR IDENTIFY HIGH QUALITY JPEG COMPRESSION BY USING NETWORKS PREDICTOR IMPLEMENTATION

    Get PDF
    Revealing the Trace of High-Quality JPEG Compression through Quantization Noise Analysis To recognize whether a picture continues to be JPEG compressed is a vital issue in forensic practice. The condition-of-the-art techniques neglect to identify high-quality compressed images that are common on the web. Within this paper, we offer a manuscript quantization noise-based means to fix reveal the traces of JPEG compression. In line with the analysis of noises in multiple-cycle JPEG compression, we define a sum known as forward quantization noise. We analytically derive that the decompressed JPEG image includes a lower variance of forward quantization noise than its uncompressed counterpart. Using the conclusion, we create a simple yet extremely effective recognition formula to recognize decompressed JPEG images. Within this paper, we concentrate on the problem of determining whether a picture presently in uncompressed form is really uncompressed or continues to be formerly JPEG compressed. We analytically derive that the decompressed JPEG image includes a lower variance of forward quantization noise than its uncompressed counterpart. To recognize whether a picture has been JPEG compressed is a vital issue in forensic practice. The suggested formula does apply in certain practical programs, for example Internet image classification and forgery recognition. This Tate-of-the-art techniques neglect to identify high-quality compressed images, that are common on the web. Within this paper, we offer a manuscript quantization noise-based means to fix reveal the traces of JPEG compression. In line with the analysis of noises in multiple-cycle JPEG compression, we define a quantity called forward quantization noise. With the conclusion, we create a simple yet extremely effective detection algorithm to recognize decompressed JPEG images. We show that our method outperforms the condition-of-the-art techniques with a large margin specifically for high-quality compressed images through extensive experiments on various causes of images. We also demonstrate the suggested technique is robust to small image size and chromo sub sampling

    An efficient computational approach to balance the trade-off between image forensics and perceptual image quality

    Get PDF
    The increasing trends of image processing applications play a very crucial role in the modern-day information propagation with the ease of cost effectiveness. As image transmission or broadcasting is the simplest form communication which determines easy, fastest and effective way of network resource utilization, thereby since past one decade it has gained significant attention among various research communities. As most of the image attributes often contains visual entities corresponding to any individual, hence, exploration and forging of such attributes with malicious intention often leads to social and personal life violation and also causes intellectual property right violation when social media, matrimonial and business applications are concerned. Although an extensive research effort endeavored pertaining to image forensics in the past, but existing techniques lack effectiveness towards maintaining equilibrium in between both image forensics and image quality assessment performances from computational viewpoint. Addressing this limitation associated with the existing system, this proposed study has come up with a novel solution which achieves higher degree of image forensics without compromising the visual perception of an image. The study formulates an intelligent empirical framework which determines cost-effective authentication of an image object from both complexity and quality viewpoint. Finally, the study also presented a numerical simulation outcome to ensure the performance efficiency of the system

    Multimedia Forensic Analysis of TikTok Application Using National Institute of Justice (NIJ) Method

    Get PDF
    The advancement of technology, especially in mobile devices like smartphones, has had a significant impact on human life, particularly during the COVID-19 pandemic, leading to the growth of online activities, especially on social media platforms like TikTok. TikTok is a highly popular social media platform, primarily known for its focus on short videos and images often accompanied by music. However, this has also opened up opportunities for misuse, including the spread of false information and defamation. To address this issue, this research utilizes mobile forensic analysis with Error Level Analysis (ELA) to collect digital evidence related to crimes on TikTok. This research contributes by applying digital forensic techniques, specifically Error Level Analysis (ELA), to detect image manipulation on TikTok. By using forensic methods, this research helps uncover digital crimes occurring on TikTok and provides essential insights to combat misuse and criminal activities on this social media platform. The research aims to collect digital evidence from TikTok on mobile devices using MOBILedit Forensic Express Pro and authenticate it with ELA through tools like FotoForensics and Forensically, as well as manual examination. This research follows the National Institute of Justice (NIJ) methodology with ten stages of mobile forensic investigation, including scenario creation, identification, collection, investigation, and analysis. The research yields manipulated digital evidence from TikTok, primarily concerning upload times. Error Level Analysis (ELA) is used to assess the authenticity of images, revealing signs of manipulation in digital evidence. The research's contribution is to produce or collect manipulated digital evidence from TikTok, primarily concerning upload times, and to apply the Error Level Analysis (ELA) approach or technique to assess the authenticity of images, uncovering signs of manipulation in digital evidence

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Datasets, Clues and State-of-the-Arts for Multimedia Forensics: An Extensive Review

    Full text link
    With the large chunks of social media data being created daily and the parallel rise of realistic multimedia tampering methods, detecting and localising tampering in images and videos has become essential. This survey focusses on approaches for tampering detection in multimedia data using deep learning models. Specifically, it presents a detailed analysis of benchmark datasets for malicious manipulation detection that are publicly available. It also offers a comprehensive list of tampering clues and commonly used deep learning architectures. Next, it discusses the current state-of-the-art tampering detection methods, categorizing them into meaningful types such as deepfake detection methods, splice tampering detection methods, copy-move tampering detection methods, etc. and discussing their strengths and weaknesses. Top results achieved on benchmark datasets, comparison of deep learning approaches against traditional methods and critical insights from the recent tampering detection methods are also discussed. Lastly, the research gaps, future direction and conclusion are discussed to provide an in-depth understanding of the tampering detection research arena
    • …
    corecore