52 research outputs found

    Spectral features of matrix-sequences, GLT, symbol, and application in preconditioning Krylov methods, image deblurring, and multigrid algorithms.

    Get PDF
    The final purpose of any scientific discipline can be regarded as the solution of real-world problems. With this aim, a mathematical modeling of the considered phenomenon is often compulsory. Closed-form solutions of the arising functional equations are usually not available and numerical discretization techniques are required. In this setting, the discretization of an infinite-dimensional linear equation via some linear approximation method, leads to a sequence of linear systems of increasing dimension whose coefficient matrices could inherit a structure from the continuous problem. For instance, the numerical approximation by local methods of constant or nonconstant coefficients systems of Partial Differential Equations (PDEs) over multidimensional domains, gives rise to multilevel block Toeplitz or to Generalized Locally Toeplitz (GLT) sequences, respectively. In the context of structured matrices, the convergence properties of iterative methods, like multigrid or preconditioned Krylov techniques, are strictly related to the notion of symbol, a function whose role relies in describing the asymptotical distribution of the spectrum. This thesis can be seen as a byproduct of the combined use of powerful tools like symbol, spectral distribution, and GLT, when dealing with the numerical solution of structured linear systems. We approach such an issue both from a theoretical and practical viewpoint. On the one hand, we enlarge some known spectral distribution tools by proving the eigenvalue distribution of matrix-sequences obtained as combination of some algebraic operations on multilevel block Toeplitz matrices. On the other hand, we take advantage of the obtained results for designing efficient preconditioning techniques. Moreover, we focus on the numerical solution of structured linear systems coming from the following applications: image deblurring, fractional diffusion equations, and coupled PDEs. A spectral analysis of the arising structured sequences allows us either to study the convergence and predict the behavior of preconditioned Krylov and multigrid methods applied to the coefficient matrices, or to design effective preconditioners and multigrid solvers for the associated linear systems

    Spectral features of matrix-sequences, GLT, symbol, and application in preconditioning Krylov methods, image deblurring, and multigrid algorithms.

    Get PDF
    The final purpose of any scientific discipline can be regarded as the solution of real-world problems. With this aim, a mathematical modeling of the considered phenomenon is often compulsory. Closed-form solutions of the arising functional equations are usually not available and numerical discretization techniques are required. In this setting, the discretization of an infinite-dimensional linear equation via some linear approximation method, leads to a sequence of linear systems of increasing dimension whose coefficient matrices could inherit a structure from the continuous problem. For instance, the numerical approximation by local methods of constant or nonconstant coefficients systems of Partial Differential Equations (PDEs) over multidimensional domains, gives rise to multilevel block Toeplitz or to Generalized Locally Toeplitz (GLT) sequences, respectively. In the context of structured matrices, the convergence properties of iterative methods, like multigrid or preconditioned Krylov techniques, are strictly related to the notion of symbol, a function whose role relies in describing the asymptotical distribution of the spectrum. This thesis can be seen as a byproduct of the combined use of powerful tools like symbol, spectral distribution, and GLT, when dealing with the numerical solution of structured linear systems. We approach such an issue both from a theoretical and practical viewpoint. On the one hand, we enlarge some known spectral distribution tools by proving the eigenvalue distribution of matrix-sequences obtained as combination of some algebraic operations on multilevel block Toeplitz matrices. On the other hand, we take advantage of the obtained results for designing efficient preconditioning techniques. Moreover, we focus on the numerical solution of structured linear systems coming from the following applications: image deblurring, fractional diffusion equations, and coupled PDEs. A spectral analysis of the arising structured sequences allows us either to study the convergence and predict the behavior of preconditioned Krylov and multigrid methods applied to the coefficient matrices, or to design effective preconditioners and multigrid solvers for the associated linear systems

    Numerical solution of saddle point problems

    Full text link

    Development of mesh-free methods and their applications in computational fluid dynamics

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Mathematical Methods in Quantum Chemistry

    Get PDF
    The field of quantum chemistry is concerned with the modelling and simulation of the behaviour of molecular systems on the basis of the fundamental equations of quantum mechanics. Since these equations exhibit an extreme case of the curse of dimensionality (the Schrödinger equation for N electrons being a partial differential equation on R3N ), the quantum-chemical simulation of even moderate-size molecules already requires highly sophisticated model-reduction, approximation, and simulation techniques. The workshop brought together selected quantum chemists and physicists, and the growing community of mathematicians working in the area, to report and discuss recent advances on topics such as coupled-cluster theory, direct approximation schemes in full configuration-interaction (FCI) theory, interacting Green’s functions, foundations and computational aspects of densityfunctional theory (DFT), low-rank tensor methods, quantum chemistry in the presence of a strong magnetic field, and multiscale coupling of quantum simulations

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p

    Inference, Computation, and Games

    Get PDF
    In this thesis, we use statistical inference and competitive games to design algorithms for computational mathematics. In the first part, comprising chapters two through six, we use ideas from Gaussian process statistics to obtain fast solvers for differential and integral equations. We begin by observing the equivalence of conditional (near-)independence of Gaussian processes and the (near-)sparsity of the Cholesky factors of its precision and covariance matrices. This implies the existence of a large class of dense matrices with almost sparse Cholesky factors, thereby greatly increasing the scope of application of sparse Cholesky factorization. Using an elimination ordering and sparsity pattern motivated by the screening effect in spatial statistics, we can compute approximate Cholesky factors of the covariance matrices of Gaussian processes admitting a screening effect in near-linear computational complexity. These include many popular smoothness priors such as the Matérn class of covariance functions. In the special case of Green's matrices of elliptic boundary value problems (with possibly unknown elliptic operators of arbitrarily high order, with possibly rough coefficients), we can use tools from numerical homogenization to prove the exponential accuracy of our method. This result improves the state-of-the-art for solving general elliptic integral equations and provides the first proof of an exponential screening effect. We also derive a fast solver for elliptic partial differential equations, with accuracy-vs-complexity guarantees that improve upon the state-of-the-art. Furthermore, the resulting solver is performant in practice, frequently beating established algebraic multigrid libraries such as AMGCL and Trilinos on a series of challenging problems in two and three dimensions. Finally, for any given covariance matrix, we obtain a closed-form expression for its optimal (in terms of Kullback-Leibler divergence) approximate inverse-Cholesky factorization subject to a sparsity constraint, recovering Vecchia approximation and factorized sparse approximate inverses. Our method is highly robust, embarrassingly parallel, and further improves our asymptotic results on the solution of elliptic integral equations. We also provide a way to apply our techniques to sums of independent Gaussian processes, resolving a major limitation of existing methods based on the screening effect. As a result, we obtain fast algorithms for large-scale Gaussian process regression problems with possibly noisy measurements. In the second part of this thesis, comprising chapters seven through nine, we study continuous optimization through the lens of competitive games. In particular, we consider competitive optimization, where multiple agents attempt to minimize conflicting objectives. In the single-agent case, the updates of gradient descent are minimizers of quadratically regularized linearizations of the loss function. We propose to generalize this idea by using the Nash equilibria of quadratically regularized linearizations of the competitive game as updates (linearize the game). We provide fundamental reasons why the natural notion of linearization for competitive optimization problems is given by the multilinear (as opposed to linear) approximation of the agents' loss functions. The resulting algorithm, which we call competitive gradient descent, thus provides a natural generalization of gradient descent to competitive optimization. By using ideas from information geometry, we extend CGD to competitive mirror descent (CMD) that can be applied to a vast range of constrained competitive optimization problems. CGD and CMD resolve the cycling problem of simultaneous gradient descent and show promising results on problems arising in constrained optimization, robust control theory, and generative adversarial networks. Finally, we point out the GAN-dilemma that refutes the common interpretation of GANs as approximate minimizers of a divergence obtained in the limit of a fully trained discriminator. Instead, we argue that GAN performance relies on the implicit competitive regularization (ICR) due to the simultaneous optimization of generator and discriminator and support this hypothesis with results on low-dimensional model problems and GANs on CIFAR10.</p
    corecore