107 research outputs found

    Re-Sonification of Objects, Events, and Environments

    Get PDF
    abstract: Digital sound synthesis allows the creation of a great variety of sounds. Focusing on interesting or ecologically valid sounds for music, simulation, aesthetics, or other purposes limits the otherwise vast digital audio palette. Tools for creating such sounds vary from arbitrary methods of altering recordings to precise simulations of vibrating objects. In this work, methods of sound synthesis by re-sonification are considered. Re-sonification, herein, refers to the general process of analyzing, possibly transforming, and resynthesizing or reusing recorded sounds in meaningful ways, to convey information. Applied to soundscapes, re-sonification is presented as a means of conveying activity within an environment. Applied to the sounds of objects, this work examines modeling the perception of objects as well as their physical properties and the ability to simulate interactive events with such objects. To create soundscapes to re-sonify geographic environments, a method of automated soundscape design is presented. Using recorded sounds that are classified based on acoustic, social, semantic, and geographic information, this method produces stochastically generated soundscapes to re-sonify selected geographic areas. Drawing on prior knowledge, local sounds and those deemed similar comprise a locale's soundscape. In the context of re-sonifying events, this work examines processes for modeling and estimating the excitations of sounding objects. These include plucking, striking, rubbing, and any interaction that imparts energy into a system, affecting the resultant sound. A method of estimating a linear system's input, constrained to a signal-subspace, is presented and applied toward improving the estimation of percussive excitations for re-sonification. To work toward robust recording-based modeling and re-sonification of objects, new implementations of banded waveguide (BWG) models are proposed for object modeling and sound synthesis. Previous implementations of BWGs use arbitrary model parameters and may produce a range of simulations that do not match digital waveguide or modal models of the same design. Subject to linear excitations, some models proposed here behave identically to other equivalently designed physical models. Under nonlinear interactions, such as bowing, many of the proposed implementations exhibit improvements in the attack characteristics of synthesized sounds.Dissertation/ThesisPh.D. Electrical Engineering 201

    Physically Informed Subtraction of a String's Resonances from Monophonic, Discretely Attacked Tones : a Phase Vocoder Approach

    Get PDF
    A method for the subtraction of a string's oscillations from monophonic, plucked- or hit-string tones is presented. The remainder of the subtraction is the response of the instrument's body to the excitation, and potentially other sources, such as faint vibrations of other strings, background noises or recording artifacts. In some respects, this method is similar to a stochastic-deterministic decomposition based on Sinusoidal Modeling Synthesis [MQ86, IS87]. However, our method targets string partials expressly, according to a physical model of the string's vibrations described in this thesis. Also, the method sits on a Phase Vocoder scheme. This approach has the essential advantage that the subtraction of the partials can take place \instantly", on a frame-by-frame basis, avoiding the necessity of tracking the partials and therefore availing of the possibility of a real-time implementation. The subtraction takes place in the frequency domain, and a method is presented whereby the computational cost of this process can be reduced through the reduction of a partial's frequency-domain data to its main lobe. In each frame of the Phase Vocoder, the string is encoded as a set of partials, completely described by four constants of frequency, phase, magnitude and exponential decay. These parameters are obtained with a novel method, the Complex Exponential Phase Magnitude Evolution (CSPME), which is a generalisation of the CSPE [SG06] to signals with exponential envelopes and which surpasses the nite resolution of the Discrete Fourier Transform. The encoding obtained is an intuitive representation of the string, suitable to musical processing

    Analysis and resynthesis of polyphonic music

    Get PDF
    This thesis examines applications of Digital Signal Processing to the analysis, transformation, and resynthesis of musical audio. First I give an overview of the human perception of music. I then examine in detail the requirements for a system that can analyse, transcribe, process, and resynthesise monaural polyphonic music. I then describe and compare the possible hardware and software platforms. After this I describe a prototype hybrid system that attempts to carry out these tasks using a method based on additive synthesis. Next I present results from its application to a variety of musical examples, and critically assess its performance and limitations. I then address these issues in the design of a second system based on Gabor wavelets. I conclude by summarising the research and outlining suggestions for future developments

    Application of wavelets to analysis of piano tones

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Model-based analysis of noisy musical recordings with application to audio restoration

    Get PDF
    This thesis proposes digital signal processing algorithms for noise reduction and enhancement of audio signals. Approximately half of the work concerns signal modeling techniques for suppression of localized disturbances in audio signals, such as impulsive noise and low-frequency pulses. In this regard, novel algorithms and modifications to previous propositions are introduced with the aim of achieving a better balance between computational complexity and qualitative performance, in comparison with other schemes presented in the literature. The main contributions related to this set of articles are: an efficient algorithm for suppression of low-frequency pulses in audio signals; a scheme for impulsive noise detection that uses frequency-warped linear prediction; and two methods for reconstruction of audio signals within long gaps of missing samples. The remaining part of the work discusses applications of sound source modeling (SSM) techniques to audio restoration. It comprises application examples, such as a method for bandwidth extension of guitar tones, and discusses the challenge of model calibration based on noisy recorded sources. Regarding this matter, a frequency-selective spectral analysis technique called frequency-zooming ARMA (FZ-ARMA) modeling is proposed as an effective way to estimate the frequency and decay time of resonance modes associated with the partials of a given tone, despite the presence of corrupting noise in the observable signal.reviewe

    On the influence of non-linear phenomena on perceived interactions in percussive instruments

    Get PDF
    International audienceIn this paper, we investigate the hypothesis that perceived impact strength is strongly influenced by the non-linear behavior produced by large deformations in percussive instruments. A sound corpus is first generated from a physical model that simulates non-linear vibrations of a thin plate. The e↵ect of non-linear phenomena on the perceived strength is further quantified through a listening test. The aim of this study is to improve the expressive potential of synthesizers of percussive sounds through the development of signal transformation models. Future work will focus on the modeling of sound morphologies that correspond to non-linear behavior and the development of a transparent control strategy

    Auditory group theory with applications to statistical basis methods for structured audio

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1998.Includes bibliographical references (p. 161-172).Michael Anthony Casey.Ph.D
    corecore