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Summary 

The wavelet analysis has two important advantages over Fourier analysis: 

localizing ‘unusual’ transient events and disclosing time-frequency information with 

flexible analysis windows. This dissertation presents the application of wavelet 

analysis to musical sounds. Among all kinds of attributes of musical sounds, the most 

basic but also most important attribute might be what is called the tone quality, 

usually referred to as the timbre. It is the timbre that helps people recognize and 

identify the distinction between musical instruments when the same note is played at 

the same loudness on different musical instruments. Besides spectral structures, other 

factors like the onset transients and inharmonicity may affect the timbre of a musical 

instrument. The piano is an important western musical instrument and has very short 

onset transients and significant inharmonicity. Taking piano sounds as the object of 

study, this dissertation has confirmed the applicability of wavelet analysis to piano 

tones and has investigated their onset transients and inharmonicity. 

Firstly, the ability of wavelets to localize ‘unusual’ transient events is used to 

estimate the duration of the onset transients of piano tones. A variant wavelet 

multiresolution analysis was employed for this. After explaining the surprisingly 

negative dip in the envelope of processed piano waves, we are able to identify the 

beginning of the onset transients. The duration of the onset transients was therefore 

obtained by measuring the time between the waveform peak and the identified 

beginning point. 



 5

Secondly, the ability of wavelet analysis to perform time-frequency analysis with 

flexible windows was adopted to illustrate the distinction in the time-frequency plane 

between the onset transients and the stationary parts. The analysis of such wavelet 

time-frequency planes disclosed and verified some of the piano tones’ important 

characteristics. 

Thirdly, the reconstruction of piano tones was investigated. Our experiments 

indicated that only a small number of time-frequency blocks were needed to represent 

piano tones well. This is due to both the compression capability of the wavelet 

analysis and the special features of the piano tones. The entire reconstruction process 

also paves the way for our estimation of inharmonicity coefficients for piano tones. 

Finally, most previous studies for estimating the inharmonicity coefficients of 

piano tones were based on Fourier transform. Little or no works has been based on 

wavelet transform. Thus in this thesis, an approach based on the wavelet impulse 

synthesis was designed to estimate the inharmonicity coefficients of piano tones. Each 

time-frequency block in the plane represented a wave component which is the product 

of a coefficient with its associated wavelet basis. Each wave component was obtained 

by wavelet impulse synthesis and classified into a particular partial in terms of a series 

of analysis frequencies, thus allowing the estimation of the partial’s frequency. After 

eliminating the ‘partial shift’ effect by a correction process, the combination of 

fundamental frequency and inharmonicity coefficient was accurately measured. The 

calculated results agreed closely with the piano’ real harmonics obtained by FFT 

analysis.  
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Chapter 1 Introduction 

 

 

 

 

 

 

 

 

 

 

 

1.1 Musical Acoustics and Computer Music 

Musical acoustics, an intrinsically multidisciplinary field, mirrors the 

convergence of two distinct disciplines, science and music. Such convergence, 

according to Benade [1] is the meeting place of music, physics and auditory science. 

In other words, the study of musical acoustics has intertwined music with physics. It 

is this intertwining that promotes music from being an ineffable art of emotional 

expression to being a sophisticated subject of science research.  

For example, scientists represent sounds by waves and attribute the production of 

a sound to the result of air vibrations. Whenever two or more sound waves with 
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different pitches (i.e. frequencies) are played at the same time, the amplitudes of such 

sound waves in the air pressure combine with each other and produce a new sound 

wave as the consequence of such interaction. Also, any given complicated sound wave 

can be modelled by many different sine waves of the appropriate frequencies and 

amplitudes (spectral analysis). Finally, the human hearing system, mainly composed 

of both the ears and the brain, can usually isolate/decode the variation of the air 

pressure at the ear "containing" these pitches into separate tones and perceive them as 

distinctive sounds. 

The examples mentioned above from the production of a musical sound to the 

perception of the sound are all within the coverage of musical acoustics. From these 

examples, we also can deduce how scientists have translated various aspects of 

musical sounds into physics research topics. 

The history of research into musical acoustics can be traced back to ancient 

Greece when Pythagoras (roughly about 580 BC~500 BC) studied the relation 

between musical intervals and certain string length ratios. In the following centuries, 

scientists and musicians who continued to believe that science would supply the basis 

for the foundations of music have steadily expanded the scope of musical acoustics, 

particularly in the design and manufacture of various musical instruments. 

Although the use of science and technology in music is not new, the real surge of 

interest in the study of musical acoustics was indeed triggered by the rapid progress 

and extensive use of computer systems, dating back to the 1950s. Ever since then, 

important new developments like digital music, computer spectrum analysis, sound 
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mixing, etc, have sprung up. Driven by these developments, a variety of music-related 

products from professional music recording/editing studio equipment to electronic 

pianos for the domestic consumer have emerged.  

Against this background, a new research subfield, computer music, gradually 

came into being, whose range covers physics, psychology, computer science, and 

mathematics. The emergence of computer music is a quantum leap for the marriage of 

technology and music. Acting as a ‘super’ musical instrument, a well-designed 

computer system not only can simulate sounds of any existing musical instruments 

but also, more importantly, may extend musical timbres beyond those conventional 

musical instruments, by eliminating the constraints of the physical medium on sound 

production. That means ‘new’ and previously unheard musical sounds might be 

synthesized by a computer and the musical waveform heard by being played through 

a loudspeaker. This generality of computer synthesis implies an extraordinarily larger 

sound timbre space, which is an obvious attraction to music composers [2] seeking 

new sounds. 

This raises an essential question on how to realize such a ‘super’ musical 

instrument. Generally speaking, the answer could be reduced to 2 inverse but closely 

interrelated processes: the analysis of a sound and the digital synthesis of the sound. 

The goal of the analysis process is to overcome the barrier when the required 

knowledge on the nature of a sound in question is lacking, which is related to the 

physical and perceptual description of sounds. Only with such necessary knowledge 

can we effectively instruct a computer system to perform the synthesis of musical 
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sounds. The means by which sounds are synthesized by different synthesis methods 

will be introduced in detail in section 1.2.2. Therefore, the twin processes of analysis 

and synthesis are universal in computer music, where researchers often analyze an 

acoustic signal in order to extract information about certain aspects of the signal and 

then use this information to reconstruct the signal by various methods of digital sound 

synthesis. 

 

1.2 Review of Computer Music 

1.2.1 A Brief History 

As stated previously, when physics, psychology, computer science, and 

mathematics are integrated with musical knowledge, scientists, musicians and 

technicians can work together in Computer Music. 

Nowadays, there are many organizations and companies throughout the world 

who are engaged in this flourishing and profitable area. But all of these can be 

attributed to the early work which established a solid foundation for today’s 

commercially successful electronic music industry.  

Believing that computers could generate new sounds to meet the exacting 

requirements of human aural perception, researchers at Bell Telephone Laboratories in 

Murray Hill began the first experiments in digital synthesis in 1957 when computers 

were still relatively uncommon and bulky. Their experiments confirmed that 

computers can effectively synthesize sounds with different pitches and waveforms. 
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Encouraged by the success of these experiments, Max V. Mathews made further 

remarkable progress in this pioneering stage of computer music. He invented the 

influential Music I language, a software environment which could implement sound 

synthesis algorithms. Based on Music I, the psychologist Newman Guttman created a 

piece of music called “In a Silver Scale” also in 1957, which only lasted 17 seconds. 

Subsequently, Bell Laboratories further developed the more ambitious Music II to 

Music V programs that are now looked upon as the original models for many 

synthesis programs of today.  

Then in the following decades, some scientists like Chowning (1973) [3], 

Moorer (1977) [4], Horner (1993) [5] and Cardoz [6] developed the sound synthesis 

technique further through various approaches including modulation synthesis, 

additive synthesis, multiple wavetable synthesis and physical modeling synthesis 

respectively. 

However, computer composers often want to mix and balance several audio 

channels that are input into computer devices simultaneously to create a synthesized 

piece of music. In this sound mixing process, it is often necessary to filter, delay, 

reverberate or localize the synthesized sounds. These operations fall within the 

domain of signal processing, which has been described by researchers such as Lansky 

(1982), Freed (1988), Jaffe (1989) [7-9]. 

Beside sound synthesis, sound analysis also plays an indispensable role in 

computer music, not only because such analysis is essential to enable a near perfect 

reconstruction of a musical sound, but also because such analysis is also essential for 
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the realization of an intelligent computer which can recognize, understand and 

respond to what it ‘hears’. Such sound analysis includes research on the structure of 

musical tones and various techniques of spectral analysis. Each of these aspects can 

be further divided into several separate topics. For instance, research on the structure 

of musical tones, formant theory, onset transients and inharmonicity, etc are 

frequently mentioned. To improve spectral analysis techniques, all kinds of 

mathematical tools ranging from the Fourier transform to the Wavelet transform have 

been involved. From the next section, we will discuss the details of such sound 

synthesis/analysis techniques. 

 

1.2.2 Analysis of Musical Sounds 

In section 1.2.1, the importance of sound analysis in computer music has been 

briefly introduced. More omni-faceted accounts of the applications of sound analysis 

have been summarized by Roads [2] as below: 

 Analysis→Modification→Resynthesis 

 Making responsive instruments that “listen” via a microphone to a performer 

and respond in real time 

 Creating sound databases in terms of each sound’s acoustic properties. 

 Adjusting the frequency response of a sound reinforcement system according 

to the frequency characteristics of the space. 

 Restoring old recordings 
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 Data compression 

 Transcribing sounds into common music notation 

 Developing musical theories based on real performance of musical sound 

rather than just paper scores. 

All such applications of sound analysis would pave the way for the further 

development of computer music, which in turn would promote more diversified 

applications and thereby lead to more intricate analysis on various attributes of a 

musical sound. These various attributes may range from straightforward sensations 

like pitch (a psychological and musical notion whose physical counterpart is 

frequency) and loudness, to more ‘elusive’ perceptions such as a sound’s brightness, 

etc.  

Nevertheless, among all kinds of such attributes of a musical sound, one of the 

most basic but also most important attributes is what is called the tone quality, or 

usually referred to as the timbre, which is determined by the harmonic content of the 

waveform[10].  

 

1) Timbre of a Tone 

According to The American Standards Association (ASA which has been 

renamed the American National Standards Institute, or ANSI), timbre is defined as 

“the attribute of auditory sensation in terms of which a listener can judge that two 

sounds similarly presented and having the same loudness and pitch are dissimilar”. 

Simply put, it is the timbre that helps us to recognize and identify the distinction 
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between musical instruments. For example, the human ear can easily distinguish a 

violin sound from a piano sound, even if both musical instruments have played the 

same note, e.g., the note C4 at the same loudness.  

It is interesting to note what factors may affect the timbre.  

i. The harmonics of a tone 

Musicians and scientists have been long aware that the harmonic structure or 

spectrum of a tone is made up of a number of distinct frequencies, labeled as the 

partials. The lowest frequency is called the fundamental frequency which determines 

the perceived pitch of the tone. The other frequencies are called harmonics or partials, 

whose frequency values are integer multiples of the fundamental frequency. Some 

proponents of such harmonic analysis have asserted that the differences in the tone 

quality depend solely on the presence and strength of the partials [11]. Even though 

this is not entirely true, most theorists still agree that the spectrum of a tone is the 

primary determinant of its tone quality.  

 

ii. The formant 

As a supplement to the classical theories of harmonic analysis, the formant 

theory holds that “the characteristic tone quality of an instrument is due to the relative 

strengthening of whatever partial lies within a fixed or relatively fixed region of the 

musical scale” [12].  

The classical theories which assert that the harmonics or partials are the sole 

determinant of tone quality in practice are not strictly true.  For instance, for the 
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bassoon, there may be no apparent similarity between the Fourier spectra of different 

bassoon notes, other than an increase in amplitude of the high-frequency harmonics. 

But a meticulous comparison of the Fourier spectra for every bassoon note may 

disclose that a certain frequency region which is consistently emphasized relative to 

the other harmonics. In contrast with the classical theories that only look at the fixed 

spectrum of a single tone, the formant theory looks at such frequency ranges or 

“formants” which are consistently emphasized throughout the instrument’s range to 

produce constancy in the characteristic tone quality of the instrument [13]. 

Furthermore, the perceived tone quality may also be influenced by the amount of 

emphasis in the formant region and by the width of the frequency band involved.  

iii. The onset transient 

The onset transient or the attack transient usually refers to the unique stage of a 

sound that occurs in its very beginning and generally only lasts for a very short period. 

If the onset transient of, for example, an oboe tone, is spliced together with the 

sustained stationary portion of the tone of another instrument such as a violin tone, 

listeners will often identify the combined tone as an oboe tone, although the main 

body of the combined tone is from another instrument [14]. Also, playing a piano’ 

tone backwards results in a sound very different from that of a piano. Previous work 

[15, 16] on the sounds of musical instruments have indicated that each sound’s onset 

transient plays a very important role in helping listeners to discriminate between 

various instruments. There could be several diverse explanations for this. From an 

acoustical point of view, during the onset transient, the standing wave has not been 
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established yet in the instrument. The amplitude fluctuates rapidly and the spectrum 

differs from that of the steady state, and such unstable behavior during the onset 

transient may contain more specific information regarding a certain instrument. From 

the human perception point of view, the human auditory system is more sensitive to a 

transient event than to static phenomena. Consequently, the subject of onset transients 

has become of considerable contemporary research interest. 

 

iv. Inharmonicity  

So far, we have supposed that a musical tone possesses a harmonic structure. 

This may be true for most western musical instruments, but many other instruments 

do produce inharmonic tones. Even in a harmonic tone structure, the so-called 

harmonics may not exactly follow a perfect harmonic structure. There is always a 

possibility that a partial could deviate from its expected harmonic position.  

In music, inharmonicity is the concept of measuring the degree of deviation by 

which the frequencies of partials of a tone differ from integer multiples of the 

fundamental frequency. Inharmonicity is particularly evident in piano sounds because 

of the piano strings’ stiffness and non-rigid terminations. Inharmonicity can have an 

important effect on the timbre. Podlesak [17] and Moore [18] pointed out pitch shifts 

due to inharmonicity, although having durations of a few tens of milliseconds, can be 

discriminated by listeners. In an experiment [19], it was found that synthesized piano 

notes with no inharmonicity were judged as sounding dull compared to real piano 

sounds. 
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2) Spectrum Analysis 

As stated before, to synthesize musical sounds, it is important to understand 

which acoustical properties of a musical instrument sound are relevant to which 

specific perceptual features. Some relationships can be obviously identified, e.g. 

amplitudes control the loudness and the fundamental frequency regulates the pitch. 

Other perceptual features are subject to sound spectra and how they vary with time. 

For example, “attack impact” is strongly related to spectral characteristics during the 

first 20-100ms corresponding to the rise time of the sound, while the “warmth” of a 

tone points to spectral characteristics such as inharmonicity.  

A straightforward definition of spectrum is a measure of the distribution of signal 

energy as a function of frequency. From such a distribution, we are able to know the 

contributions of various frequency components, each corresponding to a certain rate 

of variation in air pressure in the case of a sound wave. Gauging the balance among 

these components is the task of spectrum analysis [2].  

Since spectral diagrams are capable of yielding significant insights into the 

microstructure of vocal, instrumental or synthetic sounds, not surprisingly, they are 

considered as essential tools for scientists and engineers. For instance, through 

revealing the energy spectrum of instrumental and vocal tones, spectrum analysis can 

help to identify timbres and separate instruments of different timbres playing 

simultaneously [20]. However, it was Melville Clark Jr.’s laboratory at MIT that 

accomplished the first time-varying spectrum analysis and synthesis of musical 
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sounds by a computer [21, 22]. Various applications or explorations of spectrum 

analysis were subsequently performed by Beauchamp [23, 24] and Risset and 

Mathews [25]. Some other pioneer work in spectrum analysis on musical sounds 

worthy of highlighting here include the work of Strong and Clark [26], who were the 

first to incorporate listening tests on musical sound synthesis derived from spectral 

analysis, and also the first to stress the importance of the spectral envelopes of 

musical instruments. 

Fourier analysis, a family of different techniques that are still evolving, may be 

the most prevalent approach in spectrum analysis. In the following discussion, some 

typical techniques of Fourier analysis will be briefly introduced. The ideas behind 

such techniques can be very divergent, but they are all modeled on the basis of the 

Fourier Transform (FT) or the Short Time Fourier Transform (STFT).  

i) Pitch-synchronous analysis [27] 

In this approach, the essential part is partitioning a sound’s waveform into 

pseudo periodic segments. The pitch of each pseudo periodic segment is also 

roughly estimated. The size of the analysis segment is adjusted relative to the 

estimated pitch period. Then the Fourier transform is applied on every analysis 

segment as though each of them was periodic. This technique thus generates the 

sound’s spectrum for each time segment. 

ii) Heterodyne Filter Analysis [28] 

       The heterodyne filter approach is especially suitable for resolving the 

harmonics of a sound. In a prior stage of analysis, the fundamental frequency of 
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the sound is estimated. The heterodyne filter multiplies the input waveform by an 

analysis signal (a sine wave or cosine wave). Then the resulting waveform is 

summed over a short time period to obtain amplitude and phase data. The product 

of the input signal (an approximate sine wave) with an analysis signal (a pure sine 

wave having the same phase) should be a waveform riding above the zero-axis (i.e. 

having positive values) if the frequencies of the two signals match. Otherwise, the 

result scatters symmetrically around the zero-axis (positive or negative). When 

this scattered waveform is summed over a short time period it will basically 

cancel out. 

However, the limits of the heterodyne method are also well known. For 

example, Moorer [29] showed that the heterodyne filter approach is invalid for 

fast attack periods (less than 50ms) or those sounds whose pitch changes greater 

than about a quarter tone. Although Beauchamp [30] improved the heterodyne 

filter to allow it to follow changing frequency trajectories, the heterodyne filter 

approach is seldom used nowadays and has already been supplanted by other 

methods. 

iii) Short-time Fourier Transform and Phase Vocoder [31-34] 

One of the most popular techniques based on the Short-time Fourier 

transform (STFT) for the analysis/resynthesis of spectra is the phase vocoder, 

developed by Flanagan and Golden [35] in 1966 at Bell Telephone Laboratories. 

The phase vocoder can be thought of as passing a windowed input signal through 

a bank of parallel bandpass filters which spread across the audio bandwidth with 
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equal intervals. Every filter measures the amplitude and phase of a signal in each 

frequency band (see Fig 1.1). Through a subsequent operation, these values can be 

converted into two envelopes: one for the amplitude, and one for the frequency. 

 

Fig 1.1 An individual bandpass filter in phase vocoder 

 

Moreover, various implementations of the Phase Vocoder provide tools for 

modifying these envelopes, which make the musical transformations of analyzed 

sounds possible.  

Recently, many implementations of the Phase Vocoder have been improved 

to follow or track the most prominent peaks in the spectrum over time. Hence they 

are called Tracking Phase Vocoders (TPV) [36, 37]. Unlike the ordinary phase 

vocoder, in which the resynthesis frequencies are limited to harmonics of the 

analysis window, the TPV follows changes in frequencies. The result of peak 

tracking is a set of amplitude and frequency envelopes that drive a bank of 

sinusoidal oscillators in the resynthesis stage.  

Beside these typical Fourier-based methods, other “non-Fourier” methods (they are 
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actually extensions of Fourier analysis) have also gained ground in recent years, 

typically, two of which are Constant-Q Filter Bank analysis and wavelets analysis 

respectively.  

i) The Constant-Q transform 

The Constant-Q transform [38] can be thought of as a series of logarithmically 

spaced filters, with the k-th filter having the central frequency given by 

min
24/1 )2( ff k

k =                        (1-1) 

where the minimum frequency minf  is an adjustable parameter and can be chosen 

to be the lowest frequency about which information is desired. The bandwidth 

kfΔ  is defined as the difference between consecutive bin frequencies (central 

frequencies)  

kkkkkk ffffff )12(2 24/124/1
1 −=−⋅=−=Δ +     (1-2) 

and thus Q, the ratio of frequency to bandwidth is roughly constant 

34))12/((/ 24/1 ≈−=Δ= kkkk ffffQ            (1-3) 

Distinct from Fourier analysis which divides the spectrum into a set of 

equally-spaced frequency bins (e.g., for a 1024 point FFT at a sampling rate of 

44100 Hz, the bandwidth of a bin is uniformly 53.211024/)2/44100( ≈=Δf  

Hz), the Constant-Q transform varies the bandwidth proportionally with the 

frequency ( 34/kk ff =Δ ). That means, in the constant-Q transform the analysis 

bands are narrow for low frequencies and wide for high frequencies.  

It is also clear from the Equation (1-1) that  

)log(
24

)2log()log( minfkf k +=               (1-4) 
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Thus, if we translate frequencies into a logarithmic scale (such as corresponds to 

musical octaves) like Equation (1-4), the log-frequencies of musical tones are linearly 

related to the number k. 

ii) The Wavelet Transform 

   Fourier analysis dominates the field of stationary signal processing, but as it is a 

technique inherently requiring a wide time span, it is less effective for unstable 

transient signals. The Short Time Fourier Transform (STFT) can analyze signals in 

both time and frequency using suitable fixed-length windows, but onset transients 

with their rapidly changing frequencies and amplitudes require more flexible and 

specific time segments. 

In contrast to STFT which uses fixed-length windows, the Constant-Q method 

varies the length of windows according to the frequency being analyzed. That means 

it uses broad time windows (narrow frequency intervals) to analyze low frequencies 

and narrow time windows on high frequencies. The schemes for implementing the 

Constant-Q spectral analysis have been reviewed in the reference [39]. However, the 

Constant-Q spectral analysis is not computationally efficient. To overcome this 

problem, Brown and Puckette [40] proposed an efficient method of transforming a 

discrete Fourier transform into a Constant-Q transform, taking advantage of the speed 

of the FFT calculation. Besides the heavy computational load, another issue is that the 

existence of a Constant-Q filter bank does not necessarily imply a method for 

resynthesis [2]. The wavelet transform, which can be considered as a special case of 

the Constant-Q method in a general sense, does not have the above two potential 
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problems (computationally inefficient and no resynthesis in some cases). In 1988, 

Mallat produced a fast wavelet decomposition and reconstruction algorithm [41], 

following which the wavelet transform can always be carried out in two reversible 

directions: analysis and resynthesis. Various wavelet-based techniques have been 

applied in the field of music sound processing. These investigations include wavelet 

representations of musical signals (the time-frequency grid [42] and 

pitch-synchronous representation [43]), removing noise from music [44], compression 

[45], and analysis / resynthesis of musical sounds [42, 46]. 

 

1.2.3 Sound Synthesis Techniques 

This section will explain the basic principles of contemporary synthesis methods. 

A typical digital sound synthesis technique uses a time varying mathematical equation 

with a few adjustable parameters to compute the time varying output waveform, 

which if then sent to a loudspeaker, will produce a physical sound waveform. The 

parameters contained in such a mathematical equation can be looked upon as the 

control functions of the equation or algorithm. Over the last few decades, many 

synthesis techniques have been proposed. Among them are physical modeling 

synthesis, additive synthesis, subtractive synthesis, multiple wavetable synthesis and 

modulation synthesis, each of which will be briefly introduced respectively. 

Physical modeling synthesis produces a particular musical instrument’s sounds 

by designing a mathematical model to simulate the physical sound production 
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mechanism of this musical instrument, involving all the essential physical and 

acoustical behavior of the real instrument. It can be imagined that this synthesis 

technique is extremely complicated. The important work in this field includes Hiller’s 

finite difference approximations of the wave equation [47], the Karplus-Strong 

algorithm [48] and Julius O. Smith III’s digital waveguide model [49]. 

Additive synthesis [2] emulates tones by Fourier series analysis, a powerful 

mathematical tool that can express any periodic function as the sum of trigonometric 

functions such as sine or cosine functions.  

∑
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tf                 (1-5) 

where  

∫−=
π

ππ
dtnttfan )cos()(1                            (1-6) 

∫−=
π

ππ
dtnttfbn )sin()(1                             (1-7) 

To obtain a time varying sound spectrum, the assigned amplitudes of each 

harmonic, i.e., the coefficients na and nb  can be further allowed to vary with time. 

Additive synthesis has a well-understood methodology and is able to reproduce very 

closely any sound that can be expressed as the spectral components of the waveform’s 

harmonics in the frequency domain. Through varying the control functions, new 

musical sounds can be easily generated. However the drawback of additive synthesis 

is also obvious. Localized sound events or non-periodic sounds, e.g. onset transients 

or inharmonicity of string instruments like the piano, are difficult to generate. 

Therefore, Wavelet analysis, which is applied in the work described in this 

dissertation, attempts to overcome such difficulties. 
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Multiple wavetable synthesis [5] is another popular synthesis method. In multiple 

wavetable synthesis, the lookup table contains several general waveforms shapes. A 

mechanism exists for dynamically changing the wave shape as the musical tone evolves. 

More sophisticated methods have been proposed by a few authors, for example Horner 

[50]. As an enhanced extension of additive synthesis, the multiple wavetable synthesis 

is well suited for synthesizing quasi-periodic sounds. 

Modulation synthesis can be divided into 2 categories, amplitude modulation 

(AM) synthesis and frequency modulation (FM) synthesis. In AM synthesis, an 

amplitude envelope is applied to an oscillating waveform in the time domain, thereby 

producing the modulated signal. The formula is shown below 

f (t) = [1+ kam(t)]Ac cos(2π fct)                 (1-8) 

where Ac  and fc  are namely the carrier amplitude and carrier frequency. ka  is the 

modulation index and m(t)  is the modulating function. 

In FM synthesis, a modulator oscillator modulates the frequency of the carrier 

oscillator. With relatively few control parameters, frequency modulation synthesis can 

create a very complex waveform. The formula is  

f (t) = A(t)sin[2π fct + I sin(2π fmt)]            (1-9) 

where A(t)  is the amplitude, fc  is the carrier frequency, fm  is the modulation 

frequency and I  is the modulation index. For FM synthesis, A is normally time 

constant. 

John Chowning [3] first discovered the frequency modulation synthesis at 

Stanford university in 1973. Since then, many new variants of FM synthesis have 
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been proposed. These include the Asymmetrical Frequency Modulation (AFM) 

synthesis technique [51] [52] and Double Frequency Modulation (DFM) synthesis 

technique [53] [54] [55].    

1.3 Piano Tones and Their Analysis  

 

 

Fig 1.2 Production of piano sounds 

The piano, or pianoforte, is among the most important instruments used in 

classical music. The piano’s sound production and the underlying physical 

phenomena are very complicated. But we still can attempt to explain its sound 

production using a diagram like Fig 1.2. A piano produces sound by striking metal 

strings with felt covered hammers. The hammer rebounds, which allows the string to 

vibrate on its own frequency. These vibrations are transmitted through a bridge to a 

soundboard that amplifies them. Therefore according to the above-mentioned 

descriptions, the sound-production mechanism of the piano can be divided into 3 

stages. 

(1) When the hammer strikes the string, vibrations are excited on the string. 
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After the hammer bounces off the string, the kinetic energy of the 

hammer is transformed to the string’s vibration energy. 

(2) The string’s vibration energy is stored by the string in the form of 

normal vibration modes. Although internal losses may dissipate some of 

this energy, most of the string’s vibration energy is transmitted to the 

soundboard through the bridge, causing the soundboard to vibrate. 

(3) Finally, the soundboard’s energy is converted to the vibrational energy 

of a sound wave, and the sound wave’s energy travels through the air to 

arrive at the listener’s ears. 

In the following, how each component contributes to the production of piano 

sounds and thus their acoustical properties will be discussed. 

(1) The hammer 

Many researchers have tried to examine the interaction between the hammer and 

the string [56-58]. 

In summary, the hammer and string interaction proceeds like this: the hammer, 

accelerated by the pianist, is thrown onto the string. But since its mass is not 

negligible, the hammer does not bounce clear off the string immediately. It is slowed 

down a little on impact on the string. The impact excites pulses on the string which 

will travel to both ends of the string. The reflected pulses from the ends will 

decelerate the hammer and give rise to secondary pulses. With more reflections, the 

hammer is thrown off the string. 

Some particular properties or behaviors of the hammer can characterize piano 



 22

sounds. We know that the hammers are usually covered by wool felt. If the felt is 

harder, the piano will produce stronger partials and thus a brighter tone. On the 

contrary, softer hammers will result in less partials and a more mellow tone. The 

impact velocity of the hammer is also important. With increasing velocity, more 

high-frequency components of the tone are produced. Furthermore, the spectra of 

piano sounds also depend on the hammer-string contact point as well. For example, 

those modes of the string having a node near the contact point may not be excited 

effectively.  

(2) The string 

The strings of the piano are made of steel wire. In order to achieve high 

efficiency, the string is required to be at a high tension. The hammer motion mainly 

gives rise to two transverse polarizations (the vertical polarization and the horizontal 

polarization) in the string. Compared to horizontal polarization, greater vertical 

polarization is excited by the hammer and the energy transmission to the soundboard 

is more effective in the vertical direction as well. As a result, vertical polarization 

dominates at the beginning of piano tones. With more vertical polarization energy 

transmitted to the soundboard, the vibrations of the vertical polarization decay faster 

in the string. Therefore the horizontal polarization of the string determines the tail part 

of the tone. However, since these two polarizations are coupled to each other, the real 

situation is more complicated than the description given here. For listeners, the 

perceptual effect is such that the note appears to be not only loud but also sustained. 

To obtain higher acoustic energy output usually requires two or more strings for 
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the same pitch. For each pitch, these strings are not tuned in perfect unison. So the use 

of multiple strings for the same note may also help to give the compound decay 

mentioned previously. As the piano tone decays, the strings are out of phase and they 

no longer move the bridge synchronously together. As the result, the bridge 

impedance increases, and the rate of energy transfer to the soundboard is much lower , 

resulting in a slowing down of the decay in the energy of string. 

    Beside the decay rate, another interesting issue about the string is its stiffness, 

which results in a slightly inharmonic tone. In music, inharmonicity is the degree to 

which the frequencies of partials depart from integer multiples of the fundamental 

frequency. The stiffness of the strings, and particularly of the lower strings which are 

thicker, may lead to inharmonicity. Generally, the wavelength of the transverse wave 

on a stretched string is much greater than the diameter of the string, which makes 

wave velocity on the string constant and thus partials show a harmonic structure. 

However, for higher partials with very short wavelengths, the diameter of the string 

cannot be considered negligible any more, particulalrly for thicker strings. The 

mechanical resistance of the string to bending becomes an additional force, resulting 

in increased wave speeds and hence of higher pitch than the expected harmonics, 

leading to inharmonicity of these partials. 

Whether the inharmonicity is a desired factor is also an interesting question. 

Conlin [57] suggested that inharmonicity is an important factor of piano sound, but it 

should be as little as possible. For bass tones the amplitude of the fundamental 

frequency is weak and the pitch is mainly determined by higher partials. Due to 
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inharmonicity, the frequency difference between the partials increases with partial 

number. Accordingly, the definition of pitch becomes uncertain for such bass notes.  

However, experiments [59] have found that synthesized tones with no 

inharmonicity i.e. with partials which are exact integer multiples of the fundamental 

frequency, are usually perceived as sounding dull. On the other hand, tones with too 

high inharmonicity are judged as sounding metallic. Thus the ears seem to expect a 

certain amount of inharmonicity. 

The Fletcher equation [60] shows that 

               2
0 1 Bnnffn +=           (1-10) 

where 0f  is the fundamental frequency of the ideal string, n is the number of the 

partial and B is the inharmonicity coefficient. This relationship has been confirmed by 

several experimental studies [61, 62]. It can be seen from the equation that the degree 

of inharmonicity should increase with partial number. The inharmonicity coefficient, 

B also increases with the fundamental frequency of the string. That means treble tones 

should have more inharmonicity i.e. their partials are more inharmonic than bass tones. 

However when listening to piano sounds, people perceive more inharmonicity in the 

bass tones than in the middle or treble tones. This may be explained by the fact that 

the number of partials which can be heard is much higher for the bass tones. Another 

possible reason is a psychoacoustic phenomenon: there is higher threshold of 

perception for inharmonicity for tones with higher fundamental frequencies [63].  

 In Chapter 6, the application of wavelet packets is used for the measurement of 

inharmonicity coefficients of piano tones, B. The inharmonicity coefficient in the 
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above formula is solely determined by each string’s material characteristics such as its 

length, diameter and Young’s modulus, etc.                   

τ
π

2

43

64l
EdB =                            (1-11) 

Here, E :Young’s modulus for the string 

  d : the diameter of the string 

  l : the string length 

  τ : the tension 

Once B has been determined, formula (1-10) enables us to predict any partial’s 

frequency. Conversely, if we can measure the frequencies of the partials of real piano 

sounds, the inharmonicity coefficient B may be determined by using formula (1-10) to 

calculate B, as has been done by previous researchers [64, 65]. Some may argue that B 

could be obtained directly from formula (1-11). In practice, the tension τ  may not 

be convenient to measure if the piano is not accessible or if the piano tones were 

obtained from a recording. In addition, the measurement of E, d and l in a real piano 

may be laborious. That is why most researchers try their best to estimate B indirectly 

from formula (1-10). 

Galembo and Askenfelt designed an inharmonic comb filter to estimate the 

inharmonicity coefficient in the frequency domain [64]. Furthermore they also tried 

pitch extraction techniques such as cepstral analysis and the harmonic product 

spectrum [66]. Klapuri [67] tackled the inharmonicity measurement by estimating the 

fundamental frequency in subbands. Rauhala [65] used an iterative process designed 

to minimize the deviation of the expected partial frequencies compared to the 
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frequencies of the high amplitude peaks in the spectrum. 

However, most previous work has been based on Fourier analysis and very few 

have used wavelet analysis. In Chapter 6, a method based on wavelet impulse 

synthesis is used to estimate the inharmonicity coefficient B from real piano sound 

samples. Compared to Fourier-based approaches, whose success largely depends on 

applying additional optimizing algorithms or signal processing techniques to the 

Fourier spectrum to ‘extract’ partials from among frequency peaks clustered together, 

our wavelet-based method does not require such sophisticated techniques. Moreover, 

compared to Fourier-based approaches, our wavelet-based method also considers the 

temporal aspect of each partial’s frequency variation. 

(3) The soundboard and the bridge 

    We have known that the vibration of the strings is transmitted to the soundboard 

through the bridge. The bridge functions as an impedance transformer, providing 

higher impedance to the string. If the strings were to be directly connected to the 

soundboard without the bridge, the decay times of the string enegy would be too short 

as the energy transfer would be too rapid, and no standing wave could be set up in the 

string for the tone to be sustained. However, the impedance must allow some energy 

to be transferred from the string to the soundboard. By carefully designing the 

soundboard and the bridge, the loudness and the decay times of the partials can be 

optimized.  

From the preceding brief introduction, we can see that several factors together 

determine the timbre of the piano tones. Firstly, the piano is a struck string instrument, 
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which implies that the string is affected by impulse excitations and results in decaying 

amplitudes. The string determines the fundamental frequency of the note as well.  

The decay and the transmitted energy also depend on the impedance provided by 

the bridge and the soundboard. With higher impedance, the partials deliver less energy 

to the soundboard. Therefore, the energy in the string is better conserved and decay 

times are longer.  

The stiffness of the string gives rise to a high dispersion. No other western string 

instrument has inharmonicity as high as the piano. The characteristic attack noise of 

the piano sound comes mainly from the impulse response of the soundboard, but also 

from the noise of the piano action. 

 

1.4 The Structure of This Dissertation 

In the last section, we have mentioned some applications of the wavelet analysis 

in the field of computer music. Although these applications seem diverse, the 

mechanism behind them can be very similar. Generally speaking, most applications 

can be categorized into two different groups depending on which one of two 

important features of the wavelet analysis is adopted. These two important features of 

the wavelet analysis are namely, localizing ‘unusual’ events and resolving 

time-frequency information with flexible analysis windows.  

In this dissertation, our motivation is to apply wavelet analysis to piano tones. As 

stated in Section 1.2.2, onset transients and inharmonicity are two essential factors 
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that play an important role in discriminating a piano sound from that of other musical 

instruments. Therefore in Chapter 3, we will localize onset transients of piano tones 

and measure their durations by a variant approach based on wavelet multiresolution 

analysis. Furthermore in Chapters 4, 5 and 6, we will use time-frequency analysis to 

resolve onset transients’ spectral content, to reconstruct the original signal and to 

estimate the inharmonicity coefficients of piano tones respectively.  

However, to understand how wavelet analysis works, knowledge of basic 

wavelet transforms is a prerequisite. Hence, starting from basic concepts like vector 

space and inner product, Chapter 2 provides a review on mathematical fundamentals 

of wavelet theory, where multiresolution analysis and the wavelet transform filter 

banks implementation will be introduced. 
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Chapter 2 Wavelet Fundamentals 

 

 

 

 

 

 

 

 

 

 

 

 

In this Chapter, we provide a brief review of the fundamentals of wavelets. At 

the same time, some terminology like the wavelet transform (WT) and multiresolution 

analysis (MRA) etc will be clarified. From these techniques, a fast filter bank 

implementation of the wavelet transform will also be introduced. We are describing 

these wavelet techniques since our work is largely based on them.  

Simply put, serving as a bridge, this Chapter’s main purposes are: 

1) Introducing the wavelet transform from the most basic mathematical 

concepts such as vector space, inner product and orthogonality, etc. 



 30

2) Linking the implementation of the wavelet transform to filter banks in 

practical signal processing applications. 

 

2.1 General scheme for analyzing a signal 

2.1.1 Vector space and inner product 

In mathematics, a vector space (or simply space) is a set including a collection of 

vectors, on which addition and multiplication-by-scalar operations are defined and 

satisfy some natural axioms. Among all kinds of spaces, the most familiar one may be 

the 3-dimensional Euclidean space 3R  where a Cartesian coordinate 

),,( 321 xxxX =  identifies any of its member vectors (as shown in Fig 2.1).  

 

Fig 2.1A member vector X in 3R  space 

 

In order to measure the length of its member vectors, a notion called the inner 

product may also be defined on the space. For instance, the inner product on 3R  has 

3x

1x

2x

X
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been defined as below. 

Definition 2.1 For two vectors ),,( 321 xxxX =  and ),,( 321 yyyY =  in 3R , 

the inner product is  

332211, yxyxyxYX ++=                  (2-1) 

Thus the length of any vector X  is given by the square root of the inner 

product of X with itself,  

Length of 2
3

2
2

2
1, xxxXXX ++==                  (2-2) 

where the mathematical term for XX ,  is “the norm of X ” denoted as 

XXX ,= . The notion of norm can also give meaning to the distance between 

two different member vectors. The distance between vector X and Y is 

2
33
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2
11 )()()( yxyxyxYX −+−+−=−             (2-3) 

 

In practical applications, given a signal which has been sampled at three distinct 

time points (e.g. 1t , 2t , 3t ), we may represent the resultant sample as 

),,( 321 ttt ffff = . Therefore, all such 3-point sampled signals may constitute a real 

example of 3R  space. However in many cases, we have to sample far more samples 

than just three in order to represent the signal more accurately. This leads to a natural 

generalization from 3R  to NR  when the dimension is increased to a large number, 

N.  

Similar to the definition of inner product on 3R , the corresponding inner product 

on NR  real space is defined as  

             ∑
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,                        (2-4) 
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If X and Y are vectors in complex space NC , then 

            ∑
=

=
N

j
jj yxYX

1
,                       (2-5) 

 

2.1.2 Orthogonality and orthogonal projections 

When we say that two vectors are orthogonal this is generally understood to 

mean that they are geometrically perpendicular to each other. Mathematically, a 

formal definition for orthogonality is derived from the idea of the inner product 

introduced in the last section. 

Definition 2.2  Suppose V is an N-dimensional inner product space. Then 

1) The vectors X and Y are said to be orthogonal if 0, =YX . 

2) The collection of vectors ie  , i=1,…,N, is said to be an orthonormal basis if 

each ie  has unit length, 1=ie , and ie  and je  are orthogonal for ji ≠ . 

3) The subspaces 1V  and 2V  of V are said to be orthogonal if each vector in 

1V  is orthogonal to every vector in 2V . 

 

Once the orthonormal basis }{ ,,1 Nee L  have been found for a N-dimensional 

inner product space such as NR , then any vectors NRX ∈ can be uniquely expanded 

as a linear combination of such basis vectors: 

           ∑
=

=
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j
jjeX

1
α                        (2-6) 

where jα  is the coefficient or the length of the projection of X on je .  
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To evaluate any coefficient kα , taking the inner product with ke  on both sides 

of the equation (2-6), we have 
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          (2-7) 

From equations (2-6) and (2-7), we can summarize the general scheme for 

analyzing a signal:  

1) Try to find a set of orthonormal bases for the vector space that describes the 

signal. 

2) Use these orthonormal bases to decompose the signal using Equation (2-6).  

3) The desired coefficients defining the signal are obtained by computing the inner 

product of the signal data with each basis vector according to the Equation (2-7). 

 

Until now, we have summarized the general scheme for analyzing a signal. From 

this scheme, we can see that the most essential step is to find (or construct) the right 

set of orthonormal basis vectors. For the Fourier transform, these orthonormal bases 

are sine or cosine functions. Similarly, the wavelet transform also falls under this 

scheme, that is, by constructing orthonormal bases called wavelets and then 

decomposing a signal by calculating their inner products with the signal. 
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2.2 Wavelets and multiresolution analysis 

2.2.1 About Wavelet 

    Wavelet (short for “wavelet basis”) is a set of basic functions associated with 

building a model for a signal. Just as their name’s literal meaning, these basic 

functions in wavelet theory are little waves. They must be oscillatory (waves) and 

have amplitudes which quickly decay to zero along both the positive and negative 

directions (little). Similar to sinusoids, the required oscillatory condition makes them 

good as building blocks. The quick decay condition is actually a windowing operation. 

Fig 2.2 shows the pattern of a typical wavelet. 

 

Fig 2.2 The example of a wavelet 

 

    Wavelet theory represents signals by breaking them into many interrelated 

component pieces. When these pieces are “scaled” and “translated” wavelets, this 

breaking down process is called wavelet decomposition or a wavelet transform. In 

contrast, wavelet reconstruction or an inverse wavelet transform puts the wavelet 
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pieces back together to retrieve the original object. Thus we can see that wavelet 

theory essentially consists of the study of these pieces (wavelets), their properties and 

interrelationships, and how to put them back together. 

    In the above statements, we have mentioned two operations involved in wavelet 

theory: the scaling operation and the translation operation. The scaling operation 

changes the independent variable (e.g., time in many cases) to create new functions, 

but have the same structure except they are either compressed or expanded. The 

translation operation moves the entire function along the independent variable’s axis. 

    If the scaling operation is combined with the translation operation, 

mathematically, we have the following mapping relation between the original 

independent variable x and the new independent variable x’  

a
bxx −

='                       

where a is the scale parameter and b is the translation parameter. 

    A wavelet coefficient at a particular scale and translation represents how well the 

original signal and the scaled and translated wavelet match. The more similarity there 

is the larger magnitude the coefficient has. 

 

2.2.2 Multiresolution analysis 

In the wavelet theory, two operations (scaling and translation) and two classes of 

functions (the scaling function )(tφ  and the wavelet function )(tψ ) also play a vital 

role in constructing orthonormal wavelet bases. Both )(tφ  and )(tψ  must satisfy an 
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orthogonal relation with their respective translation functions. That is, for any 

0, ≠∈ kZk , 

0)(),( =− ktt φφ                (2-8) 

0)(),( =− ktt ψψ               (2-9) 

The same orthogonality must also hold between any pair of these translation 

functions,  

0)(),( =−− ktjt φφ                (2-10) 

0)(),( =−− ktjt ψψ                (2-11) 

where kj ≠ .  

The scaling function )(tφ  is constructed such that the set )( kt −φ , for all 

Zk ∈  constitutes an orthonormal basis, and let 0V  be the subspace spanned by the 

basis. The scaled basis comprising )2( kt −φ , for all Zk ∈ , will then span the 

subspace 1V  , with 01 VV ⊃ . The wavelet function )(tψ  is constructed such that the 

set )( kt −ψ , for all Zk ∈ will span the subspace 0W , with 100 VVW =⊕ , and 

00 VW ⊥ . 

Similarly, the scaling operation should also impose constraints on )(tφ  

and )(tψ . Taking 0)( Vt ∈φ  as an example, the function set 

Zkjktjj
kj ∈−= ,);2(2 2/

, φφ  should constitute a set of orthonormal bases for 

another space jV , where a nested relation 1+⊂ jj VV  should also hold for any 

},2,1,0,1,2,{ LL −−∈j . Such a nested relation is very important in signal processing 

since it means that no information is lost as the resolution gets finer. The same occurs 

for )2( ktj −ψ  and its corresponding space jW  as well. Furthermore jW  should 
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also be the orthogonal complement space of jV in 1+jV . That means jjj WVV ⊕=+1  

and jj VW ⊥  must be satisfied simultaneously. By successive orthogonal 

decompositions,  

021

221

11

VWW

VWW

VWV

jj

jjj

jjj

⊕⊕⊕=

⊕⊕=

⊕=

−−

−−−

−−

L

L
            (2-12) 

Equation (2-12) shows that a signal in vector space jV  can be decomposed into 

many related spaces with distinct resolutions. This process is usually called 

multiresolution analysis. 

 

2.2.3 Linking wavelets to filters 

Although the wavelet theory can be very complicated and abstruse, the central 

equation in the multiresolution analysis, the scaling relation [68], can be concisely 

expressed as below: 

Assuming 0)( Vkt ∈−φ  and j
j Vkt ∈− )2(φ   exist for any Zkj ∈, , where 

)( kt −φ  and )2(2 2/ ktjj −φ  are respectively orthonormal bases of 0V  and jV , 

then it is necessary and sufficient that the following expression holds 

∑
∈

−=
Zk

k ktpt )2()( φφ              (2-13) 

with ∫
∞

∞−
∈−= Zmdtmttpm ,)2()(2 φφ .  

Substitute t in (2-13) by ltj −−12 , and we can get a more general expression:  

∑
∈

−
− −=−

Zk

j
lk

j ktplt )2()2( 2
1 φφ      (2-14) 
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Similar to (2-13), there is also a formula which builds a bridge between scaling 

functions and wavelet functions 

∑
∈

− −−=
Zk

k
k ktpt )2()1()( 1 φψ        (2-15) 

Starting from the scaling relation, the mathematical conditions and rules kp  must 

satisfy are:  

∑ ∑

∑

∑

∑

∈ ∈
+

∈

∈

∈
−

==

=

=

=

Zk Zk
kk

Zk
k

Zk
k

Zk
lklk

pp

p

p

pp

 1 and 1

2

2

2

122

2

0,2 δ

         (2-16) 

A direct construction of the sequence kp  that satisfies Equation (2-16) is 

difficult. Usually, the sequence is constructed with the help of the Fourier transform. 

According to the orthonormality condition,  

  kdtktt 0)()( δφφ =−∫
∞

∞−
          (2-17) 

The Plancherel’s identity for the Fourier transform states that 

     ∫ ∫= ξξξ dgfdxxgxf )(ˆ)(ˆ)()(      (2-18) 

where )(ˆ ξf  is the result of )(xf ’s Fourier transform 

In addition, the Fourier transform also has the following property:  

      ))](([))](([ ξξ ξ xfFourierelxfFourier il−=−             (2-19) 

where ))](([ ξxfFourier  represents the operation of Fourier transform on the 

function )(xf  whose outcome is equal to )(ˆ ξf . 
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Thus the (2-17) becomes 

 k
ik de 0)(ˆ)(ˆ δξξφξφ ξ =∫

∞

∞−

−  or k
ik de 0

2
)(ˆ δξξφ ξ =∫

∞

∞−
     (2-20) 

Dividing the whole integral range into small intervals [ π2 j , π2 (j+1)] for Zj∈ , 

the above equation can be written as  

               ∑∫
∈

+
=

Zj
k

j

j

ik de 0

)1(2

2

2
)(ˆ δξξφ

π

π

ξ             (2-21) 

If we replace ξ  by jπξ 2+ , the limits of integration will change to 0 and π2 : 

             k
Zj

jik dej 0

2

0

)2(2
)2(ˆ δξπξφ

π πξ =+∫ ∑
∈

+        (2-22) 

Since 12 =jie π , the above equation becomes 

              k
Zj

ik dej 0

2

0

2
)2(ˆ δξπξφ

π ξ =+∫ ∑
∈

            (2-23) 

Let   ∑
∈

+=
Zj

jF
2

)2(ˆ2)( πξφπξ  

The Equation (2-23) becomes k
ik deF 0

2

0
)(

2
1 δξξ
π

π ξ =∫      (2-24) 

)(ξF  is a π2 -periodic function because 

 

)(

)1(         )2(ˆ2

)1(2(ˆ2)2(

2

2

ξ

πξφπ

πξφππξ

F

jqq

jF

Zq

Zj

=

+=+=

++=+

∑

∑

∈

∈

 

Since )(ξF  is periodic, it has a Fourier series like ∑ ikx
keα , where 

ξξ
π

α ξπ
deF ik

k
−∫=

2

0
)(

2
1  according to the definition of Fourier series. 

Comparing kα with Equation (2-24), we have kk 0δα = , which in turn means that 

1)( =ξF .  
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We have thus obtained an important conclusion that can be summarized as the 

following theorem 

A function φ  satisfies the orthonormal condition only if 

 1)2(ˆ2
2
=+∑

∈Zj
jπξφπ  for all R∈ξ     (2-25) 

We have introduced the scaling relation at the beginning of this section. That 

scaling relation is expressed in the time domain. In fact, the scaling relation has also 

the equivalent expression in the frequency domain. That is 

The scaling relation ∑
∈

−=
Zk

k ktpt )2()( φφ  is equivalent to  

)()2/(ˆ)(ˆ 2/ξξφξφ ieP −=      (2-26) 

where the polynomial P is given by ∑
∈

=
Zk

k
k zpzP

2
1)(  

It can also be proved that if the function φ  satisfies both the orthonormal condition 

(2-25) and the scaling relation (2-26), the polynomial ∑
∈

=
Zk

k
k zpzP

2
1)(  satisfies the 

following equation  

22 )()( zPzP −+ =1 for 1 with =∈ zCz        (2-27) 

or equivalently 

2)(2
)()( πξξ +−− + ii ePeP =1 for πξ 20 ≤≤       (2-28) 

 

 Demonstrating as an example, we attempt to derive the kp s for Daubechies 

wavelets with two vanishing moments. 

Let )()( ξξ feP i =− , so (2-28) can be rewritten as  

1)()( 22 =++ πξξ ff             (2-29)  
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Raising both sides of the identity 1)2/(sin)2/(cos 22 =+ ξξ  to the 3rd power, 

1))2/(sin)2/((cos 322 =+ ξξ  

or )2/(sin)2/(sin)2/(cos3)2/(sin)2/(cos3)2/(cos1 642246 ξξξξξξ +++=  

Since )2/sin()cos( π+= uu  and )2/cos()sin( π+−= uu , we have 

)2/)((cos)2/)((cos)2/)((sin3)2/(sin)2/(cos3)2/(cos1 642246 πξπξπξξξξ ++++++=

    Let )2/(sin)2/(cos3)2/(cos)( 2462 ξξξξ +=f , then the above equation 

becomes 1)()( 22 =++ πξξ ff  

So (2-29) is satisfied. Furthermore  

24

2242

)2/sin(3)2/cos()2/(cos

))2/(sin3)2/()(cos2/(cos)(

ξξξ

ξξξξ

i

f

+=

+=

 

Any function of the form   )()]2/sin(3)2/)[cos(2/(cos2 ξαξξξ i+ , where 

1)( =ξα  can be used as the function )(ξf . 

Since  
2

e/2)cos(
2//2i ξξ

ξ
ie−+

=  and  
2i

e/2)sin(
2//2i ξξ

ξ
ie−−

= , we have 

)()33)(2(
8
1)( 2/2/2/2/ ξαξ ξξξξξξ iiiiii eeeeeef −−− −++++=  

Selecting 2/3)( ξξα ie−= , 

ξξξξ iii eeef 32 )
8

31()
8

33()
8

33()
8

31()( −−− −
+

−
+

+
+

+
=  

Remembering that ∑
∈

−− ==
Zk

ik
k

i epePf ξξξ
2
1)()( , we have 

4
31

0
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33
1

+
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33

2
−

=p  
4

31
3

−
=p  

Given that a sequence kp  is found, scaling functions )(xφ  can be constructed 

by the cascade algorithm [69] and wavelet functions )(xψ  can be constructed from 
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the formula ∑
∈

− −−=
Zk

k
k ktpt )2()1()( 1 φψ . That is why in cases given in many 

textbook expositions, a certain type of wavelet is declared by a sequence kp  instead 

of the curve of )(xφ  or )(xψ . 

2.2.4 Fast filter bank implementations of wavelet transform 

In the preceding sections, we have mentioned that Zkjktjj
kj ∈−= ,);2(2 2/

, φφ  

and )2(2 2/
, ktjj
kj −= ψψ  are orthonormal bases of vector spaces jV  and jW  

respectively. Suppose that we are dealing with a signal  f  that is already in jV . 

Then in terms of orthonormal bases, we have 

∑
∈

=
Zk

kjkjff ,,, φφ                       (2-30) 

Since 11 −− ⊕= jjj WVV , then 

∑∑
∈

−−−
∈

− +=
Zk

kjkjkj
Zk

kj fff ,1,1,1,1 ,, ψψφφ            (2-31) 

In this way, projection of the signal f in 1−jV  can be further decomposed into 

2−jV  and 2−jW  and so on until 0V  and 0W  as shown in Equation (2-12). Usually, 

it is more convenient to use bases Zkjktj ∈− ,);2(φ , although they are not 

orthonormal bases. Hence, rewriting the equation (2-30), we have 

∑

∑

∑
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=
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)2(
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,

)2(

,
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2/

,,

φ

φφ

φφ

φ

4342143421
                    (2-32) 

    Therefore j
ka  is looked on as the wavelet transform’s coefficients in jV  and 

kj
jj

k fb ,
2/ ,2 ψ=  as the coefficients in jW .  
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Likewise,  

lj
jj

l fa ,1
2/)1(1 ,2 −

−− = φ                        (2-33) 

Since kj ,φ  is defined as Zkjktjj
kj ∈−= ,);2(2 2/

, φφ , we have 

   Zljltjj
lj ∈−= −−

− ,);2(2 12/)1(
,1 φφ                (2-34) 

Insert (2-14) into (2-34) 
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                (2-35) 

From (2-32), there is 

   ∑
∈

−=
Zk

kj
j

k
j af ,

2/2 φ                           (2-36) 

By the Parseval’s equation∗  

∑ −
+−

− =
k

j
klk

j
lj apf 2

2/)1(
,1 2,φ             (2-37) 

Compare (2-33) with (2-37), we have 
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                (2-38) 

In the same way, since kj
jj

k fb ,
2/ ,2 ψ=  there is also 

   ∑
∈

+−
−− −=

Zk

j
klk

kj
l apb 21

11 )1(2                    (2-39) 

Equations (2-38) and (2-39) are together called decomposition formulas. 

                                                        
∗ Let V  be a complex inner product space with an orthonormal basis { }∞=1kku . If Vf ∈  and Vg ∈ , that is  

∑
∞

=

=
1k

kk uaf  and ∑
∞

=

=
1k

kk ubg  

then 

∑
∞

=

=
1

,
k

kk bagf  

This is called Parseval’s equation. 
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Repeating the decomposition formulas, we can obtain all wavelet coefficients 

associated with all the scale from j to 0, if the wavelet coefficients j
ka  are known. 

Furthermore, let h and g be the sequences  

kk ph −=
2
1                             (2-40) 

and  

    1)1(
2
1

+−= k
k

k pg                        (2-41) 

Define two discrete filters (convolution operators∗) H and G via  

     xhxH ∗=)(                           (2-42) 

and 

xgxG ∗=)(                          (2-43) 

Embodying the x in the preceding H(x) and G(x) by a specific expression, e.g. jax = , 

we have 

    j
k

Zk
lkl

j apaH ∑
∈

−=
2
1)(                    (2-44) 

Comparing (2-44) with (2-38), we get l
jj

l aHa 2
1 )(=− . Similarly, there is also 

l
jj

l aGb 2
1 )(=− . l

jaH 2)(  or l
jaG 2)(  here means that we have discarded all odd 

coefficients. This operation is so called down-sampling. If we use 2↓  to represent 

down-sampling, then the 1-level wavelet transform can be illustrated by Fig 2.3 

 

                                                        
∗ Convolution of two sequences ),,,,( 101 KK xxxx −= and ),,,,( 101 KK yyyy −=  is defined by 
 

∑
∈

−=∗
Zk

klkl yxyx )(  
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Fig 2.3 One level wavelet transform 

For the multi-level wavelet transform, the 1-level wavelet transform in Fig 2.3 

will be iteratively applied to 1−ja , 2−ja  and so on. This will be discussed in detail in 

the next Chapter where we will use multiresolution analysis and a variant multi-level 

wavelets transform to quickly estimate the durations of onset transients of piano 

tones.  

    To end this Chapter, we will summarize the general procedures on how to 

process a signal by basic wavelet analysis. 

1. Sample. This step is actually a preprocessing step. For a continuous signal, it 

must be sampled at a sufficient frequency rate so that we can capture its 

essential details. The specific sampling rate could depend on a variety of 

factors. For example, a good rule of thumb frequently used in sampling a 

sound signal is to use a rate that is at least above 40 kHz, double the audible 

frequency limit of human hearing, roughly 20 kHz, due to the Nyquist 

theorem. But because of aliasing effect, before entering the sampling process, 

all frequency components higher than the desired frequency should not be 

presented in the signal. This is often done by sending the signal through a 

low-pass filter with a cut-off frequency 20 kHz. 

2. Pre-processing. In Fig 2.3, the input parameters are the wavelet coefficients 

ja

g 

h 2↓
1−ja  

2↓ 1−jb  
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ja , instead of the signal x[n].  If we directly input x[n] into the wavelet 

transform as shown in Fig 2.3, we commit the ‘wavelet crime’ (Strang and 

Nguyen ) One solution Strang and Nguyen recommend is that the samples 

x(n) are converted to coefficients a(k) by  

∑ −=
n

knnxka )()()( φ
 
    (2-45)  

3. Decompose. Once the signal has been sampled, we iterate equation (2-38) 

and (2-39) until reaching an appropriate level (for instance 0=j ). The 

output of this step is coefficients of all levels in the wavelet transform. 

4. Process. At this step, the decomposed (or transformed) signal can be 

processed depending on what we wish to accomplish. For instance, if our 

purpose is to compress the signal, we can discard those insignificant 

coefficients. If we want to detect a singularity event involved in a signal, we 

should pay attention to those abnormally large coefficients. After various 

modifications, the output may be stored or immediately reconstructed to 

recover the signal in the next step. 

5. Reconstruct. To recover the signal, the reconstruction algorithm is invoked 

here. The specific reconstruction algorithm is summarized in the following 

formulas and figures. 

Define, 

kprh =                (2-46) 

k
kprg )1(1 −= −           (2-47) 

xrhxRH *)( =           (2-48) 
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       xrgxRG *)( =           (2-49) 

        thus, the 1-level inverse wavelet transform is shown in Fig 2.4 

  

 

Fig 2.4 One level inverse wavelet transform 

       where 2↑  denotes up-sampling which is done by inserting zero samples 

between each incoming sample) 

ja  

rg 

rh 2↑

1−jb  

1−ja  

2↑
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Chapter 3 Waveform Analysis of Piano 
tones’ Onset Transients 

 

 

 

 

 

 

     

Consider a modern piano keyboard (as shown in Fig 3.1) with 88 keys. The 

leftmost key (top in Fig 3.1) is an A0 tone with a fundamental frequency 27.5 Hz, the 

number besides the piano key in units of cycles per seconds, or Hertz. This 

distribution of frequencies on the piano is well-known as equal temperament tuning. 

That is each successive pitch is obtained by multiplying the pitch of the preceding 

note by the twelfth root of two. For example, A4 is normally tuned to 440 Hz as its 

fundamental frequency. The pitch of the next semitone A4# can be derived by 

16.4662440 12 =×  Hz. Likewise, to get B4’s fundamental frequency, multiply 440 

by ( )212 2 . But we should note that such a list of frequencies is only for a theoretical 

ideal piano. On an actual piano, the ratio between semitones may be tuned differently, 

especially at the high and low ends, as is done by piano tuners for greater sonority and 

brilliance.  
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Fig 3.1 A modern standard piano keyboard with the distribution of fundamental 
frequencies 
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As shown in Fig 3.2, the waveform of a typical piano tone increase rapidly to its 

peak amplitude within a very short transient duration, followed by a steady and much 

slower exponential-like decay. This short transient duration is usually called the onset 

transient (or onset attack). As the stage which gives birth to all the tone’s partials, the 

onset transient of a piano tone contains the most rapid changes in spectral energy. 

Accordingly, this stage might also give rise to many important properties of piano 

tones that have already been introduced in Chapter 1. 

 

Fig 3.2 The waveform of a piano tone C4 whose corresponding key is located in the 
middle of the piano keyboard  

 

In this dissertation, piano onset transients will be analyzed from two perspectives. 

Firstly in this Chapter, attention will be paid on their most straightforward feature, 

namely their waveforms. Although the ‘very-short’ feature of onset transients has 

been repeatedly highlighted in preceding Chapters, we avoided giving a direct answer 
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to the question ‘how short are these transients?’ Hence this Chapter will attempt to 

find a way to rapidly estimate their durations with the help of the discrete wavelet 

transform (DWT) and its multiresolution techniques. As for the second perspective, 

the spectral analysis of onset transients, it will be dealt with in the next Chapter. 

 

3.1 Definitions for Onset transients 

As stated in the introductory chapter, the onset transient is generally taken to be 

the initial part of a musical tone. However, such a rough description only gives its 

relative temporal position in each tone. This general definition is not sufficient to 

differentiate the onset transient from the following more stable portion of a tone. A 

more specific definition, derived from the properties of the onset transients of piano 

tones, is necessary if it is to be of practical usefulness. 

 

1. Definition by Peak Amplitude: The onset transient may be defined as starting 

from the first measurable instant of the piano tone to its peak amplitude point. 

Also as seen in Fig 3.2, a very rapid rise to its peak amplitude is one apparent 

but important common property for all piano tones. The waveforms of some 

other piano tones are also listed in Fig 3.3 and Fig 3.4. 
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Fig 3.3 The waveform of piano tone A0 whose corresponding key is located on the 
extreme left of the piano keyboard  

 

Fig 3.4 The waveform of piano tone C8 whose corresponding key is located on the 
extreme right of the piano keyboard 
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2. Definition by Evolving Process: An alternative way is to define the onset 

transient as starting from the first instant which is acoustically measurable, to 

the point after which the period of the tone’s waveform is completely 

established. Similar to Florian Keiler’s paper [70] where he plotted the 

evolving process for the harpsichord’s onset transient waveform, Fig 3.5 

illustrates how a piano tone, C4, evolves. In the figure, A is the initial noise; B 

is the time during which the periodic motion is not established yet; C is the 

quasi-periodic period; D marks the start of the stable period. The complete 

onset transient of a piano tone thus includes A+B+C+D. But we should note 

that parts B or C as defined in Fig 3.5 for different piano tones may not occur 

or may occur more than once. Some bass tones have two or three 

quasi-periods while for some treble tones B and C are not always obvious. 

0 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05
A B C D

 

Fig 3.5 The evolving process of the piano tone C4, roughly the initial 1,024 sampled 
points as the x-axis shows.  

 

Both definitions are derived from the direct observation and measurement of the 
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piano tone waveform. The difference between the two definitions is that the first one 

looks at the overall shape of the waveform while the latter looks more closely at the 

details of the waveform. 

Using the second definition of onset transient, if we assume that the duration of 

each part A, B, C, or D in Fig 3.5 is approximately equal to the fundamental period of 

the tone, then the whole onset transient duration is equal to about four times the 

fundamental period. Assuming this relationship, the relationship of the onset transient 

duration versus the piano tone fundamental frequency is presented in Fig 3.6.  
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Fig 3.6 Onset durations of all piano tones in the ideal theoretical situation 

 

However in practice, A, the initial noise part, may not be equal to the 

fundamental period, and A is also negligible for some piano tones. In the B part, the 
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periodic behavior has not yet been established. More significantly, as stated before, 

the parts B or C may not occur or may occur more than once. For these reasons, the 

actual durations of the onset transient may be either higher or lower for each 

frequency than that depicted in the ideal curve, and the actual curve may depart from 

the ideal curve. Nevertheless, the above ideal curve gives us a starting basis for 

understanding the behavior of the duration of the onset transient with respect to 

fundamental frequency. 

 

3.2 Measuring Durations of piano onset transients 

In the last section, we have attempted to define onset transients of piano tones in 

two possible ways, for the purpose of facilitating the measurement of the onset 

duration of each piano tone. Based on the latter definition, onset durations of all piano 

tones in the ideal theoretical situation have been plotted in Fig 3.6 to help us to 

anticipate the variation trends of onset durations with different piano tones with 

distinctly different fundamental frequencies. Later in this section, we will investigate 

the measurement of onset duration in practical situations by a wavelet-based method.  

3.2.1 The challenges 

The estimation and determination of the durations of parts A, B, C and D of each 

onset transient can prove to be a very time consuming task. It may be thought that the 

first definition would give us a simpler and fast method of computing the onset 
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transient duration by measuring the time distance between the beginning instant of 

each onset transient and the time point when the peak amplitude occurs. If the piano 

tone is directly measured from a real piano, it might indeed be simple to determine the 

so-called first measurable acoustical instant in the definition. Our piano tones were 

obtained from the McGill University Master Samples (MUMS) compact discs as is 

the normal practice, so that the recordings are known to have been consistently 

recorded. All these tones are arranged in sound tracks with silent intervals between 

each other as shown in Fig 3.7.  

 

 

Fig 3.7 The arrangement of piano tones in a segment of MUMS CD sound tracks 

 

Therefore it is difficult to locate the so-called first measurable acoustical instant 

because even if the acoustical amplitudes in the intervals are very minute, they are not 

actually zero. The conventional solution to this problem is to set a threshold where 

any amplitude value below it will be set to zero. However, the threshold that works 

well for a certain tone may be quite inappropriate for others. It would be very 

laborious and inconsistent if one has to repeatedly zoom in on each waveform and set 
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the threshold for each tone. In this section, we will use wavelet multiresolution 

decomposition (WMD) to automatically locate the beginning of each tone and the 

peak of a piano tone computationally. Once the beginning point has been determined, 

the duration can be easily obtained by calculating the time difference between the 

beginning point and the peak point according to the first definition. 

 

3.2.2 Wavelet Multiresolution Decomposition by filter banks 

and ‘wavelet crime’ 

The discrete wavelet transform (DWT) decomposes a digitized waveform by 

passing the discrete time sequence of the digital samples of the waveform through 

pairs of digital filters (one high-pass and one low-pass) iteratively. The basic 

decomposition unit consisting of a low-pass filter h and a high-pass filter g is shown 

in Fig 3.8 (a). 

 

Fig 3.8 One stage 1-D wavelet transform 
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Let x[n]  be the original discrete time sequence of the digitized audio waveform 

and h, g be the discrete wavelet transform’s low-pass and high-pass filters. In Fig 3.8, 

↓ 2 and ↑ 2 denote down-sampling and up-sampling respectively. The discrete wavelet 

transform can be briefly summarized as in Fig 3.8(a) and Fig 3.9. The input sequence 

x[n]  passes through filters g and h respectively, whose outputs are the high-pass 

detail subbands D and the low-pass approximation subbands A respectively.  As D 

and A would each have the same number of samples as the original signal, both D and 

A then undergo a down-sampling operation to reduce the number of samples by half, 

so that the total number of original samples is unchanged and divided equally between 

the outputs of g and h.  Multi-level discrete wavelet decomposition is achieved by 

applying the g and h filters followed by down-sampling on each approximation 

subband A iteratively. 

 

 

Fig 3.9 Multi-level decomposition 

The basic reconstruction unit consists of a pair of low- and high-pass filters as 

shown in Fig 3.8 (b). Pairs of the approximation subbands A and the detail subbands 
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D are first upsampled to double the number of samples. The upsampled A and D are 

then passed through the corresponding reconstruction filters, rh and rg, to reconstruct 

the approximation subband of the preceding level and ultimately to obtain x[n]  as 

shown in Fig 3.10. The reconstruction process constitutes the inverse Discrete 

Wavelet Transform or the IDWT. 

 

 

Fig 3.10 Multi-level inverse Discrete Wavelet Transform 

However, in our multiresolution analysis in this Chapter, we do not use such an 

inverse discrete wavelet transform to restore the signal. Instead, each subband is 

reconstructed separately (or independently) from the other particular subbands. That 

means we are able to obtain the signal waveform associated with each subband. The 

whole process is described in Fig 3.11 and j
xa and j

xd  are used to respectively 

denote the thj  level’s approximation signal and detail signal. 
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Fig 3.11 Diagram of multiresolution decomposition 

It can be theoretically proved that the summation of all components j
xa , j

xd , 

1−j
xd …and 1

xd  is exactly equal to the original signal ][nx  itself. To demonstrate this 

property of multiresolution analysis, we will use Matlab to do the verification. 

In Matlab, we usually use the following group of commands to simulate a 

sampling procedure for a sine wave of  f  Hz (e.g 200 Hz) by a sampling frequency 

Fs (e.g 1024 Hz) 

% Sampling frequency 
Fs = 1024; 

% Time vector of 1 second 
t = 0 : 1/Fs : 1; 

% Create a sine wave of 200 Hz. 
s = sin(2 * pi * t * 200); 

In this way, we can fabricate an imaginary signal composed of 4 sine waves with 

different frequencies (e.g. respectively 10 Hz, 40 Hz, 190 Hz and 450 Hz). We also 

arrange these four components in different time locations. These fabricated four 

components are shown in Fig 3.12. 
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Fig 3.12 Four sine functions with different frequencies at different time 
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Fig 3.13 The comparison between the original signal and the summation of all 
subbands in using multiresolution analysis 
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After applying the multiresolution analysis displayed in Fig 3.11 on the 

fabricated signal to three levels and then summing all j
xa and j

xd , we find that the 

difference between the original signal and the summation of all j
xa and j

xd  is on the 

order of 10-15, small enough to be ignored. The result is shown in Fig 3.13. 

   The specific contents of all j
xa and j

xd  are shown in Fig 3.14. 
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Fig 3.14 The contents of every subband in the three level multiresolution analysis. 

From top to bottom, each subband respectively corresponds to 1
xd , 2

xd , 3
xd  and 3

xa  

 

    From Fig 3.14, we see that four components in Fig 3.12 can be easily identified 

and be put both in the correct frequency bands and the correct time locations. As 

shown in Fig 3.14, components with different frequencies (e.g., the sine functions 

with 450 Hz and 190 Hz) are filtered into 1
xd  and 2

xd . Although the frequencies of 
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components at 10 Hz and 40 Hz are too close to be separated by only three level 

multiresolution analysis, we can still separate them in different time locations in 

subband 3
xa . 

    Through this demonstration, we can conclude that there are at least two 

advantages in our multiresolution analysis. Firstly, a full reconstruction of the original 

signal may be performed by simply summing the waveforms of each subband. 

Secondly, listing the waveforms of each subband, we break the original signal into 

different frequency and time slots and thus can reveal the signal’s time-frequency 

features to some degree.  

 

3.2.3 Measurement and Analysis 

Our target here is to acquire the pattern of a signal’s energy envelope. This 

process can be done by squaring sampling values and then filtering out high 

frequencies. For example, a simple signal has the form )sin()()( ttgtf =  

where stf )'( energy envelope is )(2 tg . Squaring )(tf , we have 

)
2

)2cos(1)(()(sin)()( 2222 ttgttgtf −
== . After filtering out the high frequency 

content, only the item )(
2
1 2 tg  is left. Although there is a constant multiplying-factor 

(i.e., 1/2) before )(2 tg , )(
2
1 2 tg  has the same pattern as the signal’s energy 

envelope. For the same reason, after applying the multiresolution analysis, we can 

ignore all high frequency components ( j
xd  in Fig 3.11) to get the pattern of energy 

envelope (i.e. j
xa ) 
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In our measurement, each piano tone in the MUMS CD was sampled at 44,100 

Hz and stored as a .wav file. After importing this .wav file into Matlab, we obtained 

its 1-Dimensional amplitude array. Each amplitude value was then squared to acquire 

the energy array. Finally the multiresolution analysis shown in Fig 3.11 was applied to 

this energy array. Here we used the Coiflet 1 wavelet. Since the sampling rate is 

44,100 Hz, the bandwidth of the sampled signals is from 0 Hz up to half of the 

sampling rate according to the Nyquist theorem, (i.e., 22,050 Hz), which is roughly 

the upper limit of human hearing. For a wavelet transform with b levels, the signal is 

decomposed into b+1 subbands as shown in Fig 3.11, which segment the frequency 

axis into [0, 22,050/ b2 ], [22,050/ b2 , 22,050/ 12 −b ], ...... , [22,050/2, 22,050] 

respectively. The value of b is chosen so that we obtain a good envelope curve in b
xa . 

Following this, all oscillations within the energy envelope were filtered out, leaving 

only the energy envelope as the b level’s approximation signal (i.e. b
xa ) which is 

shown in Fig 3.15. 
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Fig 3.15 The energy envelope of C4 piano tone 

 

At the beginning of the resulting envelope, there is a negative dip followed by a 

huge upward peak. The dip is surprising because energy cannot take a negative value. 

However, we may explain the appearance of this negative dip as follows. Firstly, just 

as sine or cosine functions are used as bases in the Fourier transform, a wavelet basis 

set is employed to analyze the signal in the wavelet transform. This wavelet basis set 

includes scale functions kb,φ  and wavelet functions kb,ψ where k is the translation 

value and b represents the scale or the level value. Secondly, the multiresolution 

decomposition here is a linear operation, which means that by summing b
xa and all 

xd  (as shown in Fig 3.11) from level 1 to level b together, we obtain the same signal 

as the original. Combining these two facts leads to the following formula for a given 

known b: 
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Suppose that the envelope peak just falls into the range of mb,φ . To match the 

envelope peak, the whole waveform of mb,φ , has to be enlarged in both the positive 

and negative y-axis directions. If the targeted signal rapidly changes its amplitude 

from 0 to the maximum in a short time, as the piano tone does, the enlarged positive 

peak of mb,φ  ( B in Fig 3.16 ) may possibly match the positive peak of the signal 

envelope, and the negative peak of mb,φ  ( A in Fig 3.16 ) leaves a negative dip at the 

start of the tone.  

 

Fig 3.16 Scaling and wavelet function of wavelet bases Coiflet 1 

Corresponding to this negative dip, we should be able to locate a positive hump 

in the b
xd waveform which adds linearly to the negative dip to give us the zero of the 

actual piano tone envelope in question. Our wavelet analysis has verified this 

hypothesis (Fig 3.17).  
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Fig 3.17 The waveforms of some subbands in the multiresolution analysis of C4 piano 
tone 

Our results also indicate that this negative dip points to the neighborhood of 

beginning of the piano tone and thus can be approximately used as the starting point 

of that tone. This is also shown in Fig 3.18. 
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Fig 3.18 Results of the multiresolution analysis for C4 piano tone 

 

With the wavelet transform going to more levels, we actually do some kind of 

‘averaging’ operations on the signal in the approximation band. For example in the 

extreme case, the approximation band of the Haar wavelet transform is from the mean 

values of paired coefficients in the preceding level. So the peak of the energy 

envelope we have computed may not be identical to the exact peak point but we can 

ensure that the ‘averaged’ magnitudes are approximately around the largest 

magnitudes. Similarly, the dip may not exactly fall on the first oscillation of the signal 

but it will very be close to it. 
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In order to test the applicability of multiresolution analysis to onset duration 

measurements, more experiments were conducted on different pitches of the piano. 

The results further confirmed our theory, which can be seen from Fig 3.19 to Fig 3.23 

for A3, D1, F5, B0 and G7 piano tones. 
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(a) Energy envelope of A3 piano tone 
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(b) Final result of multiresolution analysis for A3 piano tone. Only the zoomed-in 

small segment around the negative dip is shown. 
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(c) Waveforms of some subbands in multiresolution analysis of A3 piano tone 

Fig 3.19 The measurement of A3 piano tone 
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(a) Energy envelope of D1 piano tone 
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(b) Final result of multiresolution analysis for D1 piano tone. Only the zoomed-in 

small segment around the negative dip is shown. 
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(c) Waveforms of some subbands in multiresolution analysis of D1 piano tone 

Fig 3.20 The measurement of D1 piano tone 
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(a) Energy envelope of F5 piano tone 
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(b) Final result of multiresolution analysis for F5 piano tone. Only the zoomed-in 

small segment around the negative dip is shown. 
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(c) Waveforms of some subbands in multiresolution analysis of F5 piano tone 

Fig 3.21 The measurement of F5 piano tone 
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(a) Energy envelope of B0 piano tone 
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(b) Final result of the multiresolution analysis for B0 piano tone. Only the zoomed-in 

small segment around the negative dip is shown. 
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(c) Waveforms of some subbands in multiresolution analysis of B0 piano tone 

Fig 3.22 The measurement of B0 piano tone 
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(a) Energy envelope of G7 piano tone 
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(b) Final result of multiresolution analysis for G7 piano tone. Only the zoomed-in 

small segment around the negative dip is shown. 
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(c) Waveforms of some subbands in multiresolution analysis of G7 piano tone 

Fig 3.23 The measurement of G7 piano tone 
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To validate our estimation, the results are compared with direct visual inspection 

on the waveform.  

Piano tone Our method Visual 

inspection 

Piano tone Our method Visual 

inspection 

C4 23.22ms 25ms A3 58.05ms 61ms 

D1 92ms 54ms F5 40.63ms 42ms 

B0 23.22ms 24ms G7 5.8ms 6.9ms 

Table 3.1 Comparison with visual inspection 

From the table, we can see that our results are a good match with values from 

visual inspection except for D1. As explained previously, the peak of the energy 

envelope we have computed may not be identical to the exact peak point but we can 

ensure that the ‘averaged’ magnitudes are approximately around the largest 

magnitudes. In Fig.3.20 (b) where D1’s energy envelope and waveform are presented, 

it can be seen that the waveform peak (top diagram) seems to coincide with the first 

lower peak in the energy envelope (bottom diagram). However, our estimation uses 

the peak of energy envelope as the end of the onset transient. Although the waveform 

corresponding to this peak does not have the largest amplitude, the ‘averaged’ 

waveform amplitude over this neighborhood is at a maximum. From this perspective, 

our estimation through the energy envelope is more reasonable. 

Therefore, by measuring the duration between the negative dip and the positive 

peak of the envelope in b
xa , we can obtain the onset transient duration by the first 

definition. Fig 3.24 gives the computed duration of the onset transient for all 88 piano 
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tones which we have computed by this method. The solid line is the exponential 

fitting curve which reflects how the onset transient durations change with increased 

pitch. From A0 to C8, the durations gradually decrease from over 100ms for the 

lowest bass tones to approximately 10ms for very high treble tones. That is consistent 

with common sense about the durations of piano onset transients. 

 

Fig 3.24 Onset durations of all piano tones (from A0 to C8) as computed by 
multiresolution analysis 

We have not found much data about the measured onset transient duration of real 

pianos. This might be due to the fact that no standard definition exists for the onset 

transient. It is also impossible to tell which exact point is the boundary between the 

onset transient and the following stationary part. Furthermore, the waveform of each 

piano tone’s onset transient is also not unique and greatly influenced by how hard we 

press the key. But even an approximate knowledge of each onset transient’s duration 
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can still help us to determine the time resolution needed for onset detection. It may be 

observed that our result are scattered a little widely. Firstly, this may due to the 

limitation of our method. The wavelet transform is dyadic, which means that the time 

resolution of the next level is two times of that in current level and so on. With more 

levels, the time resolution exponentially increases and thus the time interval between 

neighborhood windows could be large. Secondly, the transient evolves in an 

unpredictable way. Many incidental factors can influence the peaks of the waveform 

and thus make the measurement under the first definition widely scattered. 
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Chapter 4 Time-Frequency Analysis of 

Piano tones 

 

 

 

 

 

 

 

 

 

 

 

 

The time and frequency representations together form the whole of the 

information about a signal. In most cases, the time representation may appear in a way 

(e.g., in terms of a waveform). By contrast, the frequency information is usually 

hidden behind the waveform and has to be presented more indirectly. Therefore, 

disclosing a signal’s detailed frequency content is a main goal of many signal 

processing techniques, including Fourier analysis and Wavelet analysis. However, 

separately individual time and frequency representations may miss how the energy in 
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a signal is distributed with respect to both the time and frequency variables. 

Short-time Fourier transform (STFT) analysis uses spectrograms to indicate a 

time-frequency representation. Similar to spectrograms, wavelet analysis integrates 

both time and frequency by a concept called the time-frequency plane. The main 

difference between the STFT and Wavelet time-frequency representation lies in the 

fixed or flexible window size which has been explained in Chapter 1. Therefore, in 

this Chapter, we will try to examine more closely some features of onset transients in 

terms of the wavelet time-frequency plane. 

 

4.1 Wavelets Packet Transform and Time-Frequency 

Plane 

    As summarized in Chapter 3, the DWT passes a sampled signal through a 

low-pass filter h and a high-pass filter g respectively, which is then followed by a 

down-sampling operation. After this decomposition, two ”branches” or nodes result: 

the high-frequency output (the detail subband) and the low-frequency output (the 

approximation subband). Due to the down-sampling operation, the number of 

coefficients in each offspring node is reduced to one half of that in the parent node, so 

that the total number of samples does not change. That means we are obtaining finer 

frequency information (splitting the frequency range into half for each node) at the 

expense of the time resolution (with only half of the original number of samples in 

each node).   
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Initially the sampling process determines the time resolution Δt  (the time 

interval between successive samples) and the frequency resolution Δf  (the 

frequency range which is half of the sampling frequency). Following decomposition 

by a pair of filters, Δf  is halved due to the filtering process while Δt  is doubled 

due to down-sampling as the number of samples is halved for the same overall time 

period, thus keeping ftΔΔ  constant in accordance with the Heisenberg Uncertainty 

Principle. In this manner, the wavelet transform converts the original signal from a 

pure time domain to a mixed time-frequency domain. Each iterative process that 

passes an approximation subband through a pair of filters further doubles Δt , and 

halves Δf . Decomposition and reconstruction filters are always selected to 

complement each other, so that aliasing effects do not occur in down-sampling. The 

complementary set of decomposition and reconstruction filters form a quadrature 

mirror filter, and the choice of the particular quadrature mirror filter determines the 

type of wavelet basis (e.g., a Haar, Debauchies or Battle-Lemarie wavelet), used for 

the wavelet analysis. 

Taking an eight-point signal as an example, we will use the following diagrams 

(Fig 4.1) to show the relationship between tree structures in the wavelet transform and 

time-frequency planes. 
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(d) Another wavelet packets tree        T-F plane of the left tree 

Fig 4.1 Some T-F planes for an 8 points signal 

 

In Fig 4.1, we start with a basic discrete series of 8 samples ]8,...,1[x , which 

corresponds to a pure time domain series with 8 vertical divisions, each corresponding 

to one sample and spanning the whole frequency range. After decomposition through 

one filter pair (and down-sampling), each node D1 and A1 takes up half the frequency 

range but has coarser time resolution with only four divisions, each of which is twice 

as wide as the original time divisions of the original signal.  If the approximation 

node A1 is split up again, the corresponding lower half of the time-frequency diagram 

is split into two nodes D2 and A2 corresponding to the halved frequency ranges, each 

with only two time divisions. A further split of the approximation subband A2 results 

in two nodes D3 and A3 with frequency ranges halved again, each spanning the whole 

time interval (as the corresponding nodes now consist of only one sample). 

In this DWT example (for Fig 4.1 (b)), the original signal can be reconstructed 

by ‘adding’ A1 and D1, or A2 and D2 and D1 or A3 and D3 and D2 and D1. 



 88

 

Fig 4.2 The hierarchy diagram of DWT for 8 points, corresponding to the Fig 4.1(b) 
(Note: the ‘+’ here does not mean the ordinary plus operation in mathematics. It only 
means that A3, D3, D2 and D1 together may make up one possible result among the 

DWT decomposition.) 

 

In comparison with the DWT, the wavelets packet transform (WPT) also 

iteratively subjects the detail coefficients to the basic decomposition unit, which could 

result in a full tree structure as indicated in Fig 4.1(c) (or Fig 4.3) for the 3 level case. 

 

Fig 4.3 The full tree hierarchy diagram of WPT for 8 points, corresponding to the Fig 
4.1 (c) 

Previously, we have discussed the wavelet theory. In Equation (2-12) 

11 −− ⊕= jjj VWV , we know that the pair of conjugate mirror filters can split space jV  

into two subspaces. Coifman, Meyer and Wickerhauser have generalized this result to 

any space jU  which has an orthonormal basis )}2({ ktj
j −θ . Let h and g be a pair of 

conjugate mirror filters and define ∑
∈

− −=
Zk

j
jj ktkht )2()()(0

1 θθ  and 
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∑
∈

− −=
Zk

j
jj ktkgt )2()()(1

1 θθ  whose corresponding spaces are 0
1−jU   and 1

1−jU  

respectively. They have shown that 1
1

0
1 −− ⊕= jjj UUU . If we set jj WU = , we have 

1
1

0
1 −− ⊕= jjj WWW . This means that the same conjugate mirror filters h and g which 

used to split 11 −− ⊕= jjj VWV can also decompose 1
1

0
1 −− ⊕= jjj WWW . 

Besides such a full tree structure (Fig 4.1 (c)), there are many other 

possible ’underdeveloped’ tree structures (e.g. Fig 4.1 (d)), each of which is a valid 

representation of the original signal. In other words, the signal can be represented by 

the full tree or by partial trees, with the terminal nodes of each tree adding up to form 

the original signal. For more levels or stages, the number of different possible WPT 

trees can become very large. For example, a 9 level WPT generates about 7710  trees 

[71], each of which is a possible representation of the signal. For any particular signal, 

there will be one tree structure which ‘best’ represents the signal. Using the Shannon 

entropy function ( ∑−
n

nxnx )][log(][ 22  for vector x[n] of finite length), Coifman [72] 

has designed an algorithm to efficiently select the ’best’ tree to represent any 

particular signal. Coifman’s algorithm chooses the best tree for which the Shannon 

entropy function has the lowest value, which means that the signal’s energy is most 

efficiently represented. Firstly, calculate the cost value of every node according to the 

Shannon entropy function ∑−
n

nxnx )][log(][ 22 . Let 1v  represent the cost value of 

the parent node and 2v  represent the sum of two offspring nodes’ cost value. If 

21 vv ≤ , the two offspring nodes are deleted. If 21 vv > , the two offspring nodes are 

marked as the terminal nodes and the cost value of the parent node (originally is 1v ) 

is replaced by 2v . The above process continues until the top node is involved and 
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therefore all terminal nodes are determined. 

To visualize the results, each tree can uniquely correspond to a particular 

division of the time-frequency (T-F) plane [4, 5] into ftΔΔ  “boxes”. The T-F plane 

shows how the energy in a signal is distributed with respect to the time and frequency 

variables. Each ftΔΔ box corresponds to one of the terminal nodes at the right of the 

corresponding tree structure as shown in Fig 4.1 

Furthermore in practical computations of the wavelet packets transform 

natural/frequency ordering and boundary effect should be paid some attentions. In Fig 

4.3 where a full tree is shown, the frequencies of the nodes (or subbands) should be 

increased from left to right. We use the series 0 (lowest frequency), 1 , 2, 3, 4, 5, 6, 7 

(highest frequency) to represent the relative ordering. In theory, the frequency order in 

Fig 4.3 from left to right should be 0, 1, 2, 3, 4, 5, 6, 7. But due to the aliasing of 

subbands, the frequency distribution after the wavelet packet transform is 0, 1, 3, 2, 6, 

7, 5, 4. From left to right, the nodes’ frequencies do not monotonically rise. We 

usually call the frequency distribution of the immediate output of the wavelet packet 

transform the natural ordering or filter bank ordering. In order to convert the natural 

ordering (i.e., 0, 1, 3, 2, 6, 7, 5, 4) to expected frequency ordering (i.e. 0, 1, 2, 3, 4, 5, 

6, 7), the Grey code permutation is used. Given an integer x, write it in binary notation 

as nN+1nN…n2n1. For example, x=6, we have n4=0 n3=1, n2=1 and n1=0. The Grey code 

permutation is GC(n)i=ni+1+ni  mod  2. For example, after the wavelet transform, 

from left to right, the 6th node is not the second largest frequency subband (i.e., the 

order index =6), but is the third largest frequency subband (i.e., the order index =5) 
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after the Grey code permutation. 

Another difficulty encountered when we implement the wavelet packets 

transform is the boundary effect. We know that the wavelet transform passes the 

signal through a pair of filters followed by the down-sampling. If the signal has 

infinite length, there should be no problem. But in practice, the signal is finite and 

boundary problem will arise, i.e., the low-pass or high-pass filter will spill over 

samples which are not available. For example, we have n=8 samples, s0, s1….s7. 

When we compute some coefficients we need s8 or s9. But we don’t actually have s8 

and s9. Therefore techniques like zero padding, period extension, smooth padding etc 

are used. In zero padding, we extend the signal by adding zeros at the two ends. The 

periodic extension technique makes the data periodic by letting s(k+n)=s(k). In 

smooth padding, we extend the signal by linearly extrapolating the data near the two 

ends. 

4.2 The Time-Frequency Planes of Onset Transients by 

WPT bases 

From Section 4.1 we know that the time-frequency plane is partitioned into 

rectangles which represent the decomposition of the signal according to the wavelet 

basis. The position of the rectangle indicates the time span and frequency range which 

it covers, and its dimensions indicate the relative uncertainties of the two quantities 

which are defined by Heisenberg's inequality principle. Hence these rectangles are 

known as Heisenberg boxes. The values of coefficients corresponding to each ftΔΔ  
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box are assigned to a grey scale that fills the box. A WPT analysis of a signal can be 

visually represented by a time-frequency plane, which consists of ftΔΔ boxes, whose 

particular layout optimally represents the signal and the darkness of each box 

represents its energy content. 

This T-F plane is similar to the spectrum of the short-time Fourier transform 

(STFT). However, instead of constant width windows in the STFT, the WPT 

(including Coifman’s algorithm) can achieve much greater flexibility, compared to 

the DWT, with variable width windows and time-frequency blocks which are best 

suited to the nature of the signal to reflect its transient or steady-state condition, so 

that the window size is varied to determine more accurately either time or frequency 

as is appropriate for any particular part of the signal. 

We modified some routines in the Wavelab toolbox [73] for our own purpose. 

The modified routines performed the wavelet packets transform in this section. The 

local cosine bases transform and matching pursuit from the wavelet packets transform 

were then implemented in the following sections.  

The piano tones examined in our work were also obtained from the McGill 

University Master Samples (MUMS) compact discs. Fig 4.4 shows on the top the 

WPT time-frequency plane for the onset transient portion, and on the bottom for the 

stationary portion of the C4 tone. In this WPT process we have applied Daubechies 

wavelets and the corresponding quadrature mirror filters, using the Coifman entropy 

algorithm to select the optimum tree structure. The time-frequency blocks starting 

from around 14ms are darker and more regular than those before, indicating that the 
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quasi-periodic behavior of the tone is beginning to be established. A few square 

time-frequency blocks are subsequently observed sandwiched by two thin lines. The 

two lines are the 1st and 3rd partials respectively, which are verified by comparing 

their frequency positions with the time-frequency plane of the stationary part of the 

same tone. 

An interpretation of the behavior of the square blocks is that they are adapting 

themselves to the rapid changes of frequency, and because of these rapid changes, the 

time resolution is enhanced at the expense of the frequency resolution. On the other 

hand, the T-F plane for the stationary part of the tone has a clearly discrete frequency 

level structure, showing that the fundamental frequency and its partials have settled to 

a stable set of values. However, for the onset transient, such a clear discrete structure 

is absent, and certain frequency levels are missing and may merge into wider 

frequency bands. The square boxes may thus be thought of as frequency bands. 
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Fig 4.4 The time-frequency plane for tone C4 by the wavelet packets transform: onset 
transients (top) and stationary part (bottom) 

This frequency level and frequency band structure in the onset transient appears 

to hold true for all the piano tones we investigated (see Figs 4.5 to 4.9). The existence 

of frequency bands is therefore the main difference between the onset transient and 
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the stationary part of piano tones.  

In Fig 4.5, tone D7 is a treble note (whose key is located on the right side of the 

piano keyboard and whose fundamental frequency is thus relatively high). From 9.5 

ms in the tone, the harmonic structure begins to come into being. Through comparison 

of the time-frequency plane between D7’s onset transient and its stationary part, we 

can see that there is nearly no difference in the number of partials shown in both 

diagrams. But in Fig 4.6 where the E2 piano tone is presented, the number of partials 

in the onset transient is significantly larger than in its stationary part. These results 

seem to suggest that higher partials would decay away more quickly than lower 

partials.  

In the A3 piano tone’s scenario (Fig 4.7), there is a messy layout of T-F blocks 

around the frequency band from 500 Hz to 1000 Hz in the onset transient. Thus, in 

this band, we would expect irregular and rapid changes in its frequency evolution.  

In Fig 4.8, which shows the F5 tone’s time-frequency plane, the second partial is 

strong during the onset transient. At the same time, the third partial has not been fully 

established. However, during the stationary part, the situation reverses. The third 

partial becomes more important and the second partial seems to have lost much of its 

energy.  

For the B0 piano tone, a low bass tone, the frequency gap between two 

neighboring partials is sometimes so narrow that the frequency bands could easily 

obscure them. All these results point to the fact that the time-frequency characteristics 

of the onset transient are significantly different from that of the stationary part, and 
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that such differences could be diverse in nature. 

But we also should note that we cannot use the beginning of the time-frequency 

blocks as the starting point of the onset transient. This is due to some practical 

wavelet computation issues. For example, only a few time-frequency blocks are 

visible and others are too white to be seen in the grey scale graph. When solving 

boundary problems in the wavelet computation, many wavelet toolbox including 

‘Wavelab’ use periodic extension, which let s(k+n)=s(k). Thus, some time-frequency 

blocks calculated at the end boundary will use the data at the beginning of the signal 

and then be wrapped back at the beginning to show the periodic effect.    
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Fig 4.5 Onset transient (top) and stationary part (bottom) of D7 piano tone  
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Fig 4.6 Onset transient (top) and stationary part (bottom) of E2 piano tone  
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Fig 4.7 Onset transient (top) and stationary part (bottom) of A3 piano tone  
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Fig 4.8 Onset transient (top) and stationary part (bottom) of F5 piano tone  
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Fig 4.9 Onset transient (top) and stationary part (bottom) of B0 piano tone  
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definition by Peak Amplitude and the definition by Evolving Process. Both definitions 

are derived from the direct observation and measurement of the piano tone waveform. 

The difference between the two definitions is that the first one looks at the overall 

shape of the waveform while the latter looks more closely at the details of the 

waveform. Though these are different definitions, the estimated durations of the onset 

transient are not very divergent. In Chapter 3 or particularly Fig3.22(b), the ‘macro’ 

definition, i.e., the peak amplitude is used. While in Chapter 4, we want to explore the 

inner time-frequency relationship and thus the ‘micro’ definition is used.  That is 

why in Fig 3.22(b) and Fig4.9 the ending of the onset transient is different. Since the 

ending of the onset transient cannot be exactly marked, in Fig 4.9, we use a little 

longer duration which can fully contain the entire onset transient, so that we can 

further compare the spectral difference between the onset transients and the stationary 

part. 

Moreover, the time constant of the ear is approximately 50ms [74], which is 

longer than the duration of the medium-pitch onset transients, but much less than that 

of most low tones’ onset transients, which is of the order of 100ms. From Fig 4.10, we 

can see that most frequency levels are replaced or obscured by frequency bands 

during the first 50ms of the bass tones’ onset transient. Such a messy time-frequency 

structure may give the listener a greater sense of inharmonicity for the bass tones as 

compared to the medium pitch piano tones. 
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(a) First 50 ms for A0 piano tone  
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(b) first 50 ms for B0 piano tone  
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(c) First 50 ms for F5 piano tone  
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(d) first 50 ms for C6 piano tone  

Fig 4.10 Time-frequency plane of approximately first 50 ms for (a) A0, (b) B0, (c) F5 
and (d) C6 piano tone 
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Although the wavelet packet technique has effectively revealed new aspects of 

the spectra of piano tones, it also has weaknesses. The wavelet packet bases divide the 

frequency axis into intervals of varying sizes. In each interval, wavelet packet bases 

are uniformly translated in time. In his book, Mallat [75] has given a pithy evaluation 

of the wavelet packets: “These bases are particularly well adapted to decomposing 

signals that have different behavior in different frequency intervals. If a signal has 

properties that vary in time, it's then more appropriate to decompose the signal in a 

block basis that segments the time axis in intervals whose sizes are adapted to the 

signal structures.” The next section will therefore attempt to segment the time axis 

using local cosine bases. 

 

4.3 Local cosine bases 

The local cosine basis is one kind of block basis, which allows two adjacent time 

intervals to overlap while maintaining the orthogonality of the basis function for the 

two intervals. The signal is decomposed into a local cosine basis set that is composed 

of functions  

])
2
1(cos[2)()(,

p

p

p
pkp l

at
k

l
tgtg

−
+= π     (4-1) 

with ],[ 11 ++ +−∈ pppp aat ηη  and η represents a small value. pa and 1+pa  are two 

points in the time axis and the size of the interval between them is pl : ppp aal −= +1 . 

Fig 4.11 illustrates the time-frequency partition by local cosine bases.  
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Fig 4.11 Time-Frequency Partition by local cosine bases (Source: from Mallat [75]) 
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Finding a specific form of profile function β  is called ‘window design’. One 

popular ‘window’ is ]1,1[for    ))1(
4

sin( −∈+= ttπβ  

From Equation (4-1), we can see that the local cosine basis )(, tg kp  is equal to 

multiplying a cosine function ])
2
1(cos[2

p

p

p l
at

k
l

−
+π  by a smooth window 

function )(tg p . That means we should first apply the smooth window operation on 

the signal followed by a fourier transform. Skipping all intermediate steps, the final 

result of local cosine basis transform is  
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For any 0≥j , the interval [0, T] is divided in j2  intervals of length Tj−2  by 

replacing pa  by Tpa j
jp

−= 2,  

So the local cosine basis transform can also establish a binary tree structure 

similar to that of the wavelet packet transform. The difference is that the local cosine 

basis transform repeatedly segments the time axis while the wavelet packet transform 

segments the frequency axis. Because of the binary tree structure, the best basis 

selection can also use Coifman’s algorithm which has been introduced in preceding 

section. 

These local cosine bases segment the time axis and then translate themselves 

along the frequency axis. Thus we can expect to see how the targeted signal varies 
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through its onset transient and as the harmonic structure of the stationary part is 

formed while time progresses. After all, it is the onset part of the tone which gives rise 

to all harmonics of the stationary part. 

The experimental results are shown in Fig 4.12 for a C4 tone. As we can see, the 

time-frequency plane reflects the corresponding variations of the C4 waveform. There 

are two distinct parts of the C4 onset transient. The frequency levels of the later 

portion can be deduced to be the steady harmonics of the stationary part of the signal. 

This can be observed by comparison with the pattern obtained from the stationary part 

of the signal, where the fundamental and the first harmonic in Fig 4.12 (b) are 

distinctly laid out. The energy of the signal is concentrated in the first two harmonics 

since these two lower harmonics in Fig 4.12 (a) are very much darker than the other 

harmonics. In the earlier portion of the onset transient figure, we observe that the 

frequency resolution is broader for the short initial portion, as seen in Fig 4.12 (a). 

This implies that the fundamental partial undergoes a wide variation of frequency 

during that short time period, before its frequency finally fixes on the fundamental 

frequency established during the stationary portion of the tone.  

Since the local cosine basis transform half partitions the time axis repeatedly, in 

Fig 4.12(a), the longer basis covers T/2, and the short basis covers T/9. In Fig 4.13 to 

Fig 4.17, there are many time-frequency blocks. They all have the length Tj−2 with 

varying  j. 
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(a) Onset transient 

 

(b) Stationary part 

Fig 4.12 The time-frequency plane for C4 by local cosine bases 
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Some bass piano tones, however, present a slightly more complex scenario. The 

onset of the B0 piano tone is shown in Fig 4.13. The two distinct peaks seen at the 

beginning of the waveform (one positive and one negative) are clearly indicated by 

the narrow initial dark blocks in the time-frequency plane. After this very short initial 

phase, we can see from the many short blocks which follow that the signal undergoes 

a rather complicated series of changes before stabilizing. Finally, the harmonic 

structure of the signal then starts to stabilize and take shape. This is also evident if we 

compare this later portion of the onset transient with the harmonic structure obtained 

from the stationary part of the tone as seen in Fig 4.13.(b). 

Although for the same tone B0, the result by the local cosine transform (shown 

in Fig 4.13) is a little different from that by the wavelet packet transform. The reason 

is that wavelet packet transform partitions the time-frequency plane from the 

frequency perspective while the perspective of the local cosine transform is with 

respect to time. The wavelet packet transform optimally partitions the frequency axis 

into some subbands and then the time width of time-frequency blocks within the 

subbands are determined by the uncertainty relation ( ftΔΔ =constant). On the other 

hand, the local cosine transform optimally partitions the time axis and then determines 

the frequency width of time-frequency blocks by the uncertainty relation.  Therefore, 

the T-F plane by the wavelet packet transform (Fig 4.9) is sensitive to frequency 

variations while that by the local cosine transform (Fig.4.13) is sensitive to events 

with time variations. So the Fig 4.13 can detect the a few peaks at the beginning of the 

signal and Fig 4.9 indicates that the frequencies of lower partials vary significantly. 
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    More examples of time-frequency plane by local cosine basis are displayed in 

Figs 4.14 to 4.16. 

 
(a) Onset transient 

 
(b) Stationary part 

Fig 4.13 The time-frequency plane for B0 by local cosine bases 
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(a) Onset transient 

 

(b) Stationary part 

Fig 4.14 The time-frequency plane for A2 by local cosine bases 
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(a) Onset transient 

 
(b) Stationary part 

Fig 4.15 The time-frequency plane for G4 by local cosine bases 
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(a) Onset transient 

 

(b) Stationary part 

Fig 4.16 The time-frequency plane for C8 by local cosine bases 
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    In Fig 4.16, there is a narrow line at a frequency slightly above 4000 Hz. 

Checking the Appendix A, we know it is the fundamental frequency of C8 (4186 Hz). 

However, in Fig 4.16 (a), there are some lines below the C8’s fundamental, though the 

fundamental frequency is still most significant. A similar pattern happens in other 

treble notes, for example the A7 piano tone in Fig 4.17. We recall the second 

definition of onset transient in Chapter 3 and Fig 3.5 where the onset transients 

comprise of the noise, the time during which the periodic motion is not established, 

the quasi-period period and the stable period. These observations may suggest the 

noise (part A in Fig 3.5) and the duration in which the periodic motion is not 

established yet (part B in Fig 3.5) play an important role in the onset transient of 

treble notes and thus the frequency distribution is much more varied. 
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(a) Onset transient 

 

(b) Stationary part 

Fig 4.17 The time-frequency plane for A7 by local cosine bases 
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4.4 Matching pursuit 

Until now, both wavelet packet analysis and local cosine bases have disclosed 

much useful information about the piano onset transients. But they may have missed 

other information due to their limitations. They may, for example, only select the best 

Heisenberg box in any frequency or time interval and then tile the entire interval with 

such a box.  

 

 

Fig 4.18 box1( 1t , 1f ); box2( 2t , 1f ); box3( 1t , 2f ); box4( 2t , 2f ) 

 

Referring to Fig 4.18, assume that a signal is composed of such four Heisenberg 

boxes in the time frequency plane. Each Heisenberg box corresponds to a certain 

single wavelet packet basis or local cosine basis. Considering the case for the wavelet 

packets transform, the transformation algorithm needs to decide between choosing 

either box1 or box2 for analysis since they are in the same neighborhood of 

frequency 1f . If box1 is of larger weighting or importance than that of box2, the latter 

will be ignored. This however, presents a potential error as box2 has an equal 
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probability of describing essential features of the signal which box1 cannot do alone. 

Once box1 is decided upon, it will be used to analyze the frequency and those at its 

frequency neighborhood. Positions such as at ( 2t , 1f ) will have a "copy" of box1 

replacing box2. Therefore, the contents of box2 which are not included in this "copy" 

of box1 will be spread across many other new boxes around ( 2t , 1f ). Hence the actual 

time-frequency content of the signal at ( 2t , 1f ) may not be described in an optimal 

fashion as might have been if box2 had been used. Similarly, for the local cosine 

bases case which segment the time axis, if box1 carries more weight than box3, a 

"copy" of box1 will be moved to ( 1t , 2f ) and box3 will not be utilized.  

In comparison, the matching pursuit algorithm is not restricted by such tiling 

considerations, and can freely choose any basis from wavelet packet basis or local 

cosine basis dictionaries at any desired time-frequency position. 

Consider a signal space where there are at least N linearly independent vectors. 

Let { }
PppgD

≤≤
=

0
 be a redundant dictionary of P>N vectors. Given any 1≥M , an 

approximation Mf  of the original signal  f  may be obtained from a linear 

combination of any M dictionary vectors: 

∑
−

=

=
1

0

)(
M

m
mpmM gpaf       (4-8) 

Since pg  can be freely chosen from the dictionary, the number of possible 

combinations will increase rapidly when M increase. However, the best 

approximation Mf  is only one that minimizes the Mff − . Such a kind of 

optimization is an NP hard problem which means that there is no known polynomial 

time algorithm which can solve it. Any algorithm that is especially created to solve 
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this optimization is called a pursuit algorithm. A matching pursuit uses a greedy 

algorithm [76] that chooses at each iteration a waveform from the given dictionary 

that is best adapted to approximate part of the signal. Firstly, we can find the basis 

0pg  from the dictionary D which makes 0, pgf  maximum. Then project signal f 

on 0pg  and there is Rfggff pp += 00,  where Rf is the residue. Then pick the 

basis 1pg  that makes the 1, pgRf  maximum. Projecting Rf on 1pg , we have 

fRggfRf pp
1

11, += . If this process continues, we have 

fRggff m
pmpm += ∑ , . Mallat has proved that fRm  converges exponentially 

to 0 when m tends to infinity. 

So when fRm  is less than a predefined threshold at M iterations, f can be 

approximated by ∑= pmpmM ggff ,  

In our cases here, the dictionary is composed of wavelet packet bases or in other 

words, the set of all possible time-frequency blocks. Although the wavelet packet 

transform previously mentioned and matching pursuit here are based on the same set 

of bases, one distinction is that to find out the best representation of the signal, the 

wavelet packet transform uses Coifman’s ‘best basis algorithm’ while the matching 

pursuit uses Mallat’s greedy algorithm. 
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Fig 4.19 Comparison: the time-frequency plane for tone C4 by wavelet packet (top) 
and matching pursuit (bottom) 

 
 

Fig 4.19 compares the results using the wavelet packet analysis and matching 
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pursuit using the wavelet packet dictionary. In comparison with wavelet packets, the 

matching pursuit technique retains the main frequency structures and on top of that, 

includes a few additional vertically standing time-narrow bars crossing the horizontal 

frequency lines. These vertical bars reflect the abrupt change in the relative 

amplitudes of the waveform of the signal within their respective short time resolutions 

tΔ . Such abrupt changes are not part of the periodic behavior which forms the steady 

harmonics of the tone, but they are rather just isolated changes on top of the usual 

periodic behavior. The periodic behavior, as we have seen, is best described by the 

horizontal frequency lines, whose assigned darkness depicts the magnitudes of the 

harmonic frequencies of the periodic behavior. The observed overlapping of vertical 

bars and horizontal lines means that the signal is undergoing two different behaviors 

at the same time. Further observations of other piano tones reveal that the vertical bars 

tend to cross the first few horizontal frequency lines at the lowest frequencies. This 

indicates that the violent changes mainly occur in the fundamental or lower harmonics. 

Combining this with the fact that the fundamental and the lower harmonics contain 

most of the energy, which has already been stated in previous sections, this agrees 

with Palmer's [77] statement that little energy was generated in the upper harmonics 

for each piano sound event, and peak amplitude was primarily determined by the first 

few (i.e., the lowest frequency) spectral components. 

    Taking the same examples which we have used for wavelet packets, we will also 

obtain their time-frequency planes by matching pursuit as below for piano tones D7, 

E2, A3, F5 and B0 in Figs 4.20, 4.21, 4.22, 4.23 and 4.24 respectively. Besides the 
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similar band structure with some vertical bars as mentioned before, matching pursuit 

also provides a more concise and clear time-frequency plane compared to t-f planes 

by wavelet packets, especially for bass tones (e.g. piano tone B0). But we can not 

conclude too hastily to which one, the matching pursuit or wavelet packets, is better. 

Only when used in specific applications, can these two wavelet-based techniques be 

compared for their relative advantages or disadvantages.  
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Fig 4.20 Comparison: the time-frequency plane for tone D7 by wavelet packets (top) 
and matching pursuit (bottom) 
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Fig 4.21 Comparison: the time-frequency plane for tone E2 by wavelet packets (top) 
and matching pursuit (bottom) 
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Fig 4.22 Comparison: the time-frequency plane for tone A3 by wavelet packets (top) 
and matching pursuit (bottom) 
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Fig 4.23 Comparison: the time-frequency plane for tone F5 by wavelet packets (top) 
and matching pursuit (bottom) 
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Fig 4.24 Comparison: the time-frequency plane for tone B0 by wavelet packets (top) 
and matching pursuit (bottom) 
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Chapter 5 Reconstructing Waveforms By 

Wavelet Impulse Synthesis 

 

 

 

 

 

 

 

 

 

In the last Chapter, we have used wavelet packet analysis (WPT) and its tree 

structure, and established the relationship between the tree structure and the 

time-frequency plane. In this Chapter, we will further elaborate on this relationship 

and use it to derive a new approach to waveform synthesis - the wavelet impulse 

synthesis. Just as AM and FM techniques from the radio engineering field have been 

applied to computer music, we have linked the wavelet impulse algorithm to the 

measurement of inharmonicity coefficients of piano sounds. The wavelet impulse 

synthesis is very important in the context of this dissertation and will build a 

foundation for measuring the inharmonicity coefficients of piano tones in the next 

Chapter.  
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5.1 Wavelet Impulse Synthesis 

As explained in Chapter 4, in wavelet packet transform (WPT) analysis the 

signal is analyzed into a nested set of coefficients (reflecting the tree structure, or 

equivalently the time-frequency plane) by WPT filters. In order to quickly identify a 

particular coefficient in a tree structure, we assign d and b to respectively label the 

tree depth (or level) and the node to which the coefficient belongs, and use k as the 

index of this coefficient within the node. The position of each coefficient will thus be 

uniquely identified by the combination (d, b, k), where d, b, and k all start from 0. 

 

 

Fig 5.1 An 8-point 3 level full tree WPT: any coefficient can be uniquely identified by 

(d,b,k), where depthd ≡ , nodeb ≡ , nodewithinindexk   ≡  

 

The d, b and k do not exist independently of each other and some relationships 

can be easily observed from Fig.5.1. At the thd  level, there are d2 nodes and the 

node (d, b) comprises d
n

2  coefficients where n is the length of the original signal. 

Moreover, the node (d, b) represents the frequency band in the time-frequency plane 
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ranging from d

fb
2

 to d

fb
2

)1( +  Hz where f  is equal to half of the sampling 

frequency. Likewise, the coefficient (d, b, k) corresponds to the time-frequency block 

which spans the time axis from tk d Δ⋅⋅ 2  to tk d Δ⋅⋅+ 2)1(  where Δt  is defined 

as the sampling time interval. 

Similar to the Fourier transform where trigonometric functions are used as bases 

to decompose the signal being analyzed, and whose coefficients are actually the 

amplitudes of the bases, the WPT also breaks the signal into selected WPT bases and 

their amplitudes are also called coefficients, which have already been identified by (d, 

b, k) previously. Let us denote )(,, tkbdψ  as such a WPT basis, where to keep things 

simple, we do not distinguish it as a scale function or a wavelet function. The tree 

structure for a certain signal, x, has a valid representation that can be described as 

follows: 

∑ ∑=
nal_nodesall_termai

b)(d, node rminalcertain te a

k
,,,, )()(),(
4444 34444 21

tttxx kbdkbd ψψ        (5-1) 

where kbdx ,,,ψ  is the value of the coefficient (d, b, k) and a best basis algorithm 

(such as Coifman’s) decides the selection of terminal nodes and the particular tree 

structure.  

It is evident from the formula that similar to the Fourier transform, the wavelet 

packet transform is also a linear transform. We can see that a WPT basis kbd ,,ψ  can 

represent the position of coefficient (d, b, k) in the tree or in the time-frequency block 

(d, b, k) in the time-frequency plane. The two summing symbols, ∑
snode_terminal_  all
and 

∑
k

indicate that if we know all coefficients and their corresponding kbd ,,ψ , we can 

reconstruct the original sound. 
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To reconstruct the waveform of a certain WPT basis kbd ,,ψ , the toolbox Wavelab 

uses a so-called impulse method. It keeps the resultant tree structure from the analysis 

process intact and resets coefficient kbdx ,,,ψ  to 1 but all other coefficients to 0, 

thus generating an impulse in the position (d, b, k) of the tree. The inverse wavelet 

packet transform (IWPT) is then applied to this modified “impulse tree” to realize the 

waveform of kbd ,,ψ  spanning the full time duration of the original sound.  

But in the actual calculation, the original signal’s tree structure can be ignored 

because the waveform of a basis has nothing to do with the structure of the targeted 

signal. If we call a node whose coefficients are all zero a zero-node, extending that 

node downwards to two offspring zero-nodes does not change the function 

represented by the tree. Repeating the extending operations, no matter what the 

original tree structure was, we always can replace it with a d-level full tree which has 

only one non-zero coefficient (i.e., the coefficient (d, b, k) at level d with the value 1).  

 

 

Fig 5.2 The demonstration for zero-nodes’ extending or shrinking 

Terminal node  

0 0

0

0

0 00
00 1

0

One zero-node extends to 2  

Offspring zero-nodes 
2 offspring zero-nodes shrinks to one zero-nodes 
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By multiplying each basis’s waveform kbd ,,ψ with its weighting kbdx ,,,ψ , we 

obtain the weighted decomposed component kbdkbdkbd xW ,,,,,, , ψψ= . The summation 

of all these weighted basis components gives the original signal.  

Mathematically, we can represent the analysis process according to the following 

expressions 

∑ ∑=
nal_nodeall_termai

b)(d, node rminalcertain te a

k
,,,, })()(),({}{
4444 34444 21

tttxWPTxWPT kbdkbd ψψ       (5-2) 

Due to the linearity of WPT, the above expression can be expressed as 

∑

∑ ∑

−
−

=

=

blocksfrequencytimeall
kbdblockfrequencytimeany

kbdkbd

nodesalterall

bdnodealtercertaina

k
kbdkbd

WPTx

WPTxxWPT

__
),,(__

,,,,

_min_

),_(_min__

,,,,

}{,

}{,}{

444 3444 21

4444 34444 21

ψψ

ψψ

            (5-3) 

where WPT{ kbd ,,ψ } is a d-level full tree for the kbd ,,ψ  basis, which would be the 

impulse tree described above which has only one non-zero coefficient at position (d, b, 

k) 

    For the reconstruction process, the inverse wavelet packet transform or IWPT is 

applied on both sides of the Equation (5-3), 

∑

∑

−
−

−
−

•=

=•

blocksfrequencytimeall
kbdblockfrequencytimeany

kbdkbd

blocksfrequencytimeall
kbdblockfrequencytimeany

kbdkbd

WPTIWPTx

WPTxIWPTxWPTIWPT

__
),,(__

,,,,

__
),,(__

,,,,

}}{{,

}}{,{}}{{

444444 3444444 21

444 3444 21

ψψ

ψψ

    (5-4) 

where we have   IWPT •WPT =
r 
1 . 

    The left side of the Equation (5-4) shows the reconstruction by the usual inverse 

wavelet packet transform (IWPT), i.e. 
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Fig 5.3 Traditional Wavelet Packet Analysis and Synthesis 

while the right side shows the reconstruction by the wavelet impulse synthesis (WIS) 

approach. Although mathematically identical, the WIS approach is very different from 

the IWPT approach in physical meaning and also in terms of practical computational 

demands. Starting from the terminal nodes of the tree structure, the IWPT retraces the 

path of nodes upwards and shrinks the tree to its top level. In other words, the IWPT 

combines frequency bands along the frequency axis in the time-frequency plane.  

However, in the wavelet impulse method, we are able to focus on each 

coefficient separately and compute its related basis kbd ,,ψ  by a d-level full tree to 

obtain the component waveform for each time-frequency block. 

    To illustrate how the wavelet impulse synthesis works, we also take the onset 

portion of a C4 piano tone in Chapter 4 as the example. After wavelet packets 

transform and the best basis selection algorithm, we sorted all coefficients in 

descending order. Picking the largest coefficients and finding out their associated (d, b, 

k) positions, we can obtain the following waveforms corresponding time-frequency 

planes as shown in Fig 5.5 to 5.9. Fig 5.4 shows the T-F plane and waveform for the 

original C4 piano tone. Fig 5.10 shows a reconstructed waveform and T-F plane of 

this piano tone using only these five largest coefficients. 
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Fig 5.4 The T-F plane of the onset transient of C4 piano tone  
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Fig 5.5 The T-F block whose coefficient is largest (bottom) and the waveform of the 
basis this T-F block corresponds (top) 
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Fig 5.6 The T-F block whose coefficient is 2nd largest (bottom) and the waveform of 
the basis this T-F block corresponds (top) 
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Fig 5.7 The T-F block whose coefficient is 3rd largest (bottom) and the waveform of 
the basis this T-F block corresponds (top) 
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Fig 5.8 The T-F block whose coefficient is 4th largest (bottom) and the waveform of 
the basis this T-F block corresponds (top) 

Time (ms)

Fr
eq

ue
nc

y 
(H

z)

2 4 6 8 10 12 14 16 18 20 22
0

1000

2000

3000

4000

5000

2 4 6 8 10 12 14 16 18 20 22
-0.1

0

0.1

A
m

pl
itu

de

 

Fig 5.9 The T-F block whose coefficient is 5th largest (bottom) and the waveform of 
the basis this T-F block corresponds (top) 
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Fig 5.10 The synthesis by five largest T-F blocks 

 

WPT partitions the time-frequency plane from the perspective of frequency. That 

means it firstly measures each basis’s frequency value. Then the time range is 

determined according to the uncertainty principle (i.e. ftΔΔ =constant). Therefore it 

is impossible that the time-frequency block does not coincide with the exact time span 

of the waveform because time span is ruled by the uncertainty principle and is not 

directly gauged from the signal. But the ‘mass’ center of the waveform will fall within 

the time span. That is why we also include the local cosine basis transform in Chapter 

4. The local cosine basis directly gauges the time span from the signal and determines 

the frequency interval by the uncertainty principle. 
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5.2 Effective Approximation And Waveform 

Reconstruction 

From equation (5-1), if some coefficients’ weighted values are significantly 

larger than the others, it may be possible to ignore the smaller components during the 

reconstruction of the original signal in order to reduce the computational load in the 

reconstruction. This suggests that the wavelet transform when used for storage or 

transmission of waveforms, may lead to significant compression of the digital 

waveform data as compared to storing it in normal uncompressed digital formats. This 

was indeed the case for the piano tones, for which only a small portion of all the 

time-frequency blocks has been ‘visually’ presented (e.g., Fig 4.3 and Fig 4.4). The 

others are too white in the grey scale to be seen in the figures (i.e., their coefficients 

are very small relative to those of the ‘visualized’ blocks). 

Fig 5.11 to Fig 5.16 shows a number of different reconstructions of the digitized 

B0 piano tone which has 32,768 sampled points (for which there are 32,768 

coefficients in the tree structure and therefore the same number of wave components). 

These reconstructions only use a small number of the most significant components 

from these 32,768 components. The number of time-frequency blocks used for each 

reconstruction increases from 100 to 2000 blocks, each case respectively shown in 

Figs 5.11 to 5.16. The results indicate that if more than 1000 most significant T-F 

blocks are used for the reconstructing, wavelet impulse synthesis can give reasonably 

accurate approximations of the original waveform. Since 1000 is very much less than 

32768, the compression capability of the wavelet impulse synthesis for piano tones is 



 139

potentially very powerful. 
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Fig 5.11 Reconstruction of B0 piano tone by 100 most significant T-F blocks 
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Fig 5.12 Reconstruction of B0 piano tone by 300 most significant T-F blocks 
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Fig 5.13 Reconstruction of B0 piano tone by 500 most significant T-F blocks 
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Fig 5.14 Reconstruction of B0 piano tone by 1000 most significant T-F blocks 
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Fig 5.15 Reconstruction of B0 piano tone by 1500 most significant T-F blocks 
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Fig 5.16 Reconstruction of B0 piano tone by 2000 most significant T-F blocks 
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The high quality of such a reconstruction with relatively few blocks is firstly due 

to the compression ability of the wavelet transform (using the best basis algorithm). 

Secondly from the perspective of the piano tones’ characteristics, we may also get 

some idea of why the compression can be effective. During the onset transient of a 

piano tone, little energy is generated in the upper harmonics for each piano sound 

event, and the peak amplitude is primarily determined by the first few (i.e., the lowest 

frequency) spectral components [77]. During the stationary part of a piano tone, the 

high frequency partials decay very quickly, and the energy is still mainly concentrated 

in the lower harmonics. Hence it is not unreasonable that the inclusion of only the 

more important coefficients of the wavelet transform can give a good-quality 

reconstruction. 

    For further verification of the reconstruction, more experiments have been 

conducted on a different F1 piano tone and their results are shown in following 

figures. 
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Fig 5.17 Reconstruction of F1 piano tone by 100 most significant T-F blocks 
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Fig 5.18 Reconstruction of F1 piano tone by 500 most significant T-F blocks 
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Fig 5.19 Reconstruction of F1 piano tone by 1000 most significant T-F blocks 
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Fig 5.20 Reconstruction of F1 piano tone by 1500 most significant T-F blocks 
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Fig 5.21 Reconstruction of F1 piano tone by 2000 most significant T-F blocks 

 

5.3 A listening test 

A listening test was conducted to verify the quality of the reconstruction. The 

silences at the beginning of both the original and reconstructed sounds were removed 

because they did not belong to the real parts of these sounds, and to remove any 

extraneous cues which might help to identify the sounds. The listener was presented 

with the B0 original tone and the reconstructed one (using only the 1,000 most 

significant components for reconstruction). Then the two sounds were randomly 

selected with equal probability for the listening tests.  

For the listening test, we used an independent the listener who has been trained 
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in music. The listener was presented with either the original tone or the reconstructed 

tone. The listener heard sounds through a sennheiser headphone. The listener could 

then choose whether he/she thought that the tone presented was the original or 

reconstructed tones, but an additional choice the listener could make was to indicate 

whether the choice was one he/she was sure of, or whether it was a guess. Each run 

consisted to 20 presentations of either the original or reconstructed tones. The results 

of the listening tests for one musically-trained listener are shown in Table 5.1. There 

were 10 runs, and the listener’s choices were always by guessing, which shows that 

the close similarity of the original to the reconstructed tone did not allow the listener 

to be confident about any of the choices. The 10 runs of 20 presentations each meant 

that there were a total of 200 choices made by the listener. Of these 200 choices, only 

108 or 54% were correct, which convincingly shows that the reconstructed tone 

cannot be easily distinguished from the original tone. 

 

Run 

No. 

No. of choices 

for Original  

(Sure) 

No. of choices 

for Original  

(Guess) 

No. of choices for 

Reconstructed 

(Sure) 

No. of choices for 

Reconstructed 

(Guess) 

1 0 9 ( 7:2) 0 11 (7:4) 

2 0 14 (6:8) 0 6 (3:3) 

3 0 9 (4:5) 0 11 (5:6) 

4 0 8 (5:3) 0 12 (6:6) 

5 0 15 (7:8) 0 5 (3:2) 
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6 0 8 (4:4) 0 12 (6:6) 

7 0 14 (10:4) 0 6 (4:2) 

8 0 9 (7:2) 0 11 (6:5) 

9 0 8 (5:3) 0 12 (4:8) 

10 0 16 (7:9) 0 4 (2:2) 

Total 0 110 (62:48) 0 90 (46:44) 

 

Table 5.1 The results of the listening test for tone B0, where the numbers outside the 
brackets are the No. of choices by the listener and the number pairs within the bracket 
show the correction rate expressed by (correct : wrong). For a total of 200 choices 
(110 original and 90 reconstructed), 108 (62 plus 46) were correct and 92 (48 plus 44) 
were wrong. 

 

We have therefore shown that by using only the most significant 1,000 

components out of the total 32,768 components, we can obtain a reconstruction of the 

original waveform which is good enough to satisfy a musically trained listener. 
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Chapter 6 Determining the inharmonicity 

coefficients for piano tones 

 

 

 

 

 

 

 

 

 

 

 

In this Chapter, the application of wavelet packet is extended to the measurement 

of inharmonicity coefficients of piano tones, another essential feature of piano sounds 

besides their onset transients. Assuming that a piano tone’s fundamental frequency 

is 1F , ideally, the frequencies of all its partials are expected to be harmonic, (i.e., for 

the nth partial, its frequency 1nFFn = ). However in the case of real piano strings, due 

to the inherent stiffness a piano tone’s partial frequency is raised by a small amount 

[78],  

2
1 1 BnnFFn +=       (6-1) 
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B in the above formula is called the inharmonicity coefficient which is solely 

determined by each string’s material characteristics such as its length, diameter and 

Young’s modulus, etc.  

τ
π

2

43

64l
EdB =        (6-2) 

Here,  E :Young’s modulus for the string 

      d : the diameter of the string 

      l : the string length 

      τ : the tension 

As mentioned in Chapter 1, in many situations, direct measurement of B 

according to formula (6-2) is either impractical or inconvenient. That is why most 

researchers try their best to estimate B indirectly from formula (6-1).  

Recall from Chapter 1, Galembo and Askenfelt designed an inharmonic comb 

filter to estimate the inharmonicity coefficient in the frequency domain [64]. 

Furthermore they also tried pitch extraction techniques such as cepstral analysis and 

the harmonic product spectrum [66]. Klapuri [67] tackled the inharmonicity 

measurement by estimating the fundamental frequency in subbands. Rauhala [65] 

used an iterative process designed to minimize the deviation of the expected partial 

frequencies compared to the frequencies of the high amplitude peaks in the spectrum. 

However, most previous work has been based on Fourier analysis and very few 

have used wavelet analysis. In this Chapter, a method based on wavelet impulse 

synthesis is used to estimate the inharmonicity coefficient B from real piano sound 

samples. Compared to Fourier-based approaches, whose success largely depends on 
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applying additional optimizing algorithms or signal processing techniques to the 

Fourier spectrum to ‘extract’ partials from among frequency peaks clustered together, 

our wavelet-based method does not require such sophisticated techniques. Moreover, 

compared to Fourier-based approaches, our wavelet-based method also considers the 

temporal aspect of each partial’s frequency variation. 

 

6.1 Theoretical Preparation 

From this section, we will describe the determination of inharmonicity 

coefficients for piano tones. The basic idea has been stated before -- estimating 

frequencies of respective partials and subsequently obtaining the inharmonicity 

coefficients from Fletcher’s formula 2
1 1 BnnFFn += . Here our dataset contains 

not only the onset transient but also the stationary part of the tone (i.e., we will use the 

entire waveform of the piano tone). This is for the following three reasons. 

Firstly, for good frequency resolution, the number of data points cannot be too 

small. 

Secondly, it may not be possible to determine the partial frequencies of the piano 

tones only from their onset transients (i.e. the non-steady state of the tone). We also 

cannot ignore the onset transient because onset transients have rich frequency 

components and many of them are inharmonic. If ignore this part, we may not 

guarantee that the dataset is complete especially when our target is to measure all 

inharmonicity coefficients.  
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Finally, the inharmonicity coefficients do not change with time although the 

perceptual effect of inharmonicity is most effective in the initial portion of the tone 

[79]. 

Our method for estimating inharmonicity coefficients is mainly built on the 

concepts of wavelet impulse synthesis and the time-frequency plane which have 

already been elaborated on in the preceding Chapters. Thus we will not repeat them 

again. Here we will discuss another important factor that we will not be able to ignore 

the choice of wavelet bases. 

 

6.1.1 Choice of Wavelet Bases  

Choosing the type of wavelet basis (i.e. the quadrature mirror filters h and g) is 

also an important issue because not all types of wavelet bases are suitable for 

determining the frequencies of partials. Fig 6.1 shows the Daubechies bases to be 

quite dispersed in terms of frequency. The Daubechies basis for the coefficient (6, 1, 6) 

that belong to the 2nd partial of the C4 tone (refer to the time-frequency planes in 

previous Chapters), has its main frequency peak around 500 Hz, but also has other 

minor peaks. In contrast, the Battle-Lemarie bases are more localized in both time and 

frequency (also shown in Fig 6.1). They have a single frequency peak and their width 

is narrower than that of the main frequency peak of the Daubechies basis, making 

them more suitable for frequency determination. 
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Fig 6.1 Comparison between Daubechies bases (6,1,6) and Battle-Lemarie bases 
(6,1,6) 

 

    If we vary the k’s (i.e. the index of within a node) value (recall that the basis is 

denoted as (d, b, k)) while keeping the d and b constant, we will get Fig 6.2. Likewise, 

by only adjusting b (the node), we have the basis (6, 0, 6) in Fig 6.3. 
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Fig 6.2 Comparison between Daubechies bases (6,1,2) and Battle-Lemarie bases 
(6,1,2) 
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Fig 6.3 Comparison between Daubechies bases (6,0,6) and Battle-Lemarie bases 
(6,0,6) 
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    From Fig 6.2, we see the frequency structure and value of basis (6, 1, 2). The 

frequency content of both the Daubechies wavelet and Battle-Lemarie wavelet do not 

change compared to the corresponding frequency content of basis (6, 1, 6) in Fig 6.1. 

The waveforms of both bases remain except that the waveform of basis (6, 1, 2) is 

moved ahead along the time axis. This is in accordance with the translation operation 

in wavelet theory stated in Chapter 2.  

    In Fig 6.3, where b’s value is changed while d and k are kept intact, the 

frequency peak of basis (6, 0, 6) is left-shifted along the frequency axis, which means 

that the frequency of basis (6, 0, 6) is less than that of basis (6, 1, 6). This is 

reasonable because the time-frequency plane subband (6,0) (or equivalently node (6,0) 

in the tree structure) is below subband (6,1). It should be noticed that the shape of 

basis (6,0,6) is a little different from that of basis (6,1,6). This is because (6,0,6) gives 

the approximation part represented by the scaling function, while (6,1,6) give the 

complementary detail part represented by the wavelet function. 

    Besides the translation effect, we also illustrate the scaling effects in Figs 6.4 and 

6.5. That is, we will increase or decrease d, the depth, while keeping b and k 

unchanged. The scaling effects are clearly seen through the shrinking and expanding 

waveforms of basis (4, 1, 6) and (7, 1, 6). In Fig 6.4, the amplitude of the second 

frequency peak of the Daubechies wavelet for (4, 1, 6) is relatively large enough so 

that we cannot ignore it. In addition, the two frequency peak bands of Daubechies are 

too broad in Fig 6.4 to be useful for detecting the partial’s frequency. Hence we can 

conclude that for lower values of d, the Daubechies wavelet is less suitable as the 
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analysis wavelet in inharmonicity estimation, as the wavelet frequency bands become 

too broad. 
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Fig 6.4 Comparison between Daubechies bases (4,1,6) and Battle-Lemarie bases 
(4,1,6) 
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Fig 6.5 Comparison between Daubechies bases (7,1,6) and Battle-Lemarie bases 
(7,1,6) 

6.2 Experiments and Results 

Taking a F1 piano tone as an example, the sample length n was set to 215 = 32768. 

In our experiments, we selected the m = 1,500 most significant components produced 

by the WPT using the best basis procedure.  

In general, our approach consisted of a rough estimation of the partial 

frequencies and the inharmonicity coefficients, followed by a correction process that 

is achieved by a number of iteration loops to optimize the combination of 

fundamental frequencies and inharmonicity coefficients. The detailed procedures are 

described as below: 

Step 1: The sample is represented by m components (m=1,500 in this example), 
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with the waveform )()(,)( ,,,, ttxtW kbdkbdi ψψ=  ( nt ≤≤1  mi ≤≤1 ). 

 

Step 2: Each component )(tWi  is then subjected to an FFT operation and the 

frequency of the peak of the spectrum is labeled for each )(tWi frequency as if . In 

this step, we simply use the peak frequency value to represent the basis. That is we 

‘label’ this peak as if . We will do some optimization in Step 4 where we consider time 

factor and average many values for if   according to time. 

 

Step 3: Let 0jF ( L,3,2,1=j ) be a series of analysis frequencies, where 0F  is 

the ideal fundamental frequency of F1 (43.65 Hz, using A4=440 Hz and the 

Equal-tempered scale) (note that the measured fundamental frequency is denoted 

as 1F ). If if  is within the frequency interval 2/00 FjF ± , it is classified as 

belonging to the thj  partial. After such classification, each partial consists of a few 

(e.g., u) frequency components ( if ) distributed around its analysis frequency 0jF . 

 

Step 4: For a piano tone with inharmonic partials, we assume that the thj  

partial’s frequency has the value if  with a probability of 

∑
=

i
i

i
i tW

tW
tp

)(
)(

)( 2

2

( nt ≤≤1  ui ≤≤1 ) and the expected frequency of the thj  partial 

at time t is thus given by i
i

ij ftptF ∑= )()( . The function )(tFj ( nt ≤≤1 ) describes 

the frequency variation of the thj  partial with time. In 
∑

=

i
i

i
i tW

tW
tp

)(
)(

)( 2

2

, the sum 
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symbol is in terms of i. That means we sum different time frequency blocks at the 

cross-section (or at a certain time point t). 

However, another interpretation of )(tFj  is that in order to determine the 

partial frequency, we have done n trials at different time points to measure its value 

and each trial’s result is )(tFj ( nt ≤≤1 ) respectively. Therefore, the average of 

)(tFj according to t can reasonably be considered the measured value of this partial.  

Table 6.1 presents the measured frequency values of some partials for tone F1, 

where the dashed line ‘-’ means that the corresponding partial is not observed. Only 

some partials are listed here to save space. 

 

Partial 

No.  

Freq 

(Hz) 

Partial 

No.  

Freq 

(Hz) 

Partial 

No. 

Freq 

(Hz) 

Partial 

No. 

Freq 

(Hz) 

1  47.17 31 1348.6 61 2672.0 91 3951.3 

2  86.23  32 1402.2 62 2718.1 92 - 

3  128.88  33 1437.6 63 2738.8 93 - 

4  172.00 34 1470.1 64 2788.6 94 - 

5  215.52 35 1523.2 65 2839.6 95 - 

6  258.81  36 1577.4 66 2897.8 96 - 

7  302.97  37 1626.2 67 2919.2 97 - 

8  344.57  38 1666.6 68 2958.9 98 - 

9  390.27  39 1716.6 69 3007.1 99 - 

10  432.81  40 1730.9 70 3064.7 100 - 
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11  478.28  41 1774.2 71 3108.3 101 - 

12  518.82  42 1823.9 72 3129.0 102 - 

13  566.16  43 1883.8 73 3180.7 103 - 

14  609.11  44 1909.6 74 3238.1 104 - 

15  653.45  45 1977.2 75 3280.5 105 - 

16  698.63  46 1991.8 76 3305.9 106 4625.6 

17  724.99 47 2056.8 77 - 107 - 

18  777.55 48 2077.0 78 - 108 - 

19  830.85  49 2132.3 79 - 109 - 

20  879.21  50 2179.9 80 - 110 - 

21 924.36 51 2236.4 81 3542.2 111 - 

22 967.28 52 2281.7 82 - 112 - 

23 1013.9 53 2309.4 83 - 113 - 

24 1057.4 54 2351.0 84 3666.0 114 - 

25 1099.9 55 - 85 - 115 - 

26 1146.5 56 2444.8 86 - 116 - 

27 1192.3 57 2498.6 87 - 117 - 

28 1217.0 58 2552.7 88 - 118 - 

29 1249.7 59 2561.4 89 - 119 - 

30 1304.4 60 2610.1 90 3950.0 120 - 

Table 6.1 Frequencies of some partials of F1 piano tone after rough estimation 

 

Step 5: Once the frequencies of the partials are obtained, the estimation process 
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proceeds to calculate the inharmonicity coefficient B. Substituting any two partial 

frequencies (e.g., pF and qF ) into Fletcher’s equation 2
1 1 BnnFFn += , the two 

unknown variables, 1F  and B can be easily solved from those two equations. For 

further simplification, Fletcher also derived formula (6-3) based on the fact that 2Bn  

is always very small [78]. 

2/3
11 nBFnFFn =−       (6-3) 

Fletcher selected frequencies pF and qF (in Fletcher’s paper, partial frequencies 

are obtained by manual measurement) such as pq 2= , reducing the solution of 1F  

and B to: 

pFFF pp 6/)8( 21 −=       (6-4) 

)]8/()2)[(/2( 2 rrpB −−=   (6-5) 

where pp FFr /2= . 

By repeatedly substituting the partial frequencies (Table 6.1) into Equations (6-4) 

and (6-5), a number of possible values for 1F  and B are obtained as in Table 6.2. The 

absolute value of B in each case is then obtained and the final average values for 1F  

and B  are 43.55 Hz and 0.000028 respectively.  

 

Partial 

No.  

1F  (Hz) B Partial 

No.  

1F  (Hz) B 

4 and 8  42.975 0.000070 23 and 46 44.342 -0.000022

5 and 10  43.045  0.000110 24 and 48 44.323 -0.000021

6 and 12  43.103  0.000043 25 and 50 44.131 -0.000010
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7 and 14  43.206  0.000071 26 and 52 44.167 -0.000005

8 and 16  42.874  0.000144 27 and 54 44.365 -0.000013

9 and 18  43.419  -0.000032 28 and 56 43.401 0.000004 

10 and 20  43.055  0.000105 29 and 58 42.787 0.000017 

11 and 22  43.318 0.000062 30 and 60 43.472 0.000000 

12 and 24  42.960  0.000089 31 and 62 43.391 0.000005 

13 and 26 43.369 0.000050 32 and 64 43.900 -0.000004

14 and 28 43.522 -0.000003 33 and 66 43.449 0.000005 

15 and 30 43.592 -0.000006 34 and 68 43.146 0.000004 

16 and 32 43.613 0.000009 35 and 70 43.433 0.000003 

17 and 34 42.449 0.000032 36 and 72 43.936 -0.000004

18 and 36 42.991 0.000030 37 and 74 44.015 -0.000002

19 and 38 43.686 0.000005 38 and 76 43.978 -0.000004

20 and 40 44.190 -0.000026 42 and 84 43.354 0.000002 

21 and 42 44.214 -0.000020 45 and 90 43.955 -0.000000

22 and 44 44.157 -0.000018 53 and 106 43.553 0.000000 

Average  F1  |B|     

 43.55  0.000028    

Table 6.2 1F  and B for a F1 piano tone 

 

It was observed that quite a few B values are negative in Table 6.2. In these cases, 

the observed partial frequencies are lower than their corresponding values in the 
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harmonic series, which contradicts the expectation that inharmonicity increases in 

each partial frequency compared to the harmonic series. The measured partial 

frequencies in Table 6.2 also do not seem to fit the curve of 2
1 1 BnnFFn +=  with 

1F =43.55 Hz and B= 0.000028 (see Fig 6.6). 
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Fig 6.6 The result of rough estimation: the expected curve 2
1 1 BnnF +  vs measured 

partial frequencies 

 

The shift in the partials can account for above problems. Suppose that there is a 

component )(tWi  with frequency 1,831 Hz. Given that 43.65 Hz is F1’s ideal 

fundamental frequency, if we assume no inharmonicity, this component is counted as 

belonging to the 42th partial in Step 3 above, and is used to estimate the 42th partial’s 

frequency in Step 4. However, in the real situation where inharmonicity (e.g. for 
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B=0.000028) is considered, 1,831 Hz is actually the frequency of the 41st partial, 

calculated by the inharmonicity formula 2
1 1 BnnFFn += . Thus in the above rough 

estimation, many components have been erroneously classified, causing errors in all 

the succeeding computations. 

To eliminate the impact of this ‘partial shift’ effect and refine the results based on 

the rough estimation, a correction is thus required. Starting from 55.431 =F  Hz and 

B=0.000028, the series of harmonic analysis frequencies, 0jF  in Step 3 is replaced 

by a new series of inharmonic analysis frequencies 2
1 1 BjjF + , while keeping the 

computations in Steps 4 and 5 unchanged. But the results in Table 6.1 and Table 6.2 

will be upgraded to reflect the change due to this correction. More iteration loops are 

needed to fully correct the ‘partial shift’ effect. The values of 1F  and B obtained 

from the previous iteration are adopted to establish new analysis frequencies for the 

current iteration in Step 3. Following Steps 4 and 5, the new combination of 1F  and 

B is used in the next iteration and so on.  

Additionally, in Step 3 of each iteration, the frequency range covering a partial 

should no longer be 2/00 FjF ±  or 2/11 FjF ± , because in an inharmonic tone, the 

interval between neighboring partials is broader and broader as we go up to higher 

partials. Thus, the frequency range of partial n should be 2/)([ 1−−− nnn FFF , 

]2/)( 1 nnn FFF −+ +  where 2
1 1 BjjFFj += . Otherwise, there is a frequency gap 

between neighboring partials and some blocks would be missed. 

    In Table 6.2, we observe that B values are getting smaller as higher partials are 

involved to calculate the B values. Moreover, nearly all B values calculated from the 



 164

lower partials, i.e. from the pair 4 and 5 to pair 13 and 26, are positive, while negative 

B values frequently appear for higher partial pairs. This may because in the rough 

estimation, we use the harmonic analysis frequencies to fit the distribution of 

time-frequency blocks. For the lower partials, the deviation from exact harmonic 

frequencies is still small, and therefore the assignment of the frequency components is 

largely to the correct partials. In other words, the interval 2/00 FjF ±  is not too 

different from the range 2/)([ 1−−− nnn FFF , ]2/)( 1 nnn FFF −+ +  where 

2
1 1 BjjFFj += , since j2 is small. As j increases, the previously mentioned ‘shift 

effect’ becomes larger. Many frequency components are thus wrongly assigned to 

higher partials than they should be assigned to, which results in negative B values as 

calculated by partial pairs with higher j values.  

    We have used the absolute values of these negative Bs to obtain only positive 

inharmonicity coefficients for the first iteration. From the Table 6.3 where the output 

of the first iteration is shown, most B values from higher pairs have become positive 

now. Irrespective of the initial values, the B values from the first iteration have now 

become positive so that a few more iteration would fully eliminate the ‘shift effect’. 

Partial 

No.  

1F  (Hz) B Partial 

No.  

1F  (Hz) B 

4 and 8 42.975 0.000069 23 and 46 43.726 0.000031

5 and 10 43.045 0.00011 24 and 48 43.607 0.000036

6 and 12 43.106 0.000039 25 and 50 43.438 0.000041

7 and 14 43.204 0.000072 26 and 52 43.588 0.000036

8 and 16 42.872 0.000144 27 and 54 43.676 0.000041
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9 and 18 43.405 -0.000024 28 and 56 43.554 0.000043

10 and 20 43.052 0.000106 29 and 58 43.887 0.000034

11 and 22 43.313 0.000064 30 and 60 43.431 0.000039

12 and 24 42.948 0.00009 31 and 62 43.698 0.000038

13 and 26 43.357 0.000052 32 and 64 43.694 0.000037

14 and 28 43.249 0.000061 33 and 66 43.011 0.000045

15 and 30 43.354 0.000043 34 and 68 43.648 0.000039

16 and 32 43.38 0.000051 35 and 70 44.169 0.000031

17 and 34 42.017 0.000108 36 and 72    

18 and 36 42.597 0.000093 37 and 74    

19 and 38 43.256 0.000061 38 and 76 44.143 0.000032

20 and 40 43.832 0.000016 39 and 78    

21 and 42 43.747 0.00003 40 and 80 42.71 0.000049

22 and 44 43.62 0.000034    

Table 6.3 The first iteration: absolute value operation applied 

    Taking absolute values is not the only possible approach. Another approach is to 

keep these negative B values intact. We note that most of the B values from lower 

partial pairs (Table 6.2) are not too far from the final iterative value of 0.000069 

(Table 6.5). But on the contrary, it is noticeable that from the pair 14 and 28 upwards, 

the initial B values are generally very much, since they have been derived on the 

assumption that the partials are harmonic.(Table 6.2). If we include their B values in 

calculating the average values of B, these B values from the higher pairs of partials 

play a much less important role than lower pairs. Hence, the positive B values from 
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lower pairs will dominate the result. That means it doesn’t matter whether we need to 

take the absolute value when we encounter negative B for the initial values. In Table 

6.4 after the first iteration, most B values become positive even if we include the 

negative B values. 

Partial 

No.  

1F  (Hz) B Partial 

No.  

1F  (Hz) B 

4 and 8 42.975 0.000069 23 and 46 43.894 0.000016

5 and 10 43.045 0.00011 24 and 48 43.939 0.00001

6 and 12 43.103 0.000043 25 and 50 43.767 0.000017

7 and 14 43.204 0.000072 26 and 52 43.856 0.000018

8 and 16 42.872 0.000144 27 and 54 43.912 0.000017

9 and 18 43.419 -0.000032 28 and 56 43.964 0.000009

10 and 20 43.055 0.000105 29 and 58 44.195 0.000009

11 and 22 43.316 0.000063 30 and 60 43.539 0.000014

12 and 24 42.96 0.000089 31 and 62 43.11 0.000023

13 and 26 43.36 0.000052 32 and 64 43.404 0.000022

14 and 28 43.301 0.000049 33 and 66 43.258 0.00002

15 and 30 43.479 0.000017 34 and 68 43.632 0.000015

16 and 32 43.59 0.000013 35 and 70 43.503 0.000018

17 and 34 42.195 0.000074 36 and 72 43.292 0.00002

18 and 36 42.976 0.000032 37 and 74    

19 and 38 43.611 0.000015 38 and 76    

20 and 40 43.836 0.000014 39 and 78    

21 and 42 43.842 0.000018 40 and 80 43.837 0.000014
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22 and 44 43.818 0.000015    

Table 6.4 The first iteration: nothing has been done on negative B values in the rough 
estimate 

 

After 11 iterations (absolute value operation applied), the evolution of 1F  and B 

is summarized in Table 6.5. 

 

 F B 

Rough Estimate 43.55 0.000028 

1st iteration 43.42 0.000043 

2nd iteration 43.36 0.000054 

3rd iteration 43.29 0.000062 

4th iteration 43.22 0.000068 

5th iteration 43.16 0.000069 

6th iteration 43.16 0.000069 

Table 6.5 1F  and B calculated from rough estimation to the 6th iteration 

By using 1F  and B at the end of each iteration, the inharmonicity curve can be 

obtained by 2
1 1 BnnFFn += . Plotting the measured partial frequencies of each 

iteration(the upgraded Table 6.1 in each iteration) together with the inharmonicity 

curve in the same diagram, the correction process is illustrated in Fig 6.7, compared to 

the rough estimation in Fig 6.6. 
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(a) The 1st iteration 
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(b) The 2nd iteration 
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(c) The 3rd iteration 
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(d) The 4th iteration 
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(e) The 5th iteration 
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(f) The 6th iteration 
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(g) Fletcher curves 

Fig 6.7 Results of the 6-iteration correction process for F1 piano tone  

It can be seen from both Table 6.5 and Fig 6.7 that the results become stable 

from the 10th iteration, implying that the ‘partial shift’ effect has been eliminated. 

Hence, it is appropriate to take 16.431 =F  and 000069.0=B  as our final estimate 

for the F1 piano tone. The technique introduced in this Chapter has been published in 

the Journal of the Audio Engineering Society [80]. 

In Table 6.1, the initially estimated fundamental frequency is 47.17, significant 

different from the ideal fundamental frequency of piano tone F1 (43.65 Hz). But the 

final calculated fundamental frequency is 43.16 in Table 6.2 which is more reasonable. 

The possible reason may be that usually lowest partials contain more number of 

broader time-frequency blocks that have wider frequency peaks. If 2/00 FF +  is 

used as the boundary of the partial one and partial two, the wide peaks may span 
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across the boundary line 2/00 FF + . For bass tones, the frequency interval between 

neighbor partials is very small. These wide peaks actually contribute to both partials. 

However, we classify them to either partial one or partial two. This makes the 

calculated fundamental frequency unreliable. Therefore in Step 5, we ignore lowest 

partials and start from the partial four as shown in Table 6.2.  

To check whether our estimation of inharmonicity is correct, we applied the Fast 

Fourier Transform (FFT) on the sample of F1 piano tone. We also substituted 

16.431 =F  and 000069.0=B  in Equation (6-1) and predicted some partial 

frequencies. Plotting these partial frequencies as a series of frequency lines in the FFT 

spectrum (Fig 6.8), we can find out how much our prediction matches the reality. In 

addition, to indicate that piano tones really have an inharmonicity effect, we also 

combine the FFT spectrum and the harmonic frequency lines for partials which are 

multiples of the fundamental frequency in Fig 6.9. 

From Fig 6.8, we can see that our predicted inharmonic structure matches the 

FFT spectrum well. However in Fig 6.9, most upper partials can not fall on harmonic 

lines, although for those lower partials, there is a good match. This indicates how 

efficiently the formula 2
1 1 BnnFFn +=  works. Since the inharmonicity coefficient 

B is generally very small (e.g. in our measurement of the F1 piano tone, 

000069.0=B ), when n is also very small, the item 2Bn  can be ignored. Hence, 

there is nearly no difference between an inharmonic pattern and a harmonic structure. 

But when n goes to a large number, the square operation makes 2Bn  much larger 

than 1. For such large n, the inharmonicity item 2Bn  will impose a significant 
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influence on partial frequencies with the help of n2.  

 

Fig 6.8 Our prediction on the F1 piano tone inharmonic frequency structure and its 
real FFT spectrum 
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Fig 6.9 The assumed harmonic structure of the F1 piano tone and its real FFT 
spectrum Note the frequency range roughly from 800 Hz to 1200 Hz, and the 
frequencies around the 1600 Hz 
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    To examine the applicability of our method to the measurement of inharmonicity 

coefficients, a number of other piano tones such as B0 (Figs 6.10-6.13 and Table 6.6), 

G2 (Fig 6.14-6.17 and Table 6.7), D3# (Fig 6.18-6.21 and Table 6.8), C4 (Fig 

6.22-6.25 and Table 6.9) and A5 (Fig 6.26-6.29 and Table 6.10) were tested. The 

predicted inharmonic partial structure for each piano tone (Figs 6.12, 6.16, 6.20, 6.24 

and 6.28) satisfactorily matches the real FFT spectrum, which confirms the feasibility 

and validity of our approach. However, From the Figs 6.13, 6.17, 6.21, 6.25 and 6.29 

where the assumed harmonic structures are plotted with the real FFT spectrum, we 

can observe the mismatches for some partials which show that these partials are 

clearly inharmonic. The mismatched frequency locations have been noted in the 

captions of these figures. The mismatches are most noticeable in the higher partials. 

Measurement for piano tone B0 
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Fig 6.10 Reconstruction of a 32768-point tone B0 sample by m=1500 most significant 
time-frequency blocks 
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 F B 

Rough Estimate 30.87 0.000024 

1st iteration 30.90 0.000039 

2nd iteration 30.87 0.000054 

3rd iteration 30.84 0.000063 

4th iteration 30.87 0.000072 

5th iteration 30.87 0.000081 

6th iteration 30.84 0.000086 

7th iteration 30.82 0.000089 

8th iteration 30.78 0.000092 

Table 6.6 1F  and B calculated for the B0 piano tone  
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(a) Rough estimation 
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(b) The 1st iteration 
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(c) The 2nd iteration 
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(d) The 3rd iteration 
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(e) The 4th iteration 



 179

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

4000

No. of Partials

Fr
eq

ue
nc

y 
(H

z)

 

(f) The 5th iteration 
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(g) The 6th iteration 
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(h) The 7th iteration 
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(i) The 8th iteration 

Fig 6.11 Results of the 8-iteration correction process for the B0 piano tone  
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Fig 6.12 Our prediction on the B0 piano tone inharmonic frequency structure and its 
real FFT spectrum 
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Fig 6.13 The assumed harmonic structure of the B0 piano tone and its real FFT 
spectrum Note the frequency range roughly from 600 Hz to 800 Hz 
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Measurement of piano tone G2 
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Fig 6.14 Reconstruction of a 32768-point tone G2 sample by m=1500 most significant 
time-frequency blocks 

 

 F B 

Rough Estimate 98.4237 0.000049 

1st iteration 97.8652 0.000073 

2nd iteration 97.5967 0.000078 

3rd iteration 97.6159 0.000079 

Table 6.7 1F  and B calculated for the G2 piano tone  



 184

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5
x 104

No. of Partials

Fr
eq

ue
nc

y 
(H

z)

 

(a) Rough Estimation 
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(b) The 1st iteration 
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(c) The 2nd iteration 
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(d) The 3rd iteration 

Fig 6.15 Results of the 3-iteration correction process for the G2 piano tone  
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Fig 6.16 Our prediction on the G2 piano tone inharmonic frequency structure and its 
real FFT spectrum 
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Fig 6.17 The assumed harmonic structure of the G2 piano tone and its real FFT  

spectrum Note the frequency range roughly from 1700 Hz to 2700 Hz 
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Measurement of piano tone D3# 
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Fig 6.18 Reconstruction of a 32768-point tone D3# sample by m=1500 most 
significant time-frequency blocks 

 

 F B 

Rough Estimate 156.36 0.000093 

1st iteration 155.08 0.000145 

2nd iteration 154.74 0.000159 

3rd iteration 154.69 0.000163 

4th iteration 154.64 0.000165 

5th iteration 154.63 0.000165 

Table 6.8 1F  and B calculated for the D3# piano tone  



 189

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5
x 104

No. of Partials

Fr
eq

ue
nc

y 
(H

z)

 

(a) Rough Estimation 
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(b) The 1st iteration 
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(c) The 2nd iteration 
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(d) The 3rd iteration 
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(e) The 4th iteration 
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(f) The 5th iteration 

Fig 6.19 Results of the 6-iteration correction process for the D3# piano tone  
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Fig 6.20 Our prediction on the D3# piano tone inharmonic frequency structure and its 
real FFT spectrum 
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Fig 6.21 The assumed harmonic structure of D3# piano tone and its real FFT 
spectrum. Note the frequency range roughly from 1500 Hz to 3000 Hz 
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Measurement of piano tone C4 
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Fig 6.22 Reconstruction of a 32768-point tone C4 sample by m=1500 most significant 
time-frequency blocks 

 

 F B 

Rough Estimate 262.46 0.000240 

1st iteration 261.54 0.000284 

2nd iteration 261.95 0.000275 

3rd iteration 262.01 0.000278 

Table 6.9 1F  and B calculated for the C4 piano tone  



 195

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5
x 104

No. of Partials

Fr
eq

ue
nc

y 
(H

z)
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(b) The 1st iteration 
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(c) The 2nd iteration 
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(d) The 3rd iteration 

Fig 6.23 Results of the 3-iteration correction process for the C4 piano tone  
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Fig 6.24 Our prediction on the C4 piano tone inharmonic frequency structure and its 
real FFT spectrum 

 
 
 

 

Fig 6.25 The assumed harmonic structure of C4 piano tone and its real FFT spectrum 

Note the frequencies around 3000 Hz 
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Measurement of piano tone A5 
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Fig 6.26 Reconstruction of a 16384-point tone A5 sample by m=1500 most significant 
time-frequency blocks 

 

 F B 

Rough Estimate 897.96 0.001477 

1st iteration 883.63 0.001868 

2nd iteration 883.62 0.001867 

Table 6.10 1F  and B calculated for the A5 piano tone  
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(a) Rough Estimation 
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(b) The 1st Iteraion 
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(c) The 2nd iteration 

Fig 6.27 Results of the 2-iteration correction process for the A5 piano tone  
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Fig 6.28 Our prediction on A5 piano tone inharmonic frequency structure and its real 
FFT spectrum 

 
 
 

 

Fig 6.29 The assumed harmonic structure of A5 piano tone and its real FFT spectrum 

Note the frequencies around 4000 Hz 
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The inharmonicity coefficients which we have calculated for some piano tones 

are shown in the following figure. 
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Fig 6.30 Estimated inharmonicity coefficients for some piano tones 

Generally speaking, the inharmonicity coefficients increase with the fundamental 

frequency of piano tones. But the rate of increase with frequency in the inharmonicity 

coefficients for higher frequencies is high compared to the small rate of increase for 

lower frequencies [81]. The values of inharmonicity coefficients in Fig 6.30 are 

tabulated in Table 6.12. Each tone’s fundamental frequency can be found in the 

Appendix A. 

Galembo [64] has summarized inharmonicity coefficients for some different 

brands of piano. From the Table 6.11 we can see that for different pianos, the 

inharmoncity coefficient for the same tone could be very different. Comparing this 
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table to our results in Fig 6.30 (i.e., A0= 610182 −× , E1= 610125 −× , A1= 610106 −× , 

E2= 610112 −× ,A2= 610158 −× ) we find our results are a little similar to that of a 

Steinway C piano, although results derived from different pianos may not be directly 

compared.  

   

Note     Steinway D 

Manual   Calculation 

     Steinway C 

Manual    Calculation 

     Nordiska 

Manual    Calculation 

      Straud 

Manual   Calculation

A0 160          154 190            186 345           338 568          558 

E1 065          059 091            090 207           198 263          277 

A1 057           058 092            091 160           173 214          215 

E2 068           067 114            112 142           131 235          233 

A2 085           079 131            116 154           134 202          181 

 

Table 6.11 The inharmonicity coefficients estimated by Galembo [64] unit:10-6 

 

Key 

No. 

Tone Inharmonicity Key 

No. 

Tone Inharmonicity Key 

No. 

Tone Inharmoicity 

1 A0 0.000182 2 A0# 0.000125 3 B0 9.2e-005 

4 C1 0.000166 5 C#1 3.8e-005 6 D1 7.5e-005 

7 D#1 9.3e-005 8 E1 0.000125 9 F1 6.9e-005 

10 F1# 8.2e-005 11 G1 8.5e-005 12 G1# 8.1e-005 

13 A1 0.000106 14 A1# 4.9e-005 15 B1 0.000132 

16 C2 9.3e-005 17 C2# 4.1e-005 18 D2 0.00011 

19 D2# 0.000111 20 E2 0.000112  21 F2 8.2e-005 

22 F2# 7.2e-005 23 G2 7.9e-005 24 G2# 6.2e-005 

25 A2 0.000158 26 A2# 0.000112 27 B2 7.7e-005 

28 C3 0.000187 29 C3# 0.000124 30 D3 0.000127 

31 D3# 0.000165 32 E3 0.000177 33 F3 0.000182 

34 F3# 0.000197 35 G3 0.000193 36 G3# 0.000221 

37 A3 0.000219 38 A3# 0.000346 39 B3 0.000255 
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40 C4 0.000278 41 C4# 0.000312 42 D4 0.000441 

43 D4# 0.000359 44 E4 0.000325 45 F4 0.000473 

46 F4# 0.000479 47 G4 0.000529 48 G4# 0.000721 

49 A4 0.0006 50 A4# 0.000768 51 B4 0.000888 

52 C5 0.000823 53 C5# 0.00099 54 D5 0.00083 

55 D5# 0.001089 56 E5 0.001337 57 F5 0.001915 

58 F5# 0.001104 59 G5 0.00196 60 G5# 0.0024 

61 A5 0.001867 62 A5# 0.001881 63 B5 0.002128 

64 C6 0.002349 65 C6# 0.002607 66 D6 0.0048 

67 D6# 0.003372 68 E6 0.002844 69 F6 0.004792 

70 F6# 0.006234       

 

Table 6.12 The values of some piano tones’ inharmonicity coefficients 
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Chapter 7  Conclusions and Suggestions 

for Future Work 

 

 

 

 

 

 

 

 

 

 

 

7.1 Conclusions 

The piano is one of the most important instruments used in western music, 

classical, pop, jazz and other genres. It produces sound by striking metal strings with 

felt covered hammers. The sound production mechanism is very complicated. 

However from another perspective, it is these complications that account for a large 

part of the interesting and well-loved nature of the piano sound.  

    In order to understand the complex nature of piano tones, some subtle effects that 
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can affect the sound production of these tones have been investigated in this 

dissertation. When the hammer strikes on the strings, the interaction of the hammer 

with the strings will surely strongly determine the sound’s characteristics. This initial 

stage of the piano tone during which this interaction occurs is usually referred to as 

the onset transient or onset attack.  

In this dissertation, we have explored the onset transients and inharmonicity of 

piano tones by wavelet-based techniques. Our findings have confirmed that the use of 

wavelets is an effective tool for analyzing piano tones.  

Summing up, these findings are listed as follows. 

In Chapter 3 where the multiresolution analysis was applied, we measured the 

onset durations of all 88 piano tones. Generally speaking, the onset transient durations 

of bass piano tones are around 100ms or greater, and for treble tones, they are much 

less, falling to about 10ms to 20ms. The onset transient durations of mid-range tones 

fall between that of the bass and treble tones. We also provided a possible explanation 

for why onset durations fall by a decreasing exponential-like trend with increasing 

frequency. 

In our multiresolution analysis, we did not use a traditional inverse discrete 

wavelet transform to restore the signal where subbands are inherently organized. Each 

subband was instead reconstructed separately (or independently) from the other 

subbands. That means we are able to obtain the signal waveform associated with each 

subband. The whole process has been described in Fig 3.11. Although these subbands 

are separately reconstructed, summing the waveforms of these subbands results in a 
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perfect recovery of the original signal. This has been verified in experiments in 

Chapter 3. 

The output of multiresolution analysis is a number of waveforms corresponding 

to a series of subbands which do not overlap each other and cover the whole 

frequency range from 0 Hz up to 22,050 Hz. The waveform of the lowest frequency 

band is the energy envelope of the signal. In this energy envelope, there is a surprising 

negative dip immediately before a large peak. The coefficient of the wavelet 

transform at this time point is expected to be very large and thus the wavelet basis is 

enlarged in amplitude to match the envelope peak. But since a wavelet basis must be 

an oscillatory function (see in Chapter 2), at the same time the positive peak of the 

wavelet basis is going to match the envelope peak, the negative peak of the wavelet 

basis leaves a negative dip at the start of the tone. Nevertheless, the negative dip 

seems to violate common sense that energy cannot take a negative value. This 

negative dip can actually be complemented by positive humps in the waveforms of 

upper subbands at the same time position. 

Our results further indicate that this negative dip accurately points to the 

beginning of the piano tone and thus can be used as the starting point of that tone. 

Since the peak of a signal’s waveform can be easily measured, the time interval 

between the negative dip and the peak is considered as the duration of the onset 

transient, according to the second definition described in Chapter 3. 

In Section 4.2 of Chapter 4, where wavelet packet analysis was applied, we have 

analyzed the frequency band structure of onset transients for piano tones of various 
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fundamental frequencies. Our analysis may explain why bass piano tones are often 

perceived as having greater inharmonicity than mid-range and treble piano tones. 

In comparison with the DWT, the wavelets packet transform (WPT) also 

iteratively subjects the detail coefficients to the basic decomposition unit, which could 

result in many possible tree structures. The number of different possible WPT trees 

can be very large. Using the Shannon entropy function as the cost function, Coifman 

has designed an algorithm to efficiently select the ’best’ tree to represent any 

particular signal. According to Coifman’s idea, the ‘best’ tree should have the lowest 

Shannon entropy, which means that the signal’s energy is most efficiently 

represented. 

The results of WPT are visualized in the form of the time-frequency plane whose 

pattern is determined by the resultant tree structure in the WPT. The time-frequency 

plane is an important concept and was extensively utilized in the remainder of this 

dissertation. 

In Section 4.3 of Chapter 4, where local cosine bases analysis was applied, we 

have described the whole temporal process for the establishment of the harmonics in 

the time-frequency plane. 

In Section 4.4 of Chapter 4, where matching pursuit analysis was applied, we 

have found that the large changes during the initial phase of the onset transient affect 

the fundamental frequency and lower harmonics more profoundly than the higher 

harmonics. 

From the discussion on the time-frequency planes in Chapter 4 (including WPT 
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analysis, local cosine analysis, and matching pursuit analysis) we can draw a 

conclusion that is close to Palmer’s opinion that during the onset transient of a piano 

tone, lower partials play a very important role, having much of the waveform’s energy 

and undergoing great changes both in frequency and waveform. The peak amplitude is 

also primarily determined by the first few (i.e., the lowest frequency) spectral 

components.  

These conclusions drawn from Chapter 4 provide a reasonable explanation as to 

why piano tones can be greatly compressed by wavelet packet transformation, as 

shown in Chapter 5. This large compression means that with only a relatively small 

number of time-frequency blocks (or time-frequency atoms) we can obtain an 

accurate representation of a piano tone’s time-frequency behavior, as shown by our 

reconstruction of several piano tones in Chapter 5. The discussions in Chapter 5 

greatly facilitate our measurements of inharmonicity coefficients in Chapter 6 by 

reducing the computational load to a viable level. 

    From the review in Chapter 1, we know that inharmonicity is another important 

feature in piano sounds. The root cause of inharmonicity is the fact that real strings 

inherently have nonzero bending stiffness.  

    In Chapter 6, we applied wavelet-based techniques to the measurement of the 

piano’s inharmonicity coefficient. Using wavelet packet transform (WPT), the 

time-frequency plane can show how frequencies vary with time. Each time-frequency 

block in the plane represents a wave component which is the product of a coefficient 

with its associated wavelet basis. Because the energy of piano tones is concentrated 
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mainly in the lower harmonics (as shown in this dissertation), only a small proportion 

of all the time-frequency blocks are sufficient to accurately reconstruct the original 

waveform.  

Each wave component is obtained by wavelet impulse synthesis and classified 

into a particular partial in terms of a series of analysis frequencies, thus allowing the 

estimation of the partial frequencies. After eliminating the ‘partial shift’ effect by a 

correction process, fundamental frequency and inharmonicity coefficients were 

accurately measured. The calculated results agree with FFT spectra of piano tones. 

 

7.2 Suggestions for future work 

    The results in this research suggest several possibilities for future research: 

 Onset detection and localization is very useful in a variety of applications in 

analyzing and indexing musical signals. Real music signals are a noisy 

polyphonic signals (i.e., multiple sound objects presented together at a given 

time). Thus, localizing a simple piano tone as discussed in Chapter 3 is not 

enough. Research may be required to extend wavelet multiresolution analysis to 

onset detection polyphonic signals. In the majority of existing onset detection 

approaches, various peak-picking algorithms are used with the help of detection 

functions. Without focusing on peaks, our method pays attention to negative dips 

in the waveform of the approximation subband resulting from wavelet 

multiresolution analysis on the signals’ energy envelope. Therefore integrating 
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the wavelet multiresolution analysis into existing onset detection approaches 

might improve the accuracy.  

 In Chapter 4 where wavelet time-frequency planes for the onset transients and the 

stationary part of piano tones are presented, the type of wavelet bases are 

Daubechies bases. Although Daubechies bases presented give satisfying results, 

other types of wavelet bases may disclose more properties of piano tones in terms 

of the time-frequency plane. Hence, more types of wavelet bases need to be tried 

for the purpose of comparison. 

 The wavelet impulse synthesis in Chapter 5 and Chapter 6 has shown that the 

original signal can be additively reconstructed by a much smaller number of 

blocks selected from the total number of time-frequency blocks. In our discussion, 

the time-frequency blocks are selected according to the values of coefficients they 

are associated with. However, this may bring potential problems. Some partials 

that have weak amplitudes may have strong influence on the estimation of 

inharmonicity coefficients. Because of the weak amplitudes, they may not be 

selected and therefore ignored in the measurement. An improved method to select 

the appropriate blocks is necessary. 
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Appendix A 

Key name Frequency (Hz) Key name Frequency (Hz) 

88 C8  4186.01 44 E4 329.628 

87 B7 3951.07 43 D4# 311.127 

86 A7# 3729.31 42 D4 293.665 

85 A7 3520.00 41 C4# 277.183 

84 G7# 3322.44 40 C4 (Middle 
C) 

261.626 

83 G7 3135.96 39 B3 246.942 

82 F7# 2959.96 38 A3# 233.082 

81 F7 2793.83 37 A3 220.000 

80 E7 2637.02 36 G3# 207.652 

79 D7# 2489.02 35 G3 195.998 

78 D7 2349.32 34 F3# 184.997 

77 C7# 2217.46 33 F3 174.614 
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76 C7 (Double 
high C) 

2093.00 32 E3 164.814 

75 B6 1975.53 31 D3# 155.563 

74 A6# 1864.66 30 D3 146.832 

73 A6 1760.00 29 C3# 138.591 

72 G6# 1661.22 28 C3 (Low C) 130.813 

71 G6 1567.98 27 B2 123.471 

70 F6# 1479.98 26 A2# 116.541 

69 F6 1396.91 25 A2 110.000 

68 E6 1318.51 24 G2# 103.826 

67 D6# 1244.51 23 G2 97.9989 

66 D6 1174.66 22 F2# 92.4986 

65 C6# 1108.73 21 F2 87.3071 

64 C6 (Soprano 
C) 

1046.50 20 E2 82.4069 

63 B5 987.767 19 D2# 77.7817 
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62 A5# 932.328 18 D2 73.4162 

61 A5 880.000 17 C2# 69.2957 

60 G5# 830.609 16 C2 (Deep C) 65.4064 

59 G5 783.991 15 B1 61.7354 

58 F5# 739.989 14 A1# 58.2705 

57 F5 698.456 13 A1 55.0000 

56 E5 659.255 12 G1# 51.9130 

55 D5# 622.254 11 G1 48.9995 

54 D5 587.330 10 F1# 46.2493 

53 C5# 554.365 9 F1 43.6536 

52 C5 (Tenor C) 523.251 8 E1 41.2035 

51 B4 493.883 7 D1# 38.8909 

50 A4# 466.164 6 D1 36.7081 

49 A4 (A440) 440.000 5 C1# 34.6479 

48 G4# 415.305 4 C1 (Pedal C) 32.7032 
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47 G4 391.995 3 B0 30.8677 

46 F4# 369.994 2 A0# 29.1353 

45 F4 349.228 1 A0  27.5000 
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