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ABSTRACT

Digital sound synthesis allows the creation of a great variety of sounds. Focusing on in-

teresting or ecologically valid sounds for music, simulation, aesthetics, or other purposes

limits the otherwise vast digital audio palette. Tools for creating such sounds vary from

arbitrary methods of altering recordings to precise simulations of vibrating objects. In

this work, methods of sound synthesis by re-sonification are considered. Re-sonification,

herein, refers to the general process of analyzing, possibly transforming, and resynthesiz-

ing or reusing recorded sounds in meaningful ways, to convey information. Applied to

soundscapes, re-sonification is presented as a means of conveying activity within an envi-

ronment. Applied to the sounds of objects, this work examines modeling the perception

of objects as well as their physical properties and the ability to simulate interactive events

with such objects.

To create soundscapes to re-sonify geographic environments, a method of auto-

mated soundscape design is presented. Using recorded sounds that are classified based

on acoustic, social, semantic, and geographic information, this method produces stochas-

tically generated soundscapes to re-sonify selected geographic areas. Drawing on prior

knowledge, local sounds and those deemed similar comprise a locale’s soundscape.

In the context of re-sonifying events, this work examines processes for modeling

and estimating the excitations of sounding objects. These include plucking, striking,

rubbing, and any interaction that imparts energy into a system, affecting the resultant

sound. A method of estimating a linear system’s input, constrained to a signal-subspace,

is presented and applied toward improving the estimation of percussive excitations for

re-sonification.

To work toward robust recording-based modeling and re-sonification of objects,

new implementations of banded waveguide (BWG) models are proposed for object mod-

eling and sound synthesis. Previous implementations of BWGs use arbitrary model pa-
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rameters and may produce a range of simulations that do not match digital waveguide or

modal models of the same design. Subject to linear excitations, some models proposed

here behave identically to other equivalently designed physical models. Under nonlinear

interactions, such as bowing, many of the proposed implementations exhibit improve-

ments in the attack characteristics of synthesized sounds.
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PREFACE

This document describes efforts to improve sound creation, editing, and understanding.

This stems from an assumption that things related to sound, like much of science, are

hard, and from a desire to work toward usable and useful tools for making sounds. This is

primarily addressed with two different approaches: creating combinations of sounds (i.e.,

environments or soundscapes) and creating individual sounds (i.e., the isolated sounds

of objects and events). The methods herein are focused on using sound recordings as

a starting point from which new sounds are made, though the described object/event

models may be created from physical, perceptual, spectral, or temporal parameters.

For environmental re-sonification, a method for automated soundscape creation

for designing explorable sound maps is presented. This method serves as a sort of comple-

mentary synthesis end to the work of Dr. Gordon Wichern in segmenting, indexing, and

retrieving environmental and natural sounds, and also relies on work by colleagues and

collaborators including Dr. Harvey Thornburg, Brandon Mechtley, Jiachen Xue, and

Jinru Liu. Extensions and continuation of environmental re-sonification may be found

in the work of Mr. Mechtley.

The larger focus here is on source/filter or exciter/resonator approaches to de-

scribing isolated sounds, primarily of simulated resonant objects. Such schema attempt

to meaningfully and separately represent objects and ways to interact with them. To

this end, a method of estimating percussive excitations is presented, as are suggested

alterations to banded waveguide models. Banded waveguide models were chosen as a

focus of object modeling given their status as a hybrid spectral/physical model, meaning-

fully representing physical and perceptual properties of modeled objects. The cause for

studying differing implementations of banded waveguide models stems from the author’s

observation of their variant behavior and difference in simulated outputs, especially in

xvii



comparison to oft studied and implemented digital waveguide models. In improving the

correspondence of banded waveguide models with other models for sound synthesis, ap-

plications may make use of the many methods for re-sonification for these other models.

xviii



Chapter 1

INTRODUCTION

In this work, methods of re-sonifying objects, events, and environments are presented.

This refers to meaningfully reusing recorded sounds in some way, often analyzing, possi-

bly transforming, and resynthesizing them. Re-sonification may be used in applications

ranging from musical composition to interaction in virtual environments, where sounds

need to be easily and meaningfully manipulable. Considering sound as a carrier of infor-

mation about activity, meaningful re-sonification refers to methods that preserve ecolog-

ical validity, giving listeners a sense of real events that occur between real objects within

real environments, or methods that achieve any desired sonic effects.

Working toward scalable and robust re-sonification, this work addresses re-

sonification at two scales: the object/event level and the environmental level. For object

re-sonification, banded waveguides are examined for modeling of resonant sounding ob-

jects. Study of event re-sonification herein is focused on estimating percussive excitations

for resynthesis. A multiply-informed methodology for selecting and playing back source

recordings is explored for re-sonifying environments.

As with any work, much is built upon the efforts of others. Where appropriate,

such sources are cited, though a few stand out in significance and number of citations.

With much focus on physical models, this document uses [2] as a significant source of

background material. Additionally, information about and justification for use of banded

waveguide models draws largely from [6,7]. Many original contributions described here

have appeared in [8–12].

1.1 Motivation

Re-sonification is employed in a variety of applications where sounds need to be

meaningfully modified or used. For example, hearing aids benefit from noise suppression
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and processing to enhance speech perceptibility [13]. In musical applications, film cre-

ation, and virtual interactions, re-sonification of sounds allows for the creation of both

realistic and fantastic sounds [14]. For soundscape creation, sounds must be created or

used to meaningfully represent the activity of an environment [15]. To accomplish re-

sonification in such varying applications, tools must be on-hand to analyze, understand,

model, recreate, reuse, or alter sounds in desired fashions.

1.2 Overview of Re-Sonification of Environments

At the scale of environments, we consider re-sonification as a means of using ex-

isting sound recordings to create soundscapes (i.e., sonic textures made of sounds individ-

ually classifiable in some sense as those of objects and events) of virtual environments to

give a sense of place. For example, to re-sonify the sound of a busy intersection, we wish

to play a mix of sounds recorded there, as well as any other relevant sounds. Using the

sounds from other intersections, such as those of cars and audible crosswalks, might help

to enrich the soundscape, but choosing appropriate sounds and how to use them is not a

trivial task.

Much work in the re-sonification of environments focuses largely on how to

design soundscapes. Typically relying on the sequencing of shorter source recordings,

soundscape design requires informed selection of component sounds to provide mean-

ingful sonic immersion. Many approaches rely on careful design via a “composer” [16]

relying on his/her prior knowledge or that gained through means such as interviews

[17]. We seek ways, however, to automatically design soundscapes for environmental

re-sonification.

This work therefore presents a method for the automated design and imple-

mentation of interactive soundscapes for exploring activity within geographic regions.

This method, introduced in [12], relies on the use of geo-tagged sound recordings us-
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ing the ontological framework of [18], where sounds are related by acoustic features and

community-provided semantic tags. By automating soundscape design through the use of

geographic, acoustic, semantic, and social information, a scalable process for re-sonifying

geographic activity is made possible.

1.3 Overview of Re-Sonification of Objects and Events

At the scale of objects and events, we consider re-sonifying “individual sounds”

of the interactive events involving sounding objects. For example, from the recording

of a sheet of metal being struck by a screwdriver, we wish to model the metal sheet and

the striking of it by the screwdriver. The representation of the exciting action of the

screwdriver could be used to virtually strike other objects or a virtual version of the

metal sheet. Modeling the metal sheet allows one to change various properties, changing

resulting sounds and allowing for alteration of perceived physical characteristics, such as

size and material.

Previous work in the re-sonification of objects and events is largely based on spec-

tral [19] and physical [2] models. Spectral models decompose sounds into distinct fre-

quency components, usually varying in time. As a coarse approximation of how humans

hear sounds, they are well-suited for re-sonification, with many approaches to spectral

analysis established. Spectral models, however, can provide difficulties in providing re-

alistic alterations of interactive events [6]. Alternatively, physical models simulate the

vibration of sounding objects to varying degrees of accuracy. Physical models can pro-

vide realistic simulations of objects and events, but they are generally difficult to design

and control. Additionally, some physical models have a very high complexity in imple-

mentation [2].

Working toward broad re-sonification of objects and events, we examine and

further develop banded waveguide models, a hybrid approach of physical models and
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spectral models [6], well-suited for modeling resonant sounding objects. Use of banded

waveguides for re-sonification [20, 21]may rely on existing modal analysis methods [22]

to construct models, possibly with some prior knowledge about objects [6]. However,

current implementations do not produce results that strongly correspond with compara-

ble modal models [3], particularly with regards to decay rate. Further, as compared to

conventional physical modeling methods, banded waveguides may not preserve the tran-

sient nature of many sounds [8]. New topologies [8, 9] are therefore presented here for

implementing banded waveguides, and improvements are shown in their correspondence

with existing, comparable modal and digital waveguide models.

Strictly defining events in a general sense is tenuous [23], but as sound is a con-

cern here, we are interested in events through which sound is manifest. That is, a transfer

of energy that creates sound is herein considered an event. With re-sonification as a

goal, useful and meaningful representations of events are considered, barring excessive

pedantry. To improve the re-sonification of events (specifically, interactions with mod-

eled objects), this work presents the introduction of a duration constraint in estimat-

ing percussive sound excitations [10, 11]. The constraint explicitly incorporates prior

knowledge about the time-limited nature of percussive interactions in the estimation

procedure. We demonstrate improvements using this constrained estimation procedure

for re-sonification, as compared to unconstrained methods, especially in the presence of

noise.

1.4 Nomenclature, Notation, and Notes

This work includes both esoteric (and possibly new) terminology and non-

standard use of existing terms. This brief section serves to introduce and clarify such

terminology, in addition to providing clarification of notation and other aspects of this

work. The writing of this document has been such that the reader is assumed to have
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a basic familiarity with digital signal processing, differential equations, and Newtonian

mechanics.

The term sonification commonly refers to creating sound that represents informa-

tion in some way. Defined by [24], sonification is “the technique of rendering sound in

response to data and interaction”; similar definitions are offered by others [14,25]. As this

work considers the creation of sounds ranging from that of struck resonant objects to ca-

cophonous soundscapes, “sonification” will be used as a catch-all term for the production

of digital sounds that convey information about objects, events, or environments. Fur-

ther, with sound recordings as the source of parameters in the various synthesis methods

described, the term “re-sonification” sees significant use. Other work [26–29] employs

the term, “resynthesis,” but this is generally used with regards to isolated sounds.

Though emphasizing digital signal processing methods for sound synthesis, this

work makes use of many terms from other fields such as acoustic ecology, cognitive psy-

chology, and philosophy. With the synthesis of sounds as the objective, usage of such

expressions is strongly tied to the context. For example, if we were to consider a record-

ing of a percussionist jumping up and down, then striking a bar with a mallet, the event

of interest may vary. If physically-based models are being used to recreate or modify the

sound of the struck bar, then the imparting of energy from the mallet to the bar is con-

sidered the event. When re-sonifying environments via soundscapes, the various audible

aspects of the percussionist’s performance, such as his/her jumping, are all integral to the

event of the bar being played. The philosophical scrutiny of what an event is [23], as

with other terms and phrases, should not be critical in reading this work.

In examining the spectra of signals and systems, one may refer to resonant fre-

quencies and modal frequencies. Though these are related, they are generally not equiv-

alent [30]. Unless noted elsewhere, a resonance refers to a spectral peak in a DTFT that
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occurs at a resonant frequency. Modal frequencies describe pole angles in digital models,

or equivalent modes of vibration as described in [31]. Resonance and poles in digital

models are addressed in detail in Appendix A.

For any object or signal that exhibits multiple resonant or modal frequencies,

these peaks or poles will be referred to as partials. The lowest in frequency (excepting

zero/DC frequency) may be referred to as the fundamental, occasionally dubiously so

when sounds are not periodic or pitched [32]. When higher frequency components are

harmonically related to the fundamental (i.e., they fall at integer multiples of the funda-

mental frequency), they may be called harmonics. When higher frequency partials are

not harmonically related, they may be referred to as overtones.

In referring to frequency, one commonly refers to either radians per second, cycles

per second (Hz), or radians per sample. In describing analog systems and real-world

sounds, this work primarily refers to frequency measured in Hz, often denoted by f or

some variation thereof. When referring to digital systems and models, unless otherwise

stated, reference is made to digital frequency, denoted by variations of ω, measured in

radians per sample.

Many models described in this work make use of digital delay and other elements.

Commonly illustrated via block diagrams, many models are described generally, without

regard for how they are realized. For example, many models may have elements labeled

“delay,” which may be realized by typical integer delay, fractional delay filters, or a com-

bination of the two. Where important, details are given. Additionally, the term “imple-

mentation,” is used often to refer to specific model designs, methodology, or topology, as

opposed to, for example, details of how digital transfer functions are realized in software.

Such terminology is abundant in discussion of banded waveguide models.
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The physical and physically-inspired models herein are frequently configured as

single-input single-output digital filters. Simulating many types of interactions may re-

quire more complex, distributed input to models. However, some interactions may be

simulated as “injected” input at a point by changes of wave variables or simplifying as-

sumptions. Often, the configuration of inputs and outputs for the models here are such

for simplicity in simulation and analysis.

1.5 Contributions

Toward re-sonification of events, we present a method of automatically creating

soundscapes to represent the activity of chosen geographic areas, using a database of

sounds. Relying on acoustic, semantic, and social information about sounds, this work

describes how to design the parameters of a graph-based method of soundscape synthesis

such that sounds from or relevant to a selected area are played.

Toward re-sonification of objects, this work proposes and derives alternative

topologies for banded waveguide models. When designed correctly, some BWG models

proposed here will behave identically to comparable digital waveguide or modal mod-

els, subject to linear point-interactions. Subjected to nonlinear bowing interactions, the

topologies proposed here demonstrate improved attack characteristics as compared to

previous BWG model topologies, with respect to digital waveguide simulations. Numer-

ous implementation details of BWG models are also presented and discussed.

Toward re-sonification of events, a constrained method of input estimation for es-

timating percussive excitations is proposed. This estimation process assumes the input to

a known linear system lies on a signal subspace, and that noisy outputs of this system are

observed. Where sounds are known to be percussive (i.e., subjected to an excitation lim-

ited in duration), the input estimation method described here may be applied to explicitly

consider the limited duration of their excitations. Using this constraint in estimating ex-
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citations shows improvements for resynthesis, as compared to unconstrained methods.

Results of applying incorrect constraints are presented, as well as methods for recursively

calculating optimal input estimates with fixed complexity.

1.6 Outline

The remainder of this report is organized as follows. Chapter 2 presents a review

of various methods of representing and understanding sound, with a focus on the per-

ception and production of sounds. The re-sonification of environments is discussed in

Chapter 3. Models for the re-sonification of objects are discussed in Chapter 4. Chapter

5 presents methods for modeling of events as interactions with objects. Conclusions are

given and future points of research are suggested in Chapter 6.

Additional information is presented in a series of appendices. Appendix A dis-

cusses the behavior of poles and resonance in analog and digital propagation models, an

important detail in designing and comparing models. The use and design of fractional

delay filters in narrowband contexts, such as in banded waveguide models, is examined

in Appendix B. Results from simulations of BWG models, described in Chapter 4, are

presented in Appendix C, placed as such for ease of reading.
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Chapter 2

PRODUCTION, PERCEPTION, AND REPRESENTATIONS OF SOUND

Sound refers to acoustic vibrations; specifically, the term refers to those audible to hu-

mans. Generally, this includes vibrations within the frequency range of approximately

20 Hz to 20 kHz. Further, sound is usually heard by humans after propagation through

the air. (With audition as an end goal of this work, philosophical questions such as that

of the tree in the woods are irrelevant.) The origin of sound lies in the motion of matter,

subject to the laws of physics. This motion may occur in anything from a bowed violin

string to an electromagnetically-driven speaker. This work is concerned with understand-

ing such production of sound and its perception by humans to work toward ecologically

valid re-sonification.

In order for sounds to be stored, reproduced, or altered, they must be represented

in some form. Ideally, sonic representations will have meaningful and understandable

forms. By “meaningful,” it is meant that parameters of the representation explicitly de-

fine features related to the production or perception of sounds. Sound signals may be

described by virtually any arbitrarily chosen description; representations that consider

perceptual or physical properties, however, afford perceptually and physically meaning-

ful transformations. Of primary interest in this work are digital representations of sound,

motivated by the abilities and ubiquity of digital processing systems. The taxonomy and

classification of models and representations given in this chapter are not exhaustive or

unique. Rather, the given classifications are chosen based on the objectives of this work,

with an emphasis on perceptually-motivated and physically-based sound models.

In this chapter, perceptual aspects of sound are first discussed, without strict con-

sideration of computation. With re-sonification obviously intended for human use, how

sounds sound is an important metric. Next, the mechanisms behind sound production
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are introduced. Computational models for analysis, transformation, and synthesis are

then discussed. In this work, model types are classified as spectral, physical, hybrid (i.e.,

a hybrid of spectral and physical), or other. Spectral models encompass sinusoidal rep-

resentations of sound, with many extensions, providing a representation related to the

perception of sound. Physical models refer to simulations of the physical phenomena

that produce sound and approximations thereof. Hybrid spectral-physical models gen-

erally consider the physical production of sound separately for the different resonant or

modal frequencies of a sound or object. Other models and representations of sound are

mostly omitted for brevity.

For further information about various representations of sound, beyond the

scope of this work, detailed exposition of models for sound analysis and synthesis may

be found in [2, 14, 19, 33–36] and elsewhere. Evaluation and comparison of various syn-

thesis and modeling methods may be found in [37]. Further details of banded waveguide

models, a focus of this work, may be found in Chapter 4.

2.1 Human Perception of Sound

While a time-series representation of varying air pressure at one’s ears is effec-

tively sufficient to reproduce sounds without loss of information (neglecting any effect

of the other senses or body parts that may be affected), such is far removed from how one

might describe such signals. In audition, sounds are subject to physiological perception

and cognition. That is, sound waves stimulate organs of the ear which act as transducers,

producing neurological signals that are in some way observed by the brain. This process

is not wholly understood, but centuries of study have provided useful insights, including

knowledge that has been applied to re-sonification [21, 38–42]. This section provides a

brief overview of certain aspects of sound perception, as currently understood.
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2.1.1 Hearing: Anatomy, Physiology, and Psychoacoustics

To understand audition in humans it is perhaps best to first consider the physical

processes behind it. Sound arriving at the ear first travels down the auditory canal, a

small tube connecting the ear’s opening to the eardrum, also called the tympanic mem-

brane. The eardrum is mechanically coupled to a series of three bones, the malleus, incus,

and stapes, also referred to as the hammer, anvil, and stirrup, respectively. These bones

transfer vibration to the cochlea, a spiraled tube containing two fluid-filled cavities sep-

arated by a structure called the basilar membrane. Vibrations from sound travel along

the basilar membrane, exciting hair cells that are sensitive to varying frequencies. The

motion of these hair cells then produces nerve pulses that are sent to the brain. (This

description and further details may be found in [43].)

As the hair cells within the cochlea are responsive to varying frequency bands,

the ear is often loosely interpreted as performing time-frequency analysis of signals [19].

This is a significant motivation behind spectral modeling and the techniques used in many

audio codecs [38]. The ear does not function as a “perfect” spectral analyzer, however.

Due to the physical response of the ear’s organs and the brain’s interpretation of auditory

nerve signals, perception is dependent on a sound’s frequency, amplitude, and transient

behavior. For example, to an “average” person, sinusoidal signals at 100 Hz and 1000 kHz

at sound pressure levels of 30 dB and 40 dB, respectively, will be perceived to be of ap-

proximately equal loudness [44]. The perceived loudness of signals differs among people,

and is highly dependent on frequencies present in a signal; Fletcher-Munson equal loud-

ness contours present a popular example of quantified loudness perception [44]. Further,

slight changes in the frequency or amplitude of a signal may be imperceptible (if they fall

beneath the threshold of the just noticeable difference) [32].
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Masking is another significant phenomenon in audition. Masking is the process

in which one sound is not audible due to the presence of another [38]. Generally, this

refers to signals within a certain temporal or spectral range of each other. Louder signals

generally mask softer signals, and lower frequency signals may mask higher frequency

signals when within a critical bandwidth of one another [38, 43]. These signals need

not be simultaneous, with masking signals having an effect briefly before their onset and

for some time after sounding [38]. Masking phenomena has been successfully exploited

in lossy audio codecs, where masked components of a signal are removed, providing

significant data reduction without necessarily causing significant loss of intelligibility or

perceived quality [38, 41].

The above phenomena and others in audition are commonly used to emphasize

the “important” parts of sounds in analysis and synthesis. With a focus on allowing

robust transformation, however, such phenomena is not explicitly considered in analysis

procedures herein, as perceptually insignificant components may be transformed into

significance. Additionally, sufficiently accurate reproduction or simulation of sounds

may achieve perceptual fidelity. Thus, the intention of the preceding information is to

emphasize the general significance of sounds providing physiological stimulation in time

and frequency. Note, though, that specific applications may warrant perceptually-based

design [38].

2.1.2 Listening: Acoustic Ecology and Cognition

The above phenomena have been described primarily in terms of distinct sinu-

soidal or narrow-band components. While this provides insight and has proven useful in

coding and modeling, most people do not describe sounds by listing frequencies, ampli-

tudes, and bandwidths. Rather, sounds are typically described by the objects from which

they originate, the interactions that create them, the places where they can be heard, or
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other features. This describes grouping or stream segregation, where people perceptually

group “the parts of the neural spectrogram that go together,” [45].

To examine the ecological perception of sound, we consider the concept of sound-

scapes. Pauline Oliveros defines a soundscape as “all of the waveforms faithfully transmit-

ted to our audio cortex by the ear and its mechanisms,” [46]. To further specify the types

of sounds within soundscapes, Schafer classifies sounds as either keynote sounds, signals,

or soundmarks [47]. Keynote sounds are those sounds generally perceived as background

sounds, a role informed, like that of the other classifications, by a sound’s relevance to

an individual. (Indeed, the perception of and reaction to many things are dependent on

relevance to individuals – consider, for example, the role of a discarded Coke bottle in

The Gods Must be Crazy [48] or the utterances of Prisencolinensinainciusol [49].) Signals

and soundmarks are those foreground sounds that are consciously observed, with sound-

marks identified as sounds unique or especially important to a community, analogous to

local landmarks. With this taxonomy in mind, we then consider how foreground sounds

are perceived.

Bregman states that sounds are “created when things of various types happen"

[45]. Few, if any, seem to disagree with this point, but the perceptual classification of

individual sounds is contentious, both in terms of what constitutes an individual sound

and how it is perceived. Some postulate that in human audition, similar to vision, com-

ponents of sounds heard are organized (based on shared characteristics or prior knowl-

edge), and individual auditory objects (that represent the source of the sound) are per-

ceived [42, 50]. That is, when one hears a sound, the object from which it originated

(or a similar or familiar object) may be perceived in some sense, along with its various

physical properties, such as size and material. Alternatively, some consider sounds per-

ceptually observed as the events (interactions between physical matter) that create sonic
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vibrations [51]. Yet others, however, refer to the perception of both objects and events

in sonic environments [45]. Indeed, this is even recognized in the object-centric work

of [50].

When faced with sounds that are purely synthetic, unfamiliar in some way, or

even generated from familiar object-event interactions, one may further perceive and

describe various sonic qualities by semantic descriptions or even imitation, vocal or oth-

erwise. Perceived qualities include spectral, temporal, physical, and timbral percepts,

among others [34]. Thus, sounds are often described, for example, as “bright”, “short”,

“metallic”, or “brassy.” Though these descriptions may not have a one-to-one correspon-

dence to any specific object or event model, such qualities arise from physical and spectral

properties of objects or from interactions.

In this work, the dual perspective of perceived objects and events is considered,

as full knowledge of physical objects and the events (or interactions) between them is

sufficient to describe and, with accurate models, reproduce their sounds.

2.2 Physical Production of Sound

This section describes the creation of sounds through the vibrations of objects,

which may be described by elementary Newtonian mechanics. Given the size and speed

of audible objects, both built and encountered, consideration of quantum or relativistic

effects is not necessary [2] in this work.

As with other fields of study, the systems described here are simplified models,

ignoring many nonlinearities, certain sources of loss, and other difficult-to-quantify phe-

nomenon. Thus, while the physical cause of sound production is discussed in this section,

one may alternatively refer to the systems described here as analog physical models, in

contrast to digital physical models.
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2.2.1 Preliminaries and Assumptions

Much of the focus in analyzing and modeling vibrating systems is on distributed

systems, as opposed to lumped systems. A distributed system is one in which the wave-

lengths of disturbances are small, such that the system’s behavior is space-dependent.

Lumped systems consider disturbances of longer wavelengths or at a point. A linear elec-

tric circuit operated at DC is a classical example of an electrical lumped system, whereas

a coaxial waveguide may be considered a distributed system for RF signals.

Here, many objects are referred to as one-dimensional or multi-dimensional.

On atomic scales and above (smaller scales are neglected here) matter occupies three-

dimensional space, but many systems are effectively of smaller dimension at the scales

considered. In the case of the ideal string of Section 2.2.3, for example, it is assumed

that the string has a very small diameter; specifically, its diameter is considered small

in comparison to all wavelengths of interest (i.e., those within the audible or simulated

range). Similarly, a metal plate of a relatively small, finite thickness may be referred to as

two-dimensional. Such assumptions are applied at times for reasons of simplicity. Thus,

references to the dimension of objects should not necessarily be interpreted literally (i.e.,

in a literal literal sense).

In the following discussions of sound production, the focus is on describing the

vibration of objects. The propagation through air and reverberation of sounds are pri-

marily ignored. Such phenomena play an obvious role in how an object’s vibrations are

acoustically observed, but for simplicity, they will not be considered in much of this

work. Also, the focus is on solid objects, as opposed to acoustic air tubes, cavities, etc.,

in which sound may be produced in a similar manner by propagating waves, or via non-

linear fluid dynamics [52].
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Figure 2.1: An example traveling wave, without loss. Note that the shape is maintained,
but travels to the right as time progresses.

2.2.2 Waves

Waves play a critical role in describing the vibrations of objects. Of particular

interest are traveling waves. These are disturbances, or changes, that propagate in some

medium. It is important to note that this does not refer to movement of matter in the

direction of propagation – a tsunami is not entirely composed of water molecules from

the wave’s origin. Rather, a wave is a disturbance moving in space and time; this distur-

bance then causes motion, compression, torsion, a change in electric field, or some other

change [53]. Figure 2.1 shows an example wave, traveling without change in the right

direction.

In quantifying waves, one may consider different wave variables. For example,

in a water wave, one may measure the height displacement of water along the wave, or

alternatively, the velocity at which the water rises and falls. Such are not the only wave

variables that may be considered in water or other media. Regardless of choice of wave
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variables in analyzing or simulating vibrating systems, the behavior of waves is generally

similar. One may convert between different wave variables, such as displacement and

velocity, through differentiation and integration; in such cases, simulations of or choice

of variable for the system of interest should be altered to consider propagation of appro-

priate wave types [2].

Beyond choice of wave variables, wave phenomena vary in the types of local in-

teractions they elicit. Transverse waves cause displacement perpendicular to the direction

of the waves’ travel. Waves may also be longitudinal, causing displacements in the direc-

tion of travel, resulting in compression and rarefaction of the medium. Further, twisting

motion can be caused by torsional waves. Though these wave types may all occur in the

same medium, they need not have the same properties, such as speed of travel. Thorough

discussion of differing wave types may be found in [54].

Waves are generally subject to various alterations as they travel, decreasing in mag-

nitude and changing shape and direction. Such alterations account for the lack of purely

periodic sounds in the vibration of real-world objects. The causes of these processes are

discussed in the following sections. For more about general wave phenomena, see [55].

2.2.3 The Ideal String

The lossless, ideal, and elastic vibrating string is perhaps the simplest example of

a distributed system from which to understand essential properties of physical models.

For such a string, under tension, K , with mass density, ε, its transverse displacement, y,

at time, t , and position along the string, x, satisfies the one-dimensional wave equation,

K
∂ 2y

∂ x2
= ε
∂ 2y

∂ t 2
, (2.1)

assuming the displacement is relatively small. (Here, we are considering transverse dis-

placement in a plane, neglecting the other dimension of transverse displacement, as well

as torsional rotation and longitudinal compression of the string.) Eq. (2.1) describes how,
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Figure 2.2: An example section of a displaced string under tension K , with mass density
ε.

as a result of the string being under tension, the acceleration of the string at each point

is proportional to its curvature at that point. An example section of string is shown in

Figure 2.2.

The solution of (2.1) was shown by d’Alembert to have the form,

y(x, t ) = yr (x − c t )+ yl (x + c t ), (2.2)

where c =
p

K/ε [56]. Examination of (2.2) reveals this general solution to be inter-

pretable as the sum of a right-going wave, yr , and a left-going wave, yl . That is, for some

time, t1 > t0, yr (x− c t1) will appear the same as yr (x− c t0), but shifted to the right along

x; the same behavior follows for yl , but to the left. This wave-based interpretation then

reveals c as the propagation velocity of the transverse displacement waves.

The behavior of an ideal string is further defined by its boundary conditions: the

conditions that describe the ends of the string. (We can mathematically realize an infinite

string under tension, but such is obviously not the case in reality.) If a string of length L

is rigidly held in place at its two endpoints (x = 0 and x = L), then we have the boundary
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conditions,

y(0, t ) = 0 (2.3)

y(L, t ) = 0. (2.4)

This implies that

yr (0, t ) =−yl (0, t ) (2.5)

yr (L, t ) =−yl (L, t ), (2.6)

which may be interpreted as the right-going and left-going waves at the ends of the string

inverting and then reflecting, traveling in the opposite direction. Other boundary condi-

tions exist, such as free ends that cause non-inverting reflections [52], but they will not

be considered in this example.

As a result of its boundary conditions, the rigidly-terminated ideal string exhibits

periodic behavior. If the motion of the string at any point (where the motion is due to

some initial displacement) is observed, it will be a periodic function with fundamental

frequency,

f0 =
c

2L
, (2.7)

where c is measured in meters per second and L in meters. This periodic oscillation

results from disturbances traversing the string and arriving at their original position every

1/ f0 seconds. This is a simple case of a closed wave train, further discussed in Section

2.2.8.

An alternative expression for the solution of the wave equation, where there are

rigid terminations, is

y(x, t ) =
∞
∑

k=1

Ak sin(βk x)cos(ωk t +φk), (2.8)
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Figure 2.3: The first five mode shapes of a rigidly-terminated ideal string.

where

βk =
kπ

L
, (2.9)

ωk =
ckπ

L
, (2.10)

and Ak and φk are constants, dependent on initial conditions of the string [57, 58]. This

solution provides a modal view of a lossless, rigidly terminated ideal string, discussed

further in the next section.

Another simple acoustical model for sound production is the acoustic tube. While

tubes will not be discussed in depth, it should be noted their behavior is in many ways

similar to that of a string, with air pressure and other fluid variables exhibiting wave

behavior. See [2] for further discussion about strings and the derivation of traveling

waves in tubes.

2.2.4 Modal Decomposition

Modal analysis decomposes the vibrations of objects into several components,

called modes, that vibrate at some frequency and, in lossy systems, decay at some rate

[59]. Each mode has associated modal data: frequency, decay, and shape. The frequency

and decay of each mode characterize its damped oscillatory behavior. Mode shapes de-

scribe the extent to which each portion of an object vibrates at each mode. From the

sum of all modes, one may reconstruct structural vibrations. Similarly, the excitation

of modes due to an initial displacement may be found by the extent of the mode shapes
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at the displaced portions of the object [59]. Modal data may be derived from mathe-

matical descriptions of structures, but it is often estimated empirically, proving useful in

analyzing the vibrations of bridges and other structures [34].

In the example of the lossless, rigidly-terminated ideal string, (2.8), the term

sin(βk x) describes the mode shape associated with the modal frequency ωk . The first

five such mode shapes are shown in Figure 2.3. Note that this example has no decay –

or an infinitely long decay – as there are no losses. The constants Ak and φk describe

the amplitude and phase, respectively, of the vibrations of each mode, as determined by

initial conditions.

Modal analysis provides a spectral-based view of vibrations. As such, it is the

basis for many hybrid spectral-physical models [6, 7, 31], providing meaningful spectral

decompositions of vibrating physical objects. These hybrid methods are discussed in

Section 2.5.

2.2.5 Losses

The ideal string described above will, subject to some initial displacement, oscil-

late indefinitely. This is due to the lack of any loss in the system of (2.1). Strings in the

real world, however, do not vibrate forever; various sources of energy loss contribute to

the decay of vibrations. Where losses along the string are uniform and proportional to

velocity, they may be modeled [2, 60] by a modification of (2.1):

K
∂ 2y

∂ x2
= ε
∂ 2y

∂ t 2
+µ
∂ y

∂ t
. (2.11)

Losses of this type result in the exponential (temporal) decay of traveling waves; this may

equivalently be seen as propagating waves undergoing a constant multiplicative loss for

every traversal of some chosen length of string [2]. The first-order term of (2.11) may be

viewed as a simplification of losses attributable to heat dissipation [60]. These losses are
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frequency-independent and only have an extremely minute effect on modal frequencies

(cf. Appendix A).

Other sources of loss in strings, such as the acoustic radiation of energy, are gener-

ally frequency-dependent, resulting in the attenuation of traveling waves being viewable

as a frequency-dependent filtering process [2]. This results in the overtones of a string’s

vibrations decaying at differing rates; generally, higher frequencies are subject to faster

decay. (See Figure 2.4 for an example of wave traveling in a medium with frequency-

dependent loss.) Such phenomena is often modeled by introducing additional terms

to the string’s equation of motion. These additional terms are typically odd-order par-

tial time derivatives of transverse displacement with respect to time [60–62] or possibly

mixed-derivatives [1, 2]. From a physical standpoint, justification of such terms may be

“tenuous,” but they are responsible for “perceptually important variations in damping

rates,” [1]. (See Appendix A for further discussion and details of losses in such systems.)

Losses such as those described above may complicate analysis and modeling of

musical instruments but contribute to their appeal and utility. In [30], Steiglitz notes,

in passing, the departure from purely periodic behavior as a source of interestingness for

musical sounds. Yielding terminations, such as the bridge of a guitar, can further enrich

the instrument’s sound by behaving differently for horizontal and vertical vibrations,

leading to a “chorus effect” [2]. Such losses also play a critical role in acoustic instru-

ments, as energy lost to the air, terminations, and body of an instrument is the source of

the radiated sound.

2.2.6 Dispersion

In the case of the ideal string, it is considered to be flexible and lack any stiffness;

i.e., when not under tension or subject to other forces, it will not change shape. Many

strings, however, exhibit stiffness. Consider the thickest wound strings of an electric
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Time

Figure 2.4: A traveling wave undergoing frequency-dependent losses. Note that the high-
frequency components with shorter wave lengths are attenuated as time progresses and
the wave shape is smoothed. (The wave magnitudes are scaled for comparison.)

bass guitar, for example. Stiffness creates a restoring force in response to deformation.

In some objects, such as stiff bars, stiffness provides the only restoring force responsible

for traveling waves [57]. Stiffness in strings and other objects results in dispersion, the

changing of traveling wave shapes as the various frequency components separate.

Unlike tension-borne restoring forces, restoration due to stiffness causes

frequency-dependent behavior. Specifically, higher frequencies travel with a faster prop-

agation speed. One may intuit this phenomenon by considering that high frequency

waveforms have greater curvature; this increased bending at higher frequencies then re-

sults in an increased restoring force. Thus, the propagation speed in a stiff system in-

creases with frequency. As such, propagating waves in a stiff system disperse, with higher

frequency components traveling faster and “outrunning” lower frequency components.

This phenomenon is shown in Figure 2.5.
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Time

Figure 2.5: A traveling wave displaying dispersion, with high frequency components
traveling faster than low frequency components. (Wave magnitudes are scaled for com-
parison.)

As shown in [57], stiffness introduces higher-order terms in equations of motion.

For example, the equation of motion of a bar is

∂ 4y

∂ x4
=−α

∂ 2y

∂ t 2
, (2.12)

where α is a constant, dependent on the physical properties of the bar [57]. Similarly,

stiff strings may be modeled by adding a fourth-order term to (2.1) to account for the

restoring force due to stiffness [2]:

K
∂ 2y

∂ x2
− η
∂ 4y

∂ x4
= ε
∂ 2y

∂ t 2
. (2.13)

Here, η is the product of the string’s Young’s modulus (stress over strain) and area mo-

ment of inertia [2]. More accurate models may incorporate further terms [2].

From a modal perspective, stiffness causes inharmonicity. With propagation

speed increasing with frequency, the resonant frequencies in a system are “stretched.”
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Figure 2.6: The shape of a plucked ideal string with no stiffness before release, assuming
an infinitesimally small plectrum.

The spectra of a stiff string, for example, is then inharmonic, with the various overtones

increased in frequency. In slightly stiff media, such as guitar strings, the effect may be

slight; however, very stiff objects, such as bars, exhibit strong inharmonicity.

Note that stiffness in bars and other systems may also give rise to non-propagating

“near-field” oscillations, dependent on boundary conditions and excitation [54]. In prop-

agation models, such as BWGs, these oscillations can only be modeled as propagating

waves [7]. With a focus on propagation models, correct modeling of near-field terms is

beyond the scope of this work.

2.2.7 Interactions

Systems can only produce vibrations as a result of the presence of energy. This

can include potential energy such as that present in the initial displacement of a string

under tension, or the kinetic energy of a vibrating string. Various interactions, such as

plucking, bowing, or hammering, may excite sounding objects, imparting energy into

them. There is generally an audible difference in the sound produced by different forms

of excitation, and interactions with objects must therefore be understood to properly

describe and model sound generation.

Understanding interactions requires considering the physical processes that im-

part energy into a sounding object. For the plucking of a string, this can be as simple
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as considering the string as having an initial displacement, approximately in the shape of

two lines from the boundaries to the plectra [2]. This is illustrated in Figure 2.6. Other

interactions, such as hammering a string may be seen as introducing a pulse of velocity

into the string (at the area of hammering) [2]. For such simple interactions, especially

given their short duration, it generally suffices to consider them as directly altering the

object’s state. More complex, sustained interactions, however, may couple interacting

objects more strongly.

Bowing and other friction-based interactions involve highly nonlinear processes

with feedback between objects and exciters, complicating their analysis and modeling.

Such interactions, however, have driven much of the work in understanding and model-

ing musical instruments [3,63–68]. In the particular case of bowing a string, the friction

between the string and bow varies in time, dependent on the state of the string and bow-

ing technique; bowed strings are typically described as being in a state of “sticking” to or

“slipping” against the bow. Analysis of this behavior [63, 64] has been applied in numer-

ous models of bowed strings [2, 69].

Analyzing interaction with sounding objects, much may be understood from a

frequency perspective. Linear systems can only output signals in frequency ranges for

which energy is input in the system (or initially present). With many instruments largely

characterized by their resonant frequencies and considered effectively linear, they may

only produce sounds at frequencies present in their excitations. Thus, it is not surpris-

ing that many methods of interaction are wide-band. (Consider the impulsive nature of

hammering, for example.) Spectral content, though, may be further influenced by other

aspects of interactions, such as position (cf. Section 2.2.4).
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2.2.8 Closed Wave Trains

A closed wave train is a path of propagation in which a wave of some frequency

returns to its point of origin with the same phase and direction of propagation [7, 54,

70]. This “wave train closure principle” [54] describes the physical source of modes (and

relatedly, resonance) in objects, providing a link between spectral theory and physical

models in terms of propagating waves [7, 70]. This is the motivation for sound synthesis

by banded waveguide models.

The simplest example of a closed wave train is the rigidly terminated ideal string

(without dispersion or loss). In the ideal string of Section 2.2.3, after some excitation

or initial displacement, waves propagate back and forth along the string, arriving at an

identical configuration every 2L/c seconds. Thus, a mode occurs at the fundamental

frequency of the string (2.7), the inverse of the time for waves to make a round-trip

traversal of the string. Similarly, modes emerge at the harmonic frequencies of the string’s

fundamental (2.7), with an integer number of periods occurring every 2L/c seconds.

Few, if any, real-world objects exhibit truly lossless or dispersion-free propaga-

tion; as a result, their sounds are quasi-harmonic or pseudo-periodic. Still, objects often

exhibit strong resonant peaks in the spectra of their sounds, many the result of propagat-

ing waveforms that satisfy the “wave train closure principle.” This principle holds true

in multi-dimensional objects. Somewhat analogous to ray-tracing in graphics [71], wave

train closure arises in objects of arbitrary dimension and shape wherever a wavefront may

arrive at its origin, with its original phase, after propagating throughout an object, subject

to losses, reflections, and/or dispersion. (Graphic ray-tracing, however, does not regard

phase.) This motivates propagation modeling for efficiently synthesizing the sounds of

various multi-dimensional and stiff instruments [72]. An example path corresponding
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Figure 2.7: An example path on a square plate corresponding to closed wave trains for
those frequencies for which waves meet themselves in phase.

to a closed wave train (for the appropriate frequencies that meet themselves in phase) for

a square plate is shown in Figure 2.7.

2.3 Spectral Models

Spectral modeling broadly refers to representing signals by a combination of si-

nusoids with possibly time-varying amplitudes, phases, and frequencies. As the human

cochlea responds over time to energy within different frequency bands, spectral models

may be considered as coarsely modeling sounds by their physiological perception. As

discussed in Section 2.1, the process of sonic perception is more complicated and not

wholly understood, but spectral decomposition provides a means of quantifying percep-

tually important components of sounds. This viewpoint has its roots in the work of

Helmholtz [73] and is perhaps best justified by the wealth of synthesis methods employ-

ing it [19].

Beyond the physiological motivation for spectral models of sound, practical rea-

sons abound for their use. Fast Fourier Transform (FFT) algorithms [74] allow relatively

quick synthesis and analysis in the frequency domain [75]. (Temporally-based synthesis
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Figure 2.8: The time-domain waveform of a sound with transient, sinusoidal, and noisy
components.

is also feasible [76].) With a time-dependent spectral representation, time and frequency

shifting and scaling is relatively straightforward [77]. For these reasons and the fact that

spectral analysis is widely studied and applied in other fields, spectral modeling of sound

has proven both meaningful and useful.

Most spectral modeling methods consider sound in successive frames, i.e., short

portions of a signal. These frames are often windowed, being multiplied by a function

in time, to smooth discontinuities in the time domain or provide some compromise be-

tween spectral and temporal resolution. Such frame-by-frame analysis and synthesis is

also found in other sound modeling methods such as granular synthesis [34,78], but here

we consider it as a tool for time-frequency analysis, often in the form of a short-time

Fourier transform (STFT).

A brief review of spectral modeling methods follows, focusing on systems for

analysis, transformation, and synthesis. To illustrate the methods detailed here, we con-

sider an example sound, the time-domain waveform and spectrogram of which are shown

in Figures 2.8 and 2.9, respectively. Note that this example sound shows a short, transient

burst, followed by frequency-shifting sinusoidal components, all in the presence of noise.

For a more detailed history and survey of methods, see [19] and [79].
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Figure 2.9: The spectrogram of a sound with transient, sinusoidal, and noisy compo-
nents. Black represents 0 dB and white represents -60 dB and below.

2.3.1 Spectral Modeling Methods

Following the early work of Helmholtz, many spectral-based models have been

introduced for analyzing, transforming, and synthesizing sounds [19]. While many early

methods use analog electronics, operating in the continuous time domain, much has since

been achieved through digital means. This section reviews some of the early digital meth-

ods for spectral modeling, typically relying on time-frequency analysis.

Phase vocoders, one of the earliest widely adopted spectral modeling methods,

take many forms [80], generally referring to FFT or filter-based analyzers coupled with

similarly based synthesizers. Phase vocoders are well-suited for identity resynthesis and

time and frequency-based transformations [80–82], but they often do not provide a

meaningful representation of sound beyond a simple STFT. Illustrated by many appli-

cations [81, 82], phase vocoders can be successfully applied to a wide range of sounds,
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but they were originally intended and are perhaps best suited for quasi-harmonic sounds

lacking vibrato [83].

Sinusoidal models provide a more meaningful parametric representation of sound

signals, as compared to phase vocoders, by detecting sinusoidal signal components and es-

timating their time-varying properties (i.e., amplitude and phase/frequency) [75,84,85].

Such methods and their extensions are generally referred to as Spectral Modeling Synthe-

sis (SMS), among other names. As with phase vocoders, sinusoidal models easily afford

time and frequency modifications of sounds [75,79,83]. Besides simple shifting and scal-

ing in time and frequency, though, independent manipulation of individual or groups

of sinusoidal components is achievable in SMS [83]. This relatively fine level of con-

trol enables both arbitrary and informed (e.g., by physical parameters) transformation of

sounds. By informed transformation, we mean cases where equally scaling or moving si-

nusoidal components in frequency or time may not achieve a desired effect; consider, for

example, pitch shifting a sung vowel, where the amplitudes of the sinusoidal components

should be altered so as to maintain formant shapes. Like any model for representing

data, SMS may benefit from any prior knowledge. Examples of sinusoidal components,

extracted from the example signal displayed in Figures 2.8 and 2.9, are shown in Figures

2.10 and 2.11.

SMS analysis methods often rely on “peak-picking” in the frequency domain [75],

finding maxima in the magnitude spectra of successive frames. Peaks near one another

in frequency in successive frames are usually considered as continuations of one another,

resulting in “births” and “deaths” of sinusoidal “tracks” [79, 83]. Determining the evolu-

tion of the frequency and amplitude of sinusoidal components of a signal is a very active

area of research in audio processing. Changes in frequency and amplitude may be found

by estimating modulation parameters [86, 87] or by using probabilistic models [88].
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Figure 2.10: The time-domain waveform of the sinusoidal components.
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Figure 2.11: The spectrogram of the sinusoidal components. Black represents 0 dB and
white represents -60 dB and below.

Generally, spectral peaks are easily identified for narrow-band, sustained sinu-

soidal components, as they are usually prominent in magnitude spectra [75]. Any wide-

band components of sound, however, such as “noise” or percussive transient sounds, are

difficult to identify and synthesize by simple sinusoidal representations [79, 83]. This

motivates extensions of SMS, detailed in the following sections.
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2.3.2 Noise Modeling

In [79] and [83], it was proposed that sinusoidal modeling be supplemented by

noise modeling. Noise modeling separates a sound into deterministic (sinusoidal) and

stochastic (noise) components. Following a sinusoidal modeling stage, noise modeling

attempts to compactly describe the residual of a signal when the sinusoids are removed

[79, 83]. As the noise is considered stochastic in nature, it may be represented by its

magnitude spectra, and perceptually re-synthesized by filtering white noise or generating

random discrete Fourier transform (DFT) realizations [40, 79, 83, 89]. An example of

a modeled noisy component of a sound, extracted from the example signal displayed in

Figures 2.8 and 2.9, is shown in Figures 2.12 and 2.13.

Separate representations for the sinusoidal and noisy portions of a sound enable

similar or independent transformations for resynthesis. Meaningful transformation may

rely on understanding the nature of the signal components [83]. In [90], it is suggested

that noise components of sound not be altered in pitch-shifting operations, due to their

atonal nature; however, with no prior knowledge of the noisy portion’s mechanism of

generation, such transformations may yield undesirable sounds. Additionally, with just

a sines and noise model, any quickly decaying components (sinusoidal or otherwise) that

are not stochastic in nature may be inappropriately modeled as noise, due to their wide-

band spectra.

2.3.3 Transient Modeling

Noted in early work for sines + noise SMS [79], many sounds contain a short-

lived energetic attack, referred to as the transient portion of a signal. The short duration

of transient signals causes a large wide-band distribution of energy in the frequency do-

main; this disqualifies sinusoidal modeling for efficient or meaningful representation of

transients [91]. Modeling of transient signals as noise can lead to “smearing” effects when
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Figure 2.12: The time-domain waveform of the modeled noise component.
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Figure 2.13: The spectrogram of the modeled noisy component. Note that in this ex-
ample, the spectral noise properties do not change over time. Black represents 0 dB and
white represents -60 dB and below.
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time-stretching a signal [92]. Transients may be estimated from residual signals after nor-

mal SMS analysis, but noise will be retained in such representations [92]. Therefore, a

separate and meaningful representation of the transient portions of a signal is needed to

allow robust re-sonification of general sound signals within the SMS framework.

Transient Modeling Synthesis (TMS), introduced in [92], attempts to provide a

parametric representation of transient signals, separate from noisy and sinusoidal compo-

nents. TMS effectively applies SMS with a frequency-domain signal as input, as opposed

to a time-domain signal used with ordinary SMS. That is, a frequency-domain representa-

tion of a signal is obtained, such as a discrete cosine transform (DCT), and SMS is applied

to this representation [40, 90, 92]. This results in peak-picking occurring in a pseudo-

time domain, obtained by taking a Fourier transform of a signal’s DCT. By performing a

DCT on larger frames (on the order of 30 to 60 sinusoidal modeling frames [90]) after the

removal of the sinusoidal components, the transient portions will create slowly-varying

sinusoidal signals in the DCT domain. These DCT signals are then modeled by the nor-

mal SMS procedure [40, 90, 92]. An example transient component, extracted from the

example signal displayed in Figures 2.8 and 2.9, is shown in Figures 2.14, 2.15, and 2.16.

Transient modeling has also been applied in “sines + transient + noise” [39, 89]

and “transient ⋆ sines + noise” [27, 91] schemes . In sines + transient + noise, transient

regions and sines + noise regions are separately modeled; transient regions are repre-

sented by transform coding, quantized by perceptual criteria [39, 89]. The transient ⋆

sines + noise scheme uses a source/filter approach to model transients by the necessary

information to drive oscillators to reproduce them, and this method may benefit from

sources of prior knowledge [91].

Explicit modeling of transients allows more robust transformation of signals, as

compared to sines + noise modeling. When performing time-stretching, the durations of
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Figure 2.14: The time-domain waveform of the transient component.
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Figure 2.15: Detail of the time-domain waveform of the transient component.

transient regions should generally be kept constant (to prevent “smearing”), with their

offsets properly aligned with time-stretched sinusoidal and noisy components [40, 90].

As transients have no distinguishable pitch, they should not be modified when a signal is

frequency-shifted [40, 90]. This approach to transforming transients is largely informed

by the physical origins of transients, as they are often primarily attributable to the exci-

tation of a physical system [91]. This will be further discussed in Section 2.4 .

2.4 Physical and Physically Inspired Models

Physical modeling (PM) encompasses a wealth of methods that simulate the real-

world physical production of sound in some way. In general, sound is produced by the

vibrations of a system subject to some external stimulus. In digital modeling approaches,

this usually motivates a source/filter or exciter/resonator approach, separating the model

of an object and the interactive events with it. Where the state and configuration of an
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Figure 2.16: The spectrogram of the transient component. Black represents 0 dB and
white represents -60 dB and below.

object is known, along with a description of any stimuli, resultant vibrations may be

sufficiently described by classical mechanics. In digitally implementing physical models

where the dynamics of the corresponding real-world objects are known, two chief obsta-

cles arise. First, the dynamics of any object and interactions with it must be digitized.

Second, PM methods should be efficient so as to prevent unnecessary computation and,

ideally, allow real-time sound synthesis. PM is typically further complicated, however,

by the lack of knowledge of the dynamics of various objects.

Many approaches to PM are concerned with modeling either the vibration of

objects or the propagation of waves within them. With the method of sound production

in an object explicitly modeled, PM extends to objects ranging from simple (e.g., guitar

strings) to complex (e.g., cymbals) [2]. Interactions within and between objects may

be modified, allowing simple wave propagation or highly nonlinear behavior. This is a
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key strength of PM, as it allows intimate control and manipulation of virtual sounding

objects and musical instruments.

Compared to other sound models, PM easily allows alteration of simulated inter-

actions with virtual objects. PM has been applied in modeling many different interac-

tions, including bowed strings [3] and hammered piano strings [93]. A further advan-

tage of PM lies in the ability to alter the perceived properties of virtual objects, such as

size, material, and shape [42]. Since PM parameters correspond to physical properties,

their manipulation corresponds to altering physical properties of the modeled object.

Interestingly, such model parameters may be changed so as to simulate unrealizable or

impractical objects, making otherwise infeasible instruments available to musicians and

composers, as buddingly evidenced in David A. Jaffe’s “Silicon Valley Breakdown” [94].

This section describes various PM methods, many of which rely on approxima-

tion, linearization, or other idealizations. Thus, many may be considered as pseudo-

physical, physically inspired, or perhaps models of ideal or digitally convenient systems.

PM is extensively detailed in [2] and the references therein. Methods of controlling and

interacting with these models is also presented; further approaches to PM control and

interaction may be found in [3] and elsewhere.

2.4.1 Early and Miscellaneous Physical Models

Physical models for sound synthesis have been used since before the proliferation

of digital technology [2]. Various digital models have been realized, for synthesizing

voice, musical instruments, object collisions, and other domains. Here, we review some

relevant early work in PM, as well as other methods not focused upon in this work. Note

that many of these models are still in use.

The Kelly-Lochbaum (KL) vocal tract model is considered a candidate for the first

digital physical model for sound synthesis [2]. The KL model simulates traveling waves
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in the vocal tract to synthesize singing. Viewable as a digital waveguide model, it models

the vocal tract as sections of cylindrical tubes. The excitation of KL models may be a

succession of impulses or a simulation of waveforms from the glottis, depending on the

fidelity desired. More information on KL models, extensions, and singing synthesis may

be found in [95, 96].

Finite difference and finite element methods for physical modeling allow approxi-

mate solutions of PDEs to be found by approximating differential equations by difference

equations. This has been implemented in [97,98]. In general, finite element methods can

be computationally expensive, preventing real-time use. Note however, that finite differ-

ence schemes can be equivalently and more efficiently implemented using digital waveg-

uide methods [2,99,100]. Finite difference models may be excited in the same manner as

digital waveguides, discussed in Section 2.4.3.

Alternative approaches to physical modeling by numerically solving PDEs in-

clude the functional transformation method. The functional transformation method rep-

resents a system of PDEs by a transfer function model, using the Laplace transform and

similar transforms for space [101]. Using a bilinear transform or other method of con-

verting continuous systems to discrete systems, the transfer function model may be dis-

cretized [101]. Application of appropriate inverse spatial transformations and an inverse

z -transform then results in a discrete solution of the original system of PDEs [101]. This

method has been used to simulate varying objects including circular membranes [102]

and tubular bells [103].

McIntyre Schumacher Woodhouse (MSW) synthesis, named after its authors, is

one of the early successful methods for modeling bowed strings and wind instruments

[65,66]. MSW synthesis effectively characterizes a linear system by its impulse response.

In the case of a violin, this includes propagation of disturbances across the string and re-

39



Figure 2.17: A digital filter implementation of the Karplus-Strong algorithm. (This struc-
ture is also referred to as a string loop.)

flection at the terminations. The input to the linear system model is determined by some

excitation mechanism; in the case of a bowed string, this is a nonlinear model, relying

on feedback to model dynamics between the bow and string [63,64,66]. MSW synthesis

distinguished itself from many other contemporary approaches for sound synthesis in its

explicit consideration of time-domain simulation [34].

2.4.2 The Karplus-Strong Algorithm

Proposed for producing string or drum-like sounds in [104], concurrently with

extensions [105], the Karplus-Strong (KS) algorithm is a simplified physical model for

sound synthesis. (Depending on the implementation and topology, it may be more ap-

propriate to refer to a KS model as pseudo-physical or physically inspired.) Details vary

across implementations, but the algorithm primarily consists of filtering a burst of noise

with a filtered delay loop. An illustration of a filter implementing the KS algorithm, also

known as a string loop [4], appears in Figure 2.17, where z−L represents an integer delay

of L samples, G(z) represents a (usually low-pass) filter, and x(n) is assumed to be a signal

of L randomly selected sample values followed by zeros. The frequency response of this

KS filter is similar to that of a comb filter, with nearly harmonic peaks; however, their

40



width and amplitude are affected by the filter in the feedback loop. (As are the resonant

frequencies, usually to a minor degree, as described in Appendix A). The time-domain

effect of this is that the waveform is pseudo-periodic, with successive pseudo-periods be-

ing filtered versions of each previous one. From a modal perspective, the magnitude of

the filter’s frequency response at each mode affects the decays of the respective modes.

The choice of noise as the initial excitation is motivated by the desire to provide energy

at all of the resonant frequencies in the comb-like frequency response of the filter.

Many extensions to the KS algorithm have been proposed, mostly introduced

in [105]. Placing a fractional delay filter, such as a first-order allpass filter, in the feed-

back loop allows finer tuning of the fundamental frequency of the KS filter; otherwise,

the fundamental is limited to frequencies corresponding to a period approximately equal

to the phase delay of the loop filter plus an integer number of samples. Further, a filter

without linear phase response, such as an allpass filter, may be introduced to the feedback

path to model dispersion due to string stiffness. (See Appendices A and B for more in-

formation on the tuning of such models.) Filters may be introduced before the feedback

path, as well, filtering the input; feedforward comb filters are often used as such, to simu-

late the effect of plucking position. Descriptions of these and other filters to modify the

KS algorithm may be found in [2, 105], describing the Extended Karplus-Strong (EKS)

algorithm.

KS synthesis is a historical and conceptual precursor to digital waveguide models,

discussed below. It may be seen as an efficient implementation of MSW synthesis [105],

but it also represents a digital waveguide model, separated into conceptual components.

The link between KS and digital waveguide models is further discussed in [4] and the

following section.
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2.4.3 Digital Waveguides

Digital waveguide (DWG) models are efficient digital filter structures for propa-

gation modeling. Originally developed for reverberation simulation [106], DWG mod-

els have been used to simulate violins, guitars, clarinets, and numerous other instru-

ments [2]. The efficiency of DWG models largely arises from assumptions of the lin-

earity of modeled objects, sparsely located interaction and observation, and the subse-

quent ability to apply aspects of linear system theory. This section introduces DWGs,

after [2], illustrating how they model propagation, and how various assumptions and

approximations allow efficient sound synthesis.

Consider the ideal string described in Section 2.2.3. The displacement of the

string may be interpreted as the sum of two traveling displacement waves. Without any

loss in the string, the two waves merely shift in position as time progression, experiencing

no further change in shape or magnitude. This may easily be modeled through the use

of digital unit delays, as in Figure 2.18. Figure 2.18 displays a section of a bi-directional

DWG, where the upper and lower portions model right-going and left-going traveling

waves, respectively. This model represents temporally and spatially sampled waveforms;

thus, propagating waves should be band-limited so as to prevent aliasing. Each unit delay

represents a section of string of length X = cT where T is the sampling period (the

inverse of the sampling rate) and c is the speed of sound in the string. By this notation,

the waves travel X meters in T seconds. To recover the displacement of the string at any

point, corresponding spatial samples of the traveling waves may be added together.

One may account for the boundaries of a string or other modeled object by con-

sidering how waves are reflected. In the case of the rigidly terminated string, waves are

reflected without loss, undergoing a sign inversion. Figure 2.19 shows a simple model

of a rigidly terminated string. Where there are losses in reflected waves, such as in the
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Figure 2.18: A bi-directional DWG section, modeling right-going and left-going propa-
gating waves, without loss. After [2].

Figure 2.19: A simple bi-directional DWG model, simulating rigid boundaries. Note that
excitation and observation are not explicitly shown in this figure. After [2].

bridge of a guitar, one may replace the inverting gains by a filter, representing the losses

of reflected waves.

To model uniform losses within the string, as in (2.11), a multiplicative gain, 0<

g < 1, may be introduced between the delays in a DWG. This is shown in Figure 2.20

for a section of a DWG. Such an implementation of distributed losses can require a great

number of multiplications, possibly limiting real-time synthesis. Where calculation of

the displacement of the string at all points is not important, however, the delays and

gains may be commuted and lumped, as in Figure 2.21, to allow a more efficient (and in
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Figure 2.20: A bi-directional DWG section, accounting for frequency-independent losses
of the traveling waves. After [2].

Figure 2.21: A bi-directional DWG section in which distributed losses and delay have
been commuted and lumped. After [2].

this case, still exact) realization. This may be done, for example, where the string is only

observed at a point, as in the case of an electric guitar’s pickup. If propagation losses

are frequency dependent, they may be modeled by filters distributed between the delays

of the DWG; these may be lumped, however, under the same conditions as frequency-

independent losses. Exploitation of lumping and commuting linear elements is perhaps

one of the most important and defining characteristics of efficient physical modeling,

enabling real-time implementations [2].

To model stiffness in DWG models, one may replace the delays with properly

designed allpass filters. A pure integer delay is a special case of an allpass filter with

linear phase, whereas other allpass filters may exhibit strong nonlinearity in their phase
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responses. Typically, as in the KS algorithm, dispersion due to stiffness is more efficiently

modeled by one or a few allpass filters [2,107]. The phase response should be chosen so as

to properly model the frequency-dependence of propagating waves in the medium. Note

that for very stiff structures, such as xylophone bars, allpass modeling of stiffness may

become prohibitive for real-time synthesis [6].

An example DWG model with possible feedback-based interaction at a point and

output taken as the wave traveling toward the bridge is shown in Figure 2.22. Similar to

models in [2, 3] and elsewhere, the effect of dispersion has been lumped using a single

filter on the “nut” side. Justification for placement on this side stems from the prevalence

of string instruments being excited near the bridge, resulting in a greater length of string

(and hence, more dispersion) on the nut side. Further, in this model, losses are lumped

in the bridge filter and nut filter, which may account for losses attributable to both the

string and terminations. In the interest of efficiency, model implementations are often

further simplified. Such a simplification appears in Figure 2.23, where the nut has been

assumed to be perfectly rigid and delay elements have been lumped on each side of the

interaction. Note that the output here is not delayed by the bow-to-bridge delay. Where

such delay is lossless, this merely provides an advanced output waveform. Even when

this propagated wave is attenuated, losses are often small [4].

In this work and elsewhere, DWG models often simulate only transverse vibra-

tions in one dimension. [2] The additional traveling waves in media may be simulated in

DWG models by parallel delay lines for each wave type, with proper coupling at termi-

nations and any points at which the different waves interact. An additional dimension of

transverse vibration may be simulated for added realism, especially in the case of string

terminations that result in variable propagation length in the different planes of vibra-

tion [4, 108]. Torsional waves may also be modeled, though their inclusion may have
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Figure 2.22: A DWG model showing lumped losses and dispersion, allowing for feedback
interactions, such as bowing. (After models in [2, 3].)

Figure 2.23: A DWG model with further lumping of elements and simplification of the
reflection at the nut. (After models in [2, 3].)
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little effect, as shown for bowed strings [109]. Further, longitudinal wave simulation

may benefit sound synthesis, as in the case of [110, 111]. (Note, however, that [110, 111]

do not use a DWG model for longitudinal wave simulation.)

Extensions of DWGs include the multi-dimensional DWG mesh [112, 113]. In

the two-dimensional mesh, junctions representing sampled portions of some membrane

are interconnected by unit delays, accounting for waves propagating away from and into

the junction. This may be extended into three dimensions and beyond [112].

Example Application

An example application of a DWG model, illustrating a model of a bowed guitar

string without stiffness, is shown in Figures 2.24 to 2.28, with simplifications made for

efficiency. Each of these figures shows, via a photograph, the portion of the guitar that is

modeled by the darkened part of the model in each respective figure. The output of this

model is taken as the wave traveling into the bridge, and may be sent to a body model for

further realism. As with many other models here and in [2, 3], many simplifications are

made, such as lumping of all losses at the bridge and no loss at the nut.

Singe Delay-Loop Models

Similar to the KS algorithm, single delay-loop (SDL) models are used by some

as an efficient phsyically-inspired model for sound synthesis [4, 36, 114, 115]. Derived

through manipulation and approximation of a DWG model, SDL models isolate various

aspects of a simple physical model relevant to interaction, such as pluck position and ex-

citation, as with KS models [4]. A simple example SDL model is shown in Figure 2.29,

as in [4], where the model is separated into an excitation block, a pluck position filter,

a string loop, and an integrator (to account for the effect of the bridge). The implemen-

tation of SDL models is varied, but common to all forms, as in KS models, is the string

loop, which accounts for the modal frequencies and decay rates of a model.
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Figure 2.24: An example DWG model representing a bowed guitar string with no stiff-
ness. The nut in this example is modeled as a perfectly rigid boundary, and any losses in
the string are lumped at the bridge. Also, the output is taken as the wave traveling into
the bridge. The output of this model may be further fed into a model for the guitar body.

2.4.4 Interacting with Physical Models

Many physical models take the form of a source/filter or exciter/resonator model.

Such models generally separate an object (the filter or resonator) from its source of ex-

citation (i.e., interactive events with the object). This is a common approach in many

areas. In voice, it separates the vocal tract from the pulses of the glottis [14]. In general,

it separates whatever excitation instantiates a sound from the excited object. Interactions

with physical models may not always be as simple as a one-dimensional signal fed into

a filter, but many interactions can be simplified or approximated as such, or, at the very
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Figure 2.25: The portion of the model that represents the string. Specifically, the left and
right-going waves are modeled by the delays.

least, inputs that allow identity resynthesis may be found [91]. Regardless of form, the

separation of source and filter is a critical concept in this work.

If a model of an object directly models the physical state and properties of the ob-

ject, then simulation of interactions requires physical modeling of the manner in which

the object is excited. Consider the plucking of a DWG model of a string without stiffness,

for example. This may be modeled by initially displacing the string model according the

shape of the displacement due to the plectrum before its release. In the DWG model

this may be done by loading the delay units with the value of displacement, evenly split

among the right-going and left-going portions (assuming no initial velocity) [2]. Consid-

eration of alternative wave variables here and in other interactions can help to simplify

interaction [2]. If interaction may be reduced to addition of displacement, velocity, accel-
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Figure 2.26: The portion of the model that represents the interaction of the bow and
string. The bow model may be implemented via any of the methods described here and
elsewhere.

eration, or an alternative wave variable at a point, a summing junction may be introduced

between delays to handle any input.

Many complex interactions, such as bowing a string, can justifiably be approx-

imated by point-interactions, but with the introduction of nonlinear feedback. How a

bow moves the string of a violin, for example, depends on the position and velocity of the

bow in a very nonlinear manner [63, 64]. This may be accounted for by observing the

wave components traveling into the portion of string that meets the bow and determin-

ing the interaction between the bow and string [67]. Examples of DWG bowed string

models are given in Figures 2.22 and 2.23, if the interaction is assumed to be an appropri-
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Figure 2.27: The portion of the model that represents the bridge. For efficiency, losses
that occur along the string or even at the nut may be incorporated here.

ate bow model, with many of the DWG elements lumped, and the output taken as the

disturbances propagating into the bridge. In-depth treatment of modeling friction-based

interactions may be found in [3] along with more detailed model structures, particularly

those modeling more than unidimensional transverse vibrations.

2.5 Hybrid Physical-Spectral Models

Here, “hybrid” models of physical and spectral models are presented. Many spec-

tral models are particularly well suited for creating slowly changing resonant sounds,

but unlike many physical models, they are often insufficient at creating transient sounds

[116]. Further, simulation of varying interactions, especially those that are highly state-
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Figure 2.28: The portion of the model that represents the nut. Here, the nut is modeled
as a perfectly rigid termination that reflects waves without loss.

Figure 2.29: A simple single delay-loop model, as in [4] and elsewhere.
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dependent such as bowing, is not straightforward in spectral models, motivating hybrid

approaches [7]. Such hybrid approaches serve as a “missing link” [31] between spectral

and physical models, providing advantages of each modeling approach. Modal models

and banded waveguide models are two such hybrid models, modeling physical phenom-

ena in sounding objects, explicitly parameterized by frequency.

2.5.1 Modal Models

Modal synthesis models account for the modal decomposition of vibrations dis-

cussed in Section 2.2.4. Models may be classified as distributed or lumped, where dis-

tributed modal models account for the mode shapes of an object and lumped generally

do not. Distributed modal models for sound synthesis are implemented in [31]. Where

mode shapes are unknown, lumped models may just consider the mode frequencies and

decay rates. Lumped models may also be implemented for computational ease, or if only

the vibration of an object at a point is of interest, allowing mode shape consideration at

that point [7]. Further examples of modal synthesis may be found in [117–119]

Lumped modal models are particularly appealing due to the ease of analysis and

synthesis. Numerous techniques exist to extract parameters of decaying sinusoids in

noise [120, 121]. These may even be as simple as fitting an exponential function to suc-

cessive amplitude values of peaks found in a time-frequency representation. Synthesis is

straightforward using parallel second-order digital resonators, as in [21,118], or by adding

together exponentially decaying sinusoidal functions. The use of digital resonators is par-

ticularly well suited for modeling linear excitations by an exciter/resonator approach, but

can be problematic for implementing complex interactions, such as bowing [6]. An ex-

ample filter-based implementation of a lumped modal model is displayed in Figure 2.30,

where the resonators represent second-order digital filters, each corresponding to a mode

of vibration.
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Figure 2.30: A LTI filter implementation of a lumped modal model, with parallel second-
order digital resonators, each representing a mode of vibration.

In the filter-based implementation of lumped modal models, the pole angles of

the resonators correspond to the modal frequencies, as they determine the frequency of

oscillation [122,123]. The radius of the poles, equivalent to the per-sample attenuation of

the decaying sinusoids [122, 123], determines modal decay rate. Phase and amplitude of

the modes may be used to represent aspects of excitation and position where known [7].

2.5.2 Banded Waveguide Models

Banded waveguide (BWG) models are another type of hybrid model, modeling

closed wave trains [70]. BWG models were first introduced in [5] for efficient modeling

of bowed bars. The stiffness of bars and other objects requires the design and use of high-

order filters for dispersion modeling in DWG models, limiting their use for real-time

synthesis, especially when models are dynamically varied. The alternative approach of

BWGs separately models each resonant mode by a band-limited propagation model; i.e.,

separate, band-limited DWGs are used to model the individual resonant modes. A simple

BWG structure, after [5], appears in Figure 2.31, where the blocks labeled “BPF” rep-

resent bandpass filters, and the “interaction” block may represent any point-interaction
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Figure 2.31: A simple BWG structure, as given in [5].

that may rely on feedback. Various implementational structures of BWGs have been

used [3, 124], some with slight changes in topology and BPFs [125] or explicit modeling

of bi-directional propagating waves [6].

The design of banded waveguides is straightforward from the modal data of an ob-

ject [6]. Delay lengths are set to the round-trip propagation time of the individual modal

frequencies considered; this is dependent on the propagation path length and the speed of

sound at the frequency of interest. The bandpass filters are centered about the resonant

or modal frequency of each banded waveguide. (Details of this are further addressed in

Chapter 4 and Appendix A.) Most implementations [6, 72] use second-order constant-

gain digital resonators [30,126], though other choices have been put forth [8,9,125]. The

bandpass filter’s gain at the resonant frequency may be set to a value that represents the

lumped round-trip losses of a propagating wave at the mode frequency; this accounts for

the modal decay rate [6,7]. The bandwidth of the bandpass filter is chosen to reject other
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resonant frequencies of the modeled feedback path [6,7], but no optimal choice has been

put forward, motivating much of the work herein.

Used to model stiff one-dimensional objects, each BWG models the same propa-

gation path, but with varying spatial sampling. A particular strength of BWGs, however,

is the ability to efficiently model closed wave trains in objects of higher dimension [6,7].

Beyond models of bars, BWGs have been used to model cymbals, tabla, prayer bowls,

glass harmonicas, and other objects [72]. As BWGs model traveling waves, they easily

afford simulating interactions such as bowing [5–7].
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Chapter 3

RE-SONIFICATION OF ENVIRONMENTS

This chapter examines re-sonification on the scale of environments. To synthesize the

sound of an environment requires knowledge of the type of sounds that occur in a place.

This may be had from information ranging from a comprehensive description of objects

in some space to sound recordings from a locale. Given the diversity of sounds and their

origins in different environments, high-fidelity modeling of objects and events within an

environment proves difficult in general. Therefore, this work approaches environmental

re-sonification through broader soundscape synthesis that plays back recordings made in

situ.

Previous efforts in soundscape synthesis are varied [16,17,127–130]. Some meth-

ods rely on identifying and parameterizing sounds within recordings [127, 128]. Other

methods, as in this work, rely on identifying relevant and meaningful sound recordings

to include in a generated soundscape [16,17,129,130]. This identification process is often

controlled by a composer or designer, using prior knowledge [16] or information gath-

ered, such as through interviews [17]. To aid in soundscape design for re-sonifying envi-

ronments, a method for automated design, using playback of geo-tagged sound recordings

is presented. This method, introduced in [12], uses an ontology that relates sounds using

acoustic, semantic, and social information [18].

3.1 Re-Sonification of Geographic Activity

Meaningful re-sonification of activity in a geographic region can be difficult when

recorded sounds from that region are either 1) abundant or 2) scarce. Where recordings

in a region are few in number, re-sonification itself may be sparse or highly repetitive

without the inclusion of relevant sounds from other locations. Conversely, if recordings

from a region are plentiful, many sounds may be redundant or uninformative about the
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area’s activity. Both situations may be addressed by classifying and using those sounds

that are relevant and important to an area. Traditional classification of sounds within

a soundscape (keynote, signal, and soundmark) is primarily focused on their perceptual

role to listeners [47,131]. This classification is area-specific, depending on the perception

of sounds as dictated by meaning and prevalence in a community. While the identifi-

cation of important sounds to an area does not provide this classification, it is able to

distinguish which sounds convey the relevant activity of a region, a relevance perhaps

best determined by that region’s own community.

The concept of community-defined importance of sounds has long been held in

the auditory field; in [47], Schafer states,

Acoustic design should never become design control from above. It is rather

a matter of the retrieval of a significant aural culture, and that is a task for

everyone.

This idea also extends beyond the auditory domain; Google’s PageRank technology, for

example, determines the importance of web pages by considering the number and relative

importance of other pages that link to them [132]. The relevance of such pages is then

defined by the internet community’s own activity. Similarly, the acoustic knowledge and

the actions of a community can help to reveal important sounds for the re-sonification

of geographic activity.

To work towards revealing this importance, we use an ontological framework to

link sounds together through acoustic, semantic, and social information [18, 133]. Us-

ing acoustic content in conjunction with user-provided tags, the framework relies on the

prior knowledge of acoustic and semantic ontologies combined with community-defined

social links between sounds and concepts. This ontological framework is then used to de-

fine the edges of a graph-based generative soundscape model used to re-sonify specified lo-
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cations through the playback of sounds in a database. Similar to the use of textual queries

to filter a ranked list of important websites, we use location to determine the soundscape

model parameters such that geographically relevant sounds play frequently. Considera-

tion of the size (surface area) of locations allows this method of re-sonification to scale to

communities or regions of varying size. Using sounds recorded from these locations and

elsewhere that are deemed important by an area’s community, our methodology aims to

create meaningful soundscapes reflective of the geographic sound activity in those areas.

3.2 Ontological Framework

To automatically compose soundscapes from collections of sounds with user-

provided descriptions, some notion of similarity between sounds is necessary to deter-

mine what sounds may be relevant to a space. For example, if few sounds are recorded

in a location, retrieving perceptually similar sounds provides greater diversity in the syn-

thesis process. We calculate such similarity with an ontological framework that links to-

gether sounds and concepts, using acoustic similarity between sounds, social information

in the form of links between sounds and concepts, and semantic information in the form

of conceptual similarity. The ontology effectively finds the shortest distance between

sounds, relating them through the similarity of their acoustic features and user-provided

tags [18, 133].

To more compactly describe the relation of sounds to one another, we consider

a multi-dimensional scaling (MDS) of the sounds [134]. An MDS places the sounds in

a lower dimensional space, such that the relative distances between them may be best

retained. An example MDS is shown in Figure 3.1, where the dots represent sounds

shown with user-provided tags. Placing the sounds into a two-dimensional space serves

as a starting point for the automated soundscape design process, described below.
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Figure 3.1: An example MDS of tag-labeled sounds.

3.3 Markov Transition Networks

To generate soundscapes for our application, we have chosen to use an emerging

compositional structure that we call a Markov Transition Network (MTN), a variation

of the models introduced in [15, 16, 135]. An MTN is a directed graph with N nodes,

with possible directed edges from each node, i , to another node, j , including j = i . An

actant process, A(t ), traverses nodes, transitioning via these edges, taking on values from 1

to N , representing the node at which the process is located at a given point in time. Each

edge has an associated transition time, ∆(i , j ). When A(t ) “enters” node i , the choice

of the next node, j , is determined by an associated probability, P (i , j ), and the actant

process waits a time of ∆(i , j ) before making the transition. If no edge exists between

any two nodes, the associated probability is zero. Given these properties, A(t ) is not

strictly a Markov process, as transition times are deterministic, depending on the origin

and destination nodes. Figure 3.2 displays an example MTN, with nodes and transition

times of edges labeled. (Edge probabilities are omitted for clarity.)

Sound synthesis is performed by the sequenced playback of sounds as determined

by the actant process. Sounds in the database are uniquely associated with a node, i , and

a duration, D(i). Upon A(t ) reaching a new node, the associated sound is played back in
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Figure 3.2: Example MTN for soundscape synthesis. Edges are labeled with transition
times. Transition probabilities are not shown.

full, regardless of the chosen transition time to the next node or length of the following

sounds. We presently mix together all sounds being played back into a single soundscape,

though we note that a more complex multi-channel scheme could be adopted, and various

effects (e.g., reverb) may be applied to individual sounds or the entire mix. Note that

multiple actant processes may be active at any time, independently triggering sounds.

Using an MTN, the sequencing of sounds is made random, but it may be limited

by the connections made between nodes. If only a single edge is directed from a node,

then the sequencing upon the actant process’s selection of that node will be temporar-

ily deterministic. However, if all nodes in an MTN are fully connected, the behavior

of the actant process becomes less predictable (dependent on the transition probability

distributions). By limiting the number of edges connecting nodes, the sequencing deter-

mined by actant processes may be made variable, yet confined by the parameters of the

network. This is considered in [15, 16], where limited connections are made between

clusters of nodes to specify the behavior of complex sources of sound as predictable se-

quences. We recognize this effect of limiting connections, but we also wish to examine

the overall expected properties of the synthesized output. Therefore, we consider the

expected temporal density of all available sounds.
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For a sound i , with an intensity value (this may be any meaningful chosen mea-

sure, such as loudness), V (i), we define the expected sum of intensities of any instances

of sound i at a given time to be the density, Dens i t y(i), given by

Dens i t y(i) =
D(i)V (i)

T (i , i)
, (3.1)

where T (i , j ) is the expected time for the actant process to travel from node i to node j

(including indirect paths). If the actant process travels directly to j , the transition time

will simply be the delay,∆(i , j ), else it will be the delay,∆(i , k), to an intermediary node,

k, and the time taken to then reach j . Therefore,

T (i , j ) =
N
∑

k=1

P (i , k)∆(i , k)+
N
∑

k=1,k 6= j

P (i , k)T (k , j ). (3.2)

Letting ∆, P , and T be N ×N matrices with with elements ∆(i , j ), P (i , j ), and T (i , j ),

respectively, we may express (3.2) in matrix-vector form as

T (:, j ) = C +Q j T (:, j ), (3.3)

where T (:, j ) is the j t h column of T , the i t h element of the N × 1 vector, C , is

C (i) =
N
∑

k=1

P (i , k)∆(i , k), (3.4)

and Q j is P with the j t h column zeroed out. This gives

T (:, j ) = (I −Q j )
−1C , (3.5)

which may be iterated over j .

While this allows us to analyze the density of sounds in a soundscape, for the

purpose of design, we seek the ability to specify network parameters to create a desired

density of sounds (this density may be determined by the interaction to which the re-

sulting soundscape is applied). As the available sounds and their properties are fixed,
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specifying the density value of sounds fixes the desired diagonal elements of T . This

leaves flexibility in determining the MTN parameters,∆ and P , as there are N equations

(one for each of the diagonal elements of T ) and up to 2N 2 unknowns. Therefore, we

allow P to be chosen by the designer (human or computer). By choosing P , the connect-

ing edges of the network may be defined, and connections between relevant or logically

successive sounds may be reinforced with high probability. The desired densities may

then be achieved through the necessary values of∆.

To determine ∆, we first define F = EΦ, where E ∈ R
N×N , Φ ∈ R

N×N 2
, and the

i t h row of E is given by

E(i , :) = ei + qi (I −Qi )
−1Ei , (3.6)

where Qi is P with the i t h column and row removed, qi is the i t h row of P with P (i , i)

removed, e i is the i t h row of the size-N identity matrix, Ei is the identity matrix with

the i t h row removed, and Φ consists of all zeros except for

Φ(i , i +N ∗ ( j − 1)) = P (i , j ), (3.7)

where i and j are iterated from 1 to N . Finding ∆ may then be achieved by solving the

quadratic program:

Minimize ‖F ·vec(∆)− τ‖2
2

subject to vec(∆)� b

where b is a vector of elements greater than or equal to zero, and τ ∈ R
N is the column

vector where the i t h element is the value of T (i , i) necessary to achieve the desired density

of sound i . The inequality constraint is introduced to allow future extensions where a

minimum delay time between certain sounds may be desired. We note that the amount

of nontrivial elements of ∆ is limited by the edges of the network, and that in some

63



cases the actual set of achieved densities may be the best approximation of densities in a

squared error sense.

3.3.1 Automated Model Design

Using information from the ontological framework and the sounds themselves,

we have developed a method of automatically designing an MTN to re-sonify the sound

activity of a specified “virtual environment" that corresponds to a physical location. Seek-

ing to play the sounds from and relevant to the location, we use our ontological frame-

work to make connections between relevant sounds in the MTN and specify the other

parameters such that the expected densities of local sounds are relatively high. By mak-

ing local sounds dense in the soundscape, they will clearly be heard often, making the

available local sounds a key component of the soundscape. As this also implies that the

actant process will often travel to local sounds, the creation of edges based on relevancy

and importance may aid the actant process in traversing nodes corresponding to sounds

relevant to the recorded local sounds. This method is executed as follows.

The edges between vertices are determined by performing a Delaunay triangula-

tion (the dual graph of a Voronoi tessellation) on the sound locations in the previously

described two-dimensional MDS. Where a line is drawn between two vertices in the tri-

angulation, edges will be created in both directions; self-connections are not made. The

results of Delaunay triangulation on the MDS vary with the placement and clustering of

sounds, but it generally connects sounds to those nearby (i.e., sounds deemed relevant

by the ontological framework) in the MDS. These connections allow the playback of

local sounds to often be preceded and/or succeeded by relevant sounds. The triangula-

tion, however, may make some connections between sounds that are not deemed very

similar (by the ontology) to one another, but the inclusion of such connections can help

to ensure that actant processes do not always concentrate near certain nodes when the
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local sounds are spread in the MDS. Use of Delaunay triangulation also guarantees that

every vertex will be connected to at least two other vertices, which can help to prevent

repetition.

The desired density of sounds is specified to be inversely related to the distance

between the sound’s location of recording and the user’s virtual location. This relation

has been implemented as a Gaussian function, referring to the standard deviation as the

“listening radius," which sets the size (in surface area) of the region to be explored. The

total density of all sounds may be adjusted (so that soundscapes are not overly sparse

or dense), perhaps most usefully to a constant value. As previously described, specifica-

tion of the densities determines the values of the transition times, but requires transition

probabilities to be provided. The probabilities may be set arbitrarily, but the choice of

probability distribution will affect the achievable densities of sounds. Currently, we set

the probabilities so that they may further “encourage" the actant process to travel to lo-

cal sounds. We achieve this by setting the transition probabilities between nodes such

that the ratios between the probabilities of edges emanating from a node are equal to the

ratios of the desired densities of the nodes toward which they are directed. In practice, it

has been observed that this distribution scheme typically provides better actual densities

than a uniform distribution. As this method of soundscape synthesis only requires a vir-

tual location as input when sounds and their corresponding ontological framework are

available, it may be applied to various interactions, static or dynamic.

3.4 Soundwalks

Application of our method for re-sonifying geographic activity was previously re-

alized in the form of “Soundwalks,” an interactive social website for sharing and tagging

sounds and virtually exploring geographic regions. An interactive map allowed users to

navigate in a virtual soundwalk mode, “scrubbing" a virtual token across the map, creat-
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ing a virtual soundscape. The soundwalk mode features a variable “listening radius" that

may be thought of as the radius of a circle that contains the sounds most expected to be

heard. It is effectively the size of the area considered in creating the soundscape. The

listening radius may be varied from small to large so as to create soundscapes that range

from simulating observable soundscapes at small specified locations to providing sonic

summaries of large geographic regions. The soundscape is created from an automatically

generated MTN as previously described, using a single actant process. Periodic updates

of the network parameters are made to adapt to the user’s movement. The actant process

(which is initialized to the sound recorded nearest the virtual location) functions contin-

uously, using the MTN as it is updated. A screenshot of the interactive map (with an

open information window) in the virtual soundwalk mode appears in Figure 3.3.

While limited deployment and use prevented large-scale assessment, the applica-

tion was favorably reviewed as providing a sense of activity to otherwise static maps [12].

The most frequent problem observed was the inclusion of keynote sounds (e.g., the

beep of a local light rail car, or the cheer of a stadium’s crowd) in inappropriate areas.

Additionally, some sounds were played too frequently. Such issues could be addressed

through more controlled design or more automated schema. Despite these problems,

the proposed method demonstrates the ability to re-sonify geographic activity through

environmental soundscape synthesis, guided by community-provided data.
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Figure 3.3: A screenshot of the interactive Soundwalks map in the virtual soundwalk
mode.
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Chapter 4

RE-SONIFICATION OF OBJECTS

This chapter describes the modeling of objects for re-sonification, focusing on objects that

exhibit resonant modes as a result of closed wave trains. To simulate sounding objects in

an ecologically valid way while permitting a range of transformations and interactions,

modeling should consider both physical and perceptual aspects [136]. With no particular

application of re-sonification in mind, modeling that arises from recorded sounding ob-

jects, prior knowledge, desired parameters, or any combination thereof is of interest. As

a hybrid spectral-physical model that easily and efficiently allows modeling of differing

resonant objects, banded waveguide (BWG) models are thus considered here for object

re-sonification. By modeling wave propagation separately for the modes of a sounding

object, independent design and control of each mode is made simple, as compared to

DWG models, while maintaining the ability to efficiently simulate complex interactions

such as bowing [7]. Explicitly parameterized by both physical and spectral parameters,

BWG models easily permit both physical and perceptual transformations of resonant ob-

jects [21, 137].

Much of the focus here is on alterations and refinements to BWG models, first

presented in [8] and [9], so as to improve the correspondence of simulations with that

of modal and DWG models, such that existing and emerging methods of analysis, trans-

formation, and synthesis for DWG and modal models may be appropriately applied in

re-sonifying objects with BWG models. General concepts in creating and transforming

object models are first discussed in this chapter. This is followed by a description of pre-

vious BWG models and two proposed approaches to improving BWG modeling. Lastly,

concluding remarks are given.
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4.1 Creating and Transforming Object Models

Creation of BWG models from sound recordings may make use of modal anal-

ysis methods (e.g., [120, 138]) to find the modal frequency and decay. Amplitude and

phase information may also be found, but it is dependent on interaction and observa-

tion. Although one may not accurately recover mode shapes or propagation length from

single sound recordings (without appropriate prior knowledge or assumptions), BWG

models may be created from sound recordings to a describe a virtual object from which a

recorded sound could have emanated. For example, if an inharmonic sound is analyzed,

one might try to fit a one-dimensional model of a stiff object, such as a bar. Alterna-

tively, one might consider the sound to have come from some multi-dimensional object

in which the resonances arise from separate closed wave trains in the object. Rather than

view this as a deficiency, this may be considered a point of design, allowing modeling in

object re-sonification to be highly controllable.

As discussed in Section 2.5.2, the hybrid spectral/physical nature of BWGs affords

manipulation of both physical and spectral parameters (and relatedly, perceptual param-

eters [137]) . Spectral transformations of BWGs involve changing the modal frequencies;

this may be carried out by adjusting the the band-limiting filters and propagation delay

lengths appropriately. Such a transformation may be used to easily change the partial

frequencies or timbre of a sound. The time-duration of a BWG model may be adjusted

by modifying the gains so as to increase the decay time of each mode. Alternatively, the

interaction with the model may be adjusted to lengthen the sound’s duration.

Physical transformations of BWGs may be performed by considering the effect

of various physical properties. The relative perceived size of a modeled object may be

adjusted by increasing or decreasing the propagation delay lengths (and appropriately re-

tuning the band-limiting filters). Adjustment of the gains is not straightforward without
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Figure 4.1: A single BWG. (After [3]).

full knowledge of what losses are due to general propagation, reflection, or resonance in

some “body.” The perceived material of an object may be modified by distribution of the

modes and their decay rates, as in [21].

4.2 Previous Implementations of Banded Waveguides

A single BWG, as described in [3, 5–7, 72], with lumped elements, and imple-

mented in a filter-like manner with additive interaction at a point, appears in Figure 4.1.

This represents a single delay line (SDL) [4] or KS-type implementation of a BWG subject

to interaction and observation at a point. As in [3, 5–7, 72], we consider a constant-gain

digital resonator for use as the bandpass filter. The filter’s center frequency and the loop

gain are determined by the desired or modeled modal parameters, but the bandwidth of

the filter has no strict physical interpretation [6]. As shown in [3], the impulse response

differs between a modal resonator and a BWG designed to have the same decay and fre-

quency. Examples of this are shown in Figures 4.2 to 4.7, where comparable modal and

BWG models of a decaying sinusoid with modal frequency of 441 Hz are shown (simu-

lated with a sampling rate of 44100 Hz), with varying bandwidths of the bandpass filter

Clearly, the impulse response of the BWG can greatly vary, dependent on choice

of bandwidth. A small bandwidth is desirable, in that it will attenuate the other reso-

nances due to the feedback path; however, narrowing of the bandwidth extends the decay
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Figure 4.2: A comparison of the response of a modal filter and comparable BWG with a
bandwidth of 20 Hz. (Scaled for comparison.)
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Figure 4.3: A comparison of the response of a modal filter and comparable BWG with a
bandwidth of 100 Hz. (Scaled for comparison.)
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Figure 4.4: A comparison of the response of a modal filter and comparable BWG with a
bandwidth of 200 Hz. (Scaled for comparison.)

0 50 100 150 200 250 300 350 400 450 500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sample Index

V
al

ue

 

 
Modal Filter
Banded Waveguide

Figure 4.5: A comparison of the response of a modal filter and comparable BWG with a
bandwidth of 400 Hz. (Scaled for comparison.)
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Figure 4.6: A comparison of the response of a modal filter and comparable BWG with a
bandwidth of 2000 Hz. (Scaled for comparison.)
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Figure 4.7: A comparison of the response of a modal filter and comparable BWG with a
bandwidth of 10000 Hz. (Scaled for comparison.)
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time, as seen in Figure 4.2. This is due to the lengthy impulse response of the BPF. If

the BPF’s impulse response is longer (by some measure) than the round-trip propagation

time, the decay time could extend well beyond desired values, even if the round-trip at-

tenuation was reduced to zero, with the BWG’s output coming entirely from the BPF.

Alternatively, a BPF with a wider bandwidth provides the advantage of a more accurate

decay time, as in Figure 4.5, but it may not strongly attenuate other resonances, result-

ing in artifacts in the waveform and spurious resonances, as compared to the response of

the modal resonator. More extreme examples of a very wide bandwidth may be seen in

Figures 4.6 and 4.7. This difference in output due to varying bandwidths of the BPF has

been used for timbre manipulation in [139], but this is not a desirable feature of physical

modeling.

Other implementations of BWG models have been put forward. For example,

in [125], fourth-order bandpass filters are used outside of the delay loop for each BWG.

This implementation, however, still does not produce ideal modal responses. With no

ideal implementation of BWGs put forth by others, attempts to improve BWG models

are given below. These alternative implementations of BWGs were first presented in [8]

and [9].

4.3 Banded Waveguides Using a Perfect Reconstruction Filterbank

To address the imperfect response of BWG models, as compared to comparable

models, this section discusses the use of an individually tunable perfect-reconstruction

filterbank to implement BPFs in BWGs, first proposed in [8]. The filterbank is designed

about a set of select frequencies (the resonant modal frequencies, in this case), such that

each filter passes a single select frequency with unity gain and no phase change, while

having zero gain at the other select frequencies. When all the filters of the filterbank have

the same input signal, the sum of their outputs is identical to the input signal. The follow-
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ing describes the application of this filterbank to the modeling of a perfectly-harmonic

bowed string with no stiffness, showing improved results with the filterbank. As noted,

real-time use and application beyond a simple case such as a perfectly or near-perfectly

harmonic string is not straightforward. However, the results show the feasibility of im-

proving BWG models, even subject to nonlinear interactions.

4.3.1 Perfect Reconstruction Filterbank Design

The design method outlined here, first described in [8], relies on a tree-type

structure of complementary filters, spectrally warped via suitably designed allpass fil-

ters. Spectral transformation of filters may be performed by replacing unit delays with

allpass filters. Low-order allpass filters may be used to turn prototype low-pass filters

into high-pass filters, band-stop filters, bandpass filters, or low-pass filters with different

frequency specifications [140]. Use of higher-order allpass filters for warping can result

in any arbitrary amount of notches, resonances, stop-bands, or pass-bands [141,142]. As

allpass-based warping maps a simple traversal of the unit circle in the z -plane to a more

complex traversal – or multiple traversals – basic prototype filter properties, such as the

magnitude of passband ripple, are preserved in warped regions.

To isolate the various modes of a harmonic BWG model with the desired filter-

bank, it is required that each bandpass filter passes the corresponding modal frequency,

ωm , with unity magnitude response and no phase shift. Also, each bandpass filter should

completely reject the other modal frequencies. That is, each bandpass filter in the fil-

terbank should have notches (with a magnitude response of zero) at the other modal

frequencies. To achieve this specification, one may begin with a Haar filter pair as com-

plementary prototype filters. The Haar filter pair is defined by the transfer functions,

HLP (z
−1) = 0.5+ 0.5z−1

HH P (z
−1) = 0.5− 0.5z−1. (4.1)
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Note that each Haar filter passes a certain frequency (0 or π) with no attenuation and

phase shift, while the other filter rejects the same frequency. Additionally, the filter pair is

perfect reconstruction, meaning that if the same signal is passed through both filters, the

sum of their outputs is identical to the original input signal. This property is preserved

when the filters are identically warped.

Using a high-order allpass filter to warp the Haar filter pair, one obtains a pair of

filters with multiple passbands and notches, each passing frequency content rejected by

the other. If the peak magnitude response and notch of a prototype filter are alternat-

ingly mapped to subsequent modal frequencies, and the complementary filter mapped

via the same warping filter, one obtains a pair of filters, each of which passes half (or

approximately half, depending on the total number of modal frequencies) of the modal

frequencies, while rejecting the others. If each filter’s output is then passed through a

new pair of complementary filters, designed in the same manner for the modal frequen-

cies passed by the respective filter of the first pair, the new filters then each pass and reject

half of the remaining frequencies. Carrying out this process recursively, cascading these

filter pairs in a tree-like manner until each path results in the passing of a single modal

frequency, then results in the desired filterbank.

To carry out this process, at any stage, with M modal frequencies,ω1,ω2, . . . ,ωM ,

present, one must design an allpass warping filter that maps [0,ω1] to [0,π], [ω1,ω2]

to [π, 2π], . . ., and [ωM ,π] to [Mπ, (M + 1)π]. When each of the prototype filters

are thus warped, each will pass half of the select frequencies, while rejecting the others.

The eventual resulting filterbank will be composed of a lowpass filter, a highpass filter,

and a number of bandpass filters equal to the total number of modes (excepting DC

and the Nyquist frequency). This design may be applied to any set of arbitrary mode

frequencies, though numerical problems may arise, as detailed below in Section 4.3.1.
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Figure 4.8: A graphical representation of the iterative filterbank design process for the
simple case of four modal frequencies, including 0 and π.

It is also important to note that stability and efficiency may generally be improved by

implementation using an actual tree-like structure, rather than separate filters for each

mode.

Example Filterbank

To illustrate this process, we consider the design of such a filterbank with four

modal frequencies (including DC and the Nyquist frequency): ω0 = 0,ω1 = 0.2π,ω2 =

0.6π, andω3 =π. A graphical representation of the design procedure is shown in Figure

4.8. The resulting filterbank is composed of a lowpass filter, two bandpass filters, and

a highpass filter, seen in Figure 4.9 and level three of Figure 4.8. The first step in this

example is the design of a suitable allpass filter, A1(z
−1), to warp the Haar filter pair such

that one filter passesω0 andω2, while the other filter passesω1 andω3. This allpass filter

must warp the frequency range [0,ω1] to the frequency range [0,π] of the original filter

pair. Similarly, [ω1,ω2] must be warped to [π, 2π], and [ω2,π] to [2π, 3π]
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Using an allpass filter with these specifications, the warped lowpass filter will pass

frequencies 0 andω2 with no attenuation or phase change, while wholly rejectingω1 and

π. (The magnitude response of the corresponding filter is shown in Figure 4.8 as the solid

line plot of level 1 and its leftmost child.) The warped highpass filter will pass spectral

content at ω1 and π while rejecting 0 and ω2. (The magnitude response of the corre-

sponding filter is shown in Figure 4.8 as the dashed line plot of level 1 and its rightmost

child.) Since both prototype filters are perfect reconstruction, this property is preserved

when they are warped by the same allpass filter, A1(z
−1); the frequency response of the

sum of the two filters’ outputs is shown by the thick gray line of level 1 in Figure 4.8.

To complete the filterbank design, two more allpass filters must be designed so

as to warp filter pairs that further separate the spectral content passed by each filter of

the first warped pair. The first allpass filter, denoted A2,1(z
−1), maps [0,ω2] to [0,π]

and [ω2,π] to [π, 2π], such that the warped lowpass filter passes DC and the warped

highpass filter passes ω2. The second allpass filter, denoted, A2,2(z
−1), maps [0,ω1] to

[0,π] and [ω1,π] to [π, 2π], such that the warped lowpass filter passesπ and the warped

highpass filter passes ω1. The magnitude frequency responses of these filter pairs are

shown in the leftmost and rightmost elements of level 2(a) of Figure 4.8. When these

new filter pairs are cascaded with the first filter pair (warped using A1(z
−1)), the final

filters of the filterbank will be obtained:

H0(z
−1) =HLP (A1(z

−1)) ·HLP (A2,1(z
−1))

H1(z
−1) =HH P (A1(z

−1)) ·HH P (A2,2(z
−1)) (4.2)

H2(z
−1) =HLP (A1(z

−1)) ·HH P (A2,1(z
−1))

H3(z
−1) =HH P (A1(z

−1)) ·HLP (A2,2(z
−1)).
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Figure 4.9: Example filterbank. |H0(z
−1)|, |H1(z

−1)|, |H2(z
−1)| (blackened), and |H3(z

−1)|,
with ω1 = 0.2π and ω2 = 0.6π.

The magnitude frequency response of these filters is shown in Figure 4.9 and level 3 of

Figure 4.8. As complementary filters are used at each stage of the design, the whole

filterbank retains the property of perfect reconstruction.

For the general case, given M mode frequencies ω1,ω2, . . . ,ωM , we obtain an

allpass filter that maps the frequency range [0,ω1] to [0,π], [ω1,ω2] to [π, 2π],. . . ,

and [ωM ,π] to [Mπ, (M + 1)π]. The warped prototype filters will each pass half the

selected frequencies (including 0 and π as selected frequencies) while rejecting the other

half. Recursively repeating this process for the remaining frequencies from each of the

complementary filter pairs at each level and cascading the properly warped prototype

filters then yields a bank of perfect-reconstruction filters. The resulting bank will be

made of M bandpass filters, plus single lowpass and highpass filters. This process can be

extended to any set of mode frequencies, although numerical problems may arise [143].

In addition, round-off error may also cause the filterbank to become unstable. This is

often, though not always, avoided by implementing the filterbank as a series of separate,

cascaded filters.
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Warping Allpass Filter Design

Here, design of allpass filters to meet the specifications of the filterbank design

process is described. This primarily requires allpass filters with an unwrapped phase

response that is a multiple of −π at specified modal frequencies. (Note that the sign

of the phase response is inverted as compared to the warping range frequencies given

previously.) This design may be achieved exactly via closed-form equations. We use

much of the notation as in [143, 144] in the design procedure.

An N t h -order allpass filter,

A(z−1) =
aN + . . .+ a1z−(N−1)+ z−N

1+ a1z−1+ . . .+ aN z−N
, (4.3)

will have a phase response given by

φ(ω) =−Nω+ 2arctan

 

aT s(ω)

1+ aT c(ω)

!

, (4.4)

where

a=
�

a1 a2 . . . aN

�T

s(ω) =
�

sin(ω) sin(2ω) . . . sin(Nω)
�T

(4.5)

c(ω) =
�

cos(ω) cos(2ω) . . . cos(Nω)
�T

.

To find a suitable allpass filter at any stage, one must then find coefficients such that the

phase response at select frequencies matches the desired response. During any stage of the

design process, when K ordered modal frequencies,ω1,ω2, . . . ,ωK , are being considered,

one must use an N t h -order allpass warping filter with N = K + 1. The allpass filter

should have a phase response equal to increasing integer multiples of −π at the K modal

frequencies.

Denoting the desired phase response at frequency ωk by φd e s(ωk), we define

βk =−
1

2
(φd e s(ωk)+Nωk), (4.6)
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such that the coefficient vector, a, that satisfies our requirements will be a solution of

Fa= b (4.7)

where

Fk ,n = sin(βk + nωk) n = 1,2, . . . ,N k = 1,2, . . . ,K

b=−
�

sin(β1) sin(β2) . . . sin(βK )

�T

, (4.8)

and Fk ,n is the element in the k t h row and n t h column of F. As our desired phase response

only requires

φd e s(ωk) =−kπ k = 1,2, . . . ,K , (4.9)

and K =N−1, our system is overdetermined, giving us a set of feasible coefficient vectors.

This set should be limited to stable filters. For our design, we choose to further specify

the phase response at a single frequency, constraining

φd e s(
ω1

2
) =−

π

2
. (4.10)

That is, the phase response of the allpass filter at half of the first mode frequency is fixed at

−π
2
. This will give a unique solution of (4.7), ensuring the stability of the designed allpass

filter, in addition to choosing a solution with a relatively smooth phase response. The

phase response of many solutions to (4.7), without the extra constraint given in (4.10), is

mostly flat, with small regions of large change due to pole-zero pairs very close to the unit

circle. Use of such warping filters results in some transformed filters having very small

bandwidth, while others have a large bandwidth (possibly extending beyond adjacent

mode frequencies, at which notches appear in the frequency response) and very high stop-

band magnitude response. Figure 4.10 shows such an undesirable filterbank. Choosing

a smooth response, with less abrupt changes in phase shift, causes more consistent and

desired behavior of the filters, as originally shown in Figure 4.9. This constraint is not
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Figure 4.10: Example filterbank (ω1 = 0.2π and ω2 = 0.6π) with poor response due to
the lack of an added constraint.

designed to meet any optimal criterion, but it has worked well in practice to smooth

phase responses of the allpass filters. Responses that are more ideal in some sense could

be designed through choice of an error function, as in [143].

Implementations of this design method may be prone to numerical problems in

solving the linear system of (4.7), particularly in the case of closely-spaced modes, as

noted in [143]. This and other sources of round-off error can lead to instability, requiring

consideration in design and use.

4.3.2 Simulations

To compare the use of our filterbank with that of biquad filters, we use a sim-

ple one-dimensional bi-directional digital waveguide model with losses lumped at the

“bridge". We use a bowing interaction, following the friction model of [67] with veloc-

ity output. The waveguide model used is that of a generic string with no stiffness and

a fundamental frequency of 441 Hz. In this case, “banding" the waveguide is not nec-

essary to physically model the sounding object, but we wish to compare the fidelity of

the perfect reconstruction model against the biquad banded waveguide in reference to a
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(a) Regular waveguide.

0 1 2 3

−0.5

0

0.5

Time (sec)

V
el

oc
ity

 E
nv

el
op

e

0 1 2

−0.5

0

0.5

Time (msec)

V
el

oc
ity

(b) Banded waveguide using biquad filters.
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(c) Banded waveguide using the perfect reconstruction filterbank.

Figure 4.11: Simulation results for a 441 Hz bowed string, including detail of steady-state
oscillations.

standard digital waveguide, which is made possible by these test conditions. The biquad

filters were set to have bandwidths of 44.1 Hz (an arbitrary choice). Each of the BWG

models assumes perfectly harmonic partials, and all simulations here use a sampling rate

of 44.1 kHz.

Figure 4.11 displays coarse aspects of the transient response (the amplitude enve-

lope over the first three seconds) as well as details of the steady state oscillations (with the

regular waveguide oscillation overlaid in gray for the other models) of all three simula-

tions. We can see that the transient response characteristics of the perfect reconstruction

model are significantly improved over those of the biquad model; however, there is still
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room for improvement when compared against the regular waveguide model. Steady-

state response characteristics are perceptually similar among all three models. The steady-

state waveform of the perfect reconstruction model, however, follows almost sample-for-

sample that of the standard waveguide model.

The above results demonstrate that BWG implementations can be improved, even

for nonlinear interactions, but the preceding example does not readily extend to cases

beyond simple harmonic objects. In the above design, the filterbank’s center frequencies

are intended to be the resonant modal frequencies of the entire model. Given a harmonic

object, the modal frequencies are the same as the undesirable resonant frequencies of each

individual BWG’s feedback path. For an inharmonic object, however, this is not the case.

Also, the filterbank is of a rather large order (each “level” is of the order of the number of

modes), in opposition to the desire for computational efficiency. Therefore, alternative

filters for improving BWG implementations are presented below.

4.4 Digital Waveguide-Derived Implementation of Banded Waveguides

Here, we consider an alternative implementation of BWGs, derived by making

alterations and approximations to KS and DWG models. The models discussed here

were first published in [9].

4.4.1 Derivation

For simplicity in describing the derivation, consider the string loop of single

delay-loop (SDL) model [36], effectively a KS-type model, as given in Figure 4.12. Here,

the losses, dispersion, and propagation delay of a corresponding bi-directional DWG

model have been commuted into a set of filters in the SDL’s feedback loop. In Figure

4.12, z−L, F (z), D(z), and G(z) represent the integer delay, the fractional (tuning) delay,

a dispersion filter, and a lossy loop filter, respectively. Physically, this corresponds to
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Figure 4.12: A single-delay loop digital waveguide model.

Figure 4.13: A functionally identical single-delay loop model.

linear interaction and observation of a unidirectional wave at a single point. (Choice of

wave variables is unimportant in the derivation.)

To derive the model, first consider filtering the input with an identical string loop

and the inverse feedforward system, as shown in Figure 4.13, such that the input to and

output of the original string loop remains identical. Assuming the direct-form transfer

function of the SDL model has no repeated poles and is proper (typical SDL models will

be proper, due to the somewhat large integer delay), it may equivalently be represented

by its partial fraction expansion (PFE),

S(z) = R0(z)+R1(z)+ . . .+RM−1(z) (4.11)

where each Rm(z) is a resonant filter, representing a mode of the system. Most of the

terms are second-order IIR filters, though first-order modes at DC and the Nyquist fre-

quency are typical. Using this modal expansion, the model of Figure 4.13 may be identi-

cally restructured into that of Figure 4.14.
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Figure 4.14: A functionally identical, expanded single-delay loop model.

By linear system theory, the feedforward and feedback loops of Figure 4.14 may

distributed amongst the parallel signal paths of the modal resonators. For computational

simplicity, since each filter Rm(z) is narrowband in nature, with pole angles at ±Θm, we

choose to approximate the feedforward and feedback paths by a delay and scalar gain.

This is illustrated in Figure 4.15, where the effect of in-loop filters has been approxi-

mated for each parallel path by an integer delay and fractional delay (representing the

corresponding mode’s phase delay – or other measure of propagation length – from the

cascade of filters in the feedback path) and a scalar gain, gm (the gain of the lossy loop fil-

ter, G(z), at the modal frequency – that is, the per-loop multiplicative loss of the mode).

Recognizing the cascade of each feedforward filter and resonator as a band-limiting filter,

we have thus arrived at a BWG model, with the band-limiting filters outside of the feed-

back path and the modes de-coupled (feeding back into themselves). Note that with the

addition of a fractional delay, these band limiting filters are an additional instance of the

general filter structure described in [145].

The impulse response of each BWG is an exponentially decaying sinusoid (exactly

equal to the impulse response of the resonator, Rm(z)). Where delay is implemented

by integer delay elements only, the impulse response of the BPFs (each made from a

feedforward filter and resonator) is an exponentially decaying sinusoid on t ∈ [0, Lm−1],
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Figure 4.15: The proposed implementation of a banded waveguide model.

and zero elsewhere. When the impulse response of one of these BPFs is sent into the

feedback delay loop, it will be delayed by Lm and scaled by gm = e−αLm (α is the mode’s

decay), effectively “stitching” together the exponentially decaying sinusoid. This is not

exactly the case when fractional delay filters are used, but use of the same fractional delay

filters in the BPF and feedback loop ensures the correct impulse response.

If all of the resonant modes are retained in this model, the impulse response is

exactly identical to that of the SDL model in Figure 4.12. Even with the approxima-

tions made, the feedforward and feedback loops in this model cancel each other out, and

the resonator, derived from the original model describes the mode’s impulse response.
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Figure 4.16: A simple bi-directional DWG model with lumping of elements and simplifi-
cation of the reflection at the nut. (After models in [2, 3].)

Indeed, any choice of a filter structure and its inverse before and after the resonating fil-

ter would ensure the correct impulse response; however, use of the feedback delay loop

maintains the physical interpretation of a propagating wave, permitting interactions such

as bowing.

Extensions of this derivation procedure to bi-directional models, as well as possi-

ble variations in designing such BWG models are discussed in the following sections.

4.4.2 Bi-Directional Implementation

A simple bi-directional DWG model is shown in Figure 4.16 (and further de-

scribed in Section 2.4.3). Note that the delay from the excitation point to the bridge has

been commuted to the other side of the bridge filter for simplicity in implementation;

this will result in an output that is equivalent, but advanced in time. The previously de-

scribed BWG derivation procedure may be adapted here by following the same procedure

of introducing an identical system and its inverse, performing a PFE, and distributing el-

ements.
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Figure 4.17: An equivalent BWG model of the bowed string. The BPF blocks may be
derived by the described methods.

An example bi-directional BWG model is shown in Figure 4.17. As with previous

BWG implementation, lossless propagation is modeled with delay, and losses by scalar

gain. Inversion of the DWG model (for BPF design) may be carried out by using an

SDL [4] decomposition, splitting the DWG model of Figure 4.16, into a feedforward

excitation position filter and a string loop. Note that for stability, the nut side should

actually have some loss (such that the nut-side gain is less than one for all frequencies).

One simpler approach to designing a bi-directional BWG is to use only the sys-

tem’s string loop and the inverse of the string loop, in place of the full SDL decomposi-

tion and inverse, in designing the BPFs. Where approximation of propagation and loss

is made, this will not result in a BWG system with an impulse response identical to an

equivalent DWG model. However, use of the string loop only removes the influence of

interaction position (which does not affect modal frequencies or decays) in the design of
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the BPF. Thus, changes in interaction position may be handled by only adjusting position

in the propagation-modeling portion of models.

4.4.3 Further Variations

Using the general procedure given above to design BWG models, variations in

implementation may be made. With BWG modeling intended as an efficient synthesis

method, the degree of approximation in model design, as in Section 4.4.1, is subject to

choice. If computational complexity was of no concern, one could create a model by

the above procedure (using an entire model, instead of just a string loop), sans the step

of approximating propagation paths with only delay and gain, that produced, within

precision limits, identical results to a DWG model, even under nonlinear excitations.

Lossless propagation modeling, implemented by regular digital delays, dispersive

allpass filters, and fractional delay filters, presents a number of design choices to simulate

accurate wave travel. While phase delay is perhaps the most important parameter in such

propagation modeling [146], group delay, transients and other various properties of a

digital propagation model may affect the output. While the implementations here focus

on specifying phase delay to be exact at the modal frequency of interest, more complex

models could further specify group delay at the frequency of interest. Additionally, these

and other properties could be optimized within a frequency band about the modal fre-

quency. Since decaying sinusoids contain energy not just at the modal frequency, but

around them, the entire frequency response of a BWG may have some effect on the syn-

thesized output. This is further discussed in Appendix B.

In a similar fashion, loss in BWGs need not be modeled by a scalar gain set to the

round-trip loss of a disturbance at the modal frequency of interest only. Filters that bet-

ter capture frequency-dependent losses in a suitable frequency band may offer improved
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results. Use of such filters, or more complex propagation modeling filters, however, can

increase the complexity of both BWG design and implementation.

Beyond choice of how to implement the various properties of a BWG model,

there is cause in variation of certain properties themselves, such as delay, dependent on

the intention in model design. When designing a BWG model to be equivalent to a

DWG model, if the respective phase delays of the BWG delay lines are set to that of the

DWG model at the modal frequencies, then the modeled waves will not meet themselves

exactly in phase. This is due to the “mistuning” of DWG models, described in detail in

Appendix A, whereby the modal frequencies are influenced by the loss characteristics.

Motivated by the principle of wave train closure, one may justify alternatively setting the

phase delay of a BWG’s delay line to be equal to an integer multiple of wavelengths of the

modal frequency. In a simple KS-type BWG model, with all propagation and loss in the

feedback path, as in Section 4.4.1, the impulse response of each BWG is unaffected by the

implemented phase delay since the feedforward and feedback paths cancel one another.

However, in the case of nonlinear or distributed interactions, differences may arise.

By the principle of closed wave trains, propagation lengths in BWG models

should be chosen based on the wavelength of the modal frequency. The near-closure

of wave trains in DWGs primarily arises from the approximations and digitization in de-

sign of DWG models themselves. Therefore, if one wanted, for example, to model a string

with no stiffness (i.e., a string with harmonic spectra) and a fundamental frequency of 441

Hz with BWGs, the BWG parameters could be drawn directly from an analog physical

model, rather than from a DWG model. However, when comparing the performance of

equivalent BWG and DWG models, in the interest of emulating the DWG model, tun-

ing of delay lengths in the BWG model to the phase delay of the DWG model may be
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Figure 4.18: An equivalent BWG model of the bowed string, after [6].

justified. Simulations in Section 4.4.5 explore these implementation variations in delay

length, comparing equivalent BWG and DWG models.

4.4.4 Comparison to Previous Implementations

To compare BWGs derived from DWG models with previous implementations of

BWGs, this section presents simulation results of bowed bi-directional BWG and DWG

models, using the simulation of the DWG as an ideal. Comparison of linear interactions

is omitted since the BWG models proposed here may be made to have identical responses

as DWG models, as is obvious from derivation (cf. Section 4.4.1).

The object model here is of a bowed string with no stiffness tuned to 441 Hz.

The DWG model is implemented as in Figure 4.16 with no allpass dispersion filter, and

losses modeled by a second-order linear phase filter. The BWG models are designed using

the ideal harmonic modal frequencies. The DWG-inspired BWG model is designed using

the string loop-only topology for BPF design. The bi-directional implementation of a

reson-based BWG model is shown in Figure 4.18 [6].
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Simulations of these models appear in Figures 4.19 to 4.25, showing velocity en-

velopes, steady-state waveforms, and spectrograms for the simulation of a string tuned to

441 Hz. The velocity envelopes are calculated by finding local minima and maxima in

the time-varying waveforms. The steady-state oscillations show two pseudo-periods of

the waveforms in the “steady-state,” where there is little change in the output. Note that

we have omitted units of velocity, as this is a synthetic example, with arbitrarily chosen

values. The bow model uses the table method of [67] as implemented in the Synthesis

Toolkit [124, 147].
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Figure 4.19: The velocity envelope of the DWG model’s output.
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Figure 4.20: The velocity envelope of the proposed BWG model’s output.

93



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2
BWG Bowed String −− BW = 20 Hz

Time (sec)

V
el

oc
ity

(a) 20 Hz bandwidth BPFs.
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(b) 100 Hz bandwidth BPFs.
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(c) 440 Hz bandwidth BPFs.

Figure 4.21: The velocity envelope of a BWG model’s output, using a constant-gain res-
onator bandpass filter with varying bandwidths.
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Figure 4.22: Steady-state oscillations of the DWG model’s output.
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Figure 4.23: Steady-state oscillations of the proposed BWG model’s output.

Clearly, the model presented here better simulates the attack of the DWG model,

whereas many bandwidth choices for conventional BWG implementations result in slow

attacks. The steady-state oscillations show noticeable differences in all BWG implementa-

tions. Listening to the resulting waveforms, there is a clear difference between the output

of the DWG model and the proposed BWG model, with the proposed model exhibiting a

“harsh” timbre and much energy between modes. Many simulations of the conventional

BWG model yield obviously undesirable results, but some appear to sound acceptable

once the steady-state is reached.

95



2.721 2.7215 2.722 2.7225 2.723 2.7235 2.724 2.7245 2.725 2.7255 2.726
−0.4

−0.2

0

0.2

0.4
BWG Bowed String −− BW = 20 Hz

Time (sec)

V
el

oc
ity

(a) 20 Hz bandwidth BPFs.
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(b) 100 Hz bandwidth BPFs.
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(c) 440 Hz bandwidth BPFs.

Figure 4.24: Steady-state oscillations of a BWG model’s output, using a constant-gain
resonator bandpass filter with varying bandwidths.
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Figure 4.25: Simulation spectrograms. The biquad-based BWG model shown is that with
a 100 Hz bandwidth, chosen as the best sounding biquad implementation. Black rep-
resents 0 dB; white represents -60 dB and below. Note the vibrato-like effect using the
proposed topology, as well as the improved attack characteristics.

4.4.5 Simulations

To examine the behavior of variation in model and performance parameters, this

section presents simulation results of variably designed DWG-inspired BWG models.

Bowing of a simple DWG string model, as in Figure 4.16, is compared to comparably

designed bowed BWG models. The variations in BWG model are labeled as follows:
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Type A The BPFs are designed using just the string loop.

Type A1 Phase delay is set to correspond to a multiple of each modal frequency’s

wavelength.

Type A2 Phase delay at each modal frequency is equal to that of the DWG.

Type A3 Parameters, including modal frequency, are set to correspond to an ideal

harmonic model.

Type B The BPFs are designed using the string loop and excitation position filter.

Type B1 Phase delay is set to correspond to a multiple of each modal frequency’s

wavelength.

Type B2 Phase delay at each modal frequency is equal to that of the DWG.

Type B3 Parameters, including modal frequency, are set to correspond to an ideal

harmonic model.

All bowing simulations use a simple memoryless “bow table” method that ignores

hysteresis [2]. The method implemented for bowed strings in STK [124, 147], and de-

scribed in [148] is used here. This method models the junction of the bow and medium

as a nonlinear, signal-dependent scattering junction [67]. The absorption coefficient, µ,

of this junction may be calculated as a function of the differential velocity of the bow and

the waves entering the junction , as well as the pressure of the bow, by the formula,

µ(∆v, p) =min
�

[ |∆v(5− 4p)|+ 0.75]−4, 1
�

. (4.12)

As many of the simulations compare digital-domain models, we neglect the units of pres-

sure and velocity, since physical properties are consistent between models. Bow velocity

is dynamically changed from the start by an envelope, as in STK [124, 147].
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441 Hz String with no Stiffness

Here, a simple bowed string with no stiffness is modeled. This is achieved using

a DWG model as in Figure 4.16, without a dispersion filter and a near-unity gain (i.e.,

0.9999) at the nut. Bowing occurs at a point 0.14 along the string, where 0 indicates the

location of the bridge, and 1, the nut. As the string is tuned (at the fundamental) to 441

Hz, with a sampling rate of 44.1 kHz, the delays in the DWG model are all pure integer

delays. The bridge filter is implemented with a second-order linear phase filter. The

choice of tuning, bow position, and stiffness allows the BWG models (excepting Type A1

and B1) to also be implemented with integer delays only, so as to prevent any possible

effects due to choice of fractional delay filters.

The simulation results, including amplitude envelopes, spectrograms, and plots

of steady-state pseudo-periods appear in Appendix C.1. It may be seen that BWG Types

A1 and A3 give very similar results. They more often display a ramp-like waveform as

in the DWG model, as compared to the other BWG types. The amplitude envelopes also

more closely follow that of the DWG model. The Type B models produce simulations

that seem to significantly differ from the DWG model, with the amplitude envelope often

growing to values well beyond that of the DWG model’s.

The results from this example seem to suggest that use of the string loop only

in designing BWGs may be best. Additionally, the results indicate that phase closure, as

in Types A1 and A3, may be an especially important feature in BWG models. This, of

course, aligns with the perspective of BWGs modeling closed wave trains [6, 7, 70]. As

with the simulation of Section 4.4.4, the BWG outputs here exhibit a “harsher” timbre as

compared to the DWG, with significant spectral energy between modes.
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441 Hz String with Stiffness

Here, a bowed string model is implemented as in the previous section, but with

a second-order allpass dispersion filter and the fundamental tuned via setting phase delay

at 441 Hz. The simulation results, including amplitude envelopes, spectrograms, and

plots of steady-state pseudo-periods appear in Appendix C.2. In this example, the Type

B BWGs designed using the full SDL decomposition, as in the non-stiff example produce

steady-state oscillations that do not appear to resemble (in any of the cases), the DWG

model. However, the amplitude envelopes are better in this case. Still, the results from the

Type A BWGs more closely resemble that of the DWG model. As with previous results,

the BWG simulations create “harsher” timbres. Interestingly, the disparity between the

Type A1 and Type A2 BWG models is greatly reduced here.

4.5 Concluding Remarks on Object Re-Sonification

While the newer DWG-derived BWG models may exhibit better attack character-

istics in the given simulations of nonlinear excitation, previous implementations seem to

currently offer the possibility of better sounding steady-state outputs. This, however, re-

quires careful choice of bandwidth for the biquad BPFs. As discussed in Section 4.4.3, the

BWG model described here could be adapted to give a faithful reproduction of a DWG

model by skipping approximating steps, but at great computational expense, defeating

the purpose of BWG models. This warrants further study of the effect of approximating

steps in the design of such BWG models.

Choice of BWG model for applications may be best to consider on a case-by-

case basis. For many musical applications, timbre of the steady-state oscillations may

be an important feature, and nonphysical variations may even be aesthetically pleasing.

Where more physically-based accuracy is important, use of the DWG-derived models

seems appropriate, and is certainly so for linear interactions at a point.
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Chapter 5

RE-SONIFICATION OF EVENTS

This chapter is concerned with the re-sonification of events, contextually defined as the

imparting of energy into a sounding object. Taking a source/filter view of events with

objects, we are thus concerned with estimating the source, i.e., the input or excitation to

sounding object models. With a separation between an object and the event that excites

it, separate transformation or exchange of either component is possible. Methods of

modeling, estimating, and transforming excitations are briefly reviewed, followed by a

novel approach to estimate percussive excitations. This percussive excitation estimation

method relies on linear estimation of system inputs, constrained to a signal-subspace.

The original work herein was first presented and described in [10] and [11].

5.1 Modeling and Transforming Events

Modeling of exciting events is dependent on the object model used. With digital

physical models, events may be modeled by digitization of the exciting phenomenon.

In practice, a measure of approximation may be made. With DWG models, for example,

plucking and hammering may be simulated by loading delay units appropriately to model

each event’s effect on a string, or by more complex interaction models [2]. Interactions

such as bowing may be implemented by simulating bow-string dynamics [63,64,149], in-

cluding any number of simplifications [2,3]. Even arbitrarily chosen or misappropriated

interaction models may be applied to object models for aesthetic purposes [150].

Viewing physical, pseudo-physical, or other models as filters, one may interpret

inputs as exciting events. Such input signals may be physically motivated, empirically

estimated, arbitrarily chosen, or a mixture of these . Consider, for example, commuted

piano synthesis, where the input to a string model includes both the soundboard response

and a signal-based approximation of hammering [2, 151, 152]. A recent example of exci-
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tation modeling may be found in [153], where guitar excitations are estimated from data

and statistically parameterized for expressive and transformative resynthesis.

More perceptually-based spectral (and related) models easily permit temporal

and spectral transformations [39, 40, 79–82, 91] and methods including transient model-

ing [39, 40, 91] are especially suited to capturing impulsive or wide-band exciting events.

Alterations, though, may not illicit perception of event transformation with an invari-

ant object in the absence of explicit consideration of physical or perceptual phenomena.

Thus, physically-based and hybrid models are especially suited for transformation and ex-

change of events, where there is meaningful consideration of the influence of both events

and objects in forming sound [154].

5.2 Estimating Excitations

For purposes of re-sonification, exciting events may be estimated from observed

sounds, for identity resynthesis, event transformation, or use with differing object mod-

els. The task of excitation estimation may be viewed as an application of input estima-

tion, where the output (i.e., a sound recording) has been observed, usually subject to

noise. Thus, one seeks whatever information is necessary to reconstruct the observed

sound using some object model [91]. Herein, methods for excitation estimation as-

suming an exciter/resonator model are assumed, where the resonating object model is

known.

Inverse filtering is one such method for recovering inputs [2, 14, 114]. In a digital

filter model, this constitutes exchanging zeros for poles, and vice versa. (Minimum-phase

zeros are required for stability.) Inverse filtering of the output signal will yield a resid-

ual, which may be used to accurately produce the observed output [2]. However, if a

recording is noisy, estimation of the residual excitation signal will be highly corrupted

by noise, yielding undesirable results. Further extensions to inverse filtering for excita-
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tion estimation are used in [115], where the output is split into sinusoidal and residual

portions.

Least-squares (LS) estimation provides an alternative to inverse filtering, using an

approach based in linear estimation theory to account for the presence of noise. Sound

excitation estimation by LS has been used in [138], where multiple recordings of the

same sound type (a piano note in this case) are aligned and used to find a single estimate

of the excitation. LS estimation finds an estimate of the input signal, that, when it ex-

cites the model of interest, produces an output that is “closest” to the observed output

(minimizing the ℓ2-norm of the error). These and related methods are further described

in [155].

5.3 Estimating Percussive Sound Excitations

Percussive sounds generally include those produced by a short-lived impact. For

example, a struck marimba bar or hammered piano string will produce a percussive

sound. Even many non-percussive sounds, such as that of a plucked guitar, might be

considered percussive-like, due to their limited duration of excitation. Considering the

time-limited nature of percussive sound excitations, one may use this knowledge in re-

sonifying percussive sounds. Note, also, that in estimating modal parameters from sound

recordings, percussive excitations are desirable due to their wide-band frequency content

and short-lived nature, resulting in large portions of recorded percussive sounds being

dominated by the resonant modes of an object.

The short duration of percussive excitations is often considered for re-

sonification. In [2, 36, 138], excitation estimates are truncated after decaying to suffi-

ciently small amplitudes. The estimation procedures used, however, do not explicitly

consider the limited duration of percussive sound excitations. We have therefore pro-

posed a method of estimating percussive sound excitations which constrains the estimates
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to be limited in time [10]. This is presented as a special case of estimating inputs con-

strained to a signal-subspace [11].

5.3.1 Signal Subspace-Constrained Input Estimation

We consider single-input single-output (SISO) discrete-time modal state space sys-

tems of the form

xt+1 = Ft xt +Gt+1ut+1 (5.1)

yt =Ht xt + vt , (5.2)

where xt ∈ R
n is the unobserved state vector at time t , ut is the unknown excitation

signal, and yt is the observed sound or output including the measurement noise, vt . The

system is a state space equivalent of parallel second-order resonators [2], with xt repre-

senting the collection of the internal states of each resonator. We assume zero-mean white

Gaussian noise, although the described method will apply to any zero-mean white noise

process without alteration. The n × n state matrix, Ft ; the n × 1 input vector, Gt ; and

the 1×n output vector, Ht , are assumed to be known or estimable. We then consider the

problem of estimating the excitation signal, ut , for all observed times, t ∈ [1,T ], based

on the noisy sound, yt .

Where ut is constrained to some known signal subspace, it may be represented by

the basis expansion,

ut =
L
∑

i=1

γi (t )ub ,i , (5.3)

where the L basis signals, {γ1(t ),γ2(t ), . . . ,γL(t )}∀ t ∈ [1,T ], span the input signal sub-

space of interest, and each time-invariant coefficient, ub ,i , is a scalar constant. This type

of constraint for input estimation was proposed in [156] and expanded upon in [11]. Us-

ing (5.3), with knowledge of the basis signals, the excitation signal may be reconstructed
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from the coefficients, and an estimate of the excitation signal may be obtained by using

estimates of the coefficients.

Using (5.3), the state update equation, (5.1), may be changed to

xt+1 = Ft xt +Gb ,t+1ub , (5.4)

where

Gb ,t =GtΓt , (5.5)

Γt =
�

γ1(t ) γ2(t ) . . . γL(t )

�

, (5.6)

ub =
�

ub ,1 ub ,2 . . . ub ,L

�T

. (5.7)

The time-variance of the input is then represented in the newly formulated input matrix,

Gb ,t , to which the time-varying portion of the excitations signal’s representation, Γt , has

been moved.

To express the observed output directly as a function of the coefficient vector, ub ,

we consider the alternative system formulation (assuming x0 = 0),

Ct+1 = Ft Ct +Gb ,t+1 (5.8)

yt =Ht Ct ub + vt (5.9)

where

C1 =Gb ,1. (5.10)

The collection of all observed outputs at time t may then be represented as

y1:t =A1:t ub + v1:t , (5.11)
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where

y1:t =
�

yT
1

yT
2

. . . yT
t

�T

, (5.12)

v1:t =
�

vT
1

vT
2

. . . vT
t

�T

, (5.13)

A1:t =





















H1C1

H2C2

. . .

Ht Ct





















. (5.14)

A LS estimate (the best linear unbiased estimate) of ub , represented at time t by ûb ,t , is

then the solution to

ûb ,t = argmin
ub ,t

‖y1:t −A1:t ub ,t‖
2. (5.15)

Calculation of this estimate may be done off-line via solution of the associated normal

equation, or estimates may be obtained at each time step by using a recursive least-squares

(RLS) algorithm [11]. The estimate of the entire excitation signal may be reconstructed at

any time by substituting the estimates for the ub ,i in (5.3). Note that the computational

complexity of estimation is dependent on the chosen basis expansion and method of

finding a LS solution.

Recursive Input Estimation

The associated RLS equations to estimate ub are

ûb ,t+1 = ûb ,t +Kt+1

�

yt+1−At+1ûb ,t

�

(5.16)

Kt+1= Pt A
T
t+1
(I+At+1Pt A

T
t+1
)−1 (5.17)

Pt+1 = (I−Kt+1At+1)Pt (5.18)
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where

At =Ht Ct (5.19)

Pt = (A
T
1:t

A1:t )
−1. (5.20)

Note that this algorithm has the same complexity at each time step. Typical recursive

algorithms for obtaining smoothed estimates (i.e., optimal estimates based on all obser-

vations) require a backwards smoothing step [157] or a forward filtering process that

grows in complexity [158]. Where the elements of ub may be directly interpreted as

sample values of the input (such as in the case γ i (t ) = δ(t − i)), the above RLS algorithm

amounts to finding optimal smoothed estimates of the entire input signal with a fixed

complexity forward filtering process, without need for a backwards smoothing process.

The standard RLS algorithm, however, may not necessarily be applied at all times, as

discussed below.

Rank-Deficient Recursive Estimation

Where A1:t , analogous to an observability matrix, does not have full column rank,

the RLS algorithm is unable to calculate Pt in (5.20), due to the singularity of AT
1:t

A1:t .

This will always occur when estimating ub at some time, τ, where, for any i , γ i (t ) =

0∀ t ≤ τ. That is, solving for values of the input that have not occurred or been observed

is ill-posed (without any further assumptions about the structure of ub ). Consider for

example, a single-input system with γ i (t ) = δ(t − i), such that each ub ,i represents the

input’s value at time i . Estimating any ub ,i that corresponds to a future unobserved value

amounts to prediction, and with no further assumptions about the input, the matrix

inversion of (5.20) may not be carried out.

To address such situations in recursive estimation, one may find the minimum-

norm LS estimate of ub . (Use of the minimum-norm estimate motivates normalizing the

energy of the basis signal vectors.) Recursive estimates of ub may be found by using the
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method of [159] to recursively compute the Moore-Penrose pseudoinverse of AT
1:t

A1:t .

The method of [159] recursively calculates the singular value decomposition (SVD) of

AT
1:t

A1:t to find its pseudoinverse and obtain LS estimates of the unknown variable. With

the singular values of AT
1:t

A1:t calculated at each step, one may easily determine when the

inversion of (5.20) is well-conditioned and the more efficient regular RLS algorithm may

be applied.

Mismatched Constraint

In practice, one may not have full knowledge of the signal subspace, S , to which

the input is constrained. In such cases, one may only have access to an estimate, Ŝ , of

the signal subspace S . In this section, we consider the effect of applying the proposed

estimation procedure when Ŝ 6= S . In these cases, in lieu of Γt , the estimation proce-

dure uses a mismatched BE, represented by the time-varying matrix, Γ̂t , of column-wise

ordered basis vectors that span Ŝ .

We first consider cases where the signal subspace S is “overestimated,” i.e.,

S ⊂ Ŝ . (5.21)

In such cases, we choose to represent Γ̂t in block matrix form by

Γ̂t =
�

Γt Ψt

�

, (5.22)

whereΨt is a matrix of time-varying vectors not in the signal subspace of the input. That

is, the input at time t is a linear combination of the columns of Γt , but the estimation

procedure assumes the input is in the signal subspace spanned by the basis signal vectors

of Γt in addition to the extraneous basis signal vectors of Ψt .
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Using Γ̂t as defined in (5.22), it may be shown that the expected value of the final

estimate (i.e., the estimate at time T ) obtained by (5.15) is

E(ûb ,T ) =









ub

0









. (5.23)

Thus, the estimation procedure is unbiased in such cases of “overestimation.” The coeffi-

cients associated with the extraneous basis signal vectors of Ψt have an expected value of

0; the coefficients associated with Γt have an expected value of ub , the coefficients of the

input signal’s correct BE.

We consider the signal subspace S to be “underestimated” when

Ŝ ⊂ S . (5.24)

Choosing to represent Γ̂t by

Γt =
�

Γ̂t Bt

�

, (5.25)

one may interpret such cases as omitting some of the basis signal vectors of Γt in the

estimation procedure. The input at time t may then be expressed as

ut = Γ̂t u
Γ̂
b
+Bt u

B
b
, (5.26)

splitting the input into contributions from the selected basis signal vectors and the omit-

ted basis signal vectors. In this case, ûb is then an estimate of uΓ̂
b
.

Given (5.25), the outputs may be expressed by

y1:T =AΓ̂
1:T

uΓ̂
b
+AB

1:T
uB

b
+ v1:T , (5.27)

where AΓ̂
1:T

and AB
1:T

represent the matrix of (5.14), calculated using Γ̂t and Bt , respec-

tively The expected value of the estimated basis coefficients is then

E(ûb ,T ) = uΓ̂
b
+AΓ̂†

1:T
AB

1:T
uB

b
, (5.28)
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where (†) indicates the Moore-Penrose pseudoinverse. Thus, ûb ,T may be a biased esti-

mate of uΓ̂
b
, depending on the value of AΓ̂†

1:T
AB

1:T
uB

b
.

Application to Estimating Percussive Sound Excitations

Applied to the estimation of percussive sound excitations, the signal subspace

constraint may equivalently be seen as a constraint on the duration of the excitation.

Aligning the start of the excitation at time t = 1, we may then use, among other possible

choices, the basis signals,

γi (t ) = δ(t − i), (5.29)

such that each ub ,i is then the sample value of the excitation at time t = i . The maximum

duration, L, of the excitation is assumed to be known a priori or estimable from the

recording. Even when the duration is not known, overestimating can still give improved

results, as shown below.

5.3.2 Evaluation of Synthetic Data

To assess the performance of the described constrained estimation method, con-

sider a synthetic example where the system model and excitation duration are known.

The system model used is a time-invariant lumped modal model of an A4 (440 Hz) piano

string. An excitation signal of 20 ms of exponentially decayed white noise was applied to

the model, from which a clean sound was synthesized. Simulated noisy recordings were

then generated using additive white Gaussian noise (AWGN), and the excitation signal

was estimated. The constrained estimation method was used, along with unconstrained

LS estimation [138], and inverse filtering [2, 14]. Since we are considering a case where

the duration of the excitation is known a priori or estimable, all estimates are truncated

to the known duration. Typical excitation estimation methods for resynthesis employ

truncation after estimation, based on energy levels [2, 14]. This analysis additionally

considers the mismatched case where the duration of the excitation is overestimated to
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40 ms, as durations used in practice are likely to be estimates or heuristically determined

values.

Comparing the results obtained with the constrained method and unconstrained

LS, the excitation estimates themselves appear quite similar in the time domain, with

our method often having a marginally smaller mean square error (MSE). However, the

constrained method gives improved estimation of the excitation signal in bands about the

model’s resonant frequencies; the effect of this becomes discernible in the resynthesized

signal. The inverse filter residual estimate was found to be less accurate than the other

estimators; this may be in part due to an inexact inverse filter being used for guaranteed

stability [2].

As the considered example presents the greatest discernible difference between

methods at the resonant modal frequencies, and since transient portions of the signal are

difficult to accurately reproduce without a high signal-to-noise ratio (SNR), we examine

the spectra of the resynthesized signals about the modes. Inaccurate estimation of the

excitation energy at the resonant frequencies results in a noticeable timbral difference

between the resynthesized and original signals. To quantify this effect, we use a spectral

distance measure we call the Modal Log-Spectral Distance (MLSD), defined as

M LSD =

√

√

√

√

√

1

M

M
∑

m=1



10 log10

 

P̂ ( fm)

P ( fm )

!



2

, (5.30)

where P and P̂ are the power spectral density of the original and resynthesized signals,

respectively, and each fm is one of the M modal frequencies. This is similar to the RMS

Log-Spectral Measure in [160], but evaluated only at the modal frequencies. (Note that

the excitation’s short duration ensures that it has little effect on the decay of the modes.)

The resynthesized signals are scaled such that the MLSD is minimized, as we are inter-

ested in comparing the modal amplitudes relative to one another, and not the overall
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Figure 5.1: Average MLSD of resynthesized signals, as compared to the original noiseless
signal, using different excitation estimates. Use of the proposed constrained estimator,
even with a mismatched duration, gives improved results over unconstrained LS estima-
tion and inverse filtering. (100 simulations per point.)

volume. Figure 5.1 shows the average MLSD for the resynthesized sound using the exci-

tations estimated with the constrained method, unconstrained LS, and inverse filtering,

with the analyzed signal at various SNRs. Additionally, Figure 5.1 shows the result of

resynthesis using a mismatched constraint, overestimating the excitation duration to be

doubled (40 ms). These results show an improvement using the constrained estimation

method, including the case where the constraint is mismatched. Not shown in Figure

5.1, our method also gave an improved MLSD over the other estimation methods when

their estimates were truncated to 40 ms.

To qualitatively confirm this estimation method’s use for resynthesis, informal

listening tests were performed to evaluate a set of results from the previously described

synthetic piano example. Excitations were estimated from a noisy sound example with

an SNR of -6 dB using the previously described methods; these excitations were then

used to create resynthesized sounds. Two participants were played pairs of resynthesized
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(a)Original (clean) synthesized signal.

(b)Original signal in noise (-6 dB SNR).

(c)Resynthesized signal using our excitation estimation method.

(d)Resynthesized signal using the unconstrained LS excitation estimate.

Figure 5.2: Normalized signal spectrograms. Black indicates 0 dB; white indicates -60 dB
and below.
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sounds and asked which was most similar to the original signal without noise. The sound

created using the constrained estimate (with the correctly matched duration) as the excita-

tion was chosen over the sounds using the other estimated excitation signals in all but one

trial; in two repetitions of the same trial, however, the participant chose the sound made

with our proposed estimate. Participants noted difficulty in choosing between sounds

using the matched and mismatched constrained estimator, further indicating the utility

of our method, even with some mismatch in duration. Spectrograms of the original

signal, the noisy signal, and the resynthesized signal, using the constrained method and

unconstrained LS, are shown in Figure 5.2, for visual comparison of the time-frequency

characteristics of the signals. The difference in the levels of the 6th and 7th harmon-

ics of the two resynthesized signals, as compared to the original signal, is perhaps most

noticeable. These sounds may be heard at [161].

5.3.3 Evaluation of Recorded Sounds

When applying this method to recorded sounds, the modal system models and

duration of the excitation may not be known. In these cases, one may estimate them.

Modal systems are typically estimated from data by fitting decaying sinusoids to a sound

recording [2, 8, 21, 120]. Here, an exponential curve is fit to the progression of each of

the mode amplitudes across successive frames.

This method has been applied to recorded sounds of percussively struck objects,

recorded at 44.1 kHz, including a tuning fork and large serving fork. These sounds may

be found at [161]. The excitation estimates were found assuming a 20 ms duration (cho-

sen based on manual inspection of the sounds) and by using a modal model estimated as

in [8]. Informal evaluation of these resynthesized signals in comparison to the original

recordings has supported the validity of our estimation method. In the case of recordings

with a very high SNR, it has been observed that there is very little discernible differ-
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ence between resynthesis with the constrained estimation method and an unconstrained

estimator.

5.4 Discussion

The constrained estimation method described here has been shown to be suffi-

cient for recovery of percussive events, performing particularly well compared to similar

methods when sound recordings are very noisy. This implies suitable application of this

method to re-sonification of percussive sounds for de-noising purposes. In using this

method, accurately estimating the duration of excitation signals is important to ensure

matching the constraint to actual excitations. Using a constraint that is underestimated

(too short, compared to the true duration) will bias the estimate of the excitation [11],

therefore, overestimation of the duration of excitations may be preferable to underes-

timation. In the absence of previously derived empirical or heuristic estimates of the

duration of percussive sound excitations, the duration may be estimated by transient de-

tection [40] or examination of the unconstrained estimator [2].

In applications where the properties of the object are unknown, re-sonification

could likely be improved by joint system and input estimation [162, 163], with proper

incorporation of constraints. A motivation for examining percussive sounds, though,

is the ease of using spectral analysis methods to examine the late response of sounding

objects to estimate object model parameters (i.e., modal frequencies and decay rates) [2].

Other improvements might be had through parameterization or classification of many

estimated excitations, as in [153] and [115].
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Chapter 6

CONCLUSION

Approaches to the re-sonification of objects, events, and environments have been pre-

sented, including original contributions. In consideration of re-sonification at the en-

vironmental level, an approach to soundscape design and synthesis, using acoustic, se-

mantic, social, and geographic information was described. For the modeling of objects,

the use of BWGs was considered, and it was shown how to improve their implementa-

tion to more appropriately apply methods applicable to modal and DWG models. To

work toward event re-sonification, specifically interactions with sound models, an origi-

nal method of estimating percussive sound excitations that results in improved resynthe-

sis, especially in the presence of noise, was presented.

As with any subject, there are still lingering questions and areas ripe for future re-

search. With regard to constructing BWG models that more closely mimic DWG models,

as mentioned in Section 4.4.3, one could make no simplifying approximations in model-

ing propagation to provide identical results. This would be computationally costly, but

may be useful in separating the various modes for analytical or (likely offline) musical

purposes. Still, a less simplified approximation of propagation paths might yield better

results in some situations. This has not been extensively explored, given the number of

approaches and parameters to consider, with an eye on generality. Even the proposed

implementation of BWG models could be explored for further object and nonlinear in-

teraction simulations. Application of the BWG model described here for re-sonification

involving linear exciting events allows identity resynthesis, but the fidelity of nonlinear

interactions may vary.

For estimating object models and events, more methods could be explored, in-

cluding joint estimation methods. The described constrained estimation method relies
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on a modal object model that is separately estimated or known a priori. Joint estima-

tion may offer improvement in suggested de-noising applications where the object model

is unknown. Additionally, application of the general estimation procedure, where the

input is limited to a signal-subspace, to contexts beyond percussive excitations could be

examined.

The contributions described of this work apply to but a few of the existing meth-

ods and approaches to re-sonification. One needs to only look at the plethora of ex-

isting literature on the subject, a sampling of which is referenced here, to see evidence

of long-held interest and work in re-sonification. A completely general panacea for re-

sonification at all scales that considers physics, perception, ecology, and other sonic per-

spectives may not be feasible. However, the constant increasing of computational re-

sources and availability of information better permits improvement and unification of

re-sonification methods. Various contributions such as those described here, serve to

further specific applications, while moving toward generality.
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and associated audio for digital storage media at up to about 1,5 Mbit/s âĂŤ Part
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APPENDIX A

POLES AND RESONANCE IN DIGITAL PROPAGATION MODELS
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This appendix serves to describe the behavior of poles and related spectral peaks,

or resonances, in digital delay-based propagation models. Specifically, the departure of

pole angles and resonant frequencies of digital delay-based propagation models from ex-

pected harmonically related values, due to modeling of losses, even when phase delay

is constant across all frequencies, is examined. As discussed below, this deviation is of-

ten very minor, perhaps imperceptible, and sometimes considered desirable; however,

as banded waveguides separately model the modes of a system, accuracy in tuning may

be important in model comparison. Additionally, the ranging possibility of transforma-

tions of and nonlinear interactions with sounding object models warrants caution and

consideration of this phenomenon when designing and analyzing such models. Though

focused on the effects of loss-modeling elements, alteration of poles and models due to

lossless, dispersive elements is also discussed.

The rest of this appendix is organized as follows. First, the tuning of partials in

analog systems and models is briefly described. This is followed by an examination of

poles and resonances in digital delay-based propagation models. The appendix concludes

with a discussion of this behavior, as well as its importance and perceptibility.

A.1 Analog Systems and Models

Analog modeling of losses in strings is usually achieved by the introduction of

additional terms to the one-dimensional wave equation to approximate the loss of energy

to terminations, drag, sound radiation, and friction [2, 60]. Whereas even-order terms

correspond to dispersion, odd-order terms are associated with losses, and only a few typ-

ically suffice for good approximation [2]. While these terms primarily model losses, and

therefore the decay of partials, they also affect tuning [60, 101].

In analog string models, a first-order time derivative gives rise to frequency-

independent loss (i.e., the same loss for all frequencies), and higher, odd-order derivatives
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induce frequency-dependent losses. Considering this, Ruiz proposed a string model of

the form (note that a fourth-order term to model dispersion has been omitted) [60]:

∂ 2y

∂ t 2
= c2

∂ 2y

∂ x2
− 2b1

∂ y

∂ t
+ 2b3

∂ 3y

∂ t 3
. (A.1)

This model, however, is ill-posed, and its finite difference digitization is prone to insta-

bility, particularly at high sample rates [1, 2]. Therefore, (A.1) is commonly replaced

by
∂ 2y

∂ t 2
= c2

∂ 2y

∂ x2
− 2b1

∂ y

∂ t
+ 2b2

∂ 3y

∂ x2∂ t
, (A.2)

where a mixed-derivative term replaces the third-order time derivative [61]. The coef-

ficients b1, b2, and b3 may all be found experimentally or based on knowledge of the

modeled system.

Given its use in more recently developed finite difference models [1, 111], we

consider the analog model of (A.2). Where the string described by (A.2) is “hinged” [61]

or “pinned” [1] at the ends (x = 0, L), such that the boundary conditions are

y(0, t ) = y(L, t ) = 0 (A.3)

∂ 2y

∂ x2
(0, t ) =

∂ 2y

∂ x2
(L, t ) = 0, (A.4)

it will have modal frequencies (i.e., the imaginary component of the system’s poles) of

the form

ωn =

Ç

−
�

b1+ b2β
2
n

�2
+ c2β2

n
, (A.5)

where

βn =
nπ

L
, (A.6)

with associated exponential decay rates

σn = b1+ b2β
2
n

(A.7)
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Table A.1: Physical parameters of an example C4 string [1]

Parameter Value Units
c 329.6 ms
b1 1.1 s-1

b2 2.7× 10−4 m2/s
L 0.63 m

for all integers n 6= 0 [1]. From (A.7), it is clear that the first-order time derivative is

associated with frequency-independent losses and the mixed derivative with frequency-

dependent losses. The inclusion of either or both loss terms results in the modal fre-

quencies being a nonlinear function of partial number, n, as defined by (A.5). Thus, the

described string will have inharmonic modal frequencies; however, the deviation from

the harmonic modes of a similar, lossless string is usually minute.

Consider a C4 piano string, such as the one given in [1], with the physical param-

eters listed in Table A.1. (Note that stiffness is ignored.) The modal frequencies of this

model increasingly stray from their harmonic counterparts as frequency increases, but

the mistuning is less than 0.000110 cents from 0 to 22050 Hz. Even the 1000th partial at

approximately 261.6 kHz, well beyond human hearing, is mistuned by only 0.0144 cents.

If only frequency-independent losses associated with the first-order term are considered

(i.e., b2 = 0), the mistuning decreases as frequency increases. In this case, the fundamental

is the most mistuned mode, being flat by 0.000387 cents.

As evidenced by this example, losses in analog system models cause a shift in

modal frequencies, away from the exact harmonic frequencies. This shift, however, is

very small and perhaps negligible, especially when compared to any frequency shift due

to dispersion. For many practical purposes, we may consider analog string models and

similar systems without stiffness or dispersion to exhibit harmonically related modes.
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A.2 Digital Delay-Based Propagation Models

Digital delay-based propagation models include digital waveguide (DWG) mod-

els [2], Karplus-Strong (KS) models [104, 105], single delay-loop (SDL) models [4], and

banded waveguide (BWG) models [6, 7] . As described in Chapter 2, these are all digital

systems that model wave propagation through the use of digital delays in combination

with other elements. With such systems treated as a digital filter, with points of input

and output, the denominator of the transfer function corresponds to a string loop with

all model elements lumped in the feedback path (assuming the model is composed of lin-

ear elements) [4]. The string loop determines the poles, and hence the modal frequencies,

of the model.

When a string loop is composed of integer delays and a scalar gain g , such that

0 < g ≤ 1 , the poles will lie on a circle about the origin, with harmonically related

angles. Thus, the impulse response of the system (a feedback comb filter) will be a sum of

exponentially decaying sinusoids at perfectly harmonic frequencies (including DC), and

the frequency response will have resonances at these same frequencies. This is expected

as all frequencies are delayed by the same amount. Such a string loop corresponds to a

model with frequency-independent loss and no dispersion.

Frequency-dependent loss may be modeled by introduction of a frequency-

dependent filter, such that round-trip loss varies as a function of frequency. Figure A.1

shows a string loop of this type, with the transfer function

S(z) =
1

1−G(z)z−L
. (A.8)

Frequency-dependent phase delay or group delay may be averted by use of zero-phase

filters (or linear-phase filters with suitably adjusted delay lines) [2,123], so as to avoid the

dispersive effects of such on partial frequencies. The pole angles and resonant frequencies,
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Figure A.1: An example string loop with integer delay and a zero-phase loss filter.

however, of such systems are affected by the use of a loss filter. This phenomenon has

been recognized by many [2, 30, 164–166], but overlooked at times [8, 167, 168]

It is important to note that in digital delay-based propagation models, the reso-

nant frequencies are not necessarily the same as the system’s pole angles (i.e., the modal

frequencies or eigenfrequencies). This is a feature common to many types of digital fil-

ters, such as relatively simple resonant biquad filters [30, 123, 126]. The difference be-

tween pole angles and resonant frequencies results from the combined effect of all of

a system’s roots. In a simple second-order autoregressive filter with complex-conjugate

poles, for example, the “skirts” of the resonances (one of which is at a negative frequency)

caused by the two poles interfere with one another [30, 123], shifting the spectral peak.

In general, this disparity is lessened in systems when poles are moved closer to the unit

circle and further away from one another.

A.2.1 Resonances

The frequency response of a system as in Figure A.1, with L = 32 and G(z) =

0.95[0.24z1+ 0.52+ 0.24z−1], is shown in Figure A.2, with dashed lines indicating the

expected harmonic frequencies (i.e., the frequency 2π
L

and its subsequent harmonics).

Though the effect is quite slight, it may be seen that the peaks, especially those at the
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Figure A.2: Frequency response of a string loop model with a linear-phase loss filter.

more damped, higher frequencies do not exactly align with the expected harmonic fre-

quencies. Modeled after a system in [30], this simple example with a second-order loss

filter illustrates the inharmonicity of resonant peaks in propagation models. Following

the principle of wave train closure [54,70], one might expect the resonant frequencies in

such propagation models to occur at the expected harmonic frequencies, where traveling

waves meet themselves in-phase and interfere constructively. However, when frequency-

dependent losses are low-pass in nature, the lesser attenuation at a lower-than-harmonic

frequency combined with its almost maximal self-interference may be greater than the

combination of more attenuation and purely constructive interference at the nearby har-

monic frequency.

The emergence of inharmonically-related resonant frequencies in propagation

models with constant phase delay has been noted in previous works. In [30], Steiglitz

illustrates that in a Karplus-Strong model with a linear-phase loss filter, the resonances

do not align with a perfectly harmonic progression, particularly for systems with a small

phase delay. Additionally, in [166], the authors imply that in a DWG-type model with

frequency-dependent gain modeled by a linear-phase filter, the resonant frequencies are

not perfectly harmonic, but are nearly so, given that the round-trip gain of most fre-
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quencies is near unity. (The implication arises from the more general treatment of loss-

modeling filters with arbitrary phase response.) These mentions touch on the conditions

for harmonically related resonances, explicitly given below. It follows from these condi-

tions that for models where loss filters have a near-unity [166] or almost flat magnitude

frequency response, the resonances are approximately harmonic.

Conditions for Harmonicity of Resonances

Regarding models of the form of that shown in Figure A.1, where G(z) is a zero-

phase filter, resonances will only align harmonically if at every expected harmonic fre-

quency, the loss filter either has a gain of one or an instantaneously flat magnitude fre-

quency response. To prove this, consider a generic string loop as in Figure A.1, with a

frequency response of the form

S(e jω) =
1

AS(e
jω)
=

1

1−G(ω)e− jωL
, (A.9)

where G(ω) ∈ R is the DTFT of an arbitrary zero-phase filter such that 0 ≤ G(ω) ≤

1 ∀ω ∈R. The resonant frequencies (i.e., the spectral maxima) then occur at the minimal

values of |AS(e
jω)|. To find the resonant frequencies, one may then note that the minima

of |AS(e
jω)| as a function of ω occur at the minima of

|AS(e
jω)|2 = 1− 2G(ω)cos(Lω)+G2(ω). (A.10)

These minimal points occur where

d (|AS (e
jω)|2)

dω
= 2

�

(G(ω)− cos(Lω))
dG(ω)

dω
+G(ω)L sin(Lω)

�

= 0. (A.11)

To determine if the resonant frequencies occur at the expected harmonic frequen-

cies, one may see if the minima of (A.11) are at the frequencies

ωk =
2πk

L
, (A.12)

141



where k = 0,1, . . . , L. Evaluating (A.11) at any ωk , one obtains

d (|AS (e
jω)|2)

dω

�

�

�

�

�

ω=ωk

= 2(G(ωk)− 1)
dG(ω)

dω

�

�

�

�

�

ω=ωk

. (A.13)

Clearly, (A.13) is only equal to zero if either

G(ωk) = 1 (A.14)

or
dG(ω)

dω

�

�

�

�

�

ω=ωk

= 0. (A.15)

That is, the resonances of (A.9) are only at the harmonic frequencies, ωk for k =

0,1, . . . , L, if the loss filter’s frequency response is equal to unity or has a slope of zero at

each ωk . This condition is obviously not met for relatively low-order low pass filters.

Resonance in Models with Nonlinear-phase Elements

The above conditions for harmonicity of resonances in digital-delay based prop-

agation models may easily be extended to conditions for which resonances occur at any

frequency at which the propagation-modeling elements cause a phase shift of an integer

multiple of 2π. That is, if a model as in (A.9) is altered by the introduction of nonlinear-

phase elements in the propagation path, such as allpass filters for fractional delay or stiff-

ness modeling, the resonances will occur at the expected frequencies of phase closure if

G(ω) is equal to one or has a slope of zero at those frequencies.

A.2.2 Poles

The pole angles and radii of digital delay-based propagation models represent sim-

ulated modal frequencies and decay rates, respectively. In analog models with losses and

without explicitly modeled dispersion, the modal frequencies are very nearly harmoni-

cally related (cf. Section A.1). In comparable digital models, a similar nearly harmonic

distribution of poles angles is desirable (from a modeling standpoint). Though the fil-

ters used generally only approximately model losses [2, 114, 115], one may still expect
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wave train closure [54, 70] to account for the modal frequencies. As mentioned above,

however, this is not the case, even when modeling losses via linear-phase filters so as

to have constant phase delay. This behavior of poles in propagation models has been

acknowledged elsewhere, including applications to Karplus-Strong models [165], piano

modeling [164], and reverberation [2].

This mistuning of modes is often slight in practice [2, 164, 165]. As with the

resonant frequencies of a system, the inharmonicity of pole angles may also be lessened

as round-trip losses decrease or sampling rate increases (assuming model parameters are

appropriately adjused). This change in pole angles may be viewed as a result of using an

“approximate conformal map” that does not preserve the linearity of lines that intersect

the z-plane’s origin [2], when modifying a lossless string loop by introduction of a loss

filter. That is, (A.8) may arise from the transfer function,

Su(z) =
1

1− z−L
(A.16)

when making the substitution z−1 ← G1/L(z)z−1, which is not guaranteed to preserve

pole angles [2]. However, when poles are near the unit circle and G1/L(z) is near unity

along the unit circle, as is often the case in models of resonant musical objects, pole angles

shift only slightly [2].

Pole Shift from Fractional Delay and Dispersion Modeling

In digital delay-based propagation models where the propagation distance is not

equivalent to an integer number of samples at any frequency, fractional delay filters may

be used to correct the phase delay of the propagation elements. Discussed further in

Appendix B, such filters generally have nonlinear phase and may be implemented by

allpass filters. By the principle of wave train closure, as with linear-phase models, one may

expect the pole angles in such models to occur at frequencies for which the total phase

response of all propagation modeling elements is an integer multiple of 2π. However, in
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such models where there is loss (i.e., where the poles are not on the unit circle), the poles

will not fall at the ideal locations.

Consider a simple string loop, with scalar loss and an allpass fractional delay filter,

of the form

S f (z) =
1

1− g z−Li F (z)
, (A.17)

where 0< g < 1, Li ∈ Z
+, and F (z) is a real first-order allpass filter of the form

F (z) =
a1+ z−1

1+ a1z−1
. (A.18)

By following typical DWG design methodology, to create an overtone at frequency ωm

that decays by Rm per sample, with a propagation length of k wavelengths, one would

design a feedback loop with total phase delay Lm =
k2π
ωm

and gain, g = RLm
m

. Implementing

the propagation delay as in (A.17), the integer delay will be of length Li , and the phase

delay of F (z) at ωm will be L f , such that Lm = Li + L f . By evaluating (A.17) at the

desired pole, zm = Rm e jωm , one may see that it does not have a pole at this location on

the z-plane. For this point to be a pole requires

z−Li
m

F (zm) = R−Lm
m

e− jωm Lm =
1

g
, (A.19)

which only holds if, in general,

F (zm) = R
−L f

m e− jωm L f . (A.20)

This condition is only met in general for |z | < 1 when F (z) = z−L f , which is not real-

izable in practice. Discussed more in Appendix B, a pole may be placed at the desired

location by concurrent design of the gain, g , and the fractional delay filter.

Pole Analysis of a Simple System

To show that digital delay-based propagation models with constant phase delay do

not always have poles at the expected harmonically-related angles (i.e., the angles that cor-

respond to frequencies with an integer number of wavelengths equal to the phase delay),
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it is shown here that a digital delay-based propagation model with a third-order linear-

phase loss filter does not have poles at angles corresponding to the expected harmonic

frequencies. Note that this discussion focuses on poles that do not lie on the real line of

the z -plane, and it also does not address the added system poles due to the loss filter’s

increase of system order.

Consider a KS or SDL model with integer delay and only a single scalar multiply

to represent frequency-independent loss with a transfer function of the form

H1(z) =
B1(z)

A1(z)
= B1(z) ·

h

1− g z−L
i−1

, (A.21)

where B1(z) represents some FIR transfer function (of order less than L), accounting for

the points of interaction and observation. If g = 1, the poles of H1(z) will be the Lth

roots of unity,

W k
L
= e− j 2π

L
k , k = 0,1, 2, . . . , L− 1, (A.22)

located along the unit circle on the z -plane, every 2π
L

radians. Otherwise, for other values

of g , the poles will be located at

g 1/LW k
L

, k = 0,1, 2, . . . , L− 1, (A.23)

still located every 2π
L

radians, but on a circle of radius g 1/L. These poles occurring at

uniformly-spaced angles will correspond to sinusoids (damped for g < 1) at harmonically-

related frequencies.

If a third-order zero-phase filter (or linear-phase filter for practical implementa-

tion) is used to model losses, the transfer function will be of the form

H2(z) =
B2(z)

A2(z)

=B2(z) ·
h

1− g1z−(L−1)− g0z−L− g1z−(L+1)
i−1

. (A.24)

For the pole angles to correspond to the expected harmonic frequencies, each pole must

be of the form

zk = Rk e− j 2π
L

k = RkW k
L

, k = 0,1, . . . , L− 1, (A.25)
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where 0 ≤ Rk ≤ 1. For each zk to be a pole of (A.24), the denominator must satisfy the

equation

A2(zk) =1− g1R−(L−1)
k

W −k(L−1)
L

− g0R−L
k

W −kL
L
− g1R−(L+1)

k
W −k(L+1)

L
= 0. (A.26)

The expression for A2(zk) may be simplified to

A2(zk) =1− g1R−(L−1)
k

W k
L
− g0R−L

k
− g1R−(L+1)

k
W −k

L
, (A.27)

which may alternatively be expressed as

A2(zk) =1− g0R−L
k
− g1R−L

k
cos
�

2π
L

k
�

(Rk +R−1
k
)+ j · g1R−L

k
sin
�

2π
L

k
�

(Rk −R−1
k
).

(A.28)

Note here, that is a necessary (though not sufficient) condition that for (A.26) to be true,

that

Im{A2(zk)}= 0. (A.29)

For this to hold, at frequencies other than DC and the Nyquist frequency, when g1 is

nonzero, each Rk must then satisfy

Rk −R−1
k
= 0, (A.30)

or alternatively,

Rk =±1. (A.31)

Thus, any modal frequency may only possibly be at the expected harmonic frequency

if its associated pole is on the unit circle, meaning it does not decay and the system is

marginally stable. When this is true of all poles, the transfer function’s denominator

corresponds to a simple feedback comb filter with g1 = 0 and g0 = 1. The system’s poles

can also lie at the expected angles (on a circle about the z -plane’s origin) for other values

of g0 when g1 = 0, corresponding to frequency-independent losses.
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To illustrate the loss filter’s mistuning effect in a system of the form of (A.24) the

loci of the poles are shown in Figures A.3 and A.4 for a system where L= 32 and the loss

filter is varied such that g0 is swept between the values 0.95 · 0.999 and 0.95 · 0.51, while

g1 satisfies

2g1+ g0 = 0.95. (A.32)

More informally, one may consider the loss filter varied between G(z) = 0.95(0.0005+

0.999z−1+ 0.0005z−2) and G(z) = 0.95(0.245+ 0.51z−1+ 0.245z−2). In each figure, the

unit circle and lines corresponding to the expected harmonic pole angles are drawn as

dashed lines. Additionally, the plotted loci shift in color (where available) from black to

blue as g0 is decreased from 0.95 ·0.999 to 0.95 ·0.51. The loci of all of the poles are shown

in Figure A.3, while Figure A.4 focuses on the higher frequency poles which exhibit more

mistuning.

A.3 Perception, Detection, and Modeling of Resonance and Modes

Since the mistuning of partials in propagation models increases as pole radii de-

crease, severe mistuning is generally associated with very fast-decaying modes. Such

rapidly decaying components may be perceived as transients, rather than as quasi-

harmonic components of some sound. Where model parameters are estimated from

sound recordings, fast-decaying modes are generally difficult to identify, due to their

high bandwidth and the presence of noise. In many data-driven physical modeling ap-

plications, such components may even be ignored or non-parametrically modeled, incor-

porated into excitation signals [2, 14]. Primarily affecting high frequencies and highly

damped modes, the mistuning of partials is generally not considered detrimental and is

sometimes regarded as pleasantly affecting the timbre of outputs [169]. Indeed, many

models use nonlinear-phase loss filters, without particular regard for the mistuning of

partials [2, 114].
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Figure A.3: Pole loci of a string loop as the linear-phase loss filter is varied.

In BWG models, with each mode separately modeled, it is much simpler to con-

trol the resonant and modal frequencies of each overtone. When comparing BWG models

to other models, such as DWGs, designed to the same modal data or physical specifica-

tions, care should be taken to ensure correct tuning. In certain applications, perceptual

significance may win over precision of modal properties [42, 170]. However, in applica-

tions with nonlinear interactions or the possibility for transforming objects, otherwise

perceptually irrelevant modes may become perceptible or significantly affect simulation.

In general, physical modeling should favor accuracy without application-specific justifi-

cation for approximation.
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Figure A.4: Detail of high frequency pole loci of a string loop as the linear-phase loss
filter is varied.
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APPENDIX B

FRACTIONAL DELAY IN BANDED WAVEGUIDES
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Fractional delay filters are an important feature of digital delay-based propagation

models, allowing fine tuning of resonant and modal frequencies. With DWG models, for

example, sole use of pure integer delays limits the possible fundamental frequencies of the

model (when sampling rate is not varied), with mistuning being generally worse at higher

frequencies [105]. Use of tunable fractional delay filters, however, allows finer tuning, as

well as better simulation of dynamically varied string length (i.e., glissandi) [68, 171].

This appendix discusses the use of fractional delay filters in BWGs, where signals

are narrowband, with energy focused within some frequency band. Specifically, the use

of first-order allpass fractional delay filters is discussed. Such a filter is the minimally

complex implementation of a LTI fractional delay filter that allows precise phase delay at

the BWG’s modal frequency, without leading to attenuation or instability . Additionally,

the possibility of other types of fractional delay filters for use in BWGs is discussed. More

general treatment of fractional delay filters may be found in [144], and fractional delay

in the context of physical modeling is extensively described in [2, 172]

B.1 Summary of Fractional Delay Filtering

As a typical digital signal is limited to uniformly spaced samples, it may not be

delayed as-is by an amount of time that is not a multiple of the sampling period. The

ideal fractional delay filter, for non-integer delays, has an infinite and anti-causal transient

response, corresponding to samples of an appropriately delayed continuous-time sinc

function [144]. As such a filter is not realizable in practice, practical fractional delay

filters require approximation of this ideal response or properties relating to it.

Common measures of fractional delay include group delay and phase delay. For a

filter with a phase response, Θ(ω), its group delay (measured in samples) is defined as

τg (ω) =−
dΘ(ω)

dω
. (B.1)
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At frequencies where the phase response is smooth, group delay is generally regarded as

the amount by which the amplitude envelope of a sinusoid at the respective frequency is

delayed [123, 173]. Alternatively, the phase delay of a filter, defined by

τp(ω) =−
Θ(ω)

ω
, (B.2)

may be interpreted as the time delay of a sinusoid at digital frequencyω [123]. Note that

for a pure integer delay, the phase response is linear, leading to a group delay and phase

delay that are equal to the integer delay amount. The same is true of linear-phase filters,

excepting solely piecewise linear-phase filters [123].

Implementation of fractional delay filters is generally limited to linear interpola-

tion (FIR) filters and allpass (IIR) filters, with the transient or phase response optimized

in some sense, with reference to the ideal fractional delay filter [2, 144] or measures of

fractional delay. Designs for FIR fractional delay filters abound, but such filters do not

have a flat magnitude response, generally attenuating higher frequencies [144]. As BWG

models focus on slowly decaying modes, with near-unity round-trip gain, such fractional

delay filters are not generally appropriate for modeling propagation in BWGs. Overall

fractional delay filter gains may be adjusted to correct attenuation at the frequency of

interest; however, this may easily lead to instability. Such problems may be overcome by

use of allpass fractional delay filters.

B.2 First-Order Allpass Fractional Delay Filters

For implementation of BWG models, this work considers IIR allpass fractional

delay filters that, when set to unity gain, do not attenuate signal components of any fre-

quency. Where a BWG uses a scalar gain to model losses, a first-order allpass filter allows

precise tuning of the propagation-modeling filter’s desired phase delay at the modal fre-

quency without affecting attenuation or stability. This may be achieved by designing the

allpass filter such that the total phase delay of the elements in the BWG’s feedback loop
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at the mode frequency is equal to an integer multiple of wavelengths. (Equivalently, the

phase shift of propagation modeling elements should be a multiple of 2π at the mode

frequency.) As discussed in Appendix A and below, this only results in approximate

placement of a pole at the desired location on the z -plane, though the scalar gain and

fractional delay filter could be designed simultaneously toward correct pole placement

(in lieu of correct phase delay).

A first order allpass filter of the form

F (z) =
a1+ z−1

1+ a1z−1
, (B.3)

with a pole at z = −a1, may be designed to have phase delay, τp (ωm), at frequency ωm

by setting

a1 =
sin
�

ωm

1−τp (ωm )

2

�

sin
�

ωm

1+τp (ωm )

2

� . (B.4)

Atωm = 0, the preceding equation has an undefined solution, but may be substituted by

a1 =
1− τp(ωm)

1+ τp(ωm)
, (B.5)

which may also be used to approximate a1 for relatively low frequencies [105]. Such

a fractional delay filter has seen use for tuning the phase delay at the fundamental fre-

quency of Extended Karplus-Strong models (though frequency dependent-losses will

cause a slight mistuning, as discussed in the previous appendix) [105].

To examine this filter as a function of ωm and τp(ωm), Figure B.1 shows the re-

sulting pole angle as phase delay is varied between zero and one sample for all frequencies.

Figure B.2 shows a similar plot, as phase delay is varied between zero and two samples;

note that there is a region for higher frequencies and phase delays for which there is no

real and stable first-order allpass filter to meet the design criteria. From these figures and

inspection of (B.4), one may observe that for low values of phase delay, and for high

digital frequencies of interest, the pole approaches z =−1.
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Figure B.1: Pole angle as a function of phase delay at a specified frequency for a first-order
allpass fractional delay filter.

B.2.1 Issues in Implementation

As human audition tends to observe frequency logarithmically and many sounds

exhibit low-pass characteristics, first-order allpass fractional delay filter design often uses

the approximation of (B.5), to most accurately model fractional delay at low frequencies,

even in tuning KS and DWG models [2]. Such an approximation may be used in any

application, though the error in phase delay increases as a function of frequency.

As shown in Figures B.1 and B.2, low values of phase delay lead to a pole near

the unit circle. If phase delay is set to zero, the allpass filter then has a pole on the unit

circle, canceled by a zero with identical placement. As such cancellations are perilous
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Figure B.2: Pole angle as a function of phase delay at a specified frequency for a first-order
allpass fractional delay filter.. Note the region for which there is no real stable pole.

where there may be round-off error, they should generally be avoided. Thus, the range

of phase delays for allpas fractional filter delay is often limited to some range [ε, 1+ ε],

where 0 < ε < 1, disallowing zero delay [2]. Additionally, design may be limited by

the fact that as the pole location approaches the unit circle, the sharp slope of the filter’s

phase response increases the group delay near the Nyquist frequency, causing the filter’s

transient response to display a high-frequency “ringing” that may not be desirable [2].

For narrowband applications, such as BWGs, one may ignore this ringing in many

instances, as there will be little high-frequency energy in the system. Still, phase delay

in first-order allpass fractional delay filters should be kept above zero, so as to prevent a
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pole-zero cancellation. At high frequencies, with phase delay increasingly limited at the

upper bound, pole placement near z = −1 becomes unavoidable. Thus, a measure of

ringing may occur, depending on the details of the BWG implementation. However, in

DWG-inspired BWG models, such as in Chapter 4, where the feedforward portion of the

BPF and propagation-modeling feedback path are identically designed, any such ringing

will effectively be canceled by interference. Though if these portions of the model do

not implement the same fractional delay filters (as in a simplified bi-directional model),

such cancellation may not occur.

B.2.2 Design for Pole Placement

Mentioned in Appendix A, designing for the correct phase delay in BWG models

of the form given in this work (i.e., DWG-inspired BWG models) does not place a pole of

the propagation-modeling feedback loop at the desired location. Precise pole placement

may be achieved, however, by concurrent design of the round-trip gain and fractional

delay filter. That is, to place a pole at zm = Rm e jωm , one may solve

1− g z−Li
m

a1+ z−1
m

1+ a1z−1
m

= 0 (B.6)

for g and a1, constrained by 0< g < 1 and −1< a1 < 1.

Design of the feedback loop in this manner increases the complexity of model

design. For linear interactions at a point in BWG models configured as in Section 4.4,

where a resonator (with the correct pole) is paired with inversely-related feedforward

and feedback loops, the tuning of the pole in the feedback path will not even change the

BWG’s response, assuming there is no significant round-off error. Indeed, any arbitrary

filter and its inverse could be used, since they cancel one another and the resonator’s

response determines the output of the BWG. In the presence of nonlinear feedback-based

interactions though, variation of such details has potential to alter outputs.
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In the simulations in this work, this design technique is not used, in the interest

of computational parsimony. One may note that maintaining separate design of g and

the fractional delay filter somewhat mirrors the typical separation of elements for tuning,

loss, and dispersion in DWG modeling and related methods [2, 4, 105].

B.2.3 Further Properties and Other Fractional Delay Filters

Though specification of phase delay in a simple delayed feedback loop with

frequency-independent loss allows precise pole angle placement, simple fractional delay

filters may ignore components of propagation, such as group delay (and relatedly, group

velocity). In designing first-order allpass fractional delay filters to specified phase delay

at a frequency of interest, for example, the group delay at any frequency is solely a con-

sequence of pole placement. To examine the resulting value of group delay in this type

of filter, Figures B.3, B.4, and B.5 display the resulting group delay at the frequency of

interest when specifying phase delay. Note that to better show the range of low values,

Figures B.4 and B.5 limit the displayed range of group delay to a maximum value of two.

From these figures it may be seen that in using the simplest allpass fractional de-

lay filter, when a BWG produces a high-frequency mode, the resulting group delay tends

toward high values. (This may be viewed as a cause of the previously described high-

frequency ringing.) This may not be problematic in some applications, especially if hu-

man perception is taken into account, but an inability to control various properties of

modeled propagation limit the robustness of BWG models.

More complex fractional delay filters may of course be used in BWG models, de-

signed to have specified phase delay, group delay, or other properties. As these filters

increase in complexity however, they may become computationally prohibitive to im-

plement or design, particularly for real time applications.
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Figure B.3: Group delay at specified frequencies for which phase delay is tuned in a first-
order allpass fractional delay filter.
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Figure B.4: Group delay at specified frequencies for which phase delay is tuned in a first-
order allpass fractional delay filter. Note that the displayed values have been clipped to
the range [0,2] to better display the lower range of group delays.
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Figure B.5: Group delay at specified frequencies for which phase delay is tuned in a first-
order allpass fractional delay filter.. Note that the displayed values have been clipped to
the range [0,2] to better display the lower range of group delays. Also note the region for
which there is no real stable filter.
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APPENDIX C

BANDED WAVEGUIDE SIMULATION RESULTS
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This appendix contains simulations comparing BWG and DWG models, as de-

scribed in Section 4.4.5. The various BWG models are implemented as follows:

Type A The BPFs are designed using just the string loop.

Type A1 Phase delay is set to correspond to a multiple of each modal frequency’s

wavelength.

Type A2 Phase delay at each modal frequency is equal to that of the DWG.

Type A3 Parameters, including modal frequency, are set to correspond to an ideal

harmonic model.

Type B The BPFs are designed using the string loop and excitation position filter.

Type B1 Phase delay is set to correspond to a multiple of each modal frequency’s

wavelength.

Type B2 Phase delay at each modal frequency is equal to that of the DWG.

Type B3 Parameters, including modal frequency, are set to correspond to an ideal

harmonic model.

C.1 Bowed String Tuned to 441 Hz with no Stiffness

The following figures show the velocity amplitude envelope, steady-state oscilla-

tions, and spectrograms of various, comparably designed, BWG and DWG models. All

models are of a string tuned to 441 Hz with no stiffness, as described in Section 4.4.5.
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Figure C.1: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The velocity envelope of the output of various BWG models is shown, compared to that
of a comparable DWG model. The DWG model’s velocity envelope is shown in black,
and each BWG velocity envelope is shown in gray.
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Figure C.2: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The velocity envelope of the output of various BWG models is shown, compared to that
of a comparable DWG model. The DWG model’s velocity envelope is shown in black,
and each BWG velocity envelope is shown in gray.
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Figure C.3: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The velocity envelope of the output of various BWG models is shown, compared to that
of a comparable DWG model. The DWG model’s velocity envelope is shown in black,
and each BWG velocity envelope is shown in gray.
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Figure C.4: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The velocity envelope of the output of various BWG models is shown, compared to that
of a comparable DWG model. The DWG model’s velocity envelope is shown in black,
and each BWG velocity envelope is shown in gray.
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Figure C.5: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The velocity envelope of the output of various BWG models is shown, compared to that
of a comparable DWG model. The DWG model’s velocity envelope is shown in black,
and each BWG velocity envelope is shown in gray.
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Figure C.6: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The velocity envelope of the output of various BWG models is shown, compared to that
of a comparable DWG model. The DWG model’s velocity envelope is shown in black,
and each BWG velocity envelope is shown in gray.
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Figure C.7: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The velocity envelope of the output of various BWG models is shown, compared to that
of a comparable DWG model. The DWG model’s velocity envelope is shown in black,
and each BWG velocity envelope is shown in gray.
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Figure C.8: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The velocity envelope of the output of various BWG models is shown, compared to that
of a comparable DWG model. The DWG model’s velocity envelope is shown in black,
and each BWG velocity envelope is shown in gray.
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Figure C.9: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The velocity envelope of the output of various BWG models is shown, compared to that
of a comparable DWG model. The DWG model’s velocity envelope is shown in black,
and each BWG velocity envelope is shown in gray.
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Figure C.10: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.11: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.12: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.13: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.14: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.15: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.

177



1.995 1.996 1.997 1.998 1.999
−1

0

1

V
el

oc
ity

Type A1

1.995 1.996 1.997 1.998 1.999
−1

0

1

V
el

oc
ity

Type A2

1.995 1.996 1.997 1.998 1.999
−1

0

1

V
el

oc
ity

Time (s)

Type A3

1.995 1.996 1.997 1.998 1.999
−1

0

1
Type B1

1.995 1.996 1.997 1.998 1.999
−1

0

1
Type B2

1.995 1.996 1.997 1.998 1.999
−1

0

1

Time (s)

Type B3

Pressure = 0.9, Velocity = 0.1

1.995 1.996 1.997 1.998 1.999
−1

0

1

V
el

oc
ity

Time (s)

DWG

Figure C.16: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.17: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.18: Simulation of models of a bowed string with no stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.19: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.20: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.21: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.22: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.23: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.24: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.25: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.26: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.27: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.28: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.29: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.30: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.31: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.

193



0 0.2 0.4 0.6 0.8
0

5

10

15

20

F
re

qu
en

cy
 (

kH
z)

DWG

0 0.2 0.4 0.6 0.8
0

5

10

15

20

BWG Type B1

0 0.2 0.4 0.6 0.8
0

5

10

15

20

Time (sec)

F
re

qu
en

cy
 (

kH
z)

BWG Type B2

Pressure = 0.9, Velocity = 0.1

0 0.2 0.4 0.6 0.8
0

5

10

15

20

Time (sec)

BWG Type B3

Figure C.32: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.33: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.34: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.35: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.36: Simulation of models of a bowed string with no stiffness, tuned to 441
Hz. The spectrogram of the output of BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.37: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
velocity envelope of the output of various BWG models is shown, compared to that of a
comparable DWG model. The DWG model’s velocity envelope is shown in black, and
each BWG velocity envelope is shown in gray.

C.2 Bowed String Tuned to 441 Hz with Stiffness

The following figures show the velocity amplitude envelope, steady-state oscilla-

tions, and spectrograms of various, comparably designed, BWG and DWG models. All

models are of a string tuned to 441 Hz with stiffness, as described in Section 4.4.5.
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Figure C.38: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
velocity envelope of the output of various BWG models is shown, compared to that of a
comparable DWG model. The DWG model’s velocity envelope is shown in black, and
each BWG velocity envelope is shown in gray.
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Figure C.39: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
velocity envelope of the output of various BWG models is shown, compared to that of a
comparable DWG model. The DWG model’s velocity envelope is shown in black, and
each BWG velocity envelope is shown in gray.
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Figure C.40: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
velocity envelope of the output of various BWG models is shown, compared to that of a
comparable DWG model. The DWG model’s velocity envelope is shown in black, and
each BWG velocity envelope is shown in gray.
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Figure C.41: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
velocity envelope of the output of various BWG models is shown, compared to that of a
comparable DWG model. The DWG model’s velocity envelope is shown in black, and
each BWG velocity envelope is shown in gray.

203



0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

V
el

oc
ity

 E
nv

el
op

e

BWG Type A1

0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

V
el

oc
ity

 E
nv

el
op

e

Time (s)

BWG Type A2

0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
BWG Type B1

Pressure = 0.6, Velocity = 0.7

0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

BWG Type B2

Figure C.42: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
velocity envelope of the output of various BWG models is shown, compared to that of a
comparable DWG model. The DWG model’s velocity envelope is shown in black, and
each BWG velocity envelope is shown in gray.
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Figure C.43: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
velocity envelope of the output of various BWG models is shown, compared to that of a
comparable DWG model. The DWG model’s velocity envelope is shown in black, and
each BWG velocity envelope is shown in gray.
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Figure C.44: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
velocity envelope of the output of various BWG models is shown, compared to that of a
comparable DWG model. The DWG model’s velocity envelope is shown in black, and
each BWG velocity envelope is shown in gray.
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Figure C.45: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
velocity envelope of the output of various BWG models is shown, compared to that of a
comparable DWG model. The DWG model’s velocity envelope is shown in black, and
each BWG velocity envelope is shown in gray.
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Figure C.46: Simulation of models of a bowed string with stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.47: Simulation of models of a bowed string with stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.48: Simulation of models of a bowed string with stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.49: Simulation of models of a bowed string with stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.50: Simulation of models of a bowed string with stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.51: Simulation of models of a bowed string with stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.52: Simulation of models of a bowed string with stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.53: Simulation of models of a bowed string with stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.54: Simulation of models of a bowed string with stiffness, tuned to 441 Hz.
The steady-state velocity output of various BWG models is shown, compared to that of a
comparable DWG model.
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Figure C.55: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.56: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.57: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.58: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.

220



0 0.2 0.4 0.6 0.8
0

5

10

15

20

F
re

qu
en

cy
 (

kH
z)

DWG

0 0.2 0.4 0.6 0.8
0

5

10

15

20

BWG Type A1

Pressure = 0.3, Velocity = 0.7

0 0.2 0.4 0.6 0.8
0

5

10

15

20

Time (sec)

F
re

qu
en

cy
 (

kH
z)

BWG Type A2

Figure C.59: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.60: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.61: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.62: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.63: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.64: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.65: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.66: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.

228



0 0.2 0.4 0.6 0.8
0

5

10

15

20

F
re

qu
en

cy
 (

kH
z)

DWG

0 0.2 0.4 0.6 0.8
0

5

10

15

20

BWG Type A1

Pressure = 0.9, Velocity = 0.1

0 0.2 0.4 0.6 0.8
0

5

10

15

20

Time (sec)

F
re

qu
en

cy
 (

kH
z)

BWG Type A2

Figure C.67: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.68: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.69: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.70: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.71: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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Figure C.72: Simulation of models of a bowed string with stiffness, tuned to 441 Hz. The
spectrogram of the output of BWG models is shown, compared to that of a comparable
DWG model.
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