111,158 research outputs found

    A Hybrid Active Filter Using the Backstepping Controller for Harmonic Current Compensation

    Get PDF
    This document presents a new hybrid combination of filters using passive and active elements because of the generalization in the use of non-linear loads that generate harmonics directly affecting the symmetry of energy transmission systems that influence the functioning of the electricity grid and, consequently, the deterioration of power quality. In this context, active power filters represent one of the best solutions for improving power quality and compensating harmonic currents to get a symmetrical waveform. In addition, given the importance and occupation of the transmission network, it is necessary to control the stability of the system. Traditionally, passive filters were used to improve energy quality, but they have endured problems such as resonance, fixed remuneration, etc. In order to mitigate these problems, a hybrid HAPF active power filter is proposed combining a parallel active filter and a passive filter controlled by a backstepping algorithm strategy. This control strategy is compared with two other methods, namely the classical PI control, and the fuzzy logic control in order to verify the effectiveness and the level of symmetry of the backstepping controller proposed for the HAPF. The proposed backstepping controller inspires the notion of stability in Lyapunov’s sense. This work is carried out to improve the performance of the HAPF by the backstepping command. It perfectly compensates the harmonics according to standards. The results of simulations performed under the Matlab/Simulink environment show the efficiency and robustness of the proposed backstepping controller applied on HAPF, compared to other control methods. The HAPF with the backstepping controller shows a significant decrease in the THD harmonic distortion rate

    Switched predictive control design for optimal wet-clutch engagement

    Get PDF
    Modeling of hydraulic clutch transmissions is far from straightforward due to their nonlinear hybrid dynamics, i.e. switching between three dynamic phases. In this paper we identify a local linear model only for the constrained first phase, based on which a predictive controller is used to track a suitable engagement signal. The robustness of this controller in the latter two phases is guaranteed by making the constraints inactive and pre-tuning the control parameters based on its closed loop formulation and applying robust stability theorem. This controller is then implemented in real-time on a wet-clutch test setup and is shown to achieve optimal engagement

    A H2 PEM fuel cell and high energy dense battery hybrid energy source for an urban electric vehicle

    Get PDF
    Electric vehicles are set to play a prominent role in addressing the energy and environmental impact of an increasing road transport population by offering a more energy efficient and less polluting drive-train alternative to conventional internal combustion engine (ICE) vehicles. Given the energy (and hence range) and performance limitations of electro-chemical battery storage systems, hybrid systems combining energy and power dense storage technologies have been proposed for vehicle applications. The paper discusses the application of a hydrogen fuel cell as a range extender for an urban electric vehicle for which the primary energy source is provided by a high energy dense battery. A review of fuel cell systems and automotive drive-train application issues are discussed, together with an overview of the battery technology. The prototype fuel cell and battery component simulation models are presented and their performance as a combined energy/power source assessed for typical urban and sub-urban driving scenario

    Hybrid energy sources for electric and fuel cell vehicle propulsion

    Get PDF
    Given the energy (and hence range) and performance limitations of electro-chemical batteries, hybrid systems combining energy and power dense storage technologies have been proposed for electric vehicle propulsion. The paper will discuss the application of electro-chemical batteries, supercapacitors and fuel cells in single and hybrid source configurations for electric vehicle drive-train applications. Simulation models of energy sources are presented and used to investigate the design optimisation of electric vehicle on-board energy source in terms of energy efficiency and storage mass/volume. Results from a case study considering a typical small urban electric vehicle are presented, illustrating the benefits of hybrid energy sources in terms of system mass and vehicle range. The models and approach can be applied to other vehicles and driving regimes

    Conclave: secure multi-party computation on big data (extended TR)

    Full text link
    Secure Multi-Party Computation (MPC) allows mutually distrusting parties to run joint computations without revealing private data. Current MPC algorithms scale poorly with data size, which makes MPC on "big data" prohibitively slow and inhibits its practical use. Many relational analytics queries can maintain MPC's end-to-end security guarantee without using cryptographic MPC techniques for all operations. Conclave is a query compiler that accelerates such queries by transforming them into a combination of data-parallel, local cleartext processing and small MPC steps. When parties trust others with specific subsets of the data, Conclave applies new hybrid MPC-cleartext protocols to run additional steps outside of MPC and improve scalability further. Our Conclave prototype generates code for cleartext processing in Python and Spark, and for secure MPC using the Sharemind and Obliv-C frameworks. Conclave scales to data sets between three and six orders of magnitude larger than state-of-the-art MPC frameworks support on their own. Thanks to its hybrid protocols, Conclave also substantially outperforms SMCQL, the most similar existing system.Comment: Extended technical report for EuroSys 2019 pape

    Issues in the design of switched linear systems : a benchmark study

    Get PDF
    In this paper we present a tutorial overview of some of the issues that arise in the design of switched linear control systems. Particular emphasis is given to issues relating to stability and control system realisation. A benchmark regulation problem is then presented. This problem is most naturally solved by means of a switched control design. The challenge to the community is to design a control system that meets the required performance specifications and permits the application of rigorous analysis techniques. A simple design solution is presented and the limitations of currently available analysis techniques are illustrated with reference to this example
    • 

    corecore