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Nonequilibrium steady states of ideal bosonic and fermionic quantum gases
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We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and
fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling
to several heat baths of different temperature or by time-periodic driving in combination with the coupling to
a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods
are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented
mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte
Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the
possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted
to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose
condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett.
111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected
states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field
effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
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I. INTRODUCTION

There is a huge current interest in nonequilibrium phe-
nomena of many-body systems beyond the hydrodynamic de-
scription of systems retaining approximate local equilibrium.
Recent work concerns several paradigmatic scenarios, like the
dynamics away from equilibrium in response to a slow or
an abrupt parameter variation [1–3], the possible relaxation
towards equilibrium [2,3] versus many-body localization [4,5],
and the control of many-body physics by means of strong pe-
riodic forcing [6–11]. Also the possibility to achieve transient
light-induced superconductivity above the equilibrium critical
temperature attracted enormous interest [12].

Another fundamental scenario of many-body dynamics
consists of driven-dissipative quantum systems and their
nonequilibrium steady states [13–22]. These include, for
example, time-periodically driven open many-body systems
[23–27] and photonic many-body systems [28–33]. In contrast
to equilibrium states, which depend on a few thermodynamic
parameters like temperature and chemical potential only,
such nonequilibrium steady states depend on the very details
of the environment. On the one hand, this makes their
theoretical treatment challenging. On the other hand, it offers
also interesting opportunities to engineer the state and the
properties of a many-body system beyond the constraints of
thermal equilibrium in a robust and controlled fashion.

In this context, it was recently pointed out that already
an ideal Bose gas of N particles can exhibit intriguing
behavior, when it is driven into a steady state far from
equilibrium, e.g., by coupling it to two heat baths of different
temperature or by time-periodic driving in the presence of a
heat bath (see Fig. 1). In the quantum degenerate regime of
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large densities, the Bose gas undergoes a generalized form
of Bose condensation, where multiple single-particle states
can be selected to acquire large occupations [23]. Namely,
the single-particle states unambiguously separate into two
groups: one that is called Bose selected, whose occupations
increase linearly when the total particle number is increased
at fixed system size, and another one whose occupations
saturate. This phenomenon is a consequence of the bosonic
quantum statistics. It includes standard Bose condensation
into a single quantum state, fragmented Bose condensation
into a small number of single-particle states, each acquiring
a macroscopic occupation, and the case where a fraction
of all single-particle states acquires large, but individually
nonextensive occupations. The properties of the system, like
its coherence or its heat conductivity, sensitively depend on
which of these scenarios occurs.

The physics of driven-dissipative ideal Bose gases is
intimately related also to collective effects in classical sys-
tems and processes, where bunching phenomena have been
identified as analog of Bose condensation. This includes the
dynamics of networks and economic models [34,35], classical
transport and traffic [36–44], chemical reactions [45], as well
as population dynamics and evolutionary game theory [46].
These connections have recently been discussed by Knebel
et al. [47].

In this paper, we investigate nonequilibrium steady states
of driven-dissipative ideal quantum gases of both bosons and
fermions. We focus on systems of sharp particle number that
exchange energy with the environment. These quantum gases
are driven out of equilibrium either by the coupling to several
heat baths of different temperature or by time-periodic driving
in combination with the coupling to a heat bath (see Fig. 1).
We treat the problem using (Floquet-)Born-Markov theory
[48–52], which is valid in the limit of weak system-bath
coupling. In Sec. II this theoretical framework is reviewed and
applied to the problem of the ideal quantum gas. Moreover,
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FIG. 1. (Color online) Two paradigmatic examples of driven-
dissipative ideal quantum gases possessing nonequilibrium steady
states. (a) Periodically driven system weakly coupled to a heat bath.
(b) Autonomous system weakly coupled to two heat baths of different
temperature.

several model systems are introduced. In order to treat
the resulting many-body master equation, we then describe
analytical and numerical methods for computing the steady
state (Sec. III). This includes a standard mean-field description
in terms of single-particle occupation numbers. We, moreover,
derive an augmented mean-field theory taking into account
also nontrivial two-particle correlations and explain how to
apply quantum-jump-type Monte Carlo simulations to the
problem. These methods are then applied to both the ideal
Bose gas (Sec. IV) and the ideal Fermi gas (Sec. V).

Our treatment of the fermionic case in Sec. V is rather brief
and demonstrates the application of our theory to simple lattice
models and the possibility to achieve exotic states via bath
engineering. These results can be relevant, e.g., for the problem
of realizing Floquet topological insulators with periodically
forced electronic systems (graphene [7] or semiconductor
heterostructures [53]).

The largest part of this paper is devoted to bosonic quantum
gases and the phenomenon of Bose selection discussed in
Sec. IV. Here we first review equilibrium Bose condensation
(Sec. IV A) and Bose selection in nonequilibrium steady
states (Secs. IV B to IV E give a detailed discussion of
the results of Ref. [23]). After that, we derive a theory
for transitions where the set of selected states changes
(Sec. IV F), present an efficient algorithm for finding the
set of selected states (Sec. IV G), discuss the possibility of
approaching a preasymptotic state at intermediate densities
before the true asymptotic state is reached at large densities
(Sec. IV H), investigate the properties of systems described by
non-fully-connected rate matrices (Sec. IV I), study the role
of fluctuations and beyond mean-field effects (Sec. IV J), and
identify the dominant mechanisms for heat transport in the
Bose-selected state Sec. IV K.

II. GENERAL FRAMEWORK AND MODELS

In this section we set up the master equations for an ideal
quantum gas of N indistinguishable, noninteracting particles,
weakly coupled to one or several heat baths. We cover both
the case of an autonomous system with time-independent
Hamiltonian Ĥ and the case of a Floquet system with

time-periodic Hamiltonian Ĥ (t) = Ĥ (t + τ ). This captures
the nonequilibrium situations depicted in Fig. 1. In the case of
the periodically driven system, we encounter the Floquet states
|φi(t)〉 = e−iεi t/�|i(t)〉, which are quasistationary (i.e., time-
periodic) solutions of the dynamics generated by Ĥ (t) [54–56].
Here |i(t)〉 = |i(t + τ )〉 denotes time-periodic Floquet modes,
while εi are the quasienergies, which are defined modulo the
energy quantum �ω with angular driving frequency ω = 2π/τ .
We start with the single-particle equations. In Sec. II B, we then
generalize to the many-body case.

A. Single-particle master equation

We consider the time evolution of the density operator ρ̂ in
a single-particle system. In the weak-coupling limit, where the
full rotating-wave approximation is valid, this time evolution
is governed by a master equation of Lindblad type [48], which
in the interaction picture reads

dρ̂(t)

dt
= D[ρ̂] =

∑
i,j

Rij

[
L̂ij ρ̂(t)L̂†

ij − 1

2
{ρ̂(t),L̂†

ij L̂ij }
]
. (1)

Here {A,B} = AB + BA denotes the anticommutator. The
indices enumerate the energy eigenstates of the autonomous
system or the Floquet states of the periodically driven
system. In practice, we restrict the number M of participating
single-particle states to be finite. The dissipation causes
transitions from eigenstate |j 〉 to eigenstate |i〉 according to
the jump operator L̂ij = |i〉〈j |, where Rij is the corresponding
transition rate. This description is valid in the weak-coupling
limit, where the level broadening �Rij due to the transitions
is much smaller than the (typical) energy separation of
neighboring (quasi)energy levels in the spectrum of the system.
The characteristic time scale τS of the unitary dynamics is
then much smaller than the time scale τR of the dissipative
relaxation, τS � τR , which makes it possible to employ the
full rotating-wave approximation leading to Eq. (1) [49–52].

Since the resulting Lindblad equation (1) is diagonal in the
basis of states |i〉, the dynamics of the occupation probabilities
pi = 〈i|ρ̂|i〉 decouples from the off-diagonal elements of the
density operator, which decay as one approaches the steady
state. The dynamics of the diagonal elements are described by
the Pauli master equation

ṗi(t) =
∑

j

[Rijpj (t) − Rjipi(t)]. (2)

The terms of the sum correspond to the net probability flux
from states j to state i. The uniqueness of the steady state
ρ̂ = ∑

i pi |i〉〈i|, obtained by requiring ṗi = 0, is guaranteed
by the Frobenius-Perron theorem, which holds if every state is
connected with all the other states by a sequence of transitions
with nonvanishing rates [57].

For the weak coupling to the environment considered here,
the rates Rij in Eq. (2) can, in general, be determined in
the Born-Markov (Floquet-Born-Markov) approximation for
autonomous (time-periodically driven) systems. We consider
that a bath is given by a collection of harmonic oscillators
α with angular frequency ωα and annihilation operator b̂α ,
described by the bath Hamiltonian ĤB = ∑

α �ωαb̂†αb̂α . The
bath is in thermal equilibrium with temperature T and coupled
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to the system via the Hamiltonian ĤSB = v̂
∑

α cα(b̂†α + b̂α),
where cα are the coupling parameters and v̂ a coupling operator
acting in the state space of the system.

Within the Floquet-Born-Markov approximation, the rates
for the driven system are given by Fermi’s golden rule [49–52],

Rji=
∞∑

m=−∞
R

(m)
ji , R

(m)
ji =2π

�
|vji(m)|2g(εj − εi − m�ω). (3)

Here vji(m) = ω
2π

∫ 2π/ω

0 dteimωt 〈j (t)|v̂|i(t)〉 are the Fourier
coefficients of the coupling matrix elements, where the index
m accounts for the absorption or emission of |m| energy quanta
�ω due to the driving. The quantity

g(E) = J (E)

eβE − 1
= g(−E)e−βE (4)

is the bath correlation function, determined by the inverse
temperature β = 1/T (the Boltzmann constant is set to one)
and the spectral density,

J (E) =
∑

α

c2
α[δ(E − �ωα) − δ(E + �ωα)] = −J (−E). (5)

We assume Ohmic baths characterized by a spectral density
that increases linearly with E, J (E) ∝ E.

In the autonomous system, Eq. (3) simplifies to

Rji =
∑

b∈{1,2}
R

(b)
ji , R

(b)
ji = 2π

�

∣∣v(b)
ji

∣∣2
gb(Ej − Ei). (6)

Here v
(b)
ji = 〈j |v̂(b)|i〉 now denote the matrix elements of the

coupling operator of heat bath b with respect to the eigenstates
|i〉 with energy Ei . The rate is further characterized by the
correlation functions gb(E) = Jb(E)[exp(βbE) − 1]−1 of both
baths, with spectral density Jb(E) and inverse temperature βb.

Later we will see that the rate-asymmetry matrix

Aij = Rij − Rji (7)

plays a major role since many properties of the system depend
on this matrix only. In the time-periodically driven case, it
reads

Aij =
∞∑

m=−∞
A

(m)
ij ,

A
(m)
ij =R

(m)
ij − R

(m)
ji = 2π

�
|vji(m)|2J (εj − εi − m�ω), (8)

whereas for the autonomous system one has

Aij =
∑

b∈{1,2}
A

(b)
ij ,

A
(b)
ij =R

(b)
ij − R

(b)
ji = 2π

�

∣∣v(b)
ji

∣∣2
Jb(Ej − Ei). (9)

Note that the rate-asymmetry matrix is independent of the bath
temperature(s).

In contrast to equilibrium, a nonequilibrium steady state
can retain a constant energy flow through the system. For the
periodically driven system, the transition described by the rate
R

(m)
ji causes a change of the bath energy by εi − εj + m�ω.

The total energy flow from the system to the bath is thus given
by

Q(t) =
∑
ijm

(εi − εj + m�ω)R(m)
ji pi(t). (10)

Note that also pseudotransitions described by rates R
(m�=0)
ii

contribute to the heat flow [58]. These transitions change the
state of the bath, but not that of the system. For the autonomous
system the energy flow into bath b reads

Qb(t) =
∑
ij

(Ei − Ej )R(b)
ji pi(t). (11)

B. Master equation for the ideal quantum gas

We now generalize the single-particle problem to a gas of
N indistinguishable, noninteracting particles. In our approach
we assume the total particle number N to be fixed, like in
the canonical ensemble. For our considerations the canonical
description poses the advantage that it contains the single-
particle case as the natural limit N = 1, and does not require
to define new terms describing the particle exchange with the
bath.

The many-body Hilbert space is spanned by Fock states
enumerated by the occupation numbers of the M single-
particle states, n = (n1,n2, . . . ,nM ). To obtain the many-body
rate equations, we replace the single-particle jump operators
L̂ij = |i〉〈j | in Eq. (1) with their Fock-space representation

L̂ij = â
†
i âj . (12)

Here âi denotes the annihilation operator of a particle, boson
or fermion, in the single-particle mode i. Quantum jumps still
correspond to processes transferring a single particle from
one mode to another. The validity of the full rotating-wave
approximation is, thus, still determined by the single-particle
problem. Moreover, the total particle number N is conserved
by the dynamics.

As before, the dynamics of the many-body occupation
probabilities pn = 〈n|ρ̂|n〉 decouple from the off-diagonal
elements, which decay over time. The corresponding equations
of motion are now given by (see Appendix A for details)

ṗn(t) =
∑
ij

(1 + σnj )ni

[
Rijpnji

(t) − Rjipn(t)
]
, (13)

which is the many-body generalization of the Pauli master
equation (2). Here nji = (n1, . . . ,ni − 1, . . . ,nj + 1, . . .) de-
notes the occupation numbers obtained from n by transferring
one particle from i to j . The effective transition rate depends
on the quantum statistics via the choice of σ , with σ = 1
for bosons (reflecting the enhancement of transitions into
occupied states) and σ = −1 for fermions (reflecting the Pauli
exclusion principle). The classical case of distinguishable
(Boltzmann) particles corresponds to σ = 0; here the transi-
tion rates are independent of the occupation of the final state.1

1The bosonic master equation (13) with σ = 1, as well as the
corresponding mean-field equation (31), also resemble rate equations
that are used to describe stochastic processes in classical systems, as
we mention them already in the introduction.
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For the periodically driven ideal gas the energy flow from
the system into the bath is given by

Q(t) =
∑
m

∑
n

∑
ij

(εi − εj + m�ω)R(m)
ji (1 + σnj )nipn(t)

=
∑
m

∑
ij

(εi − εj + m�ω)R(m)
ji [〈n̂i〉(t) + σ 〈n̂i n̂j 〉(t)].

(14)

Analogously, for the autonomous ideal gas the energy flow
into bath b reads

Qb(t) =
∑

n

∑
ij

(Ei − Ej )R(b)
ji (1 + σnj )nipn(t)

=
∑
ij

(Ei − Ej )R(b)
ji [〈n̂i〉(t) + σ 〈n̂i n̂j 〉(t)]. (15)

C. Nonequilibrium steady state

In the following we are interested in the properties of the
steady state of the ideal quantum gas, whose density operator is
simply denoted by ρ̂.2 It is diagonal in the occupation number
basis,

ρ̂ =
∑

n

pn|n〉〈n|, (16)

with pn determined by solving Eq. (13) for ṗn = 0. The
uniqueness of the steady state [57] is inherited from the
single-particle system, since every Fock state is connected to
every other Fock state by a sequence of allowed single-particle
transitions when this is assumed for the single-particle system.

The steady-state expectation value of an arbitrary observ-
able ô is denoted by

〈ô〉 = tr(ρ̂ô). (17)

Expectation values that we consider in the following are the
mean occupations that we denote by

n̄i = 〈n̂i〉, (18)

with the number operator n̂i = â
†
i âi and the two-particle

correlations 〈n̂i n̂j 〉 or, rather, their nontrivial part,

ζij = 〈n̂i n̂j 〉 − n̄i n̄j = 〈(n̂i − n̄i)(n̂j − n̄j )〉. (19)

For the scenarios depicted in Fig. 1 the steady state of
the system will be a nonequilibrium steady state. This can be
illustrated already on the level of the single-particle problem
(2). Let us first recapitulate the case of thermal equilibrium.
The transitions induced by a single bath of inverse temperature
β in an autonomous system are described by rates that obey

Rji

Rij

= e−β(Ej −Ei ). (20)

2Whenever we are discussing transient behavior and time-dependent
quantities (which happens only a few times) this is indicated by
writing out explicitly the time argument. For example, ρ̂(t) denotes
the time-dependent density operator or 〈ô〉(t) a time-dependent
expectation value. Otherwise, i.e., when writing ρ̂ or 〈ô〉, we are
always referring to steady-state quantities.

This can be inferred from Eq. (6) for the case of a single
bath. This condition implies that the steady state, obtained by
solving Eq. (2) is given by the Gibbs state with pi = Z−1e−βEi

and Z = ∑
i e

−βEi . For this equilibrium state, the sum on the
right-hand side of Eq. (2) vanishes term by term. Thus, the net
probability flux between two states i and j vanishes. This is
the property of detailed balance, which is characteristic for the
thermodynamic equilibrium.

The rates characterizing the periodically driven system,
Eq. (3), or the autonomous system coupled to two heat baths of
different temperature, Eq. (6), are a sum of rates corresponding
to different energy changes in the bath or to different bath
temperatures, respectively. As a consequence, they do not
obey condition (20) anymore. This implies that, generally,
the steady state also does not fulfill detailed balance anymore.
While the net probability flux into a state i, determined by the
right-hand side of Eq. (2), still has to vanish, the probability
current from a certain state j to state i can be nonzero; i.e.,
the sum in Eq. (2) does not vanish term by term. The lack of
detailed balance characterizes a nonequilibrium steady state.
In contrast to the equilibrium state, which is determined by the
temperature of the bath only, the nonequilibrium steady state
depends on the very details of the bath(s) (the temperature,
the coupling operator, and the spectral density). This makes
the computation of the many-body nonequilibrium steady state
a difficult problem. However, it also offers opportunities to
realize states with properties that are hard (or impossible) to
achieve in equilibrium.

D. Model systems

Throughout this paper, we illustrate our findings using three
different model systems. Let us briefly define them here. Note
that our results are not limited to these example systems.

The first model system is a tight-binding chain of M lattice
sites. It is described by the Hamiltonian

Ĥ = −J

M−1∑
=1

(ĉ†ĉ+1 + H.c.), (21)

wherein ĉ (ĉ†) denotes the annihilation (creation) operator
for a particle at site . The single-particle eigenstates |i〉, with
i = 0,1, . . . ,M − 1, are delocalized. They are described by
wave functions 〈|i〉 ∝ sin(ki), with wave numbers ki = (i +
1)π/(M + 1) and possess energies Ei = −2J cos(ki) between
−2J and 2J . As sketched in Fig. 2(a), the chain is coupled to
two baths, on the left and right end of the chain. The left (right)
bath is locally coupled to the first (next-to-last) site of the chain
via the coupling operators v̂1 = γ1ĉ

†
1ĉ1 and v̂2 = γ2ĉ

†
M−1ĉM−1,

respectively.3 This coupling describes a bath-induced fluctu-
ation of the on-site energy. The steady state will depend on
the coupling strength only through their relative weight γ2/γ1,
while their absolute weight determines how fast the system
relaxes. The temperatures of the baths are different from each
other. We will, moreover, mainly focus on the interesting case

3We avoid the choice of coupling the second bath to the last site
M since, for such a symmetric configuration, the generic effect of
fragmented Bose condensation [23] is absent.
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FIG. 2. (Color online) Two model systems. (a) Tight-binding
chain coupled to two heat baths of respective temperatures T1 and T2

and coupling strengths γ1 and γ2. (b) Tight-binding chain subjected to
a time-periodic potential modulation at one end with driving strength
γω and angular frequency ω and coupled to a heat bath of temperature
T at the other end with coupling strength γ .

where one of the baths is population inverted. For such a
situation the notion of the single-particle ground state becomes
meaningless, allowing for fragmented Bose condensation with
multiple condensates [23], see Sec. IV below. We model the
population-inverted bath by a negative temperature T2 < 0 and
a spectrum that is bounded from above (ωα < 0).

The second model system is also given by a tight-binding
chain of M sites. However, instead of coupling it to a second
bath, the chain is periodically driven in time. Its Hamiltonian
is given by

H (t) = −J

M−1∑
=1

(ĉ†ĉ+1 + H.c.) + γωJ cos(ωt)ĉ†MĉM, (22)

with the dimensionless driving strength γω and angular
frequency ω. The coupling to a bath of inverse temperature
β is realized via the coupling operator v̂ = γ ĉ

†
1ĉ1, as depicted

in Fig. 2(b). The steady state will depend on the dimensionless
driving strength γω, which determines the single-particle
Floquet modes and the structure of the rate matrix Rij .
However, the coupling strength to the heat bath γ has no
impact on the steady state, but rather determines how fast the
system relaxes.

Finally, as a third model, we consider a system of M

single-particle states with the transition rates Rij given by
uncorrelated random numbers, independently drawn from an
exponential distribution,

P (Rji) = λ−1 exp(−λRji). (23)

The parameter λ controls the time scale of the relaxation, but
does not influence the steady state. The diagonal elements Rii

can be set to 0 as they drop out of all relevant equations [such as
Eq. (2)]. This choice of rates clearly models a nonequilibrium
situation, since detailed balance is violated almost surely. It is
motivated by the rates computed for fully chaotic periodically
driven quantum systems coupled to a heat bath [59]. A concrete
example is given by the kicked rotor coupled to a bath, which
is discussed for single particles in Ref. [60] and for many
particles in the supplemental material of Ref. [23].

III. METHODS

In this paper we are interested in the properties of
nonequilibrium steady states (16) of driven dissipative ideal
quantum gases of N particles, described by the master equation
(2) with jump operators (12) or, equivalently, by the rate
equation (13). Even though the particles are noninteracting,
finding the steady state is a true many-body problem. Unlike
in equilibrium, the many-particle solution cannot be obtained
from the single-particle solution in a straightforward manner.
This is a consequence of the interaction with the bath and
reflected in the fact that the right-hand side of the master
equation (2) is quadratic in the jump operators (12) and, thus,
quartic in the bosonic or fermionic field operators â

(†)
i . As a

consequence, Eq. (13) quickly becomes intractable when the
particle number is increased. Therefore, it is crucial to develop
and apply suitable methods for the approximate treatment of
the problem. This is done in this section.

In the following, we first describe quantum-jump-type
Monte Carlo simulations based on averaging over random
walks in the classical space of sharp occupation numbers.
This numerical method is quasiexact (the statistical error is
controlled) and allows for the treatment of moderately large
systems. In order to treat even larger systems and to obtain
an intuitive picture of the dynamics, we then describe a
mean-field theory, which is based on a description in terms of
the mean occupations n̄i . Finally, we augment the mean-field
theory by taking into account fluctuations given by nontrivial
two-particle correlations.

A. Monte Carlo simulations

Quantum-jump Monte Carlo simulations [61,62] are an
efficient method for computing the time evolution of open
quantum systems described by a Markovian master equation
of Lindblad form. Instead of integrating the time evolution
of the full density matrix, the method is based on integrating
the time evolution of single states (the Monte Carlo wave
function). In doing so, the dissipative effect of the environment
is included by interrupting the continuous time evolution by a
sudden quantum jump, described by one of the jump operators.
When such a quantum jump occurs, and which one, is drawn
from a suitable probability distribution. The time evolution of
expectation values can then be obtained by averaging over an
ensemble of Monte Carlo wave functions. The error depends
on the ensemble size and can, in principle, be made arbitrarily
small.

When treating the master equation (2) with jump operators
(12) we encounter a convenient situation. The dissipation can
be described by jump operators (12) that transfer a particle
from one single-particle eigenstate (or Floquet state) to another
one, i.e., between two states of sharp occupation numbers n. At
the same time, these occupation numbers are conserved by the
evolution generated by the system Hamiltonian, since we are
dealing with a system of noninteracting particles. Therefore,
the time evolution is exhausted by taking into account quantum
jumps. This corresponds to a random walk in the classical
space spanned by the Fock states |n〉 (not their superposi-
tions). The Monte Carlo wave function |n(t)〉 jumps between
Fock states |nk〉, in which it resides for time intervals of
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length tk ,

|n(t)〉 = |nk〉 with k such that Tk−1 � t < Tk, (24)

where Tk = ∑k
l=1 tl .

We use the Gillespie algorithm [63] in order to compute
the time evolution. At the beginning, the system is prepared
according to the chosen initial conditions. Then the algorithm
alternates between the following two steps. (i) The time
interval tk determining how long the system will remain in
the current state is drawn randomly from an exponential
distribution P (tk) ∝ exp[−tk/t̄(nk)] with mean dwell time,

t̄(nk) = 1∑
i,j Rij (1 + σni)nj

. (25)

(ii) The new state with occupation nk+1 is drawn randomly with
branching probability reflecting the many-body transition rates
Rji(1 + σnj )ni . Since only single-particle jumps are involved
in Eq. (13), the next state is obtained from the current state by
transferring a particle from a randomly drawn departure state i

to the randomly drawn target state j . This single-particle jump
has the probability

P (i → j,nk) = t̄(nk)Rji(1 + σnj )ni. (26)

These two steps are repeated until Tk = ∑k
l=1 tl exceeds the

desired evolution time tfin.
From an ensemble of L Monte Carlo wave functions

|n(α)(t)〉 labeled by α = 1,2, . . . ,L, one can then compute the
expectation value of an observable ô,

〈ô〉ensemble(t) = 1

L

L∑
α=1

〈n(α)(t)|ô|n(α)(t)〉. (27)

Figure 3 shows the time evolution of the mean occupations
〈n̂i〉(t) for N = 100 particles on M = 5 states for a single
Monte Carlo wave function (thin lines) and for an ensemble

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8 1.0t

n̄i

FIG. 3. (Color online) Time evolution of the mean occupations
n̄i(t) for one realization of the random-rate model for M = 5 states
and N = 100 particles. Time is measured in units of the inverse mean
rate λ [see Eq. (23)]. Initially, each single-particle state is occupied
with the same probability. The thin lines are obtained from a single
Monte Carlo wave function, the intermediate lines from an ensemble
of L = 1000 Monte Carlo wave functions, and the thick lines from
mean-field theory. The mean-field results show small systematic
deviations from the Monte Carlo result.

with L = 1000 (intermediate lines). One can clearly observe
the relaxation to a steady state reached after a relaxation time
of τr ≈ 0.5. Slight temporal fluctuations observed for times
t > τr decrease with ensemble size L. The mean-field theory
(thick lines) described below predicts the occupations rather
well, but with small systematic deviations from the Monte
Carlo result.

When computing steady-state expectation values 〈ô〉, the
effect of temporal fluctuations can be reduced by combining
ensemble averaging with time averaging,

〈ô〉 = 1

L

L∑
α=1

∑
k

〈
n(α)

k

∣∣ô∣∣n(α)
k

〉
tk

. (28)

Here it is useful to constrain the inner sum to k > k(α)
r , with

k(α)
r such that T

k
(α)
r

> tr , in order to exclude the transient
relaxation process from the time average. Since we assume
that every state is connected with all the other states by
a sequence of transitions with nonvanishing rates, one can
obtain accurate steady-state expectation values from a single
Monte Carlo trajectory, provided tfin is sufficiently large
so that the system forgets its initial state after a certain
correlation time. Averaging over a long time is, therefore,
equivalent to averaging over an ensemble. We determine these
uncertainties according to the Gelman-Rubin criterion [64],
generally setting the relative uncertainties below 1% (small
enough to make statistical fluctuations barely noticeable in
any figure). For a bosonic system, this allows us to access
particle numbers N ∼ 105 for M = 100 single-particle states.

B. Mean-field theory

In order to treat even larger systems and to gain some
intuitive understanding of the nonequilibrium steady state of
ideal quantum gases, it is desirable to use also analytical
methods. One of them is a mean-field description of the system
in terms of the mean occupations n̄i [23].

The time evolution of the mean occupations is given by the
equations

d

dt
n̄i(t) = tr

[
n̂i

d

dt
ρ̂(t)

]
=

∑
j

Rij {[n̄j (t) + σ 〈n̂i n̂j 〉(t)]

− Rji[n̄i(t) + σ 〈n̂i n̂j 〉(t)]} (29)

for all i (see Appendix B). Here we encounter the typical
hierarchy: The time evolution of single-particle correlations
(expectation values of operators that are quadratic in the field
operators) is governed by two-particle correlations (expecta-
tion values of operators that are quartic in the field operators).
The evolution of the latter will, in turn, be determined by
three-particle correlations, and so on.

In order to obtain a closed set of equations in terms of the
mean occupations, we employ the factorization approximation

〈n̂i n̂j 〉(t) = n̄i(t)n̄j (t) + ζij (t) ≈ n̄i(t)n̄j (t) (30)

for i �= j . Here nontrivial correlations are neglected, ζij (t) ≈
0, so that two-particle correlations are approximated by a
product of single-particle expectation values as if Wick’s
theorem was valid. In this way we arrive at the set of nonlinear
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mean-field equations

d

dt
n̄i(t)≈

∑
j

{Rij n̄j (t)[1 + σ n̄i(t)]−Rjin̄i(t)[1+σ n̄j (t)]}.

(31)

In the classical case of distinguishable particles, which can
be shown to be captured by σ = 0, the mean-field equation
is exact. In this case, the equations of motion for the mean
occupations n̄i(t) are of the same form as the single-particle
master equation (2) for the probabilities pi(t). Therefore, in the
classical system the mean occupations are determined by the
single-particle problem and read n̄i(t) = pi(t)N . In contrast,
for quantum gases of indistinguishable bosons or fermions the
dynamics and the steady state will depend in a nontrivial way
on the total particle number. In this case, the classical solution
can still be an approximate solution of the quantum system as
long as n̄i � 1 for all i, so that two-particle correlations 〈n̂i n̂j 〉
are negligible. However, as soon as the quantum degenerate
regime is reached, where n̄i � 1 at least for some i, quantum
statistics and with that the particle number will matter.

The mean-field equations of motion can also be obtained
by making a Gaussian ansatz,

ρ̂g = 1

Z
exp

[
−

∑
i

ηi n̂i

]
, (32)

with partition function Z for the many-body density operator.
For this ansatz the mean occupations are given by

〈n̂i〉g = 1

eηi − σ
. (33)

Thus, the M parameters defining the Gaussian state are
determined completely by the M mean occupations, ηi =
ln(〈n̂i〉−1

g + σ ), as they can be obtained by solving the
mean-field equations (31). Nontrivial correlations vanish and
multiparticle correlation functions can be decomposed into
products of single-particle correlations determined by Wick
decomposition. For the two-particle correlations the Gaussian
ansatz gives [65]

〈n̂i n̂j 〉g =
{〈n̂i〉g[(1 + σ )〈n̂i〉g + 1] for i = j,

〈n̂i〉g〈n̂j 〉g for i �= j,
(34)

for bosons (σ = 1) and fermions (σ = −1). For i �= j we
find 〈n̂i n̂j 〉g = 〈n̂i〉g〈n̂j 〉g . Therefore, starting from Eq. (29)
and making the Gaussian ansatz for the density operator,
we recover the mean-field equations of motion (31) with
n̄i(t) = 〈n̂i〉g .

With the quantities 〈n̂2
i 〉g , the Gaussian ansatz also deter-

mines the fluctuations of the occupations n̂i as well as of the
total particle number N̂ = ∑

i n̂i . One finds

〈(n̂i − 〈n̂i〉g)2〉g = 〈
n̂2

i

〉
g
− 〈n̂i〉2

g = 〈n̂i〉g + σ 〈n̂i〉2
g (35)

and

〈(N̂ − 〈N̂〉g)2〉g =
∑

i

(〈
n̂2

i

〉
g
− 〈n̂i〉2

g

)

+
∑
i,j �=i

(〈n̂i n̂j 〉g − 〈n̂i〉g〈n̂j 〉g) (36)

=
∑

i

〈(n̂i − 〈n̂i〉g)2〉g. (37)

The Gaussian state does not describe a system with a sharp
particle number, so we can only require that the mean particle
number obeys

〈N̂〉g = N. (38)

Fluctuations of the total particle number are an immediate
consequence of enforcing trivial correlations 〈n̂i n̂j 〉 = n̄i n̄j

for i �= j (unless also the occupations of the individual states
i are sharp so that their number fluctuations 〈n̂2

i 〉 − n̄2
i vanish).

This can be seen from Eq. (36), where we have not yet used the
properties of the Gaussian state like in Eq. (37). It is intuitively
clear that a sharp total particle number induces nontrivial
correlations among the occupations. If the measurement of the
occupation n̂i gives a value ni that is smaller (larger) than the
expectation value n̄i , a sharp total particle number implies that
the number of particles in all other states is given by N − ni

and, thus, larger (smaller) than the original expectation value
N − n̄i . As a consequence, the probability of measuring a
certain value nj of the occupation n̂j with j �= i will depend
on the value ni measured for the occupation n̂i .

The role played by fluctuations of the total particle number
becomes less and less important in large systems. Namely,
the variance of the total particle number (37) is the sum over
the variances of the occupations of individual modes (35),
which are intensive. Thus, the fluctuations of the total particle
number grow in a subextensive fashion like the square root of
the system size. That is, the relative fluctuations of the total
particle number vanish in the limit of large systems. This is the
mechanism underlying the equivalence of the canonical and the
grand-canonical ensembles. There is one important exception,
however. This is the case of Bose-Einstein condensation,
where in a bosonic system a mode i acquires a macroscopic
occupation. If the total particle number is not conserved, also
the number fluctuations of the condensate mode will be as
large as the number of condensed particles; in this case the
right-hand side of Eq. (35) is dominated by the second term.
The extensive number fluctuations in the condensate mode will
then dominate the sum of Eq. (37) and give rise to extensive
total number fluctuations, which are non-negligible in large
systems. This phenomenon is know as the grand-canonical
fluctuation catastrophe [66].

However, one should note that the dynamics of the mean
occupations n̄i(t) described by Eq. (29) do not depend on
the occupation number fluctuations of the modes (the term
j = i vanishes so that 〈n̂2

i 〉 does not enter on the right-hand
side). The mean-field equations of motion (31) can, therefore,
provide a good approximation to the mean occupations n̄i also
in systems featuring Bose condensation (see Ref. [23]). This
can be seen also in Fig. 3, where, despite the fact that half of the
particles occupy a single mode, mean-field theory accurately
describes both the transient and the long-time behavior of the
mean occupations.

The grand-canonical ensemble of an ideal quantum gas in
equilibrium with inverse temperature β and chemical potential
μ is described by a Gaussian density operator (32) with
ηi = β(Ei − μ). The mean occupations Eq. 33 follow the
Bose-Einstein (Fermi-Dirac) distribution for σ = 1 (σ = −1).
The grand-canonical ideal gas is thus described exactly within
the mean-field theory. This can be seen explicitly by plugging
the Gaussian state pn ∝ ∏

i e
−β(Ei−μ)ni (solving the mean-field
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equation) into the full many-body rate equations (13). By
employing condition (20), which is fulfilled in an equilibrium
situation, one can see that the sum on the right-hand side
vanishes term by term. This implies also that the equilibrium
state obeys detailed balance as it should. Deviations from
mean-field theory occur as a consequence of two factors: (i)
the assumption of a sharp total particle number and (ii) the
violation of the detailed-balance condition (20).

Both factors (i) and (ii) are independent of each other, as can
be illustrated using two examples. The canonical equilibrium
state with sharp particle number is characterized by the non-
Gaussian probabilities

pn =
{

1
ZN

exp
(−∑

i βEini

)
if

∑
i ni = N,

0 otherwise,
(39)

with the partition function ZN . This state can be obtained
by projecting the Gaussian state onto the subspace of sharp
total particle number N . As a consequence of the sharp
particle number, it does not solve the mean-field equation,
as discussed above. However, it still obeys detailed balance.
Namely, plugging it into Eq. (13) the sum on the right-hand
side vanishes term by term as long as the condition (20) is
fulfilled. On the other hand, we can allow the particle number
to fluctuate freely, but violate condition (20). Then it will
generally not be possible to find a solution of the mean-field
form (32) that solves the many-body rate equations (13),
because the number of independent equations exceeds the
number of parameters ηi . In the following, we are interested
in the situation where a system of sharp particle number is
driven into a steady state far away from equilibrium, so that
both factors (i) and (ii) are present. Here the mean-field theory
can still provide a good approximation, as can be checked by
comparing it to quasiexact results obtained from Monte Carlo
simulations.

Within the mean-field approximation, the heat flow for the
autonomous system to bath b, given by Eq. (15), takes the form

Q(b)(t) =
∑
i,j �=i

(Ei − Ej )R(b)
ji n̄i(t)[1 + σ n̄j (t)]. (40)

The heat flow from the periodically driven ideal gas into the
heat bath (14) reads

Q(t) =
∑
m

∑
i,j �=i

(εi − εj + m�ω)R(m)
ji n̄i(t)[1 + σ n̄j (t)]

+
∑
m

∑
i

m�ωR
(m)
ii [n̄i(t) + σ 〈n̂2

i 〉(t)]. (41)

Here the second sum captures the heat flow related to pseudo-
transitions [see discussion below Eq. (10)]. Their contribution
depends on 〈n̂2

i 〉 and, thus, on the occupation number fluctua-
tions of the modes. However, as discussed above, in a bosonic
system of sharp total particle number and where some modes
feature macroscopic occupation, the Gaussian expectation
value 〈n̂2

i 〉g = 〈n̂i〉g[2〈n̂i〉g + 1] does generally not provide
a good approximation for the condensate mode(s). Therefore,
it might be useful to introduce another approximation for 〈n̂2

i 〉
in an ad hoc fashion. Another possibility is to augment the
mean-field theory such that it is able to treat systems with sharp

particle number and, thus, with nontrivial two-particle corre-
lations. Such a method is presented in the following section.

C. Augmented mean-field theory

By construction, the mean-field theory fails to take into
account nontrivial two-particle correlations ζij as they result
from having a sharp total particle number and from driving
the system out of equilibrium, so that the detailed-balance
condition (20) is violated. The effects of a fluctuating total
number of particles can be assessed by projecting the Gaussian
state onto the subspace of N -particle states, ρ̂proj ∝ P̂N ρ̂gP̂N

with P̂N = ∑
n| ∑i n̂i=N |n〉〈n|. This introduces nontrivial cor-

relations, which can be obtained from 〈n̂i n̂j 〉 = tr(ρprojn̂i n̂j ).
However, evaluating this matrix element is an onerous task
even within efficient algorithms (see Appendix C for an
example), since all N -particle Fock states have to be accounted
for. Moreover, such an approach still does not include effects
related to the breaking of detailed balance.

In order to include the effects of nontrivial occupation
correlations and fluctuations by analytic means, we introduce
an augmented mean-field theory. This approach includes
the two-point correlation functions 〈n̂kn̂i〉 into the hierarchy
of equations of motions. In the original full hierarchy, the
corresponding equations of motion take the form

d

dt
〈n̂kn̂i〉 =

∑
j

{σ (Akj + Aij )〈n̂kn̂i n̂j 〉 + Rkj 〈n̂i n̂j 〉

+Rij 〈n̂kn̂j 〉 − (Rjk + Rji)〈n̂kn̂i〉
+ δik[Rkj (n̄j + σ 〈n̂kn̂j 〉)
+Rjk(n̄k + σ 〈n̂kn̂j 〉)]}
−Rik(n̄k + σ 〈n̂kn̂i〉) − Rki(n̄i + σ 〈n̂kn̂i〉). (42)

Here, as well as in the rest of this section, we suppress
time arguments. This equation still involves the third-order
correlations 〈n̂kn̂i n̂j 〉.

The hierarchy can be closed by assuming trivial three-
particle correlations. For that purpose we separate the number
operators like n̂i = n̄i + ζ̂i into their mean values n̄i and their
fluctuations

ζ̂i = n̂i − n̄i with 〈ζ̂i〉 = 0. (43)

We now approximate

〈ζ̂k ζ̂i ζ̂j 〉 = 0, (44)

while allowing, in contrast to mean-field theory, for nontrivial
two-particle correlations ζki = 〈ζ̂k ζ̂i〉 [Eq. (19)]. Thus, the
equations of motion for the mean occupations are given by

dn̄k

dt
= σ

∑
j

Akj [n̄kn̄j + ζkj ]

+
∑

j

(Rkj n̄j − Rjkn̄k), (45)

which is equivalent to the exact equation (29). The equations of
motion for the nontrivial two-particle correlations are obtained
from Eq. (42) by employing the approximation (44). It is
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nonlinear and reads (see Appendix D for details)

dζki

dt
≈

∑
j

{σ [Akj n̄kζij + Aij n̄iζkj + (Akj + Aij )n̄j ζki]

+ Rkjζij + Rij ζkj − (Rjk + Rji)ζki

+ σ (δki − δji)(Rkj + Rjk)(n̄kn̄j + ζkj )

+ (δki − δji)(Rkj n̄j + Rjkn̄k)}. (46)

The steady-state values of n̄k and ζki have to be determined by
solving Eqs. (45) and (46) with the left-hand side set to zero.

Within the augmented mean-field theory the state is not only
described in terms of the mean occupations n̄i , but also in terms
of nontrivial two-particle correlations ζki . As a consequence,
we cannot only fix the mean total particle number to a value
N by requiring

〈N̂〉 =
∑

i

n̄i = N. (47)

Also, the fluctuation of the total particle number can be fixed
to a value �N ,

〈N̂2〉 − 〈N̂〉2 =
∑
ij

ζij = �N2. (48)

This includes the choice

�N = 0 (49)

for a system of sharp particle number. Whereas the mean-field
theory was found to be equivalent to a Gaussian ansatz for the
density operator, we cannot give an analytical expression for
the density operator corresponding to the augmented theory.

IV. IDEAL BOSE GASES AND BOSE SELECTION

In this section we discuss in detail the steady state of
noninteracting bosonic quantum gases. Let us first recapitulate
the case of thermodynamic equilibrium.

A. Equilibrium and Bose condensation

Under equilibrium conditions, where the rates obey the
condition (20), the mean-field equations of motion (31) with
σ = 1 for bosons are solved by a steady state characterized by
the mean occupations

n̄i = 1

eβ(Ei−μ) − 1
, (50)

corresponding to Eq. (33) with ηi = β(Ei − μ). For this
solution the right-hand side of Eq. (31) vanishes term by term,
indicating detailed balance. The occupation numbers (50)
obtained from the non-number-conserving mean-field theory
correspond to the exact grand-canonical mean occupations
[67] and provide a good approximation also for the canonical
ensemble with sharp particle number N . In the latter case, the
chemical potential has to be chosen such that∑

i

n̄i = N. (51)

Assuming the states of the system to be labeled such that

E0 < E1 � E2 � · · · , (52)

meaningful positive occupation numbers correspond to values
of the chemical potential below the ground-state energy, μ <

E0. The chemical potential increases either when β is increased
at fixed N or when N is increased at fixed β.

When in a system of finite extent, with discrete energies
Ei , the particle number N is increased at fixed β, the chemical
potential will eventually approach the ground-state energy so
that E0 − μ � E1 − E0. Once this happens at a characteristic
particle number N∗ specified below, the mean occupations of
the excited states can be approximated by

n̄i  1

eβ(Ei−E0) − 1
for i � 1. (53)

Thus, for N � N∗ the occupations of excited states become
independent of μ (therefore also of N ) and saturate. The
occupation of the single-particle ground-state still depends on
the chemical potential; assuming β(E0 − μ) � 1, one finds

n̄0  1

β(E0 − μ)
≡ N0, (54)

with

N0  N −
∑
i�1

1

eβ(Ei−E0) − 1
, (55)

such that μ  E0 − T/N0. All particles that cannot be “ac-
commodated” in the excited states will occupy the ground
state. This is the phenomenon of Bose-Einstein condensation
(or, strictly speaking, its finite size precursor).

In a finite system Bose-Einstein condensation is a crossover,
occurring when N becomes comparable to the characteristic
value N∗, which is directly given by the depletion of the
condensate,

N∗ =
∑
i�1

1

eβ(Ei−E0) − 1
. (56)

In the thermodynamic limit, defined by taking particle
number N and volume V to infinity while holding the density
n = N/V at a constant finite value, Bose condensation is
a sharp phase transition. At a critical density nc = N∗/V ,
the occupation of the ground state becomes macroscopic
and the ratio N0/N , the condensate fraction, assumes a
nonzero value. At the transition E0 − μ = T/N0 becomes
zero. However, Bose condensation does not necessarily survive
the thermodynamic limit. For a homogeneous Bose gas of
spatial dimensionality D � 2, the ratio N∗/V diverges in the
thermodynamic limit due to large occupations of low-energy
states, so that no phase transition exists. In this case Bose
condensation can still be observed as a crossover in systems
of finite size. This is illustrated in Fig. 4(a), where we plot the
mean occupations of a bosonic one-dimensional tight-binding
chain of M = 20 sites versus the particle number N . In this
system M plays the role of a dimensionless volume V so
that the density is given by the dimensionless filling factor
n = N/M . One can observe a sharp crossover: For N > N∗
the occupations of the excited states saturate so that newly
added particles will all become part of the condensate in the
ground state, as described by Eqs. (53), (54), and (55).
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FIG. 4. (Color online) Mean occupations versus total number of bosons for the steady state of a tight-binding chain of M = 20 sites and
tunneling parameter J > 0. The data are obtained from mean-field theory (thick solid lines), asymptotic mean-field theory (dashed lines),
augmented mean-field theory (thin solid lines), and exact Monte Carlo simulations (crosses). (a) Equilibrium situation; the chain is coupled to
one bath of temperature T = 1J . (b) The chain is driven away from equilibrium by two heat baths of different positive temperature (T1 = 1J

and T2 = 0.5J ), coupled to the first and the next to last site with γ1 = γ2. (c) Same as in (b), but now the second bath is population inverted
and described by the negative temperature T2 = −J . The color code is the same as in panels (a) and (b), where the occupations decrease with
increasing energy. (d) The chain is driven away from equilibrium by a periodic potential modulation at the last site with amplitude γω = 2.3J

and frequency �ω = 1.5J . The Floquet states are colored like the stationary states (a)–(c) from which they evolve adiabatically when the
driving is switched on (see Fig. 14).

B. Driven-dissipative Bose gas and Bose selection

The other panels of Fig. 4 show the mean occupations
n̄i versus N for situations where the tight-binding chain is
driven into a steady state far from equilibrium, either by
coupling it to a second bath of different temperature or by
time-periodic forcing (see Sec. II D). In each of these panels,
we can again identify a sharp crossover. When the particle
number N reaches a characteristic value N∗, many occupations
saturate as in equilibrium. However, as a striking effect, newly
added particles can now occupy a whole group of states
[Figs. 4(c) and 4(d)], with constant relative occupations among
these states. These selected states take over the role played by
the condensate mode in equilibrium. This phenomenon has
been termed Bose selection [23]. It turns out to be the generic
behavior in the ultradegenerate regime of large density at fixed
finite system size.

As becomes apparent from Fig. 4, we can distinguish two
scenarios. In the first, a single state becomes selected. This
includes the case of equilibrium Bose condensation depicted
in panel (a), but also the nonequilibrium situation shown in
panel (b), where a Bose gas is driven out of equilibrium

by the coupling to two heat baths of different positive
temperature. In the second scenario, multiple states become
selected, as can be seen in panels (c) and (d), corresponding
to situations where a system is driven out of equilibrium by an
additional population-inverted bath of negative temperature or
by periodic forcing. As we see in the following, the essential
difference between both scenarios is that in the situations (a)
and (b) the notion of the single-particle ground state is still
meaningful. In panel (b) both baths favor larger occupations in
states of lower energy and thus the largest occupation occurs in
the ground state. This is not the case anymore for the situations
(c) and (d). The population-inverted negative-temperature
bath of the system of panel (c) favors larger occupations
in states of higher energy counteracting the effect of the
positive-temperature bath. For the periodically driven system
of panel (d), the quasienergies of the single-particle Floquet
states are determined modulo �ω only, so that a ground state
is not even defined.

Within the scenario of having multiple selected states
we can, furthermore, distinguish two possibilities. For that
purpose we have to consider systems of a large number of states
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FIG. 5. (Color online) Mean occupations versus total number of
bosons for (a) one realization of the random-rate model with M =
100 states and (b) a tight-binding chain of M = 100 sites coupled
to two heat baths, namely one with temperature T1 = 10J at the
first site and a population-inverted bath described by the negative
temperature T2 = −10J at the fifth-to-last site, with equal coupling
strength, γ1 = γ2 [see inset of Fig. 4(c)].

M . In Fig. 5 we plot the mean occupations for two systems with
M = 100 states. Panel (a) corresponds to one realization of the
random-rate model and panel (b) is obtained for a tight-binding
chain coupled to a second population-inverted bath like in
Fig. 4(c). For the random-rate model (a) the number of selected
states MS is of the order of the system size M , roughly half
of the states become selected for sufficiently large N . This
implies that none of the selected states acquires a macroscopic
occupation of the order of the total particle number. For the
tight-binding chain (b) we find that the number of selected
states MS is still of the order of one; namely, three states
are selected. As a consequence, each selected state acquires
a macroscopic occupation of the order of the total particle
number and hosts a Bose condensate. This corresponds to
fragmented Bose condensation,4 which is therefore a generic
situations for driven Bose gas, unlike in equilibrium where
this requires a rare ground-state degeneracy. Thus, all in
all, we can distinguish three generic types of Bose selection
occurring in the ultradegenerate regime of driven-dissipative
ideal Bose gases: standard Bose condensation where a single
state acquires a macroscopic occupation, fragmented Bose
condensation where a small number (of order one) of selected
states each acquires macroscopic occupation, and the selection
of a large number of states with nonextensive individual
occupations that together attract most particles of the system.

In the following we provide a theory for Bose selection
based on mean-field theory in the asymptotic limit of large N .

4Note that the system does not feature a single condensate in a state
being a coherent superposition of the highly occupied selected modes,
but independent condensates in each mode. Namely, according to
the Penrose-Onsager criterion Bose-Einstein condensation is defined
by a macroscopic eigenvalue of the single-particle density matrix
〈a†

i aj 〉 [68]. In the situation discussed here, the off-diagonal elements
of 〈a†

i aj 〉 are negligible as a consequence of the weak coupling to
the bath. Therefore, each macroscopic mean occupation n̄i = 〈a†

i ai〉
corresponds to a macroscopic eigenvalue of the single-particle density
matrix and an independent Bose condensate.

It can be viewed as a generalization of the Eqs. (53), (54) and
(55) describing equilibrium Bose condensation to the case of
driven-dissipative ideal Bose gases. Later, also effects beyond
mean field will be discussed in terms of the augmented mean-
field theory.

C. Asymptotic mean-field theory

A theoretical description of Bose selection can be based
on mean-field theory, given by Eq. (31) with σ = 1. For the
steady state this equation reads

0 =
∑

j

[Rij n̄j (1 + n̄i) − Rjin̄i(1 + n̄j )] (57)

for all i. Since Bose selection occurs in the asymptotic limit
of large densities, it appears natural to approximate

1 + n̄k ≈ n̄k (58)

in this equation. One then obtains the equations5

0 = n̄i

∑
j

(Rij − Rji)n̄j = n̄i

∑
j

Aij n̄j . (59)

One can immediately see that some of the mean occupations
n̄i have to vanish on this level of approximation. Namely, if
we assume that a subset S of single-particle states possesses
nonzero occupations, these states have to obey the linear
equations

0 =
∑
j∈S

Aij n̄j , i ∈ S, (60)

which directly follow from Eq. (59). However, without fine
tuning of the skew-symmetric asymmetry matrix Aij = −Aji ,
these equations have a solution only if S contains an odd
number of states (since a skew-symmetric matrix generically
possesses an eigenvalue zero only when acting in an odd-
dimensional space). Moreover, even if a formal solution can be
found for a certain set S, it is not guaranteed that this solution
will correspond to physically meaningful solutions, where
all occupation numbers are non-negative. Both conditions
constrain the set S, so that, generically, it will not contain
all states. Those states contained in the (yet to be determined)
set S correspond to the Bose-selected states.

In order to compute the occupations of the nonselected
states, we have to include another level of approximation.
For that purpose we use that the occupation of a nonselected
state is determined predominantly by transitions from or
into selected states. The large occupations of the selected
states enhances the corresponding rates with respect to the
rates for transitions from or into other nonselected states.
Thus, neglecting transitions among nonselected states and still

5It is interesting to note that these equations correspond to the
conservative Lotka-Volterra equations ˙̄ni = n̄i

∑
j Aij n̄j as they are

used to model population dynamics. Indeed, for fully connected rate
matrices, the selected states correspond directly to those species
that will not be extinct, but survive [46,47,69]. Differences appear,
however, for not fully connected rate matrices, as discussed at the end
of Sec. IV I.
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assuming nj + 1 ≈ nj ∀ j ∈ S, from Eqs. (57) for nonselected
states i we obtain

n̄i = 1

gi − 1
with gi =

∑
j∈S Rjin̄j∑
j∈S Rij n̄j

, i /∈ S. (61)

This approximation is reminiscent of the Bogoliubov ap-
proximation [70] for the weakly interacting Bose gas, where
interactions among noncondensed particles are neglected.

The set S has to be chosen such that physically meaningful
occupations

n̄i � 0 (62)

are obtained for all i [i.e., both for the selected states, whose
relative occupations are determined by Eq. (60), and for the
nonselected states, with the occupations given by Eq. (61)].
We prove in the following Sec. IV E that there exists a unique
set S for which condition (62) is fulfilled. Thus, the problem
to be solved does not simply consist of solving Eqs. (60) and
(61) for a given set S. It is rather the task of finding both the
occupations n̄i and the set S, for which the relations (60), (61),
and (62) are fulfilled.

By identifying the states of the setS with the selected states,
we can now explain the major features of the results presented
in Fig. 4. One observation is that for large N the relative
occupations among the selected states become independent of
N . This is explained by the fact that these relative occupations
are determined by the set of linear Eqs. (60), which does not
depend on N . A second observation is that the occupations
of the nonselected states saturate in the limit of large N .
Such a behavior is predicted by Eq. (61), where the gi are
determined by the N -independent relative occupations of the
selected states. This implies also that the total occupation of
the selected states,

NS =
∑
i∈S

n̄i = N −
∑
i /∈S

1

gi − 1
, (63)

grows linearly with N . Finally, we can estimate the characteris-
tic particle number N∗ at which the crossover to Bose selection
occurs to be given by the depletion of the selected states, i.e.,
by the total number of particles in nonselected states,

N∗ =
∑
i /∈S

1

gi − 1
. (64)

The set of selected states is determined completely by the
rate-asymmetry matrix Aij . Namely, this matrix determines
not only the relative occupations among the selected states
via Eqs. (60), but also the sign of the occupations (61) of the
nonselected states, which have to be positive. The latter can
be seen by writing Eq. (61) as

n̄i = 1

gi − 1
= −

∑
j∈S Rij n̄j∑
j∈S Aij n̄j

, i /∈ S. (65)

Here the numerator is always positive, since both the rates
Rij and the occupations n̄j are positive, and the sign of
the denominator is determined by Aij , since it depends on
the relative occupations among the selected states, which
are determined by Aij via Eqs. (60). The fact that the
rate-asymmetry matrix Aij , given by Eq. (8) or by Eq. (9),

does not depend on the bath temperature(s) implies that
the set of selected states S also does not depend on the
bath temperature(s). However, the occupations (61) of the
nonselected states are temperature dependent, as Rij appears
on the right-hand side of Eq. (65). This implies that both the
total number of particles in selected states NS [Eq. (63)] as well
as the characteristic particle number N∗ [Eq. (64)] at which
Bose selection sets in depend on the bath temperature(s).

Finding the set of selected states S is generally a nontrivial
problem. A brute-force algorithm would go through all
possible sets containing an odd number of single-particle
states, whose number grows exponentially with the number
of modes M , until the desired set S is found. An efficient
algorithm for finding S is presented in Sec. IV G below.
Already the question of how many states will be selected is
not straightforward to answer, apart from the fact that (without
fine tuning) it is always an odd number.

A special case is the scenario of having a single selected
state k, corresponding to standard Bose condensation. Here
the occupations of the nonselected states (61) reduce to the
simple expression

n̄i = 1

Rki/Rik − 1
, i �= k. (66)

The fact that these occupations must be positive reveals that
this scenario occurs when the state k is ground-state-like in
the sense that for all states i the rate Rki from i to k is always
larger than the backward rate Rik ,

Rki − Rik = Aki > 0 ∀ i �= k. (67)

The term “ground-state-like” refers to the situation of thermal
equilibrium, where the relation (20) implies that the condition
(67) is fulfilled for k being the ground state. These arguments
reveal why we find a single selected state for the tight-binding
chain which is driven between two heat baths of different
positive temperature [Fig. 4(b)]. In this situation the notion of
the single-particle ground state still remains meaningful even
away from equilibrium. This is generally different when the
system is coupled to a population-inverted bath described by
a negative temperature, like in Fig. 4(c), or in a periodically
driven system, like in Fig. 4(d). In the former case the condition
(67) cannot be expected to hold for k being the ground state
and in the latter case the ground state is not even defined (since
quasienergies are determined modulo �ω only).

We can compare our theory to the theory of equilibrium
Bose condensation as it was reviewed in Sec. IV A. First of
all, we would like to note that the equilibrium situation is
contained in our asymptotic mean-field theory as a special case.
Namely, the equilibrium expression (53) for the excited-state
occupations is reproduced, when the relation (20) is plugged
into Eq. (66). Generally, our Eq. (61) generalizes Eq. (53);
likewise, Eqs. (63) and (64) are generalizations of Eqs. (55)
and (56), respectively. However, the fact that the relative
occupations among the selected states and, even more, also
the set S of selected states have to be determined adds an
additional layer of complexity to the theory of nonequilibrium
Bose selection.
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D. Systematic high-density expansion

In this section we show that the asymptotic mean-field
theory described in the previous subsection corresponds to the
leading orders of a systematic expansion in the inverse total
particle number N−1. This implies that it correctly captures
the mean-field result in the limit of large N .

Let us expand the mean occupations as a series in powers
of the inverse particle number N−1,

n̄i = Nνi + ν
(1)
i + N−1ν

(2)
i + N−2ν

(3)
i + · · · , (68)

and require ∑
i

νi = 1,
∑

i

ν
(r)
i = 0, (69)

for the leading order as well as for the corrections of order
r � 1. These requirements ensure that the mean total particle
number is given by N , when the series is truncated after a
certain order r . Such an expansion is equivalent to an expansion
in the inverse particle density n−1 = M/N . We can now plug
the ansatz (68) into the mean-field Eqs. (57),

0 = νi

∑
j

Aij νj

+ 1

N

∑
j

[
Rijνj − Rjiνi + Aij

(
νiν

(1)
j + ν

(1)
i νj

)]

+ 1

N2

∑
j

[
Rijν

(1)
j − Rjiν

(1)
i

+ Aij

(
ν

(2)
i νj + ν

(1)
i ν

(1)
j + νiν

(2)
j

)] + O

(
1

N3

)
, (70)

and ask that all terms that correspond to the same power of
N vanish independently. In this way we get a hierarchy of
equations determining the coefficients of the expansion (68)
order by order.

Collecting the terms of the leading order gives rise to a set
of equations for the leading coefficients νi . These equations
take the form of Eqs. (59), but with n̄i replaced with νi ,

0 = νi

∑
j

Aij νj . (71)

Repeating the arguments of the previous section we see that
the leading-order coefficient is nonzero only for a (yet to be
determined) set of selected states S, so that

νi = 0, i /∈ S, (72)

and

0 =
∑
j∈S

Aijνj , i ∈ S. (73)

The next order determines the coefficients ν
(1)
i . Thanks

to Eq. (72) the coefficients of the nonselected states are
not coupled to each other and depend on the leading-order
occupations of the selected states only, so that we arrive at the
simple expression

ν
(1)
i = −

∑
j∈S Rijνj∑
j∈S Aijνj

, i /∈ S. (74)

This expression directly corresponds to Eq. (61), but with
n̄i replaced with νi for the selected and by ν

(1)
i for the

nonselected states. The leading corrections to the occupations
of the selected states appear in the same order and can be
determined by solving the linear equations∑

j∈S
Aijνiν

(1)
j =

∑
j∈S

(Rjiνi − Rijνj )

+ νi

∑
j /∈S

(
Rji − Aijν

(1)
j

)
, i ∈ S, (75)

where we used 0 = ∑
j∈S Aijνj [Eqs. (71) and (72)] and taking

Eq. (69) for r = 1 into account. Higher orders in the expansion
(70) can become relevant when some rates vanish, as discussed
in Sec. IV H.

Truncating the 1/N expansion after the first order, one
obtains

n̄i 
{

νiN + ν
(1)
i for i ∈ S,

ν
(1)
i for i /∈ S.

(76)

However, asymptotically in the limit of large N , it will be
sufficient to take into account only the leading contributions,
so that the mean occupations can be approximated as

n̄i 
{

νiN for i ∈ S,

ν
(1)
i for i /∈ S.

(77)

This corresponds to the approximation of the previous section,
apart from the slight difference that, previously, we normalized
the total occupation of the selected states NS to the first-
order result N (1)

s = ∑
i∈S [νiN + ν

(1)
i ] = N − ∑

i �=S ν
(1)
i . This

is implicit in Eq. (63) and corresponds to the approximation

n̄i 
{

νiN
(1)
s for i ∈ S,

ν
(1)
i for i /∈ S.

(78)

This normalization, which for finite N takes care of the fact
that the leading contributions to the occupations of the selected
and the nonselected states stem from different orders, is thus a
compromise between Eq. (76) and Eq. (77). For large but finite
N it is better than Eq. (77), since it produces the correct total
particle number, but it does not require to compute corrections
ν

(1)
i for the selected states that enter Eq. (76). Therefore, we

use Eq. (78), corresponding to the asymptotic theory as it
was presented in the previous section, in the following. In the
asymptotic limit N → ∞ all three expressions (76), (77), and
(78) are, of course, equivalent.

The requirement of having a positive particle number in the
asymptotic limit of large N is given by

νi > 0 for i ∈ S,

ν
(1)
i > 0 for i /∈ S.

(79)

In order to find a compact formulation of finding an asymptotic
solution obeying this condition it is convenient to introduce the
numbers μi = ∑

j Aij νj . According to Eq. (73) they vanish
for i ∈ S, while Eq. (74) tells us that they should be negative
to ensure positive occupations of the nonselected states. The
problem of finding an asymptotic mean-field solution can,
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therefore, be reduced to the problem of finding a set S of
selected states and numbers νi and μi such that [23]

μi =
∑

j

Aij νj with

{
νi > 0 and μi = 0 for i ∈ S,

νi = 0 and μi < 0 for i /∈ S.
(80)

The nongeneric situation with νi = μi = 0 for some i corre-
sponds to transitions, which we discuss in the next section.
Before we prove that a unique set S obeying the relations (80)
exists, let us point out that these relations are valid only in
the case of fully connected rate matrices. If we allow for zero
rates Rij = 0, the set of selected states is not determined by
the conditions (80) anymore, as we discuss in Sec. IV I below.

It is interesting to note that the conditions (80) that de-
termine the selected states are equivalent to those determining
the surviving species under the dynamics of the Lotka-Volterra
equations given in footnote 5 [46,47]. Differences appear for
non-fully-connected rate matrices (see discussion at the end of
Sec. IV I).

E. Existence and uniqueness of the set of selected states

In this section we provide a proof for the uniqueness and
the existence of the set of selected states for fully connected
rate matrices (which we repeat for completeness from the
Supplemental Material of Ref. [23].) In the following we
use the vector and matrix notation, with ν and μ denoting
the vectors with elements νi and μi , respectively, and R and
A denoting the rate matrix and the rate-asymmetry matrix
with elements Rij and Aij , respectively. Let us, furthermore,
decompose A like

A =
(

AS ASS̄

AS̄S AS̄

)
, (81)

wherein the submatrix AS = {Aij }i,j∈S denotes the rate
asymmetries among selected states, AS̄S = −(ASS̄ )T =
{Aij }i /∈S,j∈S the rate asymmetries among nonselected and se-
lected states, and AS̄ = {Aij }i,j /∈S the rate asymmetries among
nonselected states. The conditions (80) with i ∈ S require us to
determine S such that AS has a vanishing eigenvalue. Skew-
symmetric matrices generically have a vanishing eigenvalue
only if their dimension is odd. As the square submatrix AS of
A is still skew symmetric, we can immediately conclude that
the number MS of Bose selected states is odd. The conditions
(80) stipulate, furthermore, that the corresponding eigenvector
νi , i ∈ S has positive components. Finally, the conditions for
i /∈ S tell us that this eigenvector should result in a vector
with nonpositive components when it is multiplied with the
submatrix AS̄S .

We now prove the uniqueness of the set S. Assume first
that there exist two different sets S1 and S2, both leading to
physical solutions ν1 and ν2 with μ1 = Aν1 and μ2 = Aν2
obeying Eq. (80). Using

νT
2 μ1 = νT

2 Aν1 = (
νT

2 Aν1
)T = νT

1 AT ν2 = −νT
1 Aν2

= −νT
1 μ2, (82)

it then follows from Eq. (80) that

0 � νT
2 μ1 = −νT

1 μ2 � 0. (83)

This requires that both νT
2 μ1 = 0 and νT

1 μ2 = 0, such that
S2 ⊂ S1 and S1 ⊂ S2, leading us to conclude that S1 = S2 ≡
S. Given the set S, the homogeneous linear system for ν

generically has a single solution only. Therefore, the solution
to the generic steady-state problem has to be unique.

In order to prove the existence of the set S, we now restrict
S to sets comprising an odd number MS of states, according to
the generic conditions described above. Each choice ofS gives
rise to a (possibly nonphysical) solution νS with μS = AνS .
The vector of signs σ with

σi = sgn(νi) if i ∈ S,
(84)

σi = −sgn(μi) if i /∈ S,

distinguishes physical solutions (σi = 1 for all i) from non-
physical solutions. Here we fix an overall sign due to the
orientation of the vector νS by the convention σ1 = 1. Now we
observe the following. (i) Cycling through all odd-numbered
subsets S, each possible vector σ occurs at most once.
Namely, if S1 and S2 gave rise to the same vector σ , then
the modified rate-imbalance matrix Ãij = σiAijσj had two
physical solutions with different selected sets S1 and S2,
in contradiction to the previously established uniqueness of
the solutions. (ii) The number 2M−1 of possible vectors σ

equals the number
∑

MS=1,3,...

(
M

MS

) = 2M−1 of possible sets
S. Therefore, each vector σ occurs once. In particular, this
includes the vector with σi = 1 for all i, leading to the solution
with positive macroscopic and microscopic occupations. This
guarantees the existence of a physical solution.

F. Transitions

In this section we discuss transitions, where the set of
selected states S changes in response to the variation of a
parameter p. Examples for such transitions can be observed
in Fig. 6. This figure shows the mean occupations versus the
parameter p for a model defined by the superposition of two
random-rate matrices R(1) and R(2), with the relative weight
controlled by p, R(p) = (1 − p)R(1) + pR(2). One can see
that in a transition two states are exchanged between the set of
selected states and the set of nonselected states, such that the
number of selected states is odd before and after the transition.
Approaching a transition from the left, the transition is found to
be triggered by a state i<. This state i< can either be a selected
state whose occupation drops until it becomes nonselected at
the transition (case I) or a nonselected state whose occupation
increases until it becomes selected at the transition (case II).
Furthermore, one can observe that at the transition a second
state i> becomes involved abruptly that changes from the
selected to nonselected (case A) or vice versa (case B). When
approaching the transition from the right, the states i< and i>

change their role, so that the former partner state i> plays the
role of the triggering state.

The four combinations of cases I or II and A or B define
four generic types of transitions that are depicted in Fig. 7.
Type (I,A) and type (II,B), where the number MS of selected
states is lowered or raised by two, respectively, transform into
each other when the transition is passed in opposite direction.
Therefore, they form one class. In type (II,A) transitions,
which are triggered by nonselected states from both side, and
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FIG. 6. (Color online) Mean occupations in response to the
variation of a dimensionless parameter p, for a small system of
N = 106 bosons on M = 7 states for the random-rate model. The
rate matrix R(p) is a superposition of two independently drawn
rate matrices R(1) and R(2), with the relative weight controlled
by p, R(p) = (1 − p)R(1) + pR(2). The results are obtained using
mean-field theory (dotted lines) and asymptotic theory (solid lines for
selected states and dashed lines for nonselected states). Each color
refers to a specific state. At each transition two states are exchanged
between the sets of selected and nonselected states.

type (I,B) transitions, which are triggered from selected states
from both sides, the number MS of selected states does not
change. They define two distinct classes, since they cannot be
transformed into each other.

S< S>A

B

I II
log n̄i

log n̄i

p pp∗ p∗

FIG. 7. Four generic types of transitions, where the set of selected
states changes fromS = S< toS = S> when a parameter p reaches a
critical value p∗. In each transition, two states are exchanged between
the sets of selected and nonselected states, so that the number MS of
selected states remains odd. When approaching the transition from
the left, it is triggered by a state i<, either a selected state whose
occupation drops until it becomes nonselected at the transition (case
I) or a nonselected state whose occupation increases until it becomes
selected at the transition (case II). A second state i> becomes involved
abruptly at the transition that changes from selected to nonselected
(case A) or vice versa (case B). This state plays the role of the
triggering state when the transition is approached from the right.
Types (I,A) and (II,B) form one class, since they transform into each
other when the transition is passed in opposite direction.

These observations based on Fig. 6 turn out to be generic. In
the following we describe them within the asymptotic mean-
field theory. We have already defined the left triggering state
i< and its partner state, the right triggering state i>. Moreover,
let p∗ be the critical parameter at which the transition occurs
and S< and S> be the sets of selected state on the left-hand
and the right-hand side of the transition, respectively (Fig. 7).
Within the asymptotic theory a transition must occur when the
occupation n̄i of a state i would change its sign at a critical
parameter p = p∗. This state i plays the role of the triggering
state i<. If i< is a selected state (before the transition), the
transition occurs when νi< drops to zero, so that in zeroth order
the occupation of this state becomes zero. In that case the state
i< can, thus, be viewed as a nonselected state at the transition.
If i< is a nonselected state, the transition occurs when μi<

becomes zero, so that in first order the occupation of this state
diverges. In that case the state i< must, therefore, be viewed as
a selected state at the transition. Thus, at the transition p = p∗,
which corresponds to a fine-tuned situation, the set of selected
states contains an even number of states and is given by

S∗ =
{
S< ∪ {i<} if i< /∈ S<,

S< \ {i<} if i< ∈ S<.
(85)

As the number of Bose-selected states has to become odd after
the transition, one further state i> has to be involved. The set
S∗ can also be expressed in terms of this partner state,

S∗ =
{
S> ∪ {i>} if i> /∈ S>,

S> \ {i>} if i> ∈ S>.
(86)

In the following we describe how to determine this partner
state in order to find the set S> of selected states on the other
side of the transition.

The intricate details of the transition are encoded in the
truncated matrix AS∗

, obtained from A∗ = A(p∗) by removing
all rows and columns corresponding to nonselected states
i /∈ S∗ like in Eq. (81). According to the transition criteria,
this matrix has at least one vanishing eigenvalue. As the matrix
is even-dimensional and skew-symmetric, its eigenvalues are
imaginary and come in pairs of opposite sign. Thus, one
eigenvalue of zero implies another one, so that generically
the kernel of AS∗

will be two-dimensional at the transition.
One vector lying in the kernel of AS∗

is given by the limiting
occupations νi as one approaches p∗ from below. We denote
this vector by ν< (note that this is now truncated to the states of
S∗). Analogously, there is a second vector ν> from the limiting
occupations as one approaches p∗ from the right, which also
lies in the kernel. We now establish a relation between both
vectors ν< and ν>.

For that purpose, we introduce an interpolating vector
ν(a) = aν< + (1 − a)ν ′, where ν ′ is the element of the
kernel of A∗ which is orthogonal to ν<, while a is an
interpolation parameter. The occupations of the nonselected
states (and their sign) is determined by the vector μ

given by Eq. (80). For the two possible solutions ν< and
ν>, this vector reads μ< = AS̄∗S∗

ν< and μ> = AS̄∗S∗
ν>,

respectively. Both vectors are connected by the interpolation
μ(a) = aμ< + (1 − a)μ′ with μ′ = AS̄∗S∗

ν ′. Herein AS̄∗S∗
is

obtained from A∗ = A(p∗) as described by Eq. (81). Due to
the selection criterion Eq. (80), we require physical solutions
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FIG. 8. (Color online) Occupations numbers versus total particle number N close to a transition. The system is described by the same rate
matrix R(p) as that of Fig. 6. The parameters p used in the different panels are chosen to be close (or at) the transition labeled (I,B) in Fig. 6,
with p∗ = 0.303 179 denoting the corresponding critical parameter.

νi(a) � 0 ∀ i ∈ S∗ and μi(a) � 0 ∀ i /∈ S∗. Choosing the
orientation of ν ′ conveniently, this is fulfilled for the finite
interval 0 < a < a>. The extremal point a> is determined by
ramping up a until either an element of ν(a) or μ(a) becomes
zero. The index of this element corresponds to the state i>

and the extremal point a> determines the solution ν>, via
ν(a>) = ν>.

Exactly at the transition, the interval 0 < a < a> cor-
responds to physically meaningful solutions with positive
occupation numbers. Its extremal points describe the solutions
ν< and ν> found when approaching the transition from the left-
and right-hand side, respectively. The narrower the interval,
i.e., the smaller �a = a>, the more similar will both solutions
ν< and ν> be. That means the smaller will be the discontinuous
changes in the occupations of the states i /∈ {i<,i>} that are
not directly involved in the transition, as they are visible also
in Fig. 6. The width �a associated with a typical transition
must, moreover, be expected to shrink with the system size.
Namely, each of the M single-particle states of the system
provides a constraint that potentially limits this interval, since
the number of conditions Eq. (80) proliferates with M . So in
large systems one cannot only expect more transitions to occur
when a parameter is varied, but also that the discontinuous
jumps, which the nonparticipating occupations undergo at each
transition, become smaller.

Before moving on, let us briefly discuss the case of finite
particle numbers N , where the sharp transition becomes a
crossover of finite width. This can be observed in Fig. 8.
Here we plot the mean occupations versus the total particle
number N for a system described by the same rate matrix
R(p) used in Fig. 6. The five panels of Fig. 8 are obtained
for parameters p close to (or at) the transition labeled (I,B)
in Fig. 6, with the critical parameter denoted by p∗. The first
panel corresponds to a parameter well on the left-hand side
of the transition. Here, asymptotically, three states become
selected. When coming closer to the transition, but still staying
on its left-hand side (second panel), we can observe that a
preasymptotic regime appears. Namely, at large, but finite
N the system approaches a state with two selected states,
before eventually in the asymptotic limit N → ∞, a third state
becomes selected as well. This third state corresponds to the

triggering state i<. The two states that appear to be selected
in this preasymptotic regime correspond to those two states
that are selected at the transition (middle panel). The fourth
panel corresponds to a parameter, where the transition has just
been passed. Here (roughly) the same preasymptotic state is
found, before asymptotically for N → ∞ a third state joins
the group of selected states. Now the third state is given by i>.
The fifth panel is, finally, obtained for a parameter well on the
right-hand side of the transition. Here again no preasymptotic
regime is found. The emergence of a preasymptotic regime
close to the transition implies that the fine-tuned rate matrix
R(p∗), which gives rise to two selected states, provides an
accurate description of the system within a finite interval of
parameters near the transition.

G. Efficient algorithm for finding the selected states

In principle, finding the unique set S of Bose-selected
states requires to sample all possible subsets, whose number
grows exponentially with M , until one succeeds to satisfy the
conditions (80). Testing all sets by brute force quickly becomes
unpractical already for moderately large values of M . While
the mean-field occupations and especially their dependence
on the total particle number can provide some guidance, this
method also quickly reaches its limits when M is further
increased. Here we describe an efficient algorithm for finding
the set of selected states. It uses the theory of transitions that
we presented in the previous section.

In order to solve the problem of finding the set of selected
states for a given rate-imbalance matrix A, we construct the
auxiliary rate-imbalance matrix

Ãij (p) = Aij + pBij (87)

by adding the real-valued skew-symmetric matrix B, weighted
with the real parameter p, to the original one. The problem
defined by the new matrix Ã(p) will be solved by a set S̃(p)
of selected states. The matrix B is constructed as follows: It
shall possess a crosslike structure, with nonzero elements only
in the column and the line labeled by k,

Bij = δikbj − δkj bi, (88)
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so that

Ãkj (1) = Akj + bj > 0, ∀ j �= k. (89)

This condition, which corresponds to the relation (67), ensures
that for p = 1 only the state k will be selected, S̃(1) = {k}.
Relation (89) can be achieved with minimal effort by setting

bi =
{+|Aki | + εi > 0 if Aki � 0,

0 otherwise, (90)

with arbitrary εi > 0. Our strategy will now consist of ramping
the parameter p down from p = 1, where the solution S̃(1) =
{k} is known by construction, to p = 0, where we would like
to know the solution S̃(0) = S. During this ramp, we monitor
all transitions, i.e., changes of the set S̃(p), that are happening,
so that at the end we arrive at the desired solution. For that
purpose it seems favorable (though not necessarily required)
to choose the state k such that a minimum of the elements
bj defined like (90) has to be nonzero, and to choose the εi

different from each other, εi �= εj for i �= j , in order to separate
the transitions when varying p.

In order to follow the state of the system during the param-
eter ramp, we take advantage of the specific way the matrix
Ã(p) depends on the parameter p. Namely, the cross structure
(88) of the matrix B implies that the occupations of the system
change in a linear fashion unless a transition occurs: If the
vector ν̃(p0) solves the problem (80) for Ã(p0), then one has

ν̃(p)=C(p)[ν̃(p0) + ν̃ ′(p0)(p − p0)] for pa < p < pb,

(91)

with a global normalization factor C(p) > 0 such that∑
j∈S̃(p) ν̃(p) = 1. Here the limits pa and pb are given by those

values of p, where the set of selected state changes away from
S̃(p0) in a transition. The proof of this statement is rather tech-
nical and delegated to Appendix E, where we also describe how
to obtain ν̃ ′(p0). Expression (91) can be employed to predict
the positions pa and pb of the transitions as those points, where
either an element ν̃i(p) of ν̃(p) or an element μ̃i(p) of the asso-
ciated vector μ̃(p) = Ã(p)ν̃(p) would change sign. The label i
of this state corresponds to the state that triggers the transition.

With these ingredients, our algorithm works as follows:
Start from p = 1, where S̃(1) = {k}, and evaluate where the
next transition occurs when p is lowered and by which state
i> it will be triggered. Next, employ the theory of transitions
described in the previous section to determine the partner
state i<, which at the transition also changes between the
sets of selected and nonselected states. In this way the new
set of selected states solving Ã(p) after the transition has been
found. Then compute where the next transition occurs when
p is lowered further, iterating this procedure until p = 0 is
reached. The time needed to find the set of selected states
in this way scales polynomial with the system size M . For
the random-rate model, which constitutes a rather difficult
problem since on average half of the states are selected [23],
we find this time to scale as ∼Mα with α ≈ 4. This allows us
to find the set of selected states for systems of up to M = 1000
states. An alternative algorithm for solving the problem (80)
has recently been presented in Ref. [47] and is based on linear
programming.

H. Small rates and preasymptotic regime

So far we have assumed strictly positive rates, Rij > 0,
within the asymptotic theory. This assumption is reasonable
in the sense that exactly vanishing rates, Rij = 0, can be
viewed as a fine-tuned situation. However, obviously, we can
encounter situations where some rates are much smaller than
others, e.g.,

Rij =
{
O(r) for (i,j ) ∈ G,

O(εr) else, (92)

with G denoting the subset of pairs (i,j ) with large rates of
order r and ε � 1 quantifying the suppression of small rates
of order εr . Such rate matrices can result from a situation
where some modes are coupled much more weakly to the
environment than others. Having such a situation in mind, in
the following discussion we consider a rate Rij to be small
only when also its backward rate Rji is small too, so that also
the corresponding rate asymmetry |Aij | is small.6

Having some rates much smaller than others, it appears
reasonable to neglect the small rates in an approximation,

Rij ≈ Ra
ij =

{
Rij for (i,j ) ∈ G,

0 else. (93)

As we argue below, such an approximation will describe the
system accurately, provided that the total particle number N

remains below a threshold Nthr associated with the approxima-
tion. Thus, when increasing the particle number N , one might
encounter the following scenario: First a preasymptotic state
is approached, where the occupations are well described by
the asymptotic theory based on the approximate rate matrix
Ra

ij , before eventually the true asymptotic state of the full rate
matrix R is reached above the threshold. This scenario can be
observed in Fig. 9, where we plot the occupations of a minimal
three-state model versus N . In this model the rates are given
by

R = r

⎛
⎝ 0 1 2ε

2 0 2
1ε 4 0

⎞
⎠, ε = 10−3, (94)

Ra = r

⎛
⎝0 1 0

2 0 2
0 4 0

⎞
⎠. (95)

This behavior resembles the preasymptotic behavior found
near transitions that we discussed at the end of Sec. IV F. In
both cases the preasymptotic state is described by a fine-tuned
rate matrix, either characterized by the critical parameter or by
setting several matrix element to zero. However, since setting
several matrix elements to zero corresponds to the fine tuning
of several parameters, the set of selected states of Ra can be
quite different from that of R.

The appearance of a preasymptotic regime described by the
approximate rate matrix (95) at intermediate particle numbers

6There can also be small rates without small backward rates, e.g.,
between states with a large energy separation. Not considering those
rates as small in the analysis below (i.e., not exploiting the fact that
they are small) does not spoil its validity.
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FIG. 9. (Color online) Effect of small rates for a minimal three-
state model with rate matrix (94). Occupations n̄i versus total
particle number N obtained using mean-field theory (solid lines)
and asymptotic theory (dashed lines) for the rate matrix R given
by Eq. (94), which is visualized in the inset (line widths reflect
rates). Furthermore, the dotted lines show occupations n̄i obtained
by the asymptotic theory for the approximate rate matrix Ra given
by Eq. (95), where the small rates have been neglected. Blue, green,
and red lines describe n̄1, n̄2, and n̄3, respectively. Near N ∼ 10 the
system approaches a preasymptotic state with a single selected state,
described by Ra , before above N ∼ 103 the true asymptotic state is
reached, where all states are selected.

N , as it is visible in Fig. 9 roughly for 10 < N < 103, can be
explained as follows. When applying the asymptotic theory,
Sec. IV C, to the approximate rate matrix, where small rates
are neglected, we find that the selected state 3 acquires an
occupation ∼N , while the occupations of the nonselected
states are ∼1. Generally, the fact that the selected state(s)
possesses an occupation much larger than the nonselected
states justifies the 1/N expansion (68), which underlies
the asymptotic theory. This explains why the preasymptotic
regime is reached near N ∼ 10, when N � 1. However, as
soon as the factor N between the occupations of the selected
and the nonselected states becomes comparable to the inverse
suppression factor ε−1 ∼ 103, the weak rates start to spoil the
hierarchy of the 1/N expansion based on the selected state of
Ra . Namely, the product of a small rate with the occupation
of a selected state ∼rεN , which was neglected so far, can
become comparable to the product of a large rate with the
occupation of a nonselected state ∼r , which has been taken
into account. This explains why for N > Nthr ∼ ε−1 = 103 the
system starts to deviate from the solution of the approximate
rate matrix (describing the preasymptotic state) to approach
the true asymptotic state determined by the full rate matrix.

Note that allowing for zero rates, i.e., rate matrices that are
not fully connected like Ra , can have several consequences
for the asymptotic theory. These are discussed in the following
section.

I. Zero rates: Not fully connected rate matrices

So far we have assumed fully connected rate matrices within
our asymptotic theory. What happens if we allow some rates to
become zero? This question emerges, e.g., when computing the

asymptotic state of an approximate rate matrix Ra [Eq. (93)].
First of all, in case the rate matrix is disconnected, so that it is
not possible anymore to reach every state i from every other
state j in a sequence of quantum jumps (and vice versa), then
the steady state of the system is not unique anymore [57] and
will depend on the initial conditions.7 We exclude this scenario
from the following discussion and focus on situations where
the rate matrix is solved by a unique steady state.

In order to discuss the impact of zero rates, let us briefly
recapitulate the situation where all states are coupled to all
other states. In this case the coefficients νi and ν

(r)
i of the

1/N expansion (68) are obtained as follows. First the leading
coefficients νi , and with that the set S of selected states,
have to be determined by solving the problem (80). Then the
subleading coefficients ν

(r)
i can be obtained iteratively from the

hierarchy of equations that results from Eq. (70) by requiring
the terms of each power of N to vanish separately. If we denote
the terms ∝ N−r on the right-hand side of Eq. (70) by I

(r)
i ,

then this hierarchy of equations reads

I
(r)
i (ν,ν(1), . . . ,ν(r)) = 0, (96)

for all i and for r = 0,1,2, . . . and with ν(r) denoting the vector
of coefficients ν

(r)
i . Now the ν

(1)
i are obtained by solving the

set of linear equations I
(1)
i (ν,ν(1)), with the already determined

νi treated as parameters. Then the ν
(2)
i are obtained from the

set of linear equations I
(2)
i (ν,ν(1),ν(2)) = 0, with the already

determined coefficients νi and ν
(1)
i entering as parameters, and

so on.
This procedure has to be modified for non-fully-connected

rate matrices. In the following discussion we assume that
Rij = 0 implies Rji = 0 and, thus, also Aij = 0, this is
analogous to our assumption about the occurrence of small
rates in the previous section. Let us start with the zeroth-order
equation, I (0)

i = νi

∑
j Aij νj = 0. As before, we conclude that

the leading coefficients νi are nonzero only for a group of
selected states i ∈ S,

∑
j∈S

Aijνj = 0, i ∈ S, (97)

νi = 0, i /∈ S, (98)

The set S of selected states has still to be determined from
the requirement that the asymptotic occupations of both the
selected and the nonselected states are positive. It can consist
of K uncoupled subsets Sα ,

S = S1 ∪ S2 ∪ · · · ∪ SK, (99)

with

Rij = 0 for i ∈ Sα,j ∈ Sβ,α �= β, (100)

7If, by taking into account neglected rates of order εr , the matrix
is connected again, then for times longer than 1/(εr) the nonunique
steady states associated with Ra will eventually relax to the unique
steady state of the full rate matrix.
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such that each subset Sα fulfills Eqs. (97) individually,∑
j∈Sα

Aij νj = 0, ∀ i ∈ Sα. (101)

Without fine tuning, a solution of
∑

j∈S Aijνj = 0 is guaran-
teed as long as the number of states in each of the subsets Sα is
odd. However, the total number of selected states MS can now
also be even. It is even (odd) if the number K of uncoupled
subsets Sα is even (odd). In the case of fully connected rate
matrices, the coefficients νi were determined uniquely by the
set S, Eqs. (97) and (98), as well as by the normalization con-
dition (69). For K > 1 this is not the case anymore. Here the
relative occupation of a subset Sα , defined by νSα

= ∑
i∈Sα

νi ,
is not fixed, since νSα

/νSβ
with α �= β is not determined by

Eq. (97). Thus, one has K − 1 parameters νSα
that yet have to

be determined from the equations of higher order.
In order to investigate the first-order equations I

(1)
i = 0 [see

Eq. (70)], it is useful to define two groups of nonselected states,

S̄ = S̄ ′ ∪ S̄ ′′, (102)

such that states that are directly coupled to selected states via
nonzero rates form the set S̄ ′ and states that are not coupled
directly to any selected state form the set S̄ ′′. For i ∈ S̄ ′ they
lead to the familiar result

ν
(1)
i = −

∑
j∈S Rijνj∑
j∈S Aijνj

, i ∈ S̄ ′. (103)

Note that for states i ∈ S̄ ′ that are coupled to selected states
belonging to two subsets Sα and Sβ (or more), the right-hand
side of Eq. (103) depends on the ratio νSα

/νSβ
, which is not

determined yet. In that case the ratio νSα
/νSβ

can be obtained

from Eqs. (105) below. The coefficients ν
(1)
i with i ∈ S̄ ′′ drop

out of the first-order equations (I (1)
i = 0 is fulfilled trivially)

and must be determined from the second-order Eqs. (107)
below. The first-order equations for the selected states i ∈ Sα

of a subset Sα simplify [with Eq. (101)] to

0 =
∑
j∈Sα

[
Rijνj − Rjiνi + Aijνiν

(1)
j

]

+
∑
j∈S̄ ′

[−Rjiνi + Aijνiν
(1)
j

]
, i ∈ Sα. (104)

These equations determine the coefficients ν
(1)
i of the selected

states i.
Further information can be obtained by summing Eqs. (104)

over all states i ∈ Sα . This gives 0 = ∑
j∈S̄ ′

∑
i∈Sα

νi(Rji +
Ajiν

(1)
j ). Here all nonselected states j ∈ S̄ ′ that couple only to

selected states of the subset Sα do not contribute to the sum,
since according to Eq. (103) their occupations are given by
ν

(1)
j = −(

∑
i∈Sα

Rjiνi)/(
∑

i∈Sα
Ajiνi). Thus, we obtain

0 =
∑

j∈S̄α+

∑
i∈Sα

νi

(
Rji + Ajiν

(1)
j

)
, ∀ α, (105)

where S̄α+ denotes the set of nonselected states that couple
to the subset Sα and at least to one more selected state
of a different subset Sβ with β �= α. If this set S̄α+ is not
empty, Eq. (105) can be used to determine missing relative

occupations νSα
/νSβ

. We argue below that, in fact, all subsets
of selected states must form a connected cluster, where two
subsets Sα and Sβ are defined to be connected if they are
coupled directly (via a single quantum jump of nonzero rate) to
the same nonselected state(s). This guarantees that all relative
occupations νSα

/νSβ
can be determined from Eqs. (105) and

(103), so that the νi can be determined completely.
From the second-order equations I

(2)
i = 0, we obtain

0 =
∑

j

[
Rijν

(1)
j − Rjiν

(1)
i

+ Aij

(
ν

(2)
i νj + ν

(1)
i ν

(1)
j + νiν

(2)
j

)]
, ∀ i. (106)

These equations determine all the coefficients ν
(1)
i that have

not been obtained yet, since all ν
(1)
i are coupled to each other

(at least indirectly). For the missing coefficients ν
(1)
i of states

i ∈ S̄ ′′ they simplify further to

0 =
∑
j∈S̄

(
Rijν

(1)
j − Rjiν

(1)
i + Aijν

(1)
i ν

(1)
j

)
, ∀ i ∈ S̄ ′′,

(107)

since the states i ∈ S̄ ′′ couple to nonselected states only. In
these equations the coefficients ν

(1)
j for the states j ∈ S̄ ′ are

determined already by Eqs. (103).
The statement that all subsets of selected states must form a

single connected cluster (in the sense described above) can now
be shown by noting that the assumption of several mutually
unconnected clusters A, B, C, . . . leads to a contradiction.
Let us denote the set of nonselected states directly coupled
to the selected states of cluster X by S̄ ′

X and note that the
mean particle current from one subset of nonselected states
S̄1 to another one S̄2 is in leading order given by JS̄2S̄1

=∑
i∈S̄2

∑
j∈S̄1

(Aijν
(1)
i ν

(1)
j + Rijν

(1)
j − Rjiν

(1)
i ). The total cur-

rent into S̄ ′′ then reads JS̄ ′′ = JS̄ ′′S̄ ′ = JS̄ ′′S̄ ′
A

+ JS̄ ′′S̄ ′
B

+ · · · .
It is directly given by summing the right-hand sides of
Eqs. (107). Consequently, it vanishes in the steady state as
it should, JS̄ ′′ = 0. The total current into cluster A reads
JS̄ ′

A
= JS̄ ′

AS̄ ′′ + JS̄ ′
AS̄ ′

B
+ JS̄ ′

AS̄ ′
C

+ · · · . Obviously, it should also
vanish in the steady state. However, generically this is is not
possible for more than a single cluster. Namely (without fine
tuning), the individual terms JS̄ ′

AS̄ ′′ , JS̄ ′
AS̄ ′

B
, . . . , containing the

coefficients ν
(1)
i determined from Eqs. (103) and (107), can

neither be expected to vanish individually nor to cancel each
other. In contrast, for a single cluster, one has JS̄ ′

A
= JS̄ ′

AS̄ ′′ =
−JS̄ ′′ = 0, as required.

From the rather technical discussion of the preceding
paragraphs, we can now draw several important conclusions.
First of all, Eqs. (97) and (98) imply that Bose selection is still
predicted to occur, i.e., only a subset S of the single-particle
states has occupations that grow with the total particle number

n̄i = νiN. (108)

Second, the asymptotic occupations of the nonselected states
are still determined by the first-order coefficient ν

(1)
i , so that

their occupations saturate for large N . (In contrast, if ν
(2)
i would

describe the leading contribution to the occupations of a state
i, it would become unpopulated in the limit of large particle
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numbers). This is true also for states contained in S̄ ′′ that are
not directly coupled to a selected state. Both conclusions, Bose
selection and saturation, are confirmed by the preasymptotic
state that can be observed in Fig. 9 for 101 � N � 103, which
is approximately given by the asymptotic state of the rate
matrix Ra [Eq. (95)].

Finally, a third conclusion is that for rate matrices that
are not fully connected the set of selected states S is
not determined by the conditions (80) anymore. Namely,
a negative μi guarantees a positive asymptotic occupation
ν

(1)
1 of a nonselected state i ∈ S̄ ′, but not for a nonselected

state i ∈ S̄ ′′. This implies that we cannot apply the efficient
algorithm presented in Sec. IV G in order to find the set of
selected states [neither can the algorithm of Ref. [47] be used,
which is also based on the conditions (80)]. It seems likely
that the set of selected states of the mean-field equations is still
unique and determined by the requirement of having positive
occupations, as the full many-body master equation possesses
a unique steady state. However, unlike in the case of fully
connected rate matrices, we have no proof for this statement.

Let us illustrate the above reasoning using the minimal
example given by the rate matrix Ra defined in Eq. (95) of the
previous section. The corresponding rate-asymmetry matrix
reads

Aa = r

⎛
⎝0 −1 0

1 0 −2
0 2 0

⎞
⎠. (109)

Thus, if we were allowed to solve the problem (80) to find
the set of selected states and the asymptotic occupations, we
would find two disconnected clusters of selected states given
by S1 = {1} and S2 = {3}. Namely,

μ = r

⎛
⎝0 −1 0

1 0 −2
0 2 0

⎞
⎠

⎛
⎝ν1

0
ν3

⎞
⎠ =

⎛
⎝ 0

r(ν1 − 2ν3)
0

⎞
⎠ (110)

solves problem (80) nonuniquely for 0 < ν1 < 2/3 and ν3 =
1 − ν1. However, this is not the true solution. Namely,
Eq. (105) for α = 1 simplifies to 0 = ν1(R21 + A21ν

(1)
2 ) =

ν1(2 + ν
(1)
2 ) from which ν1 = 0 follows in contradiction to

Eqs. (80). This demonstrates that Eq. (80) cannot be used
in order to determine the selected states in the case of
non-fully-connected rate matrices.

From Fig. 9, where Ra describes the preasymptotic regime
(101 � N � 103), one can infer that only state 3 will be
selected. Let us, therefore, solve Eqs. (97), (98), (103), and
(106) for the ansatz

S = {3}. (111)

The zeroth-order equations (97) and (98) are solved trivially
by

ν3 = 1, ν1 = ν2 = 0. (112)

Then ν
(1)
2 is obtained from Eq. (103) and reads

ν
(1)
2 = −Ra

23

Aa
23

= 1, (113)

while Eq. (105) is trivially fulfilled since S̄α+ is empty. Finally,
ν

(1)
1 results from Eq. (106) for i = 1,

ν
(1)
1 = Ra

12ν
(1)
2

Ra
21 − Aa

12ν
(1)
2

= 1

3
, (114)

We can see that the initial assumption S = {3} is confirmed
by the fact that we obtained meaningful positive occupation
numbers. The just-obtained asymptotic occupations for the
rate matrix Ra are plotted as dotted lines in Fig. 9 and provide
a good description of the preasymptotic state.

For completeness, we finally present a simple example for
a situation where the set of selected states consists of two
uncoupled subsets. It is given by a model of four states with
rate matrix

R = r

⎛
⎜⎝

0 2 0 1
1 0 3 0
0 1 0 4
5 0 1 0

⎞
⎟⎠. (115)

The occupations plotted in Fig. 10 show that the set of selected
states contains the two uncoupled states 2 and 4,

S = S1 ∪ S2, with S1 = {2} and S2 = {4}. (116)

The case of zero rates has recently also been discussed
by Knebel et al. for the Lotka-Volterra equations of motion
[46,47],

˙̄ni = n̄i

∑
j

Aij n̄j . (117)

These equations correspond to the leading-order high-density
approximation (59) of the mean-field equation (31), with
σ = 1 for bosons. These leading-order equations describe
the dynamics of the Bose gas on an intermediate time
scale, before eventually the subleading terms of Eq. (31),
which are linear in the occupations, become relevant and
determine the steady state. Knebel et al. show that under
the evolution described by Eq. (117) the occupations of
some states i die out exponentially fast, while the other
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FIG. 10. (Color online) Example for Bose selection of two un-
coupled states. Mean occupations obtained from mean-field theory
(n̄1 blue, n̄2 green, n̄3 red, n̄4 orange) vs the total particle number N

for the rate matrix (115), which is visualized in the inset (line widths
reflect rates). The two selected states 2 and 4 are not coupled directly.
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FIG. 11. (Color online) Comparison between the dynamics of
the mean-field equations (31) (solid lines) and the Lotka-Volterra
equations (117) (dashed lines) for the rate matrix (95), which is
visualized in the inset (line widths reflect rates), for N = 300 particles
initially uniformly distributed. While in both cases the population in
state 2 (green) decays on an intermediate time scale, the population in
state 1 (blue) decays on a longer time scale in the mean-field equations
only leading to a single condensate in state 3 (red).

states retain nonzero occupations. Interestingly, those states
retaining nonzero occupations are determined by the very same
condition (80) that we found to determine the selected states
for fully connected rate matrices. That means in the case of
fully connected rate matrices the selected states are determined
already by the leading-order equation (117). Note the general
difference between the mean-field equation on the one hand
and the Lotka-Volterra equation on the other. While in the
first case the nonselected states retain a small but nonzero
occupation, they die out completely in the latter case.

In the case of non-fully-connected rate matrices Eqs. (80)
still determine uniquely which occupations die out under the
dynamics of Eq. (117) [47]. Thus, the conditions (80) still
describe a dynamical selection mechanism happening on an
intermediate time scale. However, in order to compute the
(true) steady state approached in the long-time limit, also
higher-order equations [Eqs. (103), (104), and (106)] have
to be taken into account. As a result, the set of selected states
in the steady state can be different from that obtained from
conditions (80).

Let us illustrate the above reasoning using the example of
the not fully connected rate matrix (95). Figure 11 shows the
different dynamics of this system for both the full mean-field
equations (31) and the Lotka-Volterra equations of motion
(59). In the limit of large N the population of state 2 decays
on the intermediate time scale, because the conditions (80)
predict an extinction of occupations n2 on the level of the
Lotka-Volterra equations [see Eq. (110)]. Eventually, however,
when higher-order terms become relevant in the full mean-field
equations of motion, also the occupation of state 1 decays so
that only state 3 is selected as predicted in Eq. (111). This is
contrasted by the Lotka-Volterra system, which remains in the
situation with two condensates in the states 1 and 3.

J. Asymptotic theory beyond mean field

Our theoretical description of Bose selection has so far
been based on mean-field theory. The data presented in Fig. 4

for a tight-binding chain in and out of equilibrium suggests
that mean-field theory provides a rather good approximation
to the mean occupations. Namely, deviations between the
mean-field results (thick solid lines) and the exact Monte
Carlo data (crosses) are visible only for nonselected states.
Where visible deviations occur, they are still rather small and
captured by the augmented mean-field theory (thin solid lines)
introduced in Sec. III C. Such good agreement can generally
not be expected for the number fluctuations of macroscopically
occupied selected modes, since mean-field theory does not
comply with the conservation of the total particle number.

In this section we investigate corrections to mean-field
theory in the asymptotic limit of large total particle number N ,
as they are described by the augmented mean-field theory.
For simplicity, we consider the case of fully connected
rate matrices. We explain why mean-field theory accurately
describes the occupations of the selected states and that
their correlations, such as number fluctuations, deviate from
mean-field theory in a universal fashion. Moreover, we argue
that the set of selected states is well described by a Gaussian
state projected to the space of sharp particle number N .

Within the augmented mean-field theory (Sec. III C) the
state of the system is described not only by the mean
occupations n̄i = 〈n̂i〉, like in mean-field theory, but also in
terms of the nontrivial two-particle correlations ζij = 〈n̂i n̂j 〉 −
〈n̂i〉〈n̂j 〉. In order to derive an augmented mean-field theory
for the asymptotic limit of large total particle numbers N , we
do not only expand the mean occupations with respect to the
inverse particle number, but at the same time also the nontrivial
two-particle correlations,

n̄i = Nνi + ν
(1)
i + N−1ν

(2)
i + N−2ν

(3)
i + · · · , (118)

ζki = N2ξki + Nξ
(1)
ki + ξ

(2)
ki + N−1ξ

(3)
ki · · · . (119)

Moreover, we choose again the normalization conditions∑
i

νi = 1,
∑

i

ν
(r)
i = 0, (120)

which fix the total particle number N = ∑
i n̄i in leading order,

as well as the conditions∑
ij

ξij = 0,
∑
ij

ξ
(r)
ij = 0, (121)

ensuring that the fluctuations of the total particle number
�N = ∑

ij ζij vanish.
We now insert the expansions (118) and (119) into the

augmented mean-field equations (45) and (46), with σ = 1 for
bosons and with the left-hand side set to zero in order to obtain
the steady state. In the resulting equations we ask that all terms
belonging to a certain power of N vanish independently. In this
way, we obtain the set of coupled nonlinear equations,

0 =
∑

j

Aij [νiνj + ξij ], (122)

0 =
∑

j

[Akjνkξij + Aijνiξkj + (Akj + Aij )νj ξki], (123)

for the leading order.

062119-21



DANIEL VORBERG et al. PHYSICAL REVIEW E 92, 062119 (2015)

Remarkably, we can solve these equations by making the
simple ansatz

ξki = x(δkiνk − νkνi) (124)

for the leading nontrivial correlations ξij , with x being a free
parameter. The relative weight of both terms in the bracket is
chosen such that the condition (121) is obeyed. Entering the
ansatz (124) into Eqs. (122) and (123) reduces these equations
to the much simpler conditions

νi

∑
j

Aij νj = 0. (125)

These equations are identical to the leading-order conditions
(71) of the asymptotic mean-field theory. Using the same
arguments as in the conventional asymptotic mean-field theory,
we have to conclude that the solution must be of the form∑

j∈S
Aijνj = 0, i ∈ S, (126)

νi = 0, i /∈ S. (127)

Equations (126) and (127) imply Bose selection. Only a
subset S of selected states have nonvanishing occupations
in leading order. The set S has to be determined by the
requirement to have positive occupations both for selected and
nonselected states. The asymptotic occupations of the latter
are given by ν

(1)
i and have to be determined in the next order.

Note that the set S obtained within the augmented theory can
be different from the one obtained within mean-field theory.
Namely, the occupations of the nonselected states differ in
both theories, so that in the augmented theory, e.g., a transition
where S changes might be shifted away from the critical
mean-field parameter. However, as long as the set of selected
states is the same in both theories, the mean-field result for the
asymptotic occupations of the selected states is not corrected
anymore. This explains the excellent agreement between
mean-field theory, augmented mean-field theory, and Monte
Carlo results for the selected-state occupations in Fig. 4.

According to the ansatz (124), we find the asymptotic
correlations among the selected states to be given by

〈n̂i n̂j 〉 = (1 − x)n̄i n̄j + xn̄iδij , i,j ∈ S. (128)

This is an intriguing result. It implies that the correlations and
fluctuations are determined solely by the mean occupations
and a single parameter x. The scaled two-particle correlations
for particles in different selected states,

gij = 〈n̂i n̂j 〉
〈n̂i〉〈n̂j 〉 = 1 − x, i,j ∈ S,i �= j, (129)

asymptotically approach all the same value, which is reduced
by x with respect to the mean-field result.

This very same parameter x also determines the asymptotic
number fluctuations of the Bose-selected modes,

�n2
i ≡ ζii = xN2(1 − νi)νi = x(N − n̄i)n̄i , i ∈ S. (130)

This equation implies that (in leading order) the number
fluctuations vanish if we have a single condensate in the state
i = k, so that νk = 1. This is a consequence of the conservation
of the total particle number that is incorporated in the
augmented mean-field theory. It contrasts with the Gaussian

result (35) obtained within the non-number-conserving mean-
field theory, which for bosons (σ = 1) reads �n2

i = n̄i + n̄2
i =

N2(νi + 1/N )νi . Note, however, that as soon as a system fea-
tures several condensates (macroscopically occupied selected
states), their number fluctuations (130) will typically be of
the order of the total particle number. This reflects the fact
that each condensate is effectively in contact with a particle
reservoir given by the other ones.

The requirement �n2
i > 0 tells us that x is positive. More-

over, it is reasonable to assume that the number fluctuations
will not be much larger than those obtained within the
non-number-conserving mean-field theory, so that �n2

i � n̄2
i

for all i ∈ S. Thus, an estimate for an upper bound for x is
determined by the selected state i with the smallest occupation
n̄i = νiN . Therefore,

0 < x � νmin

1 − νmin
, νmin = min

i∈S
νi. (131)

The precise value of x has to be obtained, however, from
the first-order equations. These equations are rather involved
and we do not discuss them here. They also describe small
beyond-mean-field corrections for the asymptotic occupations,
correlations, and fluctuations of the nonselected states.

In Fig. 12 we compare the augmented theory (solid lines)
with Monte Carlo results (crosses with error bars), ordinary
mean-field theory (dotted lines), and the asymptotic prediction
(128) for the selected states (dashed lines), using the model
system of Fig. 4(c). The comparison with the Monte Carlo
data shows that the augmented mean-field theory provides
an excellent approximation for the mean occupations n̄i

[panel (a)], where the ordinary mean-field theory shows small
deviations for the nonselected states [see Fig. 4(c)]. For the
two-particle correlations 〈n̂i n̂j 〉 shown in Figs. 12(b)–12(f),
the augmented mean-field theory still provides a rather good
description, though small systematic deviations with respect to
the exact Monte Carlo results are now visible, while mean-field
theory is not reliable anymore.

The relative number fluctuations �n2
i /n̄

2
i = ζii/n̄

2
i for the

selected states [panel (c)] show strong deviations from mean-
field theory, once Bose selection sets in near N = 102 [see
panel (a)] so that the selected modes acquire “extensive”
occupations. This agrees with our expectation that mean-field
theory is not able to describe the condensate fluctuations
for a system with sharp particle number. The condensate
fluctuations are found to be consistent with the asymptotic
prediction (130) for x ≈ 0.018. Note that the selected state
with the smallest occupation (roughly 4%) has asymptotic
number fluctuations that are only half as large as the mean-field
prediction, even though the other two condensates are large
enough to serve as a reservoir. Thus, x is roughly given by
νmin/2 in agreement with the estimate (131).

The other quantities displayed in Fig. 12 are not expected
to exhibit such drastic deviations of orders of magnitude from
mean-field theory, as we observed them for the condensate
fluctuations. Panel (e) shows the scaled correlations (129)
among the selected states. The augmented theory asymptot-
ically approaches the universal value 1 − x, with x ≈ 0.018.
Noticeable deviations of up to 30% occur before reaching the
asymptotic regime, whereas the deviation from the mean-field
result 1 become rather small asymptotically since x � 1.

062119-22



NONEQUILIBRIUM STEADY STATES OF IDEAL BOSONIC . . . PHYSICAL REVIEW E 92, 062119 (2015)

x = 0.018

(e)

0.6

0.7

0.8

0.9

1.0

1.1

g i
j
,

i
=

j
∈
S

101 102 103 104 105 106
N

x = 0.018

(c)

0

1

2

ζ i
i/

n̄
2 i
,

i
∈
S

100

102

104

106

n̄i

(a)
γ1

T1 > 0

γ2

T2 < 0

J
(b)

0

1

2

3

ζ i
i/

n̄
2 i
,i

/∈
S

(d)

0.50

0.75

1.00

1.25

g i
j
,i

∈
S,

j
/∈
S

0.8

0.9

1.0

1.1

g i
j
,i

=
j

/∈
S

101 102 103 104 105
N

(f)

FIG. 12. (Color online) Augmented mean-field theory (solid lines) versus mean-field theory (dotted lines) and Monte Carlo simulations
(crosses with error bars) for the tight-binding chain with parameters as in Fig. 4(c). All colors are consistent with panel (a) (and also Fig. 4);
lines describing correlations between two states have alternating color. (a) Mean occupations [corresponding to thin solid lines in Fig. 4(c)].
(b) Relative number fluctuations �n2

i /n̄
2
i = ζii/n̄

2
i for three exemplary nonselected states. (c) Relative number fluctuations �n2

i /n̄
2
i = ζii/n̄

2
i

of the selected states. (d) Correlations gij between the selected and three exemplary nonselected states. (e) Correlations gij among selected
states i �= j . (f) Correlations gij among exemplary nonselected states i �= j .

Similar behavior, i.e., larger deviations of up to a few tens
of a percent for small particle numbers that are reduced
slightly in the asymptotic regime, can be observed also in the
remaining plots of the figure. Panel (b) displays the relative
number fluctuations �n2

i /n̄
2
i for three exemplary nonselected

states. Relative correlations gij between selected states and
exemplary nonselected states as well as among exemplary
nonselected states are plotted in panels (d) and (f), respectively.

A deeper understanding of the findings presented so far in
this section, can be gained by noting that the selected states are
asymptotically described by a projected Gaussian state. This
can be seen as follows. For bosons in the steady state, the full
many-body rate equation (13) takes the form

0 =
∑
ij

(1 + nj )ni[Rijpnji
− Rjipn], (132)

where pn is the full occupation-number distribution. Let us
accept that there is a group of selected states, whose occu-
pations will grow with the total particle number N while all
other occupations saturate. Asymptotically, for N → ∞, we
can then neglect all nonselected states and safely approximate
(1 + nj ) ≈ nj , so that

0 =
∑
i,j∈S

njni[Rijpnji
− Rjipn]. (133)

We can now show that this equation is solved by the
projected Gaussian state (39). For this state one finds that
pnji

= eηi−ηj pn for the probability of finding the system in
the Fock state |nji〉 obtained from |n〉 by transferring one
particle from i to j . Moreover, according to Eq. (33) one has
eηi = 1 − 1/n̄i  1. Here we have used that, asymptotically,
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the mean occupations of the projected Gaussian state become
identical to that of the nonprojected Gaussian state. This
implies the intuitive statement that for the projected Gaussian
state, the probabilities for finding the system in the almost
identical Fock states |nji〉 and |n〉 asymptotically become
identical, pnji

 pn. Thus, plugging the projected Gaussian
state into the right-hand side of Eq. (133), we obtain

pn

∑
i,j∈S

njni[Rij e
ηi−ηj − Rji]  pn

∑
i,j∈S

njniAij = 0,

(134)

since Aij = −Aji . We have shown that asymptotically in the
limit N → ∞ the full number distribution of the selected
states is given by a projected Gaussian state. An important
consequence is that mean-field theory provides the exact
asymptotic mean occupations of the selected states. Another
consequence is that correlations 〈n̂i n̂j 〉 with i,j ∈ S and,
therefore, also the parameter x, must be determined completely
by the asymptotic mean occupations Nνi of the selected states.

K. Heat flow through the system: The role of fragmented
condensation and pseudotransitions

Nonequilibrium steady states of a driven-dissipative quan-
tum system typically feature a steady heat flow between the
system and its bath(s). This heat flow is described by Eq. (11)
in the case of an autonomous system and by Eq. (10) for a
periodically driven system. For bosons (σ = 1) in a steady
state, these equations read

Qb =
∑
ij

(Ei − Ej )R(b)
ji [〈n̂i〉 + 〈n̂i n̂j 〉] (135)

for the heat flow from an autonomous system into bath b and

Q =
∑
m

∑
ij

(εi − εj − m�ω)R(m)
ji [〈n̂i〉 + 〈n̂i n̂j 〉] (136)

for the heat flow from a Floquet system into a bath. In this
section, we investigate such heat flow in the regime of Bose
selection. The dominant processes contributing to the heat flow
will be identified. They are found to be given by transitions
between different selected states and, for the Floquet system,
also by pseudotransitions [corresponding to terms with i = j

and m �= 0 in Eq. (136)] associated with a selected state.
In Fig. 13 we present data obtained for a tight-binding

chain that is driven between two heat baths, one of positive
temperature and a population-inverted one modeled by a
negative temperature. This system corresponds to the one
of Fig. 4(c), but with the particle number fixed and with
the relative coupling between both baths, γ2/γ1, varied. In
panel (a) we plot the mean occupations versus the parameter
p = (1 + γ1/γ2)−1, which increases with γ2/γ1. One can
observe several transitions. For p = 0, where the system
is only coupled to bath b = 1, a single state (the ground
state) is selected as indicated by a large occupation. This
corresponds to equilibrium Bose condensation. At a critical
coupling to the second bath, near p = 0.2, three states become
selected. Increasing the coupling to the second bath further,
various transitions occur, where the set of selected states
changes. Eventually, roughly from p = 0.75 on only the
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FIG. 13. (Color online) Tight-binding chain with M = 20 sites
coupled to two heat baths. Parameters as in Fig. 4(c), but for fixed N =
104 and versus relative coupling strength γ2/γ1. (a) Mean occupations
obtained from mean-field theory (solid lines), augmented mean-field
theory (dashed line, indistinguishable from mean-field result), and
Monte Carlo simulations (crosses). Color code like in Fig. 4, on the
left-hand (right-hand) side the occupation decreases (increases) with
energy. (b) Heat flow through the system from the hotter negative-
temperature bath into the positive-temperature bath.

most excited state will be selected, corresponding to the
equilibrium situation at p = 1, where the system is coupled to
the population-inverted bath 2 only. In panel (b) we plot the
heat flow from the hotter population-inverted bath through the
system into the cooler positive-temperature bath versus p. We
can clearly see that the heat flow increases dramatically (by
more than two orders of magnitude), when fragmented Bose
condensation with more than just one selected state occurs.

This effect, which has been reported already in Ref. [23],
can be understood intuitively. Namely, in order to exchange
energy with the system, the bath has to drive transitions
between states i and j in the system. The larger the occupations
of i and j , the larger will be the rate of the corresponding
transition. Therefore, the most effective way of exchanging
energy with the system is to drive transitions between two
largely occupied states. And this is possible only if more than
just one state is selected. This effect might be employed to
control the heat conductivity of a bosonic system by switching
between one and three selected states.

In Fig. 14 we show results for a periodically driven tight-
binding chain coupled to a heat bath. This system corresponds
to the one of Fig. 4(d), but with the particle number fixed and
with the dimensionless driving strength γω varied. From the
mean occupations plotted in panel (a), we can observe that
for small γω a single-particle Floquet state is selected, which
is connected adiabatically to the ground state of the undriven
system with γω = 0. Roughly at γω = 0.25 and γω = 1.5 the
selected state changes in transitions, but still only a single
state is selected. Only for a driving strength of about γω = 2,
a parameter window is reached, where three states become
selected and acquire large occupations.
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FIG. 14. (Color online) Periodically driven tight-binding chain
with M = 20 sites coupled to a heat bath. Parameters as in Fig. 4(d),
but for fixed N = 104 and versus dimensionless driving strength γω.
(a) Mean occupations obtained from mean-field theory (solid lines)
and Monte Carlo simulations (crosses). Color code like in Fig. 4; on
the left-hand side the occupation decreases (increases) with energy.
(b) Heat flow from the driven system into the bath obtained from
mean-field theory (solid line), augmented mean-field theory (dashed
line), and Monte Carlo simulations (crosses). The dotted line is the
mean-field heat flow without the contribution from pseudotransitions.

The heat flow from the system into the bath is plotted in
panel (b) of Fig. 14. In contrast to the autonomous chain, we
can observe that the heat flow grows strongly, despite the fact
that we have only a single selected state. This effect can be
attributed to pseudotransitions [58] associated with rates R

(m)
ij

with i = j and m �= 0. In these processes the bath energy
changes by m�ω, while the system’s state is not altered. Thus,
the bath can effectively exchange energy with the system by
driving pseudotransitions for a single strongly occupied (Bose
selected) Floquet mode. This interpretation is supported by the
dotted line, showing the share Q′ of the heat flow not related
to pseudotransitions,

Q′ =
∑
m

∑
i,j (i �=j )

(εi − εj + m�ω)R(m)
ji [〈n̂i〉 + 〈n̂i n̂j 〉]. (137)

Away from the undriven limit γω = 0 and as long as only one
Floquet mode i acquires a large occupation, Q′ is typically two
orders of magnitude smaller than the full heat flow and, thus,
negligible. That means that practically all the heat flow is based
on pseudotransitions; the double sum in Eq. (136) is dominated
by the terms with i = j . Q′ becomes significant only when
several states have a large occupation. As one can clearly
observe in Fig. 14(b), this happens both near transitions, where
two states are selected (see Sec. IV F), and for 2 � γω � 2.6,
where three states are selected. Here an efficient heat exchange
with the bath can be achieved by driving transitions between
these largely occupied states, like for the autonomous system.

In Fig. 14(b), we can also observe a noticeable difference
between the heat flow obtained from mean-field theory (solid
line) and augmented mean-field theory (dashed line), in

contrast to the autonomous system where both theories show
very good agreement [on the logarithmic scale of Fig. 14(b)
both lines overlap]. This is also a consequence of the strong
impact of pseudotransitions in the condensate mode, which
are determined by the condensate fluctuations, a quantity
that is overestimated by mean-field theory. This confirms our
conclusion that, thanks to pseudotransitions not present in
autonomous systems, a bosonic Floquet system can be a good
heat conductor even when most of its particles form a single
Bose condensate.

In conclusion, departing from equilibrium offers interesting
possibilities to control the heat conductivity of a bosonic
quantum system, which might be relevant for technological
applications.

V. IDEAL FERMI GASES

In this section, we will briefly demonstrate that the theory
of Sec. II and the methods presented in Sec. III can also be
employed to describe the properties of ideal Fermi gases.
As a motivation, we note that the physics of such driven-
dissipative Fermi gases will have to play an important role, for
example, for the realization of Floquet topological insulators.
These systems are based on lattice potentials that are forced
periodically in time such that they possess a topologically
nontrivial quasienergy band structure giving rise to a quantized
(spin) Hall conductivity, when one band is filled completely.
Proposals for Floquet topological insulators consider irradi-
ated electronic systems like graphene [7] and semiconductor
heterostructures [53]; conceptually different schemes for the
Floquet engineering of topological band structures have been,
moreover, proposed in the context of ultracold atomic quantum
gases in optical lattices [71,72]. First experimental evidence
of a (quantized) Hall conductivity in such systems has been
observed with ultracold atoms in optical lattices [10,11]. These
systems are well isolated from their environment. However,
achieving this goal in an electronic solid-state system, which
cannot be viewed as isolated, is rather challenging. Namely,
it cannot be expected that the periodically driven system in
contact with the heat bath (given among others by phonons)
will simply form a band-insulating state with one band filled
completely. Thus, one either has to resort to bath engineering
in order to enforce a band insulating state [26,27] or explore
novel opportunities of tailoring interesting system properties
related to nonthermal occupations of (quasi)energy bands. In
this section we do not address the issue of Floquet topological
insulators, but present simple examples that show how the
general formalism of Secs. II and III can be applied to compute
nonequilibrium steady states of driven-dissipative Fermi gases.

In Fig. 15 we plot the mean occupations of a periodically
driven tight-binding chain of M = 10 states that is coupled to
a heat bath and occupied by N spinless (i.e., spin-polarized)
noninteracting fermions. The state is trivial not only for zero
filling (N/M = 0), but as a consequence of Pauli exclusion
also for unit filling (N/M = 1), corresponding to zero filling
of holes. For intermediate filling N/M we find occupation
numbers whose exact values [obtained from solving the many-
body rate equation (13)] are well described by mean-field
theory. Residual deviations of the mean-field theory are cured
within the augmented mean-field theory (Sec. III C).
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FIG. 15. (Color online) Mean occupations versus total number of
fermions N for a driven tight-binding chain with tunneling parameter
J and M = 10 sites. The chain is coupled to a heat bath of temperature
T = J at the first site and it is driven away from equilibrium by a
time-periodic potential modulation at the last site of frequency �ω =
1.5J and driving strength γω = 2.3. Data obtained from mean-field
theory (solid lines), augmented mean-field theory (dashed lines), and
exact solution of the many-body rate equation (crosses).

As another example, we have computed steady states
of a fermionic tight-binding chain of M = 100 sites (see
Sec. II D) and half filling (N = M/2). In Fig. 16 we plot
the mean occupations of the single-particle states i of the
chain versus their energy Ei = −2J cos(ki), where ki is the
wave number of state i. In panel (a) the equilibrium situation
is shown, where the system is coupled to a single heat
bath of intermediate temperature T = J . The nonequilibrium
system coupled to two baths of different positive temperature
T1 = J and T2 = 0.5J shows qualitatively similar behavior,
as can be seen from panel (b). In both situations (a) and (b)
the occupations decrease with increasing energy. In striking
contrast, the occupations depend in a nonmonotonous fashion
on the energy, when the second heat bath is population
inverted and described by a negative temperature. This can
be seen in panels (c) and (d). Moreover, the distribution
of occupations depends sensitively on the structure of the
system-bath coupling. Depending on whether bath 1 is coupled
to the first site [panel (c)] or to the third site [panel (d)] the
occupation of the ground state assumes either a local minimum
or a local maximum. Thus, like in the bosonic case, already the
ideal Fermi gas offers many possibilities of dissipative state
engineering far from equilibrium. Exploring these possibilities
is, however, beyond the scope of the present paper.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we describe several aspects of nonequilibrium
steady states of driven-dissipative ideal quantum gases. We
focus on systems of sharp particle number that are driven
away from equilibrium either by the coupling to two heat
baths of different temperature or by time-periodic driving in
combination with the coupling to a heat bath. We describe
analytical and numerical methods for treating these systems
within the framework of (Floquet-)Born-Markov theory and
apply them both to bosonic and fermionic quantum gases.

On that basis, we work out a theory of Bose selection, a
nonequilibrium generalization of Bose condensation, where
multiple states can acquire large occupations. Also, the
possibility of bath engineering in a fermionic lattice system
is pointed out. Our results demonstrate that already ideal
quantum gases give rise to intriguing and unexpected behavior,
when they are driven into a steady state far from equilibrium.
In the future it will be interesting to find applications for
dissipative quantum engineering, e.g., in order to control
the heat conductivity of a system in a robust fashion. On a
theoretical level, it will be interesting to extend the formalism
to systems exchanging particles with their environment and to
include the effect of interactions.
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APPENDIX A: MANY-BODY RATE EQUATION
FROM LINDBLAD MASTER EQUATION

Here we derive the equations of motion for the many-body
occupation probabilities pn = 〈n|ρ|n〉, based on the Marko-
vian master equation with the Liouvillian, Eq. (1). Replacing
the single-particle operators |i〉〈j | with their representation
in Fock space â

†
i âj the equations of motion for the diagonal

elements of the density operator take the form

ṗn(t) =〈n|ρ̂(t)|n〉

=
M∑

i,j=1

Rij

[
〈n|â†

i âj ρ̂(t)â†
j âi |n〉

− 1

2
〈n|{ρ̂(t),â†

j âi â
†
i âj }|n〉

]
. (A1)

For i = j both terms inside the bracket cancel each
other. For i �= j , we have â

†
j âi |n〉 = √

ni(1 ± nj )|nji〉 and

â
†
j âi â

†
i âj |n〉 = nj (1 ± ni)|n〉, where the upper (lower) sign

applies to bosons (fermions). Thus, the master equation
simplifies to

ṗn(t) =
M∑

i,j=1

Rij

[
ni(1 ± nj )pnji

(t) − nj (1 ± ni)pn(t)
]

=
M∑

i,j=1

(1 ± nj )ni

[
Rijpnji

(t) − Rjipn(t)
]
. (A2)

wherein nji = (n1, . . . ,ni − 1, . . . ,nj + 1, . . .) denotes the
occupation numbers obtained from n by transferring one
particle from i to j . We have not explicitly excluded the i = j

terms, since they still cancel. The second line was obtained by
exchanging i and j in the second term.
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FIG. 16. (Color online) Mean-occupations of the single-particle energy eigenstates in a tight-binding chain of M = 100 sites occupied by
N = M/2 spinless (i.e., spin-polarized) fermions versus the energy (in units of the tunneling parameter J ). Data obtained from mean-field
theory (solid lines) and exact Monte Carlo simulations (crosses). (a) Equilibrium situation where the chain is coupled to one bath of temperature
T = 1J . (b) The chain is driven away from equilibrium by two heat baths of different positive temperature (T1 = J and T2 = 0.5J ), coupled to
the first and the next-to-last site with γ1 = γ2. (c) Same as in (b), but now the second bath is population inverted and described by the negative
temperature T2 = −J . (d) Like in (c), but now the first bath is coupled to the third site.

APPENDIX B: EQUATIONS OF MOTION
FOR MEAN OCCUPATIONS

The equations of motion for the mean occupations read

d

dt
n̄k(t) = tr

[
n̂k

d

dt
ρ̂(t)

]
=

∑
i,j

Rij tr[n̂kâ
†
i âj ρ̂(t)â†

j âi

− 1

2
n̂k{â†

j âi â
†
i âj ,ρ̂(t)}], (B1)

where we have employed Eq. (1) with the jump operators given
by Eq. (12). The first term of the sum can be written like

tr[n̂kâ
†
i âj ρ̂(t)â†

j âi] = tr[n̂kâ
†
j âi â

†
i âj ρ̂(t)]

+ (δik − δjk)tr[â†
j âi â

†
i âj ρ̂(t)]. (B2)

Here we have used the invariance of cyclic permutations under
the trace as well as the relation

[â†
j âi ,n̂k] = â

†
j âi(δik − δjk). (B3)

This relation is valid for particles of either statistics, as it
can be obtained both by employing either the commutation
relation [âi ,â

†
j ] = δij for bosons or the anticommutation

relation {âi ,â
†
j } = δij for fermions. We can now use

â
†
j âi â

†
i âj = n̂j (1 ± n̂i) ∓ δij n̂i , (B4)

with the upper (lower) sign referring to bosons (fermions), to
arrive at

d

dt
n̄k(t) =

∑
i,j

Rij (δik − δjk)tr[n̂j (1 ± n̂i)ρ̂(t)]

=
M∑

j=1

{Rkj [n̄j (t) ± 〈n̂kn̂j 〉(t)]

− Rjk[n̄k(t) ± 〈n̂kn̂j 〉(t)]}. (B5)

APPENDIX C: MEAN OCCUPATION AND CORRELATION
IN PROJECTED GAUSSIAN STATE

Calculating expectation values, like mean occupation or
second-order correlations, for the projected Gaussian state,

ρ̂proj ∝ P̂N ρ̂gP̂N , (C1)

with

P̂N =
∑

n| ∑i n̂i=N

|n〉〈n|, (C2)
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is a nontrivial problem. This is why, already in equilibrium it is
typically much easier to treat a system in the grand-canonical
rather than in the canonical ensemble. In this appendix we
describe a method for computing expectation values

〈Â〉N = tr(Âρ̂proj) = 1

Z

∑
n

N 〈n|Â|n〉e− ∑
k ηknk (C3)

for projected Gaussian states numerically. Here the sum
∑N

n
is constrained to Fock states of total particle number N and
Z = ∑N

n exp(−∑
k ηknk) denotes the partition function.

We focus on the mean occupations,

〈n̂i〉N = 1

Z

N∑
n

nie
− ∑

k ηknk , (C4)

and the two-particle correlations,

〈n̂i n̂j 〉N = 1

Z

N∑
n

ninj e
− ∑

k ηknk . (C5)

The first expectation value can be written as

〈n̂i〉N = 1

Z

∑
ni

nie
−ηini Z

\{i}
N−ni

, (C6)

wherein

Z
\SR

NR
=

∑
{nk}k /∈SR

NR exp
(−∑

l /∈SR
ηlnl

)
(C7)

is the partition function of fictitious system obtained by the
original one by removing the states SR and filling it with NR

particles only.
The second expectation value reads

〈n̂i n̂j 〉N = 1

Z

N∑
ni=0

N−ni∑
nj =0

ninj e
−ηini−ηj nj Z

\{i,j}
N−ni−nj

. (C8)

The remaining partition functions can be calculated by
exploiting the recursion formula [73]

ZN = 1

N

N∑
k+1

(±1)k+1ZN−k. (C9)

This enables the numerical treatment of systems with several
thousands particles on M = 10 states.

APPENDIX D: EQUATIONS OF MOTION FOR TWO-PARTICLE CORRELATIONS

In this appendix we derive the equations of motion for the two-particle correlations 〈n̂kn̂i〉(t) [Eq. (42)] and rewrite this
as equations of motion for the nontrivial correlations ζki = 〈ζ̂k ζ̂i〉 = 〈n̂kn̂i〉 − n̄kn̄i [Eq. (46)]. Together with the equations of
motion for the mean occupations n̄i(t), Eqs. (45), they build the set of equation for the augmented mean-field theory described
in Sec. III C. Hereby we close the hierarchy of equation by assuming the three-particle correlations to be trivial. For the sake of
a simple notation we suppress the time argument in the following.

The exact equations of motion for 〈n̂kn̂i〉 are obtained from the many-body master equation in Lindblad form Eq. (1) by
multiplying it by n̂kn̂i from the left and taking the trace,

d

dt
〈n̂kn̂i〉 =tr(n̂kn̂i

˙̂ρ) =
∑
j,l

Rlj tr

(
n̂kn̂i â

†
l âj ρ̂â

†
j âl − 1

2
n̂kn̂i{ρ̂,â

†
j âl â

†
l âj }

)
. (D1)

Invoking cyclic permutation under the trace and using Eq. (B3) we regroup the operators as

â
†
j âl n̂kn̂i = n̂kn̂i â

†
j âl + [(δli − δji)n̂k + (δlk − δjk)n̂i + (δli − δji)(δlk − δjk)]â†

j âl . (D2)

Here the first term and the anticommutator in Eq. (D1) form a commutator, which vanishes under the trace, tr(ρ[n̂kn̂i ,â
†
j âl â

†
l âj ]) =

0. Applying also the operator relation Eq. (B4) we arrive at

d

dt
〈n̂kn̂i〉 =

∑
j,l

Rlj tr{[(δli − δji)n̂k + (δlk − δjk)n̂i + (δli − δji)(δlk − δjk)][n̂j (1 ± n̂l) ∓ δjl n̂j ]ρ̂}. (D3)

The term δjl n̂j vanishes in combination with each of the δ prefactors, leaving

d

dt
〈n̂kn̂i〉 =

∑
j,l

Rlj [(δli−δji)(〈n̂kn̂j 〉±〈n̂kn̂j n̂l〉)+(δlk − δjk)(〈n̂i n̂j 〉 ± 〈n̂i n̂j n̂l〉) + (δli − δji)(δlk − δjk)(n̄j ± 〈n̂j n̂l〉)]. (D4)

Evaluating one of the two sums, we arrive at

d

dt
〈n̂kn̂i〉 = ±

∑
j

(Akj + Aij )〈n̂kn̂i n̂j 〉 +
∑

j

[Rkj 〈n̂i n̂j 〉 − Rjk〈n̂i n̂k〉 + Rij 〈n̂kn̂j 〉 − Rji〈n̂kn̂i〉]

+ δik

∑
j

[Rkj (n̄j ± 〈n̂j n̂k〉) + Rjk(n̄k ± 〈n̂kn̂j 〉)] − Rik(n̄k ± 〈n̂kn̂i〉) − Rki(n̄i ± 〈n̂i n̂k〉), (D5)

which is identical to Eq. (42). We separate the number operators n̂k into their mean part n̄k and their fluctuations ζ̂k = n̄k − n̂k .
With that, the correlations read 〈n̂kn̂i〉 = n̄kn̄i + ζki with the nontrivial correlation ζki = 〈ζ̂k ζ̂i〉 and 〈n̂kn̂i n̂j 〉 = 〈ζ̂k ζ̂i ζ̂j 〉 + n̄kζij +
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n̄iζkj + n̄j ζki + n̄kn̄i n̄j . Now Eq. (D5) can be rewritten as

d

dt
〈n̂kn̂i〉 = ±

∑
j

(Akj + Aij )[〈ζ̂i ζ̂k ζ̂j 〉 + n̄iζkj + n̄kζij + n̄j ζik + n̄kn̄i n̄j ]

+
∑

j

(Rkj [n̄i n̄j + ζij ] − Rji[n̄i n̄k + ζik] + Rij [n̄kn̄j + ζkj ] − Rji[n̄kn̄i + ζki])

+ δki

∑
j

{±(Rjk + Rkj )[n̄j n̄k + ζjk] + (Rkj n̄j + Rjkn̄k)} ∓ (Rki + Rik)[n̄kn̄i + ζki] − (Rikn̄k + Rkin̄i). (D6)

To obtain the equations of motion for the nontrivial correlations ζki , we subtract

d

dt
(n̄kn̄i) =n̄k

∑
j

{Rij [n̄j (1 ± n̄i) ± ζij ] − Rji[n̄i(1 ± n̄j ) ± ζij ]} + n̄i

∑
j

{Rkj [n̄j (1 ± n̄k) ± ζkj ] − Rjk[n̄k(1 ± n̄j ) ± ζkj ]}

(D7)

from Eq. (D6) to obtain

dζki

dt
= ±

∑
j

[(Akj + Aij )(〈ζ̂i ζ̂k ζ̂j 〉 + n̄j ζik) + Akj n̄kζij + Aij n̄iζkj ] +
∑

j

[Rkj ζji − Rjkζki + Rij ζkj − Rjiζki]

+ δki

∑
j

[±(Rjk + Rkj )(n̄j n̄k + ζjk) + (Rkj n̄j + Rjkn̄k)] ∓ (Rki + Rik)(n̄kn̄i + ζki) − (Rikn̄k + Rkin̄i). (D8)

Finally, neglecting nontrivial three-particle correlations, 〈ζ̂k ζ̂i ζ̂j 〉 ≈ 0, one arrives at the nonlinear set of equations (46), which
defines together with Eqs. (45) the augmented mean-field theory.

APPENDIX E: PARAMETER-DEPENDENT SOLUTION
OF THE AUXILIARY MATRIX Ã( p)

For the auxiliary rate-asymmetry matrix Ã(p) given by
Eqs. (87) and (88), the problem (80) takes the form

μ̃i(p) =
∑

j

(Aij + pBij )ν̃j (p),

with

{
ν̃i > 0 and μ̃i = 0 for i ∈ S̃(p),
ν̃i = 0 and μ̃i < 0 for i /∈ S̃(p).

(E1)

Together with Eq. (88) restricting B to have a crosslike
structure, this implies∑

j∈S̃(p)

(Aij + pδikbj − pδkjbi)ν̃j (p) = 0, i ∈ S̃(p). (E2)

Let us now show that, unless a transition occurs where the
set of selected states S̃(p) changes, the solution ν̃(p) varies,
apart from a normalization factor, linearly with p as written in
Eq. (91).

For that purpose we decompose the solution ν̃i(p) like

ν̃i(p) = ν̃
(0)
i + �ν̃i(p), i ∈ S̃(p), (E3)

where ν̃
(0)
i is defined to solve∑

i∈S̃(p)

Aij ν̃
(0)
i = 0, i ∈ S̃(p). (E4)

These equations possess a solution, since Aij is a skew-
symmetric matrix acting in the odd-dimensional subspace
spanned by the selected states. However, the ν̃

(0)
i can be

negative, as S̃(p) contains the selected states for the matrix
Ã(p) and not for A.

We can now distinguish two cases. If the state k is not
contained in the set of selected states, k /∈ S̃(k), Eqs. (E2)
simply reduce to Eq. (E4), so that we find the trivial parameter
dependence,

ν̃i(p) = ν̃
(0)
i i ∈ S̃(p), (E5)

which complies with Eq. (91). If the state k is contained in the
set of selected states, k ∈ S̃(k), it is convenient to discard the
normalization condition

∑
i∈S̃(p) ν̃i(p) = 1 for the moment, in

favor of requiring

ν̃k(p) = ν̃
(0)
k ; (E6)

i.e.,

�ν̃k(p) = 0. (E7)

Note that this requires also to fix the solution of the homoge-
neous equations (E4) such that ν̃

(0)
k > 0, which we can always

do. With that, all other states in S̃(p) obey∑
j∈S̃(p)\{k}

Aij�ν̃j (p) = pν̃
(0)
k bi, i ∈ S̃(p)\{k}. (E8)

This set of inhomogeneous equations possesses a solution,
since Aij is a skew-symmetric matrix acting in the even-
dimensional subspace spanned by the states of S̃(p)\{k},
which has no eigenvalue zero without fine tuning. The solution
�ν̃j (p) will depend linearly on the parameter p. Therefore,
one finds that the ν̃i(p) depend linearly on the parameter p,

ν̃i(p) = ν̃
(0)
i + cip, i ∈ S̃(p). (E9)

In order to restore the normalization condition
∑

i∈S̃(p) ν̃i(p) =
1, we can now redefine

ν̃i(p) = C̃(p)[ν̃(0)
i + cip], i ∈ S̃(p), (E10)
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with normalization constant C̃(p) > 0. One finds

C̃−1(p) =
∑

i∈S̃(p)

[ν̃(0)
i + cip] = 1 + p

∑
i∈S̃(p)

ci, (E11)

where the second equality holds if we choose
∑

i∈S̃(p) ν̃
(0)
i = 1,

which we always can. Equation (E10) implies that Eq. (91) is
fulfilled also if k ∈ S̃(k).
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6, 6977 (2015).

[48] H. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford & New York, 2002).
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