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ABSTRACT. The field of quantum chemistry is concerned with the modelling
and simulation of the behaviour of molecular systems on the basis of the fun-
damental equations of quantum mechanics. Since these equations exhibit an
extreme case of the curse of dimensionality (the Schrédinger equation for N
electrons being a partial differential equation on R3V), the quantum-chemical
simulation of even moderate-size molecules already requires highly sophis-
ticated model-reduction, approximation, and simulation techniques. The
workshop brought together selected quantum chemists and physicists, and
the growing community of mathematicians working in the area, to report
and discuss recent advances on topics such as coupled-cluster theory, direct
approximation schemes in full configuration-interaction (FCI) theory, inter-
acting Green’s functions, foundations and computational aspects of density-
functional theory (DFT), low-rank tensor methods, quantum chemistry in
the presence of a strong magnetic field, and multiscale coupling of quantum
simulations.
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Introduction by the Organisers

Originally developed for a small number of atoms, quantum-chemical or “ab initio”
simulations are nowadays essential tools not just in chemistry but also in materials
science, solid-state physics, nanoscience, and molecular biology. A key bottleneck
is the computation of the electronic ground or excited states of the system. Since
the “exact” electronic Schrodinger equation for a molecule with N electrons is a
partial differential equation in 3N dimensions, it exhibits an extreme case of the
curse of dimensionality: direct simulation on a grid or in standard approximation
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subspaces is prohibitive already for a few electrons. Quantum-chemical simula-
tions therefore require highly sophisticated model-reduction, approximation, and
simulation techniques. This interdisciplinary workshop brought together quan-
tum chemists, mathematicians, and physicists, focusing on recent conceptual and
methodological ideas and (where available) mathematical results.

The contributions by Fabian Faulstich, Heinz-Jiirgen Flad, Simen Kvaal, Thomas
Bondo Pedersen, and Chao Yang are devoted to the coupled-cluster method, which
has been a benchmark method in quantum chemistry for accurate simulation of
systems of up to a few dozen electrons for quite some time. Nevertheless, novel
understanding — for instance, of its “bi-variational” structure, its singularities at
coalescence points, and some subtle numerical challenges — is only now emerging
in current research.

The contributions by Jiirgen Gauss and Harry Yserentant discuss direct approx-
imability of many-body Schrédinger equation, or FCI wave functions, via, respec-
tively, Gauss—Hermite functions and many-body expansion in the virtual orbital
space.

Another, very general and ultimately nonlinear, strategy to capture functions de-
pending on a large number of variables is low-rank tensor approximation. Applica-
tions of this strategy — for instance, to the simulation of stationary electronic states
and optical spectra — are discussed in the contributions by Venera Khoromskaia
and Boris Khoromskij. Christian Lubich summarizes how to carry out robustly
dynamical low-rank approximation in the presence of small singular values.

For large systems, the method of choice has for many years been DF'T, in which the
numerical approximation of the high-dimensional wave function is replaced by a
drastic model reduction, focusing on the single-particle density as the key variable.
The contributions by Andre Laestadius, Robert van Leeuwen, and Aihui Zhou re-
visit foundational issues in time-dependent and static DFT. What is rigorously
known regarding the existence of the density-to-potential mapping? How can one
overcome the lack of functional differentiability of the constrained-search Levy—
Lieb functional via functional analytic (Moreau—Yosida) regularization? Compu-
tational aspects of DFT — in particular, how to project out an ambient bath and
how to compute the exchange—correlation energy efficiently in the random-phase
approximation (RPA) — are discussed by Leonardo Zepeda-Nunez and Kyle Thicke,
respectively.

Interacting Green’s function methods are discussed in the contributions by Michael
Lindsey, Lucia Reining, and Reinhold Schneider.

In periodic systems, a highly nontrivial correspondence between the topology and
Chern number of the Bloch bundle and the existence of Wannier function is de-
scribed in the contribution by Gianluca Panati. Antoine Levitt and Anil Damle
report on recent advances in the computation of Wannier functions.

Sometimes — for instance in the presence of magnetic fields — it is important to
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incorporate effects beyond standard DFT, or even beyond the standard (Born—
Oppenheimer—)Schrodinger equation. Andrew Teale discusses recent advances in
current-DFT, Erik Tellgren reports on the magnetic Schréodinger—Maxwell model,
and Trond Saue discusses the X2C Hamiltonian, which is isospectral to the posi-
tive part of the Dirac Hamiltonian despite sacrificing the ”small” components of
Dirac spinors.

Another important aspect discussed in this report is multiscale coupling of quan-
tum mechanics to molecular mechanics or molecular dynamics. Christoph Ortner
discusses electronic relaxation at material defects at the tight-binding level of
theory, Benjamin Stamm reports on the effective simulation of solvents, and the
contribution by Caroline Lasser is devoted to the emulation of quantum dynamics
by stochastic surface hopping.

The richness and diversity of mathematical topics in quantum chemistry presented
in this report is rounded off by the contributions by Virginie Ehrlacher, on the
inverse problem of designing periodic potentials giving rise to a desired band struc-
ture, by Genevieve Dusson, on a-posteriori estimation and post-processing meth-
ods for nonlinear eigenvalue problems, by Mathieu Lewin, on the mathematical
and physical meaning of critical points of the Hartree—Fock functional, and by
Michael Herbst, on a novel basis set for molecular electronic-structure theory, the
Coulomb-Sturmians.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

The bivariational principle: status and current developments
SIMEN KVAAL

In this talk, we review the current status of the analysis of the so-called bivaria-
tional principle and bivariational methods for the ground-state energy of a molec-
ular Hamiltonian [1].

The bivariational principle is considered highly unconventional, and was intro-
duced independently by Arponen and Lowdin in the early 1980s [2, 3]. Arponen
introduced the principle in the context of coupled-cluster (CC) theory, and his
approach demonstrated the possible power of the approach. Yet, the bivariational
approach has remained an unconventional view of CC theory, maybe due to the
lack of a mathematical foundation.

In quantum mechanics, approximation of eigenvalues of the system Hamiltonian
H are usually (but not always) approached with the Rayleigh-Ritz variational
principle. The Hamiltonian is here assumed to satisfy standard conditions: H
is below bounded and self-adjoint with domain D(H) < L?. We assume that
there exists a ground-state ug with eigenvalue Ey. The Rayleigh-Ritz variational
principle now states: For any nonzero v € D(H), the ground-state eigenvalue
satisfies Fy < (u, Hu) / (u,u), and equality is obtained precisely when u = wug.
Let H : X — X’ be the unique extension of H : D(H) — L? to the form-
domain X <« L?, ie., H: X — X' is bounded, and for every pair u,v € D(ﬁ),
(u, Hv) = (u, Hv).

The Rayleigh quotient is Fréchet smooth on X away from the vanishing denom-
inator, and any eigenpair of H is a critical point. Straight-forward differentiation
gives the critical point condition

(1) (v, Hu,) = By (v,us), Yv e X.

Here, E. = (ux, Huy) / (ux, us). It is a standard result, that this weak eigenvalue
problem is equivalent to the strong eigenvalue problem, i.e., we have that u, €
D(H), and thus Hu, = E,u,.

The bivariational principle is a generalization of the Rayleigh-Ritz variational
principle that does not assume that H is self-adjoint. Consider the bivariate
Rayleigh functional

(u, Hv)
(u,v)

Then, & is infinitely Fréchet differentiable at all points (u,v) € X x X for which
(u,v) # 0. The bivariational principle is as follows: A point (u.,vs) is a critical
point of €& with critical value F, = £(ux,v,) if and only if

(2) E(u,v) :=

(3) Hu, = Eyv,, Htu, = Eyuy,  {(uy,v,) #0.
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Under the additional knowledge that H is self-adjoint, and assuming a simple
eigenvalue for simplicity, we know that u, = awv, for some « # 0. We have here
assumed that the weak eigenvalue problem is equivalent to the strong eigenvalue
problem for H and H T, a property which can be verified for operators that are
more general than self-adjoint operators [4]. In this talk, we will however assume
that At = H.

For traditional variational approximations, like Hartree-Fock or configuration-
interaction, one minimizes the Rayleigh quotient over some submanifold M C
X. The below boundedness of the Rayleigh quotient now guarantees that this
approximation to the ground-state eigenvalue F, will have a quadratic error, which
will improve as M grows.

The idea behind the bivariational principle is to introduce approximate schemes
where different approximations are being used for ug and vg. This allows greater
flexibility at the cost of doubling the number of discrete degrees of freedom. For
the bivariational principle, we note that £ is not below bounded, so we cannot in
general use arbitrary submanifolds M C X x X, in contrast to the Rayleigh-Ritz
approach. Instead, we appeal to nonlinear functional analysis and monotonicity
results in the vein of Zarantanello’s Theorem [5].

Lacking a sure-fire way of introducing arbitrary manifolds M, we instead ap-
proach the problem by introducing a reparametrization map ¢ : Y xY — X x X,
where Y is some Hilbert space. The map & is assumed to be (locally) one-to-one
and onto, and also smooth with a smooth inverse for simplicity. This induces a
new functional & = £ o ®, and we obtain that the original eigenvalue problem
is equivalent to finding y. € Y x Y such that dF(y,) = 0. We then seek prop-
erties of the map ® such that some sort of local strong monotonicity holds near
y«. Zarantonello’s Theorem on local form then implies that taking a sequence of
Galerkin spaces Y, C Y will lead to a convergent sequence of critical points and
values y, p and E, j, respectively. Such an approach was recently taken to study
the particular case of Arponen’s extended CC method [6].

In this talk, we outline how sufficient conditions on ® can be found, such that
the local strong monotonicity holds. The set of sufficient conditions allow er-
ror estimates for several methods from quantum chemistry, including the coupled
cluster (CC) method in its standard formulation (i.e., the CC with singles-and-
doubles, CCSD, with triples, CCSDT, etc, hierarchy). These conditions cover
what is known as single-reference methods, and are applicable when the ground
state ug has single-reference nature.

For Hamiltonians with multi-reference ground states, we need more general
conditions, and we outline these as well. We also outline how we can devise novel
multi-reference CC-like methods using the bivariational principle.

This work has received funding from the ERC-STG-2014 under grant agreement
No 639508.
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Numerical Methods for Solving Coupled Cluster Equations
CHAO YANG
(joint work with Jiri Brabec, Jinmei Zhang, Karol Kowalski and Edward Valeev)

We examine two different approaches for accelerating numerical solutions of the
couple cluster equations which are known to be nonlinear and highly complex. The
first approach is based on the Jacobian-free Newton-Krylov method. We show that
method tends to be more stable than the widely used DIIS method when the Ja-
cobian of the coupled clustered equation is not dominated by a diagonal matrix
consisting of the differences between the Hartree-Fock occupied and virtual orbital
energies. We discuss the possibility of combining the Newton-Krylov method with
DIIS method, although this combination does not seems to lead to a significant
improvement in convergence rate, at least not for problems that are well behaved.
We point out the importance of using level-shifting to regularize diagonal precon-
ditioner consisting of HF orbital energy differences and stabilize the convergence
of the Newton-Krylov method for problems that have nearly degenerate orbital
energies. We also discuss the possibility of using alternative preconditioners that
are based on the construction of a small active space approximation to the coupled
cluster equation-of-motion Hamiltonian.

In the second approach, we discuss methods that try to exploit sparsity and low
rank structures of the coupled cluster amplitude. In our earlier work [1], we de-
veloped a practical numerical scheme to sparsify the correction to coupled cluster
amplitudes in an inexact Newton iteration. We showed that 90% of the correc-
tion amplitude can be discarded without affecting the convergence of the inexact
Newton method. When combined with a tensor contraction scheme that keeps a
few additional intermediate tensors and an efficient block sparse contraction pro-
cedure, we can improve the overall performance of the inexact Newton solver by
a factor of 2 to 3.

Recently, we explored the possibility of using iterative pair natural orbital
(PNO) method to reduce the complexity of the coupled cluster equation solver.
The PNO’s, which was developed many years ago in the work of [3, 4], and re-
gained interest in the recent work of [5], yields a compact representation of the
coupled cluster amplitudes. By projecting the coupled cluster equations into the
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subspace spanned by PNO’s, we can reduce the cost of solving the nonlinear equa-
tion significantly. The previous use of PNO’s [5] performs a one-shot calculation
that uses PNO’s constructed from MP2 amplitudes. We extended this approach
into an iterative scheme in which both the PNO’s and the coefficients of the PNO’s
are iteratively refined [2]. We show the interplay between the truncation error and
error attributed to suboptimal PNO’s in an iterative PNO based nonlinear solver
of the coupled cluster equations.
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Log-scaling tight-binding for material defects
CHRISTOPH ORTNER
(joint work with Simon Etter)

Intuitively, there is very limited “information content” in the electronic structure
of a localised defect embedded in a homogeneous medium, independent of or slowly
growing with the medium’s size. It should be possible to exploit this in order to
develop highly efficient electronic structure methods for crystalline defects.

To formalise this idea, we consider a model, developed in [1, 2, 3, 4], for point
defects and straight dislocation lines embedded in a homogeneous host crystal,
taking into account both mechanical relaxation and electronic relaxation within
the tight-binding model. For the sake of simplicity, this note will only describe
the case of an impurity in Z?, with a 2-centre s-orbital tight-binding model.

More specifically, if (y¢),cq C R? is a finite collection of atoms then we assume
that a tight-binding hamiltonian is given by H(y) = (h(ri)); jeq With 7y =
|y; — y;| which is exponentially localised (h(r) < e™ "% for some v > 0). The
potential energy landscape for the tight-binding model is then given by

N
E(y) = Zf(ss), where H(y)s = €515,
s=1

and f(¢) is an analytic function describing either the canonical or grand-canonical
ensemble for the electrons, see [3] for more detail.
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It is then shown in [3, 2] that the problem of equilibrating E(y) under suitable
boundary conditions has a limit as the domain £ approaches Z¢ and that limit
equilibrium displacements u : Z¢ — R%, v = y — id satisfy

(1) | Dra(e)| < Cilef =

where Df(0) = (f({+e;) — f (E))le denotes a discrete gradient operator. Indeed,
we may expect (though it is an open problem whether this is true) that the stronger
estimate

(2) |D7a(e)| < Cjtje)t=4

holds.

Our aim is to exploit this a priori known regularity of the equilibrium displace-
ments to construct highly efficient numerical schemes for solving the electronic
structure problem. To that end, as a first step, we establish an analogous regular-
ity result for the density matrix, given in the finite domain case by

N
=) fep(es) s @ ths,
s=1
where fr is the Fermi-Dirac function. In the thermodynamic limit it is more
conveniently written as

I':= QLm %fpp(z)(z — H)_ldz,

where the integration is taken along a contour that circles the spectrum of H (y)
but does not circle any singularities of frp. Establishing regularity of electronic
structure can be reduced to regularity of I and hence of (z — H )_1. The following
results use identities such as

D(z—H) ' =—(2—H) " (DH)S(z — H) ™",

where (Se, H);; = Hitey,jte, and De, H = Se H — H, as well as Coombe-Thomas
estimates (see [4] and references therein) to bound off-diagonal decay of (z — H) ™.

The regularity (1) then implies that (unpublished)
‘(Dkzr)”| < Cl/ce_%;”j (|i|1_d_k + |j|1_d_k).
Assuming the stronger regularity (2), we expect that (in preparation)
(3) [(DFT),;| < Ckle™ i (i =% 4 |1 47F).

To exploit this regularity result, we propose to approximate each diagonal of the
density matrix by a piece-wise polynomial (hp-FEM type approximation scheme).
A little more precisely, if a uniform polynomial degree p is chosen and the finite
element mesh size scales as h(x) ~ |z|, and is truncated at a suitable radius then
under the regularity (1) it is relatively straightforward to establish a superalgebraic
best-approximation rate

IT — Tpplle < C,DOF~ for all t > 0.
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It turns out, however, that standard (continuum) polynomial spectral approxi-
mation error estimates do not immediately apply in the discrete setting. We aim
to establish that (3) implies

(4) |IT — Thpllp < Cexp (— cDOFYT),

for some ¢,r > 0. Proving this result is work in progress, however, there is already
overwhelming theoretical and numerical evidence for its validity.

The final ingredient, if (4) can be confirmed, is to develop an algorithm that
efficiently computes I'y,. A Galerkin discretisation for I'y, can achieve this in
polynomial cost, which finally leads to a poly-logarithmic scaling result,

COST (Thp) S log? (I = Tiplv) for some g > 0.
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Current-density-functional theory for molecules in strong magnetic
fields
ANDREW M. TEALE

(joint work with Tom J. P. Irons, James Furness, Erik I. Tellgren, Stella
Stopkowicz and Trygve Helgaker)

Recent progress in the theoretical development and implementation of non-pertur-
bative current-density-functional theory (CDFT) using London atomic orbitals is
reviewed. These calculations enable study of chemical systems in strong magnetic
fields up to ~1 a.u. = 235000 Tesla. Introducing a uniform magnetic field, B =
V x A described by a vector potential A leads to the electronic Hamiltonian

(1)
1 _ 1
o, A) =53 Pl Z e nl o Do)+ A et 5 AN
To setup the foundations of CDFT it is convenient to re-parameterize this Hamil-
tonian by collecting the scalar potential contributions as ©v = v + %AQ,

@) H@A) =5 Y P Y I rl e Y ulr) + YAk - pi

1>]
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This has the convenient consequence that the energy E(u, A) is concave in u and
A (whereas E(v, A) is not concave) and so a formulation of CDFT analogous to
Lieb’s formulation for DFT may be constructed [1].

A Kohn-Sham (KS) CDFT scheme can then be setup, with the KS equations,

1 1
) §p2 * E{p’ Asttus +5- [V XA pp =600
where the scalar potential and vector potentials are

1
(4) Us = Vext + iAgXt + vy + Uxc As - Aext + Axc~

To provide an efficient computational implementation of CDFT we expand the KS
orbitals in terms Gaussian type basis functions

(5) ba(r) = (z — Az)™(y—Ay)™(z— A dee aglr—A|?

and attach a field dependent phase factor to yield London atomic orbitals (LAOs),
(6) wa(r) _ qba(r)ef%Bx(AfO).r.

The use of LAOs ensures gauge-origin independent energies are obtained.

In this talk we will examine two key aspects to allow the practical application
of KS-CDFT; (i) techniques for the efficient evaluation of molecular integrals over
LAOs, (ii) the nature of approximate exchange-correlation functionals in CDFT,
benchmarking them against ab initio methods such as coupled-cluster theory [2].
Implementation of these methods in LONDON [3] and QUEST [4] is outlined.

MOLECULAR INTEGRALS

The most time consuming step in practical calculations is the evaluation of the
electron repulsion integrals (ERIs) over the atomic orbitals. For LAOs the impor-
tance of this step in determining the efficiency of the calculations is magnified by
the fact that complex arithmetic is required and the permutational symmetry is
reduced from eightfold (for real orbitals) to fourfold (for the complex LAOs). The
ERIs over the LAOs take the form

(7) (abled) = / / oty (e (F2)walra) 4o,

r] — 12

and the most efficient implementations previously have used the McMurchie-
Davidson approach. This approach gives recursions for the evaluation of the ERIs
involving two-centre intermediates of the form (see Ref. [5] for details of notation),

o+ 1™ = PQ )™ o fr - 1Y

(8) pla] = (~-1)%[p+q]”
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when applied to Gaussian type atomic orbitals of the type in Eq. (5). When
applied to LAOs these recursions are significantly more complicated,

[+ Lila™ = — ixp,; [pla™ + PQ; [plg ™Y
9) +pilp— 12‘\01](m+1)

which leads to an intrinsic increase in computational cost of the McMurchie-
Davidson scheme using LAOs. In both cases the four centre ERI is then con-
structed via the recursion

— ¢; [plq — 1)V

(10) [a+1;bp|=p;[abp — 1;[ + PA; [apr—( )[abp%—li\.

2¢
This intrinsic increase in computational effort for the algorithm coupled with the
need to calculate more integrals when dealing with LAOs has led us to consider
other approaches to molecular integral evaluation.

Two of the most widely used schemes for evaluation of integrals over Gaussian-
type atomic orbitals are the Head-Gordon-Pople (HGP) and Rys quadrature meth-
ods. For HGP the conventional recursion relations for the two-centre intermedi-
ates,

le + 1,0[f0]™ = PA,[e0]f0] ™ — PQ, (T) [e0|fo] ™Y

+e (21C> {[e — 1,0[f0]™ — (2_1<> e — 1i0|f0](m+1)}

(11) + fi (2%) (%) [eO|f — 1,0]™ V)

carry through essentially unaltered for LAOs, meaning that the intrinsic complex-
ity of the algorithm is not increased. Four centre ERIs are then obtained via,

(12) (ab + 1;| = (a+ 1;b| + AB; (ab .

For Rys quadrature the algorithm is also essentially unchanged (though the com-
putation of the required roots and weights requires special care in the complex
case—see Ref. [5]). In this scheme the integrands are determined recursively via

Ii(€+1,f;)\):{PAi_ i PQ} i (e, fiA)

¢+
e nt3 ft3
13 +—{1 }Iie—l,f;/\ + LA Tole, f—1; A
1 T R e T
and then summed over the Rys nodes
(14) [e0[f0] = ZI (€ws foi A Ty ey, fys ) T ez, [ A) wi

and the final four-centre ERI is recovered using the horizontal recursion relation
employed in the HGP scheme.
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As expected none of the above integral schemes is optimal for all types of ERI,
in particular when integrals are classified according to their total angular momenta
it becomes clear that the McMurchie-Davidson scheme remains most efficient for
integrals over low angular momenta basis functions, whilst HGP is more efficient
in the intermediate regime and Rys quadrature is most efficient for high angular
momenta. I will discuss our recent implementation of a mixed scheme, illustrated
in Fig. 1, in which the most appropriate algorithm is selected for each batch of
integrals on the fly. The implementation of density-fitting (aka resolution of the
identity) approaches will also be discussed.

. -
L
PR

~
~<<
~~
-
~——

Wy (r2)wa(rs) HGP

Rys

I London Atomic Orbital: w,(r) = ¢, (r)e e |

I-bra + l—ket

FIGURE 1. Schematic for selection of most appropriate integral
evaluation scheme for LAO ERIs. The most efficient approach can
be selected on-the-fly for batches of integrals classified according
to their total angular momentum L.

EXCHANGE-CORRELATION FUNCTIONALS

The outstanding challenge for realization of a practical scheme for CDFT calcula-
tions is the development of appropriate exchange-correlation functionals depending
on the paramagnetic current density,

(15) o =5 D161V — 6iV1]

In previous work we have shown that simple vorticity based models fail catastroph-
ically in strong magnetic fields [6]. However, we have recently demonstrated that
meta-GGA class functionals, utilizing a modified kinetic energy density,

<12
(16) T=>7~':T——|‘]p|,

p

show remarkably accurate performance in strong magnetic fields in comparison
with high accuracy coupled-cluster results [7]. I will discuss how this performance
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can be rationalized by considering the importance of 1-electron regions and visu-
alized by an extended [8] definition of the electron localization function (ELF)

1 ey — D) =)
1+ afr)” rUEG )

(17) feLr(r) =

with 7VW(r) and 7Y% (r) the von Weisiicker and uniform electron gas definitions
of the kinetic energy density, respectively. Finally, I will outline some outstanding
challenges for CDFT calculations, including the accurate description of weak-field
properties of general chemical interest such as nuclear magnetic resonance shield-
ing constants [9] and the description of high spin ground states, which become
prevalent as the strength of the magnetic field considered increases.
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Wannier functions for metals
ANTOINE LEVITT

(joint work with Horia Cornean, Anil Damle, David Gontier, Lin Lin and
Domenico Monaco)

This talk summarized a recent effort towards the understanding of the localization
properties of Wannier functions for metals [1, 2].

Wannier functions are a way to represent effectively the occupied subspace
Span P where P = 1(H < ep) is the spectral projector of a crystal in the inde-
pendent electron approximation H = —%A + Vper, Where Vje; is a d-dimensional
periodic potential. By the Bloch theorem, this subspace is spanned by a set of
Bloch functions, delocalized on the whole crystal. Wannier functions are a re-
combination of these Bloch functions to yield a set of localized functions that,
together with their translates along the crystal lattice, form an orthogonal ba-
sis of the subspace. This is useful in applications to examine chemical bonding,
interpolate band structures and speed up computations of exchange-correlation
functionals [4].

By a Fourier-type duality, it is equivalent to find localized Wannier functions
and to find a smooth and orthogonal basis of Span Py, where P, = 1(Hy < ep),
H;. are the Bloch-Floquet fibers of H, and k£ runs on the Brillouin zone B, a set
having the topology of a d-dimensional torus. For an insulator, there is a gap
at the Fermi level ep, and Py is smooth as a function of k, and the existence
of localized Wannier is well-known to be equivalent to the triviality of the fiber
bundle Span P.

For metals, P, is not smooth as a function of k£, and no localized Wannier
functions in the classical sense can exist. However, a generalization of the concept
is widely used in practice: instead of looking for an orthogonal basis of Span P,
one looks instead for a larger set of orthogonal functions that span Span P. This
is useful in reproducing band structure information, for instance in the context of
Wannier interpolation [4].

In [1], we prove the existence of such a set. The main difficulty is the local
topology (Chern number) carried by eigenvalue crossings. The construction is
made possible by the fact that the sum on the Brillouin zone of the local topolog-
ical numbers must vanish, by a Poincaré-Hopf type argument. This implies the
existence of almost-exponentially localized Wannier functions in the sense above
for a large class of metals.

In [2], we present a careful numerical study of Wannier functions for the simplest
metal, the free electron gas. We show that while almost-exponentially localized
functions do exist, the most widely used method to find them (the maximally-
localized Wannier functions scheme, see [4]) only yields poorly localized Wannier
functions.



650 Oberwolfach Report 13/2018

REFERENCES

[1] H. CORNEAN, D. GONTIER, A. LEVITT AND D. MONACO, Localised Wannier functions in
metallic systems, submitted.

[2] A. DaMLE, A. LEvITT AND L. LIN, Variational formulation for Wannier functions with
entangled band structure, submitted.

[3] G. PANATI, Triviality of Bloch and Bloch-Dirac bundles, Annales Henri Poincaré, (2007).

[4] N. MARZARI, A. MosTOFI, J. R. YATES, I. SOuZA AND D. VANDERBILT, Mazimally localized
Wannier functions: Theory and applications, Rev. Mod. Phys., (2012).

Numerical methods for Brillouin zone integration
DAviD GONTIER

(joint work with Eric Cances, Virginie Ehrlacher, Antoine Levitt and Damiano
Lombardi)

In condensed matter, when studying numerically a periodic crystal, one needs to
integrate some quantities over the Brillouin zone (a torus) T. This is the case for
the integrated density of states, of the form N () := [, 1(e(k) < €)dk, where £(:)
is a given smooth function over T, and for the energy per unit cell, of the form
E := [e(k)1(e(k) < ep)dk, where ep is the Fermi level, solution to N'(ep) = N,
where N is a given number of electrons per unit cell.

In this talk, we discussed the different numerical methods that have been pro-
posed to discretise numerically these integrals. The main difficulty is that the
error on the energy F depends not only on the discretisation, but also on the error
made on the Fermi level er, which itself depends on the error on the integrated
density of states N(-).

In the case of insulators (existence of a spectral gap), we can rewrite the energy
as the integral of a periodic smooth function. In this case, the approximation
of the integral with a Riemann sum is enough to obtain an exponential rate of
convergence with respect to the number of discretisation points (see e.g. [1]).

In the case of metallic systems, the convergence is much slower, and two fami-
lies of methods have been proposed. In interpolation methods, we interpolate the
(smooth) function £(-), and we compute the quantities of interest from the inter-
polation. In smearing methods, we replace the discontinuous step function 1 by a
smooth one, so that the integrand becomes smooth. In this talk, we presented the
results of [2], where we provided the rates of convergence of these methods.
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A unified approach to Wannier interpolation
ANIL DAMLE
(joint work with Lin Lin)

The construction of localized representations of electronic wavefunctions have a
wide range of applications across quantum physics, material science, and chem-
istry. This is known as the Wannier localization problem, and the desired lo-
calized representations are known as Wannier functions [22, 13, 2]. For insulat-
ing materials with isolated eigenvalues, the problem is well studied mathemat-
ically [13, 2, 18, 12, 3, 10, 9, 19, 20, 17, 4, 7, 5] and good methods exist for
computing Wannier functions in this setting [16, 6.

In contrast, when the eigenvalues are not isolated and become entangled far less
is known. This situation arises naturally when considering metallic systems, but
is also in insulating systems when considering a selected range of valance bands
or conduction bands. In this setting the problem is significantly more difficult.
Construction of Wannier functions now requires both identifying a subspace that
contains a localized basis and constructing such a basis. A common methodology in
this scenario is a disentanglement procedure [21]. Via two successive optimization
procedures a subspace is identified and then a localized basis is computed.

In this talk we propose a unified method to address this so-called Wannier local-
ization problem for both the isolated and entangled cases. We avoid an explicit,
initial disentanglement step and utilize a quasi-density matrix that “entangles”
eigenfunctions of interest with the rest of them in a controlled manner. Thi