2,553 research outputs found

    Quasi-periodic motions in dynamical systems. Review of a renormalisation group approach

    Full text link
    Power series expansions naturally arise whenever solutions of ordinary differential equations are studied in the regime of perturbation theory. In the case of quasi-periodic solutions the issue of convergence of the series is plagued of the so-called small divisor problem. In this paper we review a method recently introduced to deal with such a problem, based on renormalisation group ideas and multiscale techniques. Applications to both quasi-integrable Hamiltonian systems (KAM theory) and non-Hamiltonian dissipative systems are discussed. The method is also suited to situations in which the perturbation series diverges and a resummation procedure can be envisaged, leading to a solution which is not analytic in the perturbation parameter: we consider explicitly examples of solutions which are only infinitely differentiable in the perturbation parameter, or even defined on a Cantor set.Comment: 36 pages, 8 figures, review articl

    Resonance tongues and patterns in periodically forced reaction-diffusion systems

    Full text link
    Various resonant and near-resonant patterns form in a light-sensitive Belousov-Zhabotinsky (BZ) reaction in response to a spatially-homogeneous time-periodic perturbation with light. The regions (tongues) in the forcing frequency and forcing amplitude parameter plane where resonant patterns form are identified through analysis of the temporal response of the patterns. Resonant and near-resonant responses are distinguished. The unforced BZ reaction shows both spatially-uniform oscillations and rotating spiral waves, while the forced system shows patterns such as standing-wave labyrinths and rotating spiral waves. The patterns depend on the amplitude and frequency of the perturbation, and also on whether the system responds to the forcing near the uniform oscillation frequency or the spiral wave frequency. Numerical simulations of a forced FitzHugh-Nagumo reaction-diffusion model show both resonant and near-resonant patterns similar to the BZ chemical system

    Response solutions for beam equations with nonlocal nonlinear damping and Liouvillean frequencies

    Full text link
    Response solutions are quasi-periodic ones with the same frequency as the forcing term. The present work is devoted to the construction of response solutions for dd-dimensional beam equations with nonlocal nonlinear damping, which model frictional mechanisms affecting the bodies based on the average. By considering ϵ\epsilon in a domain that does not include the origin and imposing a small quasi-periodic forcing with Liouvillean frequency vector, which is weaker than the Diophantine or Brjuno one, we can show the existence of the response solution for such a model. We present an alternative approach to the contraction mapping principle (cf. [5,33]) through a combination of reduction and the Nash--Moser iteration technique. The reason behind this approach lies in the derivative losses caused by the nonlocal nonlinearity.Comment: 21 page

    Bifurcations and instabilities in rotating, two-layer fluids: II. ?-plane

    No full text
    International audienceIn this paper, we show that the behavior of weakly nonlinear waves in a 2-layer model of baroclinic instability on a b-plane with varying viscosity is determined by a single, degenerate codimension three bifurcation. In the process, we show how previous studies, using the method of multiple scales to derive evolution equations for the slowly varying amplitude of the growing wave, arise as special limits of the general evolution description

    Non-equilibrium steady states of ideal bosonic and fermionic quantum gases

    Get PDF
    We investigate non-equilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also non-trivial two-particle correlations, and quantum-jump-type Monte-Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a non-equilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose selected state

    Chaotic and pseudochaotic attractors of perturbed fractional oscillator

    Full text link
    We consider a nonlinear oscillator with fractional derivative of the order alpha. Perturbed by a periodic force, the system exhibits chaotic motion called fractional chaotic attractor (FCA). The FCA is compared to the ``regular'' chaotic attractor. The properties of the FCA are discussed and the ``pseudochaotic'' case is demonstrated.Comment: 20 pages, 7 figure

    Tunable Modulational Instability Sidebands via Parametric Resonance in Periodically Tapered Optical Fibers

    Full text link
    We analyze the modulation instability induced by periodic variations of group velocity dispersion and nonlinearity in optical fibers, which may be interpreted as an analogue of the well-known parametric resonance in mechanics. We derive accurate analytical estimates of resonant detuning, maximum gain and instability margins, significantly improving on previous literature on the subject. We also design a periodically tapered photonic crystal fiber, in order to achieve narrow instability sidebands at a detuning of 35 THz, above the Raman maximum gain peak of fused silica. The wide tunability of the resonant peaks by variations of the tapering period and depth will allow to implement sources of correlated photon pairs which are far-detuned from the input pump wavelength, with important applications in quantum optics.Comment: 15 pages, 7 figure
    • …
    corecore