7 research outputs found

    Biofeedback Based Physical Rehabilitation in Parkinson's Disease Aimed at Self-Enhancement

    Get PDF
    Parkinson’s disease (PD) is a progressive neuromotor disorder that results in a progressive deterioration of balance and motor abilities with a consequent increase of the risk of falls and a reduction of quality of life. Physical therapy revealed to be fit for the symptomatic treatment of the disease and the adoption of biofeedback signals showed to be effective in prolonging the benefits of the therapy. Thus, this doctoral project has been designed to assess the benefits that wearable technologies for biofeedback generation could have in physical therapy. To further improve the developed biofeedback-based system, the assessment of new methods for the objective evaluation of balance control was included into the study. The dissertation is divided into three different set of studies, respectively aimed at: 1) presenting new wearable systems specifically designed for biofeedback-based rehabilitation; 2) assessing proprioceptive impairments in PD subjects through the adoption of a robotic platform to destabilize the base of support; 3) discussing new methods for the evaluation of balance preceding the execution of voluntary movements. The efficacy of the main proposed solution was assessed in a 6-months RCT study by comparison of subjects with PD trained with the biofeedback system and patients that received usual care. Both clinical and instrumental outcomes supported the higher efficacy of the biofeedback-based approach. The developed instrumented tests showed good sensitivity in discriminating patients and in detecting changes induced by physical therapy. The results reported in this thesis lead to the conclusion that the adoption of biofeedback based physical rehabilitation systems is promising in the treatment of Parkinson’s disease. The availability of a set of fast, easy-to-manage tests for the evaluation of balance and motor control might be useful in the design of home-delivered, user-tailored exercises for both healthy elderly and neurological subjects

    Phase Dynamics in Human Visuomotor Control - Health & Disease

    Get PDF
    In this thesis, comprised of four publications, I investigated phase dynamics of visuomotor control in humans during upright stance in response to an oscillatory visual drive. For this purpose, I applied different versions of a ‘moving room’ paradigm in virtual reality while stimulating human participants with anterior-posterior motion of their visual surround and analyzed their bodily responses. Human balance control constitutes a complex interplay of interdependent processes. The main sensory contributors include vision, vestibular input, and proprioception, with a dominant role attributed to vision. The purpose of the balance control system is to keep the body’s center of mass (COM) within a certain spatial range around the current base of support. Ever-changing environmental circumstances along with sensory noise cause the body to permanently sway around its point of equilibrium. Considering this sway, the human body can be modelled as a (multi-link) inverted pendulum. To maintain balance while being exposed to perturbations of the visual environment, humans adjust their sway to counteract the perceived motion of their bodies. Neurodegenerative diseases like Parkinson’s impair balance control and thus are likely to affect these mechanisms. Hence, investigation of bodily responses to a visual drive gives insight into visuomotor control in health and disease. In my first study, I introduced inter-trial phase coherence (ITPC) as a novel method to investigate postural responses to periodical visual stimulation. I found that human participants phase-locked the motion of their center of pressure (COP) to a 3-D dot cloud which oscillated in the anterior-posterior direction. This effect was equally strong for a low frequency of visual stimulation at 0.2 Hz and a high frequency of 1.5 Hz, the latter exceeding the previously assumed frequency range associated with coherent postural sway responses to periodical oscillations of the visual environment (moving room). Moreover, I was able to show that ITPC reliably captured responses in almost all participants, thereby addressing the common problem of inter-subject variability in body sway research. Based on the results of my first study, I concluded phase locking to be an essential feature in human postural control. For the second study, I introduced a mobile and cost-effective setup to apply a visual paradigm consisting of a virtual tunnel which stretched in the anterior-posterior direction and oscillated back and forth at three distinct frequencies (0.2 Hz, 0.8 Hz, and 1.2 Hz). Because tracking of the COP alone neglects crucial information about how COM shifts are arranged across the body, I included additional full-body motion tracking here to evaluate sway of individual body segments. Using a modified measure of phase locking, the phase locking value (PLV), allowed me to find participants phase-locking not only their COP, but also additional segments of their body to the visual drive. While their COP exhibited a strong phase locking to all frequencies of visual stimulation, distribution of phase locking across the body underwent a shift as the frequency of the visual stimulation increased. For the lowest frequency of 0.2 Hz, participants phase-locked almost their entire body to the stimulus. At higher frequencies, this phase locking shifted towards the lower torso and hip, with subjects almost exclusively phase-locking their hip to the visual drive at the highest frequency of 1.2 Hz. Having introduced a novel and reliable measurement along with a mobile setup, these results allowed me to empirically confirm shifts in postural strategies previously proposed in the literature. In the third study, a collaboration with the neurology department of the UniversitĂ€tsklinikum Gießen und Marburg (UKGM), I used the same setup and paradigm as in the previous study and additionally derived the trajectory of the COM from a weighted combination of certain body segments. The aim was to investigate phase locking of body sway in a group of patients suffering from Parkinson’s disease (PD) to find potential means for an early diagnosis of the illness. For this purpose, I recruited a group of PD patients, an age-matched control group, and a group of young healthy adults. Even though the sway amplitude of PD patients was significantly larger than that of both other groups, they phase-locked their COP and COM in a similar manner as the control groups. However, considering individual body segments, the shift in PLV distribution differed between groups. While young healthy adults, analogous to the participants in the second study, exhibited a shift towards exclusive phase locking of their hips as frequency of the stimulation increased, both PD patients and age-matched controls maintained a rather homogeneous phase locking across their body. This suggested increased body stiffness, although being an effect of age rather than disease. Overall, I concluded that patients of early-to-mid stage PD exhibit impaired motor control, reflected in their increased sway amplitude, but intact visuomotor processing, indicated by their ability to phase-lock the motion of their body to a visual drive. The fourth study, to which I contributed as second author, used experimental data collected from an additional visual condition in the course of the third study. This condition consisted of unpredictable back and forward motion of the simulated tunnel. Here, we investigated the velocity profiles of the COP and COM in response to the unpredictable visual motion and a baseline condition at which the tunnel remained static. We found PD patients to exhibit larger velocities of their COP and COM under both conditions when compared to the control groups. When examining the net increase that unpredictable motion had on the velocity of both parameters, we found a significantly higher increase in COP velocity for both PD patients and age-matched controls, but no increase in COM velocity in any of the groups. These results suggested that all groups successfully maintained their balance under unpredictable visual perturbations, but that PD patients and older adults required more effort to accomplish this task, as reflected by the increased velocity of their COP. Again, these results indicated an effect of age rather than disease on the observed postural responses. In summary, using innovative phase-locking techniques and simultaneously tracking multiple body sway parameters, I was able to provide novel insight into visuomotor control in humans. First, I overcame previous issues of inconsistent sway parameters in groups of participants; Second, I found phase-locking to be an essential feature of visuomotor processing, which also allowed me to empirically confirm previously established theories of postural control; Third, through studies in collaboration with the neurology department of the UKGM, I was able to uncover new aspects of visuomotor processing in Parkinson’s, contributing to a better understanding of the sensorimotor aspects of the disease

    Wearables for Movement Analysis in Healthcare

    Get PDF
    Quantitative movement analysis is widely used in clinical practice and research to investigate movement disorders objectively and in a complete way. Conventionally, body segment kinematic and kinetic parameters are measured in gait laboratories using marker-based optoelectronic systems, force plates, and electromyographic systems. Although movement analyses are considered accurate, the availability of specific laboratories, high costs, and dependency on trained users sometimes limit its use in clinical practice. A variety of compact wearable sensors are available today and have allowed researchers and clinicians to pursue applications in which individuals are monitored in their homes and in community settings within different fields of study, such movement analysis. Wearable sensors may thus contribute to the implementation of quantitative movement analyses even during out-patient use to reduce evaluation times and to provide objective, quantifiable data on the patients’ capabilities, unobtrusively and continuously, for clinical purposes

    Exercise-Induced Hypoalgesia in people with chronic low back pain

    Get PDF
    Chronic low back pain (CLBP) is one of the most prevalent musculoskeletal disorders and a major contributor to disability worldwide. Exercise is recommended in guidelines as a cornerstone of the management of CLBP. One of the manifold benefits of exercise is its influence on endogenous pain modulation. An acute bout of exercise elicits a temporary decrease in pain sensitivity, described as exercise-induced hypoalgesia (EIH). This thesis explores EIH in people with CLBP via a systematic review and observational studies. The systematic review included 17 studies in people with spinal pain. Of those, four studies considered people with CLBP revealing very low quality evidence with conflicting results. EIH was elicited following remote cycling tasks (two studies, fair risk of bias), but EIH was altered following local repetitive lifting tasks (two studies, good/fair risk of bias). The observational studies investigated EIH following three different tasks in participants with and without CLBP and explored the stability of EIH results. Conflicting results from quantitative sensory testing were found for whether EIH is impaired in people with CLBP. EIH was only elicited in asymptomatic participants following a repeated lifting task, but both participants with and without CLBP showed EIH following a lumbar resistance and a brisk walking task. This thesis demonstrates the first evidence of stability of EIH over multiple sessions. However, the interpretation of the results can be challenging as stability was poor and changes in lumbar pressure pain thresholds also occurred after rest only. These findings are important to inform future studies contributing to the elucidation of the complex phenomenon of EIH in people with/without CLBP, specifically as the stability is a prerequisite for future research

    Epidemiology of Injury in English Women's Super league Football: A Cohort Study

    Get PDF
    INTRODUCTION: The epidemiology of injury in male professional football has been well documented (Ekstrand, HĂ€gglund, & WaldĂ©n, 2011) and used as a basis to understand injury trends for a number of years. The prevalence and incidence of injuries occurring in womens super league football is unknown. The aim of this study is to estimate the prevalence and incidence of injury in an English Super League Women’s Football squad. METHODS: Following ethical approval from Leeds Beckett University, players (n = 25) signed to a Women’s Super League Football club provided written informed consent to complete a self-administered injury survey. Measures of exposure, injury and performance over a 12-month period was gathered. Participants were classified as injured if they reported a football injury that required medical attention or withdrawal from participation for one day or more. Injuries were categorised as either traumatic or overuse and whether the injury was a new injury and/or re-injury of the same anatomical site RESULTS: 43 injuries, including re-injury were reported by the 25 participants providing a clinical incidence of 1.72 injuries per player. Total incidence of injury was 10.8/1000 h (95% CI: 7.5 to 14.03). Participants were at higher risk of injury during a match compared with training (32.4 (95% CI: 15.6 to 48.4) vs 8.0 (95% CI: 5.0 to 10.85)/1000 hours, p 28 days) of which there were three non-contact anterior cruciate ligament (ACL) injuries. The epidemiological incidence proportion was 0.80 (95% CI: 0.64 to 0.95) and the average probability that any player on this team will sustain at least one injury was 80.0% (95% CI: 64.3% to 95.6%) CONCLUSION: This is the first report capturing exposure and injury incidence by anatomical site from a cohort of English players and is comparable to that found in Europe (6.3/1000 h (95% CI 5.4 to 7.36) Larruskain et al 2017). The number of ACL injuries highlights a potential injury burden for a squad of this size. Multi-site prospective investigations into the incidence and prevalence of injury in women’s football are require
    corecore