Inference, Computation, and Games

Thesis by
Florian Tobias Schifer

In Partial Fulfillment of the Requirements for the
Degree of
Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2021
Defended May 19, 2021

© 2021

Florian Tobias Schifer
ORCID: 0000-0002-4891-0172

All rights reserved except where otherwise noted

ii

iii

ACKNOWLEDGEMENTS

I first and foremost want to thank Houman Owhadi for being the best advisor I
could have hoped for. Houman gave me complete freedom to pursue my academic
interests, whether I was collaborating with him or with others. Yet, whenever I
needed his advice, he would make time to meet almost immediately. Over the
course of my graduate studies, I came to greatly appreciate his openness to asking
unconventional questions, his endless optimism, and the integrity and unconditional

generosity with which he treats the people around him.

I want to thank my committee members: Anima Anandkumar, Mathieu Desbrun,
Peter Schroder, and Joel Tropp, not primarily for serving on my committee, but for

teaching, mentorship, and scientific collaborations that enriched my time at Caltech.

The work in this thesis would not have been possible without my great collaborators,
especially Jiong Chen, Matthias Katzfuss, Tim Sullivan, and Hongkai Zheng. It
would also not have been possible without the amazing Caltech staff, in particular
Diana Bohler and Carmen Nemer-Sirois, to whom I owe the privilege of being
able to fully concentrate on my studies. I also want to thank Laura Flower Kim
and Daniel Yoder from ISP for their tremendous effort to support us international

students, in particular during the most recent, tumultuous years.

Through all the high highs and low lows of grad school, the one thing that remained
unchanged is how immensely grateful I am for the wonderful friends I have, at

Caltech and elsewhere. More than anything else, you make my life worth living!

Finally, I want to thank my family, especially my parents Birgit and Christian, and
my sister Valerie. For as long as I can remember, they have encouraged me to
develop my own interests and pursue my own path. Without their love and support,

I would not be who I am today.

iv

ABSTRACT

In this thesis, we use statistical inference and competitive games to design algorithms

for computational mathematics.

In the first part, comprising chapters two through six, we use ideas from Gaussian
process statistics to obtain fast solvers for differential and integral equations. We
begin by observing the equivalence of conditional (near-)independence of Gaus-
sian processes and the (near-)sparsity of the Cholesky factors of its precision and
covariance matrices. This implies the existence of a large class of dense matrices
with almost sparse Cholesky factors, thereby greatly increasing the scope of appli-
cation of sparse Cholesky factorization. Using an elimination ordering and sparsity
pattern motivated by the screening effect in spatial statistics, we can compute approx-
imate Cholesky factors of the covariance matrices of Gaussian processes admitting
a screening effect in near-linear computational complexity. These include many
popular smoothness priors such as the Matérn class of covariance functions. In the
special case of Green’s matrices of elliptic boundary value problems (with possibly
unknown elliptic operators of arbitrarily high order, with possibly rough coeffi-
cients), we can use tools from numerical homogenization to prove the exponential
accuracy of our method. This result improves the state-of-the-art for solving general
elliptic integral equations and provides the first proof of an exponential screening
effect. We also derive a fast solver for elliptic partial differential equations, with
accuracy-vs-complexity guarantees that improve upon the state-of-the-art. Further-
more, the resulting solver is performant in practice, frequently beating established
algebraic multigrid libraries such as AMGCL and Trilinos on a series of challenging
problems in two and three dimensions. Finally, for any given covariance matrix, we
obtain a closed-form expression for its optimal (in terms of Kullback-Leibler diver-
gence) approximate inverse-Cholesky factorization subject to a sparsity constraint,
recovering Vecchia approximation and factorized sparse approximate inverses. Our
method is highly robust, embarrassingly parallel, and further improves our asymp-
totic results on the solution of elliptic integral equations. We also provide a way to
apply our techniques to sums of independent Gaussian processes, resolving a major
limitation of existing methods based on the screening effect. As a result, we obtain
fast algorithms for large-scale Gaussian process regression problems with possibly

noisy measurements.

v

In the second part of this thesis, comprising chapters seven through nine, we study
continuous optimization through the lens of competitive games. In particular, we
consider competitive optimization, where multiple agents attempt to minimize con-
flicting objectives. In the single-agent case, the updates of gradient descent are
minimizers of quadratically regularized linearizations of the loss function. We pro-
pose to generalize this idea by using the Nash equilibria of quadratically regularized
linearizations of the competitive game as updates (linearize the game). We provide
fundamental reasons why the natural notion of linearization for competitive opti-
mization problems is given by the multilinear (as opposed to linear) approximation
of the agents’ loss functions. The resulting algorithm, which we call competitive
gradient descent, thus provides a natural generalization of gradient descent to com-
petitive optimization. By using ideas from information geometry, we extend CGD to
competitive mirror descent (CMD) that can be applied to a vast range of constrained
competitive optimization problems. CGD and CMD resolve the cycling problem of
simultaneous gradient descent and show promising results on problems arising in
constrained optimization, robust control theory, and generative adversarial networks.
Finally, we point out the GAN-dilemma that refutes the common interpretation of
GANSs as approximate minimizers of a divergence obtained in the limit of a fully
trained discriminator. Instead, we argue that GAN performance relies on the implicit
competitive regularization (ICR) due to the simultaneous optimization of genera-
tor and discriminator and support this hypothesis with results on low-dimensional
model problems and GANs on CIFARI10.

(1]

(2]

[3]

(4]

[5]

[6]

[7]

[8]

[9]

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

Pierre-Luc Bacon, Florian Schifer, Clement Gehring, Animashree Anandku-
mar, and Emma Brunskill. A Lagrangian method for inverse problems in
reinforcement learning. F.S. contributed to the development of the method.

Jiong Chen, Florian Schifer, Jin Huang, and Mathieu Desbrun. Multiscale
Cholesky preconditioning for ill-conditioned problems. 2021. F.S. contributed
to the writing and the development of the method.

Houman Owhadi, Clint Scovel, and Florian Schéfer. Statistical numerical ap-
proximation. Notices of the AMS, 2019. E.S. contributed to the writing, mostly
in the section on the sparse factorization of dense kernel matrices.

Florian Schaefer and Anima Anandkumar. Competitive Gradient Descent. In
Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/56¢c51a39a7c77d8084838cc920585bd0-Paper.pdf. E.S. is the first
author and main contributor of this work.

Florian Schaefer, Hongkai Zheng, and Animashree Anandkumar. Implicit com-
petitive regularization in GANs. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 8533—-8544. PMLR, 13-18 Jul 2020. URL http:
//proceedings.mlr.press/v119/schaefer20a.html. F.S. and H.Z. are
joint first authors of this work. F.S. primarily contributed to the writing and
conceptual/theoretical part of the project.

Florian Schifer, Anima Anandkumar, and Houman Owhadi. Competitive Mir-
ror Descent. arXiv preprint arXiv:2006.10179, 2020. E.S. is the first author and
main contributor of this work.

Florian Schifer, Matthias Katzfuss, and Houman Owhadi. Sparse Cholesky fac-
torization by Kullback-Leibler minimization. arXiv preprint arXiv:2004.144535,
2020. E.S. is the first author and main contributor of this work.

Florian Schifer, T. J. Sullivan, and Houman Owhadi. Compression, Inversion,
and Approximate PCA of Dense Kernel Matrices at Near-Linear Computa-
tional Complexity. Multiscale Model. Simul., 19(2):688-730, 2021. ISSN
1540-3459. doi: 10.1137/19M129526X. URL https://doi.org/10.1137/
19M129526X. E.S. is the first author and main contributor of this work.

Jing Yu, Clement Gehring, Florian Schifer, and Anima Anandkumar. Robust
reinforcement learning: A constrained game-theoretic approach. To be pre-
sented at Learning for Decision and Control (L4DC) 2021.,2021. E.S. advised
first author J.Y. on the use of CMD and contributed to the writing.

https://proceedings.neurips.cc/paper/2019/file/56c51a39a7c77d8084838cc920585bd0-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/56c51a39a7c77d8084838cc920585bd0-Paper.pdf
http://proceedings.mlr.press/v119/schaefer20a.html
http://proceedings.mlr.press/v119/schaefer20a.html
https://doi.org/10.1137/19M129526X
https://doi.org/10.1137/19M129526X

vii

TABLE OF CONTENTS
Acknowledgements L oL L oo iii
Abstract L e e e iv
Published Content and Contributions vi
Bibliography e vi
Tableof Contents e vi
List of Illustrations o o o i e ix
Listof Tables xxiii
Chapter I: Introduction, 1
1.1 Numerical algorithms as games and estimators 1
1.2 Numerical approximation, fast algorithms, and statistical inference . 2
1.3 Game theory as a paradigm for algorithm design 6
Chapter II: Elliptic partial differential equations and smooth Gaussian processes 13
2.1 Linear Elliptic Partial Differential Equations 13
2.2 Smooth Gaussian processes« v v v v v v v e e e 18
2.3 Thecubicbottleneck o oo, 21
Chapter III: Sparse Cholesky factors by screening 25
3.1 Gaussian elimination and Cholesky factorization 25
3.2 Sparse Cholesky factorization 26
3.3 Gaussian elimination and Gaussian conditioning 29
3.4 Thescreeningeffect 31
3.5 The maximin ordering and sparsity pattern 32
3.6 Cholesky factorization, numerical homogenization, and gamblets . . 36
Chapter IV: Proving exponential decay of Cholesky factors 43
4.1 Overview oL e e e e e e 43
4.2 Settingandnotation oo 44
4.3 Algebraic identitiesandroadmap 49
4.4 Exponential decay of A 50
4.5 Bounded conditionnumbers 52
4.6 Summaryofresults, 62
4.7 Extensions and comparisonso v e e e .. 66
Chapter V: Incomplete Cholesky factorization 69
5.1 Zero fill-in incomplete Cholesky factorization 69
5.2 Implementation of ICHOL(®) for dense kernel matrices 74
5.3 Implementation of ICHOL (®) for sparse stiffness matrices 80
5.4 Proof of stability of ICHOL(®) 81
5.5 Numerical example: Compression of dense kernel matrices 88
5.6 Numerical example: Preconditioning finite element matrices 99
Chapter VI: Cholesky factorization by Kullback-Leibler minimization 106

6.1 OVEIVIEW« v v e e e e e e e e e e e e e e e 106

6.2 Cholesky factorization by KL-minimization. 108
6.3 Ordering and sparsity pattern motivated by the screening effect . . . 111
6.4 Extensions e 117
6.5 Applications and numericalresults 122
6.6 Conclusions e 131
Chapter VII: Competitive Gradient Descent 132
7.1 Introduction e 132
7.2 Competitive gradientdescent 135
7.3 Consensus, optimism, or competition? 141
7.4 Implementation and numerical results 144
Chapter VIII: Competitive Mirror Descent 149
8.1 Simplifying constraints by duality 152
8.2 Projected CGD suffers from empty threats 153
8.3 Mirror descent and Bregman potentials 155
8.4 The information geometry of Bregman divergences 157
8.5 Competitive mirrordescent 160
8.6 Numerical comparison 161
Chapter IX: Implicit competitive regularization 169
9.1 Introduction 169
9.2 The GAN-dilemma 171
9.3 Implicit competitive regularization ICR) 175
94 How ICR lets GANs generate 178
9.5 Competitive gradient descent amplifiesICR 182
9.6 Empirical study on CIFARIO 184
Bibliography e 187
.1 AppendixtoChapter4 o oo 209
2 AppendixtoChapter5 oL 216
3 AppendixtoChapter6 oL 219
4 AppendixtoChapter7 e 233
S5 AppendixtoChapter 8 e 242
.6 AppendixtoChapter9 0., 247

Number

1.1

1.2

1.3

1.4

1.5

1.6

1.7

LIST OF ILLUSTRATIONS

ix

Page

The screening effect. The length of the conditional correlation of
the point in red decreases with the density of the conditioning set. . .
The maximin ordering and sparsity pattern.We successively select
the point x; that has maximal distance ¢; from the points that were
selected so far (left). We add entries corresponding to interactions
of x; with points within radius p¢; to the sparsity set S (middle).
When computing Cholesky factors of ©, we skip updates Oy ; «
Ok — 04;0;;/0;; that use entries outside of § (right).
Comparison against AMG. We compare the solver described in Sec-
tion 5.6 against state of the art implementations of algebraic multigrid
methods on a problem arising in linear elasticity. The shaded region
illustrates the performance of our method over different parameter
choices. L e
The cycling problem. The cycling problem of SimGD arises, be-
cause each chooses the optimal action according the /ast action of the
otheragent. e
What I think that they think that I think... The partial sums of a
Neumann-series representation of Equation (1.7) represent different
orders of opponent-awareness, recovering the Nash-equilibrium in
the limit.
Dual geometry. (left:) The dual notion of straight line induced by the
Shannon entropy guarantees feasible iterates on R’}. (right:) A man-
ifold M, tangent space 7, M, tangent vector x € 7, M, and the path
described by the exponential map {q : q = Exp,(1x),fort € [0, 1] } .
The discriminator can always improve. We want the discriminator
confidence to reflect the relative abundance of true and fake data
(left). But by picking out individual data points, the discriminator
can almost always achieve arbitrarily low loss on any finite data set
(right). Even in the limit of infinite data, the slightest misalignment

of the supports of generated and real data can be exploited in a similar

11

2.1

3.1

3.1

32

33

34

3.5

3.6

3.7

An elliptic Green’s function. We plot the graph of the Green’s
function y — [xg, Gy] of an elliptic PDE on the domain Q. Most of
its values are significantly larger than zero, leading to a dense matrix
O. e
Fill-in. For a given matrix with nonzero entries denoted in blue, the
amount of fill-in (in red) depends strongly of the ordering of the rows
and columns of the matrix (note that we do not plot self-edges of the
sparsity graph). L. L L
Fill-reducing ordering. We show common reordering heuristics
and their effects on the sparsity of the Cholesky factor of a finite
difference Laplacian.
Sparsification by elimination. As we eliminate more columns (left
to right), the Cholesky factor and Schur complement become in-
creasingly sparse (top row, magnitude on log;,-scale). The bottom
row shows the geometric locations corresponding to the eliminated
columns, and how they dissect the graph.
The screening effect. We condition a Gaussian process with Matérn
covariance on increasing conditioning sets and plot the conditional
correlation of the pointinred as a heatmap.
Maximin ordering. The first nine elements of the maximin ordering
on a pointset in R?, with the asocciated length scale ¢; visualized as
ashadedradius. L o oo
Maximin sparsity pattern. Each column of the maximin sparsity
pattern includes interactions with points that are within a factor p of
the corresponding length scale €.
Reverse maximin sparsity pattern. Each column of the reverse
maximin sparsity pattern includes interactions within a factor p of
the corresponding length scale {;. The number of nonzeros per
column is approximately constant.
A Haar-type multiresolution basis. We begin the construction by
forming averages on different scales. On all but the coarsest scale, we
obtain the basis function functions as linear combination of nearby
averages on a given scale that are chosen to be orthogonal to all
averages on the coarser scale. In the Figure, we show basis functions

on the three coarsest scales.,

35

Xi

3.8 The hidden multiscale structure of the maximin ordering. The

index sets 1(F) := {i chk < f,-/é’l} of the maximin ordering can be

interpreted as the scale spaces V¥) of a multiresolution basis. The

index sets JK) = 10\ 11 can then be viewed as the resulting

orthogonal multiresolution decomposition. In this figure, from left

to right, we display 7V, 1, and I®, plotting J(V in red, J in

orange,and /) inblue. 39
4.1 A regularity criterion. We measure the regularity of the distri-

butions of measurement points as the ration of dp,, the smallest

distance between neighboring points or points and the boundary, and

Omax, the radius of the largest ball that does not contain any points. . . 45
4.2 Hierarchical averaging. We illustrate the construction described in

Example 2 in the case ¢ = 2. On the left we see the nested partition

of the domain, and on the right we see (the signs of) a possible choice

forgr, ds,and dpg. L Lo 48
5.1 ICHOL(®). Incomplete Cholesky factorization, with the differences

to ordinary Cholesky factorization (Algorithm 1), highlighted in red.

Here, for a matrix A, nz(A) = {(i, j) | A;; # O} denotes the index

set of its non-zero entries. oL . 70
5.2 Up-looking ICHOL (0)in CSR format. We present an algorithm that

computes a Cholesky factorization of a lower triangular matrix in

CSR format, in-place. The up-looking factorization greatly improves

the spatial locality. 76
5.3 Up-looking supernodal ICHOL (®)in CSR format. We only need to

replace the square root with Cholesky factorization in Algorithm 4

and add a transpose in Algorithm 5 to obtain a supernodal factoriza-

HON. . . . o o e e e e 78

xii
5.4 Weaker screening between boundary points. Left and center: i
(left) and j™ (center) column of the Cholesky factor L (normalized to
unit diagonal) of ® in maximin ordering, where x; is an interior point
and x; is near the boundary. Although /[i] is of the order of /[j], the
exponential decay of L. ; near the boundary is significantly weakened
by the absence of Dirichlet boundary conditions. Right: approximate
correlations {(LPLFT);;}, ., (with p = 3.0) and true covariance
function exp(—2r) with r = |x; — x;|. Correlations between x;
and remaining points are captured accurately, despite the weakened
exponential decay near the boundary. 91
5.5 (Lack of) robustness to varying size of the nugget. We plot the
log,, of the magnitude of the Cholesky factors of ®+0-2Id in maximin
ordering (first column) and of A + o2 in reverse maximin ordering
(second column). As we increase o2 € [0.0,0.1, 1.0, 10.0] from left
to right the decay of the Cholesky factors of ® + ¢->Id deteriorates,
and that of the factors of A + o?Id is preserved. 93
5.6 Accuracy and computational cost. First panel: the increase in com-
putational time taken by the Cholesky factorization, as N increases
(for p = 3.0). Second panel: the exponential decay of the relative
error in Frobenius norm, as p is increased. In the third (d = 2) and
fourth panel (d = 3), we see the comparison of the approximate and
true covariance forp =2.0and p=3.0. oL 94
5.7 The Matérn class of covariance functions. Matérn kernels for
different values of v (left), and the spectrum of ®, for 2000 points
x; € [0,1]? (right). Smaller values of v correspond to stronger
singularities at zero and hence lower degrees of smoothness of the
associated Gaussian process. oo e oL 95
5.8 Manifold data. A two-dimensional point cloud deformed into a
two-dimensional submanifold of R3, with 6, €{0.1,0.3,0.5}. 98
5.9 A high-dimensional example. We construct a high-dimensional
dataset with low-dimensional structure by rotating the above struc-

tures at random into a 20-dimensional ambient space. 98

5.10

5.11

5.12

5.12

5.13

6.1

Sparsity pattern, error and factor density. When computing the
factorization of a Laplacian on a 16k x 16k grid in the reverse max-
imin ordering of Definition 6, the Cholesky factors are approximately

sparse according to the reverse maximin sparsity pattern of Defini-

tion 7, despite the condition s > d/2 of Example 1 not being satisfied.

Scalability. In 2D and 3D, our IC factorization time matches the
expected O(Np>?) time complexity for a matrix size NxN and a
sparsity parameter p; the dashed line indicates a slope of 1 in this
log-logplot. e e e e e
Direct vs. iterative solvers. For a 3D Poisson solve, CHOLMOD
scales non-linearly in the linear system size N for factorization time,
total solve time (which include factorization and back-substitution),
and memory use, and fails for N > 1M; instead, a PCG-based iterative
solve using our preconditioner exhibits consistent linear behaviors on
all three measurements. L. L oo
Comparisons with AMG libraries.. Figures indicate time costs
(including factorization and PCG iteration times) as a function of
material contrast. Our method is much less sensitive to contrast and
problem size, and is particularly efficient when the size N becomes
large and/or for bad condition numbers. For our method, timings
are within the orange region depending on the actual value of p, for
which we used the range [6.5,8.5] in 2D and [2.5,4.0] in 3D. All
meshes are generated by Delaunay triangulation.
Nonlinear quasi-statics. An armadillo is stretched via lateral gravity
with a few nodes (marked in black) fixed at their initial position. We
use a trust region nonlinear optimization algorithm involving the
solution of a linear system using our IC preconditioner or AMGCL
at each step; timing of the first 20 iterations are plotted.
The nonzero-vector of a sparse column. The set sy is the vector of
row-indices contained in the k-th column of the sparsity pattern. The
vector Ly, ; denotes the vector of nonzero entries of L with these row

INdiCES. . . o e e e e e

Xiii

101

6.2

6.3

6.4

6.5

6.6

6.7

The reverse maximin ordering. To obtain the reverse maximin
ordering, for k = N — 1,N — 2,...,1, we successively select the
point x;, that has the largest distance £;, to those points x;,,,,..., Xy
selected previously (shown as enlarged). All previously selected

points within distance p¢; of x;, (here, p = 2) form the k-th column

of the sparsity pattern.

KL-minimizing Cholesky factorization. KL-minimization with
and without using aggregation. For notational convenience, all ma-
trices are assumed to have row and column ordering according to

<. P! denotes the order-reversing permutation matrix, and ey is the

vector with 1 in the k-th component and zero elsewhere.

Geometric aggregation. The left figure illustrates the original pat-
tern S<¢,. For each orange point, we need to keep track of its
interactions with all points within a circle of radius ~ p. In the right
figure, the points have been collected into a supernode, which can
be represented by a list of parents (the orange points within an inner
sphere of radius = p) and children (all points within a radius = 2p).
Reusing Cholesky factors. (Left:) By adding a few nonzero entries
to the sparsity pattern, the sparsity patterns of columns in s; become
subsets of one another. (Right:) Therefore, the matrices {Oy, s, } 17>
which need to be inverted to compute the columns L. for k ~»
k, become submatrices of one another. Thus, submatrices of the

Cholesky factors of O, 5, can be used as factors of © for any

SksSk

kro ke o

Limitations of screening. To illustrate the screening effect exploited
by our methods, we plot the conditional correlation with the point in
red conditional on the blue points. In the first panel, the points are
evenly distributed, leading to a rapidly decreasing conditional corre-
lation. In the second panel, the same number of points is irregularly

distributed, slowing the decay. In the last panel, we are at the fringe

of the set of observations, weakening the screening effect.

Sums of independent processes. Algorithms for approximating co-
variance matrices with added independent noise ®+ R (left), using the

zero fill-in incomplete Cholesky factorization (right). Alternatively,

Xiv

. 113

the variants discussed in Section 5.3 could be used. See Section 6.4.1. 119

6.8

6.9

6.10

Prediction and uncertainty quantification with Matérn covari-
ance. We show the accuracy of our approximation with and without
aggregation for a Gaussian process with Matérn covariance (v = 3/2)
on a grid of size 10 on the unit square. (Left) Randomly sampled 2
percent of the training and prediction points. (Middle) RMSE, aver-
aged over prediction points and 1,000 realizations. (Right) Empirical
coverage of 90% prediction intervals computed from the posterior
COVArIANCE.« v v v vt e i e e e e e e e
Computational cost of factorization. Time for computing the factor
L* with or without aggregation (N = 10°), as a function of p and of
the number of nonzero entries. For the first two panels, the Matérn
covariance function was computed using a representation in terms of
exponentials, while for the second two panels they were computed
using (slower) Bessel function evaluations. Computations performed
on an Intel®Core™i7-6400 CPU with 4.00GHz and 64 GB of RAM.
The second and fourth panels show that aggregation leads to faster
computation despite producing much denser Cholesky factors (and
hence higher accuracy).
Factorization with additive noise. Comparison of the methods pro-
posed in Section 6.4.1 for approximating £ = © + R, where O is
based on a Matérn covariance with range parameter 0.5 and smooth-
ness v = 3/2 at N = 10* uniformly sampled locations on the unit
square, and R = o] is additive noise. For each approximation,
we compute the symmetrized KL divergence (the sum of the KL-
divergences with either ordering of the two measures) to the true
covariance. ‘“Naive”: Directly apply Algorithm 13 to X. “Exact”:
Apply Algorithm 13 to ®, then compute L as the exact Cholesky
factorization of A == R™' + ®~1. “IC”: Apply Algorithm 13 to ©,
then compute L using incomplete Cholesky factorization of A on the
sparsity pattern of either L or LL". (Left) Varying o, fixed p = 3.0.
(Middle) Varying p, fixed o = 1.0. (Right) Maximal relative error
(over the above o, p, v € {1/2,3/2,5/2} and 10 random draws) of
inverting A using up to 10 conjugate-gradient iterations (x-axis), with

IC, nonzeros(L) as preconditioner.

XV

123

6.11

6.12

6.13

Including prediction points. To analyze the effects of including the
prediction points into the approximation, we consider three datasets.
Each consists of 5 x 10* training points and 107 test points, av-
eraged over ten independent realizations of the Gaussian process.
We use Matérn kernels with range parameter 0.5 and smoothness
v e {1/2,3/2,5/2}, with p ranging from 1.0 to 10.0. We do not use
aggregation since it might lead to slightly different sparsity patterns
for the three variants, possibly polluting the results. On the y-axis we
plot the RMSE of the posterior mean and standard deviation, scaled in
each point by the reciprocal of the true posterior standard deviation.
In almost all cases, including the prediction points into the approxi-
mation improves the accuracy. The comparison between ordering the
predictions first or last is complicated, but “predictions-last” seems to

perform better for lower smoothness and “predictions-first” for higher

SMOOthNESS. o o v e e e e e e e e e e e

Comparison to HSS matrices. We compare the accuracy and com-
putational time of our method described in Section 6.4.2 with the
HSS implementation of H2Pack [123]. Each point corresponds to
a different run with different parameters (p, tolerance, and diagonal
shift). Throughout this experiment, we use the aggregation scheme
described in Section 6.3.2 with 4 = 1.25. The left plot shows the
RMSE of the posterior mean and the right plot that of the posterior
standard deviation. Our method is significantly faster for a wide range

of target accuracies. oL oo

Orthogonal basis from subdivision. We recursively divide each
panel of Q. The basis functions on finer levels are constructed

as linear combinations of indicator functions that are orthogonal to

functions on coarser levels.

Xvi

6.14 Solving boundary value problems by KL-minimization. Accu-
racy and computational complexity in boundary value problem. We
compare the root mean square error, number of nonzeros of sparsity
pattern, and the computational time for the exact boundary element
method and using our approximation for p € {1,2,3}. The dense
solution is prohibitively expensive for g > 6, which is why accuracy
and computational time for these cases are missing. The reason that
the computational time is hardly affected by different choices of p
is due to the fact that entries (G)Tr,Tr)l.j for nearby ¢;, ¢; are signifi-
cantly more expensive to compute than for distant ones when using
an off-the-shelf adaptive quadrature rule. The computations were
performed on 32 threads of an Intel® Skylake ™CPU with 2.10GHz
and 192 GB of RAM. In the first figure, we plot the RMSE compared
to the true solution of the PDE as a function of ¢ ~ log(N). In the
last figure, we compute the RMSE between dense computation and
our method, as well as its computational time, as a function of p. . .

7.1 The cycling problem. The cycling problem of GDA arises, because

each chooses the optimal action according to the /ast action of the

otheragent. e e

7.2 What I think that they think that I think... The partial sums of a
Neumann-series representation of Equation (7.8) represent different

orders of opponent-awareness, recovering the Nash-equilibrium in

the imit. e e e

7.3 Comparison. The update rules of the first player for (from top to
bottom) GDA, LCGD, ConOpt, OGDA, and CGD, in a zero-sum

game (f = =€) v v v v e e e e e e e e e e e

7.4 The bilinear problem. The first 50 iterations of GDA, LCGD,
ConOpt, OGDA, and CGD with parameters n = 0.2 and y = 1.0.
The objective function is f(x,y) = ax'y for, from left to right,
a € {1.0,3.0,6.0}. (Note that ConOpt and SGA coincide on a

bilinearproblem) L oo o

Xvii

. 130

7.5

7.6

1.7

7.8
7.9
7.10

8.1

8.2

8.3

8.4

A separable problem. We measure the (non-)convergence to equi-
librium in the separable convex-concave (f(x,y) = a(x? — y?), left
three plots) and concave-convex problem (f(x,y) = a(-x> + y?),
right three plots), for @ € {1.0,3.0,6.0}. (Color coding given by
GDA, SGA, LCGD, CGD, ConOpt, OGDA, the y-axis measures
log o (|l (xk, yx)||) and the x-axis the number of iterations k. Note
that convergence is desired for the first problem, while divergence is
desired for the second problem.
Fitting a bimodal distribution. For all methods, initially the players
cycle between the two modes (first column). For all methods but
CGD, the dynamics eventually become unstable (middle column).
Under CGD, the mass eventually distributes evenly among the two
modes (right column). (The arrows show the update of the generator
and the colormap encodes the logit output by the discriminator.) . .
Comparison of convergence speed. We plot the decay of the residual
after a given number of model evaluations, for increasing problem
sizes and n € {0.005,0.025,0.1,0.4}. Experiments that are not
plotted diverged.o L.
A trainingrun (I1seed).
Generalization (40seeds).
Imitation learning experiment in the cartpole domain. On the
left, we show a single training run, and on the right, we plot the
averaged loss over 40 randomseeds.
Dual geometry. The dual notion of straight line induced by the
Shannon entropy guarantees feasible iterateson R}".
Empty threats. Since x > 0, the bilinear term should only lead to y
picking a larger value. But CGD is oblivious to the constraint and y
decreases in anticipation of x turning negative.
Basic objects of differential geometry. A manifold M, tangent
space 7, M, tangent vector x € 7, M, and the path described by the
exponential map {q : q = Exp,(1x),for z € [0, 1]}
Penny matching. When applying CMD and XMD to penny matching
((8.13)), both methods converge. But as we increase the step sizes
a~!, 57!, CMD converges faster and XMD diverges.

Xviii

. 146

8.5

8.6

8.7

8.8

8.9

9.1

9.3

Prisoner’s dilemma. Applied to prisoner’s dilemma (8.14), CMD
converges for step sizes @', 87! for which XMD and PXGD diverge.
PCGD converges to the wrong solution, due to empty threats.
Convergence against outer iterations. We plot the objective value
in Equation 8.15 (after normalization of x) compared to outer itera-
tions. In the first panel, PXM diverges and produces NAN values,
which is why the plot is incomplete.
Convergence against backprops. We plot the objective value in
Equation 8.15 (after normalization of x) compared to the number of
gradient computations and Hessian-vector products, accounting for
the inner loopof CMW.
Comparison of CMD to PNGD and PGDA. We tested step sizes
varying from 1073 to 107 for the proposed algorithm (CMD), PNGD
with inner loop iteration number set to 10, and PGDA. For each
method, we plot the fastest converging trajectory against the number
of outer iterations. The two step sizes are specified for minimizing
player and maximizing player, respectively. Optimal closed-form
solution is K* = [-0.4913,-1.3599]7.
Robustness of CMD to choice of step size. The two panels show
the iteration trajectory for the coordinates of parameter K. The
two step sizes are specified for minimizing player and maximiz-
ing player, respectively. Optimal closed-form solution is K* =
[-0.4913,-1.3599]7.
The discriminator can always improve. We want the discriminator
confidence to reflect the relative abundance of true and fake data
(left). But by picking out individual data points, the discriminator
can almost always achieve arbitrarily low loss on any finite data set
(right). Even in the limit of infinite data, the slightest misalignment

of the supports of generated and real data can be exploited in a similar

ICR in the quadratic case. When optimizing only y in Equa-
tion (9.3), it diverges rapidly to infinity, for any fixed y. If, how-
ever, we simultaneously optimize x and y with respective step sizes

1y = 0.09 and i, = 0.01, we converge to (0,0).

Xix

. 162

94

9.5

9.6

9.7

9.8

ICR on MNIST. We train a GAN on MNIST until we reach a check-
point where it produces good images. (First image) We fix the gen-
erator and only train the discriminator, observing that it can reach
near-zero loss. When instead training generator and discriminator
jointly, the loss stays stable. (Second image) When trained indi-
vidually, the discriminator moves significantly slower slower when
trained jointly with the generator, as measured by its output on a set
of thousand reference images.
Discriminator learning and image quality. By prematurely stop-
ping the training process, we obtain generators of different image
quality on CIFAR10 (higher inception score (IS) reflects better im-
age quality). We then train a new discriminator against this fixed
generator and measure how quickly it increases its classification per-
formance. We use a model trained on the 10-class classification task
as a starting point for the discriminator to prevent the initial phase of
training from polluting the measurements. While all discriminators
achieve near-perfect accuracy eventually, the rate of improvement is
inversely correlated to the inception score of the generator.
ICR depends on speed of learning. When changing the learn-
ing rates to (ny,ny) = (0.03,0.03) (top) or (ny,n,) = (0.01,0.09)
(bottom), SimGD diverges. L L oo
Approximate projection via adversarial training. On the left col-
umn, the discriminator picks up on errors in the x- and y-direction
equally quickly. Therefore, the generator tries to satisfy the criteria
alternatingly, leading to a cyclic pattern. In the right column, the dis-
criminator picks up on errors in the x-direction much more quickly.
This causes the generator to try to stay accurate in the x-direction. .
ICR and opponent-awareness. When training the generator for just
a few iterations against the over-trained discriminator of Figure 9.4,
the discriminator loss increases rapidly. When attempting to over-
train with CGD instead of Adam, the resulting discriminator is even
more robust. Similarly, CGD is able to significantly increase the
duration for which the generator stays accurate in the (more important)

x-direction in Figure 9.7. oo oo L.

XX

. 181

184

9.9

.10

A1

A2

13

14

15

16
17
18

XXi

Experiments on CIFAR10. We plot the inception score (IS) against
the number of iterations (first panel) and gradient or Hessian-vector
product computation (second panel). In the third panel we show final
samples of WGAN trained with ACGD and without explicit regular-
ization. In panel four, we compare measure image quality using the
Frechet-inception-distance (FID, smaller is better). The results are
consistent with those obtained using IS. In panel five, we plot the dif-
ference between inception scores between ACGD and Adam (positive
values correspond to a larger score for ACGD) over different itera-
tions and models. The only cases where we observe non-convergence
of ACGD are OGAN without regularization or with weight decay of
weight 0.0001, as shown in the last panel. The inception score is,
however, still higher than for the same model trained with Adam.
When using Adam on the original saturating GAN loss (which we
used with ACGD), training breaks down completely. 186
Linear memory complexity. Prediction and uncertainty quantifica-
tion using KL-minimization with and without aggregation in O(N +
pz‘i) memory complexity. 221
Algorithms for including prediction points. 226
Aggregation. Algorithm for constructing the aggregated sparsity
pattern from the reverse maximin ordering < and length-scales / . . . 231
Comparison of convergence speed. The decay of the residual as a
function of the number of forward iterations (d = 20,40, 60, from
top to bottom). Note that missing combinations of algorithms and
stepsizes correspond to divergent experiments. While the exact
behavior of the different methods is subject to some stochasticity,
results as above were typical during our experiments. 239
Convergence speed in the stochastic case. The decay of the residual
as a function of the number of forward iterations in the stochastic case
with d = 20 and batch sizes of 100, 1000, 10000, from top to bottom). 241
CMW and PX applied to f(x,y) = a(x —0.1)(y = 0.1) = —g(x,y)
(a € {0.1,0.3,0.9,2.7}). For small @, PX converges faster, but for

large a, itdiverges. L e 249
Convergence of CMD on the prisoner’s dilemma. 251
Convergence of extramirror on the prisoner’s dilemma. 252

Convergence of PCGD on the prisoner’s dilemma. 253

19
20

21

22

XXii
Convergence of projected extragradient on the prisoner’s dilemma.254
A larger reproduction of Figure 2 of the main paper. The first pair
is based on an image by Matt Artz, the second pair on an image by
Yanny Mishchuk, and the third pair on an image by Tim Mossholder.
All images were obtained from https://unsplash.com/. 255
Test set for Figure 4 of the main paper. We show a set of fake images
on the left, and real images on theright. 255
Tensorflow inception scores for important runs, plotted against the
number of gradient calls (left) and the number of generator updates
(right). o e e e e e e 257

https://unsplash.com/

Number
5.1
5.2
53
54
55

5.6

5.7

5.8
59

Xxiii

LIST OF TABLES

Page
GV, with v =0.5,1=0.2,p=3.0,andd =2.., 95
Gy, with v =0.5,1=0.2,p=3.0,andd =3.., 96
G withv =1.0,1=02,N=10%andd =2. 96
Gy with v =0.5,1=02, N =10%andd =3. 96
We tabulate the approximation rank and error for p = 5.0and N = 10°
points uniformly distributed in [0, 1]>. The covariance function is
G%‘fm for v ranging around v = 0.5 and v = 1.5. Even though
the intermediate values of v correspond to a fractional order elliptic
PDE, the behavior of the approximation stays the same. 96
Gf;f‘;hy for (I, e, B) = (0.4,0.5,0.025) (first table) and (I, @, B) =
(0.2,1.0,0.20) (second table), for N =10°andd =2. 97
GE”[latém forv=0.5,1=0.2,and p = 3.0 with N = 10° points chosen
asinFigure 5.8. oL oL o 97
Gy’[ftém forv=0.5,1=0.5,and N = 10° points as in Figure 5.9. . . . 98
Averaging vs Subsampling. For homogeneous Poisson problems
and small values of p, averaging can improve the preconditioning
effect compared to subsampling. 100
Generator architecture for MNIST experiments. 248
Discriminator architecture for MNIST experiments. 249
Settings for all the experiments that occurred in Figure 7 of the main
PAPCT. v i i e 256
Generator architecture for CIFAR10 experiments 257

Discriminator architecture for CIFAR10 experiments 257

Chapter 1

INTRODUCTION

1.1 Numerical algorithms as games and estimators

This thesis studies the following question:

Can we design better numerical algorithms by interpreting computation in terms of

statistical inference and game theory?

At face value, this question is somewhat ambiguous: If we apply an algorithm for
solving linear systems to a linear system arising from a partial differential equation,
what significance does it have that this algorithm was designed “by interpreting com-
putation in terms of statistical inference”? Is it then nothing more than a decoration
for results that, while useful, are “just linear algebra”? This justification would be
easier if our method returns random results, such as in randomized linear algebra
[165], or if it returns a Bayesian posterior of possible solutions, as in probabilistic
numerics [| 16] thus solving a different problem than classical methods. But for the
work presented in this thesis, this is not the case, and the resulting algorithms could

just as well be characterized in terms of linear algebra and optimization.

But just like game theory and statistical inference, linear algebra and optimization
can be seen as mere decoration of operations on a long array of real numbers or,
even more reductionist, on a high-dimensional Boolean hypercube. Indeed, the
fascination of computational mathematics is that it expresses the vast landscape of
mathematics in terms of a small common set of seemingly innocuous operations.
Some mathematical concepts in computation, such as asymptotics, oracle models,
and real arithmetic, replace the empirical phenomenon of computation with an
idealized, more structured one. However, most of them merely re-express the
original problem and thus help us to navigate the vast space of possible algorithms

in search of solutions to practical problems.

This thesis develops powerful new algorithms based on statistical and game-theoretical
perspectives of classical methods in computational mathematics. It thus makes the
case to include them in the repertoire of viewpoints that we use to design and reason
about algorithms, alongside more traditional ones such as those originating from

physics, optimization, and linear algebra.

1.2 Numerical approximation, fast algorithms, and statistical inference
The first part of this thesis, comprising Chapters 3 through 6, is concerned with
the interplay of statistical inference, numerical approximation, and fast solvers for

partial differential equations.

1.2.1 Learners and Solvers

A fundamental difficulty in computational mathematics is that many if not most
mathematical objects are infinite, whereas computation is necessarily finite. A great
deal of work is therefore devoted to studying the relationship of the finite operations
performed by a computer to the continuous objects they are meant to represent. This
problem often occurs in different layers as we are relating arrays of binary states
to real numbers, arrays of real-valued coefficients to continuous functions, and
evaluations of these functions to their integrals. The fields of numerical stability,
approximation theory, and numerical quadrature study the accuracy of these finite-
dimensional approximations of continuous objects. Their mostly deterministic
nature is surprising since probabilistic modeling and statistical inference are the
methods of choice for dealing with uncertain quantities in virtually every other

scientific domain.

Indeed, despite being less well-known, the idea of casting computational math-
ematics as statistical inference predates the development of semiconductor-based
computers. As early as 1896, in his course on probability, Henri Poincaré proposes
to view the numerical integration of a function as a statistical estimation prob-
lem where we try to estimate the integral based on data gathered from function
evaluations (see [197] for a reprint and [69, Section 2] for a summary in English).
Around fifty years later, in the early days of automated computation, [244] suggested
the probabilistic modeling of the accumulation of round-off errors during matrix
inversion. Following Poincaré’s lead, the link between numerical approximation
and statistical inference was further explored by Palasti and Renyi [193], Sul’din
[231,], Sard [213], Kimeldorf and Wahba [138], and Larkin [146].

More recently, these ideas were revisited in the context of information-based com-
plexity [235], Bayesian numerical approximation [69], and Bayesian numerical
homogenization [187]. The emerging field of probabilistic numerics [! 16] advo-
cates for the development of probabilistic analogs of existing numerical methods in
order to better quantify the uncertainty of results of numerical computation. Mean-

while, Bayesian optimization [216] has been successfully applied to a wide range

3

of applications. Even when dealing with finite-dimensional problems, such as in
the case of numerical linear algebra, the perspective of statistical inference can im-
prove the computational complexity of a task by computing with partial information.
[188—190] adopt a decision-theoretic perspective on multigrid methods to develop

new classes of fast solvers and operator adapted wavelets, named gamblets.

A related but different line of work replaces finite-dimensional function spaces
commonly used in the numerical analysis of partial differential with model classes
hailing from statistical inference and machine learning, generalizing classical mesh-
free discretizations such as radial basis function [80, ,] and boundary element
methods [214]. The authors of [52] interpret meshless collocation methods as per-
forming Bayesian inference with a prior induced by the interpolation method of
choice. Using MCMC sampling techniques, they obtain a general procedure for
computing the posterior distributions of nonlinear forward and inverse problems
involving partial differential equations. By using a Gauss-Newton method, [47] cast
the solution of nonlinear partial differential equations as a series of Gaussian process
regression problems, solving the nonlinear interpolation problem to high accuracy
without requiring the use of sampling techniques. Motivated by the successes of
deep learning in other domains, physics-informed neural networks proposed by
[200] include the residual of a PDE at a set of points into the loss function of a neu-
ral network. The resulting neural network-based collocation method can be used to
learn input-output maps of parametric or inverse problems involving PDEs without
having access to a dedicated forward operator. It thus forms the bridge to another
class of methods that use neural networks to directly learn the solution operators of
various PDE-related problems based on training data provided by classical solvers
[137,]. In order to improve the computational efficiency and generalization
performance, a large number of architectures inspired by existing fast solvers or

physical intuition have been proposed [77-79, 152].

1.2.2 Contribution in the first part of this thesis
The first part of this thesis is based on probabilistic interpretations of the well-known
Cholesky factorization that uses Gaussian elimination to express a positive definite

matrix © as the square LLT of a lower triangular matrix L.

Cholesky factorization can be formulated as recursive application of the identity

Id 0
010! 1d

01,1 O
021 Oyp

O 0
0 ©7-0,1(01))'0,

Id (01,70,
0 Id

(1.1)

to the Schur complement ©,, — 07 ; (@1,1)_1 ©; 1 obtained at the previous step. In
particular, the k-th column of the final Cholesky factor L is a multiple of the first

column of the Schur complement when setting ©11 = Oy.(k—1),1:(k-1). If O is the

covariance matrix of the Gaussian vector X = (X1, X2) ~ N(0, ©®), the well-known
identities

E[X: | X1 =a] =02,(01,) 'a, (1.2)

Cov[Xy | Xi] =057 — 0,,1(011) 'O, (1.3)

imply that Cholesky factorization of ® is equivalent to the iterative conditioning of
the Gaussian vector X. In particular, conditional (near-)independence of X implies

(near-)sparsity of the Cholesky factors of ®!

In many Gaussian process models, ©;; = G (xi,x j) is obtained from evaluations of
a covariance function in pairs of points {x;};<;<y C R?. The screening effect [228]
predicts that the conditional correlation length of a smooth Gaussian process after

conditioning on its value in a few locations is inversely proportional to their density.

We can maximize the conditional independence by choosing conditioning points that
are spread out as far as possible and use the screening effect to predict the sparsity
set, leading to the following near-linear complexity algorithm for the approximate

Cholesky factorization of ® (See Figure 1.2).

1. Reorder the rows and columns of ® such that the associated points x; ... xg
are well spread out for all £k < N.

2. Select a sparsity set according to the predictions of the screening effect.

3. Apply Gaussian elimination restricted to entries of the sparsity set.

As we discuss in Chapter 2, Green’s functions of elliptic partial differential equations
are a natural choice of covariance functions for smooth Gaussian processes. The
screening effect exhibited by these processes is dual to the localization of coarse-
grained partial differential operators. In Chapter 4, we use and extend results from
[163,], to obtain the first rigorous proof of an exponential screening effect for

finitely smooth Gaussian processes.

Figure 1.1: The screening effect. The length of the of the

point in red decreases with the density of

O,

Figure 1.2: The maximin ordering and sparsity pattern.We successively select
the point x; that has maximal distance £; from the

(left). We add entries corresponding to interactions of x; with points within radius
plito (middle). When computing Cholesky factors of ®, we skip
updates — — 0,,0,;/0;; that use entries outside of 5 (right).

We use these results to prove rigorous accuracy-vs-complexity estimates of algo-
rithms as presented in Figure 1.2, as well as a sparse Cholesky factorization of
the precision matrix ®~'. Thus we obtain algorithms that provably compute e
accurate Cholesky factors of Green’s matrices of elliptic PDEs and their inverses
in complexity O (N log? (N)log*? (N/ e)) and O (N log?¢ (N/ e)), improving the

state-of-the-art for fast solvers for general elliptic PDE.

6

We next show that for a given sparsity pattern S, we can compute the optimal
(in Kullback-Leibler divergence) S-sparse approximate Cholesky factor of ®! in
closed form, from entries of ®.

PN 0! €]
L= argmin DKL(N(O, ®) || N (o, (LLT)-I)) & Ly;=—i
L that are S-sparse ,eI—@;ils[el

(1.4)

Recovering “Vecchia approximation” [24 1] and factorized sparse approximate in-
verses [141], this algorithm is highly stable, almost embarassingly parallel, and
further improves the complexity of inverting ® to O (N log?® (N/ e)), matching that
of inverting ®~!. It furthermore provides us with a way to extend screening-based
methods to independent sums of Gaussian processes, thus resolving a longstanding

and pressing computational problem in spatial statistics.

Finally, we provide efficient implementation to show that our methods are also fast in
practice to the point of being competitive with established libraries based on existing
methods. For instance, we show that a preconditioner for the solution of elliptic
PDEs based on the above work outperforms the established algebraic multigrid
implementations of Trilinos and AMGCL on challenging problems arising in two-

and three-dimensional linearized elasticity (see Figure 1.3).

1.3 Game theory as a paradigm for algorithm design
The second part of this thesis, comprising Chapters 7 through 9, is concerned with

the use of game theory as a guiding principle for the design of new algorithms

1.3.1 From optimization to competitive optimization

Optimization is a powerful paradigm for the design of algorithms. In order to solve
a novel problem, we cast it as the minimization of an appropriate cost function
and use one of the many existing optimization algorithms. In many branches
of continuous optimization, the workhorses of this approach are local iterative
methods such as gradient or Newton descent that minimize a series of regularized
local approximations. This can be interpreted as an agent that, based on local

information, tries to greedily decrease a loss that encodes the original problem.

Instead of a single agent, Competitive optimization features a multitude of agents
trying to minimize their respective loss, each of which may depend on the actions of

all agents.! The expressiveness of competitive optimization begs the question, how

'Some of the agents may also collaborate, but this thesis focuses on competitive games.

103

102

10!

104
103
102

10!

regular mesh irregular mesh
———— = -
- = pe s ¥ S = 7
- ZA = 4y " 9 | % > | Y ' " J
. N =S o &
S 1 7 < TS S 3
2 z % d » \ 5 v \ B . ¥ ‘ \‘ <
a'rr aa - 4 [AT \‘ \
il % < Fhe % A
x-axis shows contrast (N=2 x 10, g=1)
time (s)] [time (s)] T] [time (s)' I] F time (s)T El
// 1 10 F E k 1
B 1108 | E B 110% //;
g EI 1 102 1]
r 1 o1) F 1 10?2 | / E
| | 107 E - h = E
= ! | E £ ! ! i 10! £l ! ! E *‘\"/T ! B
100 10> 10* 100 102 10 10 10> 10* 100 102 10*
x-axis shows size (contrast=10%, g=1)
j\time (S) T T T 1117 ‘j FT time) T T T T 1717 ‘ | 4 \time (s‘) T T T 1117 ‘ 7\ time (s) T T T 1117 ‘ E
£ E r 1 10% E F R
i 10t e ER- 1 | |
B 1 10% ¢ 4103 | .
L 110 £ s & g B E
g 1 10° E | i
L 1 q2 b _ B 1 02 L |
B E! 10 E 1 10! E E 107 ¢ E
Lol Lol il [Erl Lol g = Ll g
10° 106 10 106 10° 106 10° 106
—— AMGCL

Figure 1.3: Comparison against AMG. We compare the solver described in Sec-

tion

against state of the art implementations of algebraic multigrid methods on

a problem arising in linear elasticity. The shaded region illustrates the performance
of our method over different parameter choices.

to cast a given computational problem into a competitive game and for which types

of problems competitive optimization offers benefits over classical optimization. A

general answer to these questions is presently out of reach. Instead we present four

important applications of competitive optimization.

1.

Convex duality enables us to write a given convex lower-semicontinuous
function f(x) as f(x) = max,(x,y)— f*(y), where f* is the so-called convex
dual of f. If f* is better behaved than f it can be beneficial to cast the
minimization of f as the competitive game min, max,(x,y) — f*(y). For
instance, the convex function fy with f(0) = 0 and fy(x) = oo for x # 0,
has the convex dual f; = 0 leading to primal-dual methods for equality

constrained optimization.

8

2. In optimization and statistics, we might aim to be robust to a perturbation
w applied to the solution, leading to problem formulations of the form
min, max,, f(x + w) [37,]. Similar formulations are employed by ad-
versarial training approaches that aim to harden neural network classifiers

agains adversarial examples [161].

3. A number of applications of reinforcement learning are competitive games

[219,], making it paradigm for training policies for these tasks, as well.

4. Recently, multiple self-supervision learning techniques have been imple-
mented as games [157, , , ,]. In particular, generative ad-
versarial networks (GANs) [96] have revolutionized the field of generative
modeling in many domains by introducing a competitive game between a
generator network that produces new data, and a discriminator network that

tries to tell apart real and artificial data.

1.3.2 Contribution in the second part of this thesis

In the second part of this thesis, which comprises Chapters 7 through 9, we propose
a natural generalization of gradient descent to constrained and competitive opti-
mization involving two agents. We furthermore provide a novel perspective on the
mechanisms that allow GANSs to drastically outperform conventional methods for

automatic image generation.

Variants of gradient descent (GD) serve as workhorses for numerous applications,
including virtually all of deep learning. A seemingly natural generalization of
GD to competitive optimization is simultaneous gradient descent (SimGD), where
each agent performs a step according to the present gradient of its loss function.
However, even on a simple bilinear minimax game min, max, xy, this algorithm
features oscillatory and divergent behavior as opposed to converging to the Nash
equilibrium in (0, 0). This phenomenon, illustrated in Figure 1.4, is the analogue

’»

of “Rock! Paper! Scissors! Rock! Paper! Scissors! Rock! Paper!...” in the

eponymous hand game.

This leads us to question whether SimGD is really the natural generalization of
GD to multiple agents and to search for alternatives. Our point of departure is the
observation that gradient descent with stepsize n applied to the function f : R" —
R can be written as

) 1
Xper = argmin(x” —x) Vi f (ve) + 5[l - Xl (1.5)
XERM n

Figure 1.4: The cycling problem. The cycling problem of SimGD arises, because
each chooses the optimal action according the /ast action of the other agent.

This can be seen as a (single) player solving a local linear approximation of the
(minimization) game, subject to a quadratic penalty that expresses her limited con-
fidence in the global accuracy of the model. The natural generalization of this idea
to the competitive optimization problem involving two agents x and y minimizing
f and g is to have both players solve a local approximation of the true game, each
subject to a quadratic penalty that expresses their limited confidence in the accuracy

of the local approximation.

If we choose a linear approximation of the loss function, we recover SimGD. Indeed,
the cycling behavior of SimGD can be understood as arising from the fact that the

resulting local game does not incorporate any interaction between the two agents.

An equally valid generalization of the linear approximation to the setting of two
agents is to use a bilinear approximation. The bilinear approximation captures some
interaction between the two players, hence we argue that the natural generalization
of gradient descent to competitive optimization is not SimGD, but rather the update
rule (Xg+1, Yi+1) = (Xk, yi) + (x,y), where (x, y) is a Nash equilibrium of the game
min x'V, f + xTD)%yfy + yTVyf + %xTx

Rm
e X (1.6)
T T2 T T
min y Vyg+y Djgx+x ng+%y ¥

10

Figure 1.5: What I think that they think that I think... The partial sums of
a Neumann-series representation of Equation (1.7) represent different orders of
opponent-awareness, recovering the Nash-equilibrium in the limit.

that has the closed form solution

-

By using Ax and Ay as update rule, we obtain CGD. We can approximate the matrix

Id D3 f

-1
V. f

. 1.

nDjg 1d () 4

Vg

inverse in this update rule with a Neumann series to reveal another game-theoretic
interpretation. Each partial sum of the Neumann series represents another level of
opponent awareness, letting agents choose the optimal action if their opponent stays
still, the optimal action if their opponent thinks that they stay still, the optimal ...

until the Nash equilibrium is recovered in the limit.

In Chapter 8, we extend CGD to a large class of constrained optimization problems
by using the geometric information provided by a Bregman divergence, obtaining
competitive mirror descent. Where a naive implementation would lose the com-
putational efficiency of CGD, we propose to play the local game in Equation (1.6)
on the tangent space of the manifold structure induced by the Bregman divergence.
We then perform the update according to its dual exponential map that describes
an alternative notion of a straight path that incorporates the global geometry of the
constraint set. The resulting competitive mirror descent (CMD) separates the local
linear computation of the Nash equilibrium from the global nonlinear update, thus

preserving the computational efficiency of CGD.

In Chapter 9, we study the mechanisms behind the impressive performance of GANS.
We begin by casting doubt on the interpretation of GANs as trying to minimize a
divergence measure arising in the limit of a “perfect” discriminator. To this end, we
point out the GAN-dilemma that divides GAN formulations into two classes: those
that rely on a notion of a predefined distance between data points and those that do

not. In the former case, the discriminator can always become arbitrarily accurate,

11

10
QO initialization
© primal geometry
08t
o| @ dual geometry

(o]

"V N

2
2

0.0 02 04 ~ 06 08 10

e Lo

Figure 1.6: Dual geometry. (left:) The dual notion of straight line induced by the
Shannon entropy guarantees feasible iterates on R}. (right:) ,

, tangent vector x € 7, M, and the path described by the exponential
map {q : q = Exp,(1x),fort € [0, l]}.

~ Generator density
(O Points of training data
Discriminator output

e
S L:H:%:H;\ \

Figure 1.7: The discriminator can always improve. We want the discriminator
confidence to reflect the relative abundance of true and fake data (left). But by
picking out individual data points, the discriminator can almost always achieve
arbitrarily low loss on any finite data set (right). Even in the limit of infinite data,
the slightest misalignment of the supports of generated and real data can be exploited
in a similar way.

/-\\

rendering the divergence minimization point of view meaningless (See Figure 1.7).
In the second case, the results are strongly determined by the choice of distance
function. Most present methods implicitly use the pixel-wise mean-square distance

on images, which is a ferrible notion of image similarity (see Figure |.8).

We attempt to resolve the GAN-dilemma by arguing that GAN performance arises
from the implicit competitive regularization (ICR) due to the dynamics of simulta-

neous training. We support our claims with a range of experiments on toy problems

Figure 1.8: The Euclidean distance is not perceptual. We would like to challenge
the reader to order the above three pairs of images according to the Euclidean
distance of their representation as vectors of pixel-intensities.”

and real GANs. In particular, we observe that a CGD-trained GAN achieves higher
image quality on CIFAR10 (measure by inception score and Frechet inception dis-
tance) than explicitly regularized GANs trained with Adam. Since CGD improves
the convergence properties around points that are stabilized by ICR, we interpret

this as additional evidence that ICR is instrumental for GAN performance.

2The pairs of images are ordered from left to right and in increasing order of distance. The first
pair is identical, while the third pair differs by a tiny warping.

13
Chapter 2

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS AND
SMOQOTH GAUSSIAN PROCESSES

2.1 Linear Elliptic Partial Differential Equations

2.1.1 Local laws for global phenomena

Our quantitative understanding of the physical world leans heavily on the observation
that even the most complicated macroscopic phenomena can be characterized by
simple microscopic laws. The macroscopic evolution of the temperature distribution
jet engine might be complicated, yet the change of temperature is proportional to
the difference between its present temperature and the mean temperature in its
neighborhood. Similarly, the colonization of a petri dish by bacteria might seem
hard to describe globally, but microscopically the growth rate at each point can be

related to the concentration of nutrients.

The expression of complicated global phenomena in terms of simpler local laws
is not restricted to physical sciences, either. While finding the dist (P, Q) between
two points P and Q involves a global optimization problem, it is easy to derive a
relation between dist(P, Q) and dist(P, Q) for any point P neighboring P. Similarly,
properties of a random walk starting in P can be expressed in terms of random walks

starting in points neighboring P.

The discovery of simple local laws governing complicated global phenomena is
a key component in most quantitative fields of science. The theory of partial
differential equations provides a general framework to formalize these laws and

study the properties of the objects they describe.

2.1.2 Partial differential equations (PDEs)

Instead of looking for laws defined in terms of small “neighborhoods” of finite size,
one can pass to “infinitely small neighborhoods” and obtain laws given in terms of
derivatives. For instance, the difference between the value u(x) of a function in x
and its mean in a small ball of radius /4 around x is proportional to the sum of its

second derivatives:
Jo, () dy

f 0 —u(x) ~ Z 0;0;u(x) = Au(x). 2.1)
By (x) i

14

The observation that the rate of change in the temperature in a point is proportional
to the difference of its present temperature, and the mean temperature in nearby

points then leads us to the heat or diffusion equation
Ou(x,t) = Au(x,1). 2.2)

More generally, a functional equation given by point-wise equalities involving any
combination of partial derivatives of a function is called a partial differential equation
(PDE). In light of the vast range of phenomena described by PDE:s, it is not surprising
that a “general theory of PDEs” is not available. Instead, a variety of classifications

exist that identify families of PDEs for which systematic theories can be developed.

2.1.3 The Poisson problem
This thesis is concerned with the class of linear elliptic partial differential equations

that has the Poisson equation as its most well-known representative

- Au(x) = f(x). (2.3)

Following Equation 2.1, this means that we are looking for a function that, at each
point x, differs from its local average by f(x). This can be viewed as an equilibration
phenomenon where a physical quantity tends to be distributed homogeneously in
space, bar the effect of external perturbations or forces acting on the system. Thus,

the right-hand side of Equation 2.3 is often called the forcing term.

For instance, Equation governs the electrostatic potential # in a medium in a
charge density given by f. In the absence of electric charges, the electric potential
at each point is equal to its local average in a small neighborhood. In the presence

of a positive (negative) charge, it is be larger (smaller) than its local average.

In the case of the incompressible Navier-Stokes equations, if an outside force f acts

on the fluid with velocity function u, the pressure p is given by the Poisson equation
= Ap(x) = =div(f(x)) + [Du(x)] : [Du(x)], (2.4)

where “ : 7 denotes the scalar product between the Jacobian of the velocity field
Du(x) and its transpose. Thus, the difference between the pressure at a given point
in the fluid and the average in its local neighborhood is equal to the net inbound
forces exerted by f and the movement of the surrounding fluid. In the absence of

net inbound or outbound forces, the pressure equilibrates to equal its local average.

15

The Poisson problem is also intimately related to the heat equation

ou
—=A 2.5
5y - A (2.5)
and the wave equation
Ou_ o (2.6)
—F = AlU. .
or?

Thus, the updates of implicit time-stepping schemes for these equations and their

steady-state solutions can be obtained as the solution of a Poisson problem.

2.1.4 The Dirichlet energy

For a domain €, we define the Dirichlet energy associated to the forcing term f as

D(u.f) = [FIDUWIE - F@uCo dx. @)

Q

By formally computing the derivative with respect to u in the direction given by v

that is equal to zero on 9€Q2 and using the divergence theorem, we obtain

wm”’ P (2.8)

\%

:/(Du(x),Dv(x)> — f(x)v(x)dx (2.9)
Q

:/ (=Au(x) — f(x)) v(x) dx. (2.10)

Thus, for a function g specifying values on the boundary dQ of Q, critical points of
the minimization problem

i 2.11
u:uigi)g BQD(u’f) ()

are characterized as solutions of the Poisson problem in Equation 2.3, with boundary
values given by g. This provides another perspective on the Poisson problem: In the
absence of forcing (f = 0), it amounts to finding functions with prescribed boundary
values that are varying as slowly as possible in space. Otherwise, the Poisson
problem characterizes an optimal trade-off between the contradictory objectives of

spatial regularity, a large L? inner product with £, and boundary values equal to g.

16
2.1.5 General linear elliptic PDEs

In many ways, the Poisson problem introduced above is the archetypical elliptic
partial differential equation. However, the results in this thesis hold for a much
larger class of elliptic partial differential equations, which we will now introduce.
We consider a connected open subset Q € R¢ with Lipschitz boundary and denote by
C (Q) the space of infinitely smooth functions with support compactly contained

in Q. For an integer s, and u € C° (Q), we define the Sobolev norm
I gy = OZ 1D° 117 g (2.12)
<r<s

where D"u(x) is the order r tensor containing the derivatives of order r of u in
x. We denote as H the closure of C° (). For u € C° (), we define the dual

Sobolev norm || - [|g-s(q) as

u(x)v(x)dx
lullgz-s() == sup /Q()—()

(2.13)
owvers @ VIl @

and the dual Sobolev space H™* () as closure of C;° (£2) with respect to || - [|g-s(q)-
Foru € H™ (Q) and v € Hjj (Q) that are obtained as limits of ug, vy C Cg° (), we
define

[u,v] = klim [ur, vi] = klim /uk(x)vk(x) dx. (2.14)

For the purposes of this thesis, we define an elliptic partial differential operator as

follows.

Definition 1 (Linear elliptic partial differential operator (elliptic operator)). For
a domain Q < RY with Liptschitz and a positive integer s, we call an operator
L : Hj(Q) — H™° (Q) a linear elliptic partial differential operator if it is linear,
bounded, invertible, local in the sense that for u,v € C° (L)

VYu,v € C° (Q) : suppu Nsuppv =0 = [Lu,v] =0, (2.15)
symmetric in the sense that
VYu,v e C°(Q) : [Lu,v] = [Lv,u], (2.16)
and positive in the sense that

Yu € Hy (Q) := [Lu,u] > 0. (2.17)

17

The linear elliptic PDE associated to the elliptic operator £ with forcing term or
right hand side f € H™* (Q) is then given by

Lu=f, (2.18)

with the Poisson problem being the special case of £ = —A. We frequently refer to

the inverse of an elliptic operator £ as the Green’s operator denoted by G = L.

For a given elliptic operator, we write ||u||i := [Lu, u] for its associated operator
norm on Hg (€2) and ||u||i_1 .= [u, £~ 'u] for its associated dual operator norm on
H™ (Q). Where this does not lead to ambiguities, we instead write || - || and || - ||«

for the operator norm and its dual.

Generalizing the Dirichlet energy introduced in the last section, we obtain a general
variational principle for elliptic PDEs, given by
1
Lu=f o u=argmin|v]; - [fu]. (2.19)
veH3 (@) 2
2.1.6 Discretization and solution of elliptic PDEs
Elliptic operators, acting on infinite-dimensional function spaces, are infinite-
dimensional objects. In order to solve the associated equations numerically, we

have to find finite-dimensional representations that we can manipulate using numer-

ical linear algebra.
The popular Galerkin approach to discretization is based on the observation that
Lu=foeVve H (Q): [Lu,v] =[f,v]. (2.20)

This problem can be approximated by choosing a finite-dimensional subspace VV =

span {vy,...vy} C Hj (Q) and searching for u™¥ c V¥ such that
[LuN,v] =[f,v],¥v e ¥V, (2.21)
This problem can be reexpressed as
ulV = Z (A~'b)evi, (2.22)
1<k<N
where b; = [f,v;] and A;; = [Lv;,v;] is called the stiffness matrix of L. One
can show that if limy_,. VN = H (Q), u" converges to the true solution of the
elliptic PDE. If instead of the differential operator £ we have access to the Green’s
operator G = L~!, we similarly obtain a Galerkin discretization of G by using

a finite dimensional subspace WV = span{wy,...wy} € H™*(Q) to form the

Green’s matrix ©;; := [w;, Gw;].

18

2.2 Smooth Gaussian processes

2.2.1 Gaussian vectors

A Gaussian random vector X ~ N(u,®) with mean u € RY and ® € RVV
symmetric positive definite is a random element of R" that is distributed according

to the probability density (with respect to the Lebesgue measure)

1
Pl-3(X-w 07 (X-w). (223

|
X) =
PN ue)(X) 2N det (@)

Gaussian vectors are an immensely popular modeling tool for multivariate data.
They can be motivated by a variety of ways including rotational invariance (with
respect to the inner product induced by ®~!) [132, Chapter 13], the central limit
theorem [132, Chapter 5], and even game theory [103,]. Beyond these theo-
retical considerations, they have the computational benefit that most probabilistic
operations on Gaussian vectors can be characterized in terms of linear algebraic

operations on ® and u.

1. The mean and covariance of X ~ N (u, ®) are given by u and ®. We thus
refer to © as the covariance matrix of N (u, ©).

2. The marginal log-likelihood of the Gaussian process model given data y is

given as

30070 (- p) - 3 logdet(®) - T log(2m). (224)

3. Writing X = (}}g) € RV1*M2 and blocking u and ® accordingly, the distribu-

tion of X, conditioned on X is given as

X | X1 ~N (#2 +0y (@1,1)_1 (X1 —u1),020 -0 (@)1,1)_1 @2,1) -
(2.25)

4. The conditional correllations of X are encoded in the precision A := O !, in
that

Ajj = (=) Cov [Xi, X; | Xeqipy]

\/TAU \/Var [Xi | X¢{i,j}] Var [Xj | X¢{i,j}]

, (2.26)

where ¢ {i, j} denotes the set {1,... N} \ {i, j}.

19

2.2.2 Gaussian processes

A common setting in Gaussian process statistics is such that we observe data yt; €
RN™ at Ny, training locations in R? and choose a covariance matrix Ot 1r that
explains yty, for instance by maximizing the marginal likelihood 2 of N (0, O 1)
given y1y. If we want to use this data to predict data at a different set of Np; prediction
locations, we need not only Oy 1 but also the training-prediction covariance Oy pr,
(and Op, p; if we want to perform uncertainty quantification). Without observing
data from the prediction locations, there seems to be no way for us to decide which

Ot pr, Opy pr to choose.

In order to define covariances between arbitrary locations, we can model our data
yTr as measurements of an infinite-dimensional Gaussian vector assigning a value

to each point in R. This idea is formalized by the notion of a Gaussian field.

Definition 2. Given a separable Banach space B and its dual B*, let L : B —
B and G = L7 1 B° — B be symmetric and bounded linear operators.
Let furthermore H be a Hilbert space of univariate Gaussian random variables,
equipped with the L? inner product. We call a linear map ¢ : B* — H a Gaussian
field with covariance operator G, precision operators L, and mean u € B, if it is

an affine isometry, meaning that for all ¢ € B* we have

§(9) ~ N(lg. ul. [¢.Gd1). (2.27)

Following the notation for Gaussian vectors, we then write ¢ ~ N(u, G). Here, |-, -]
is the duality product of B* and B. Abusing notation, we write [$, &] = E(P).

For finite-dimensional B, ¢ can be obtained from a Gaussian vector X ~ N (u, G)
as £(¢) = [¢,X]. For infinite-dimensional B, a random element X € B that
realizes the mapping ¢ : 8" — H usually does not exist. Instead, £ can be realized
by a probability measure on a space larger than B, or by a cylinder measure on
B itself (see [190][Chapter 17] for additional details). Either way, & provides us
with a way to assign to any finite collection of measurements {¢;};<;<y € 8" a
joint distribution given by N (([¢;, 1]) <<y »®), where ©;; = [¢;,Go;]. If B
is a subset of the continuous functions on R?, by choosing the {¢;}; <y € B* as
pointwise evaluations in a set of points {x;} ;<. We can obtain covariance matrices
of the joint distributions of arbitrary combinations of data points. Given training
data yTy in a set of training locations, we can use the maximum likelihood criterion
in order to choose a Gaussian field ¢ ~ N(0, G). Once found, the Gaussian field &

allows us to perform inference at arbitrary sets of prediction points.

20
2.2.3 Smooth Gaussian processes and elliptic PDE

Even in the setting of Gaussian vectors, we have somewhat brushed over the question
of how to choose a covariance model. For Gaussian fields, the space of possible
choices is vastly bigger, making it even less obvious how to single out a particular

covariance operator for a given task.

The choice of covariance operator G is a modeling choice whereby we assume
structure in our data that we can later use to perform inference. One of the most
fundamental assumptions on data is smoothness, meaning that the spatial derivatives
of the unknown function u are not too large and therefore u# does not vary too rapidly
as a function from R? to R. Restricting our attention to centered Gaussian processes,
we can formally extend the formula Equation to the Gaussian field setting by
writing

1
2

The log-likelihood of a realization u decreases, as the quadratic form [Lu, u]

PN(0,g) (1) o exp ([Lu, u]) . (2.28)

increases. This suggests defining Gaussian fields by choosing an £ for which
[Lu,u] is a measure of the roughness of the function. The elliptic operators of
Section where chosen as bounded invertible linear operators from Hj (Q) to
H™ (Q). Therefore, their associated quadratic norm is equivalent to the squared

Sobolev norm (see for instance [190, Lemma 2.4])
IIL‘lll‘lllullf,é(Q) < [Lu,u] < IILIIIIMII?,S(Q)- (2.29)

The Sobolev norms, being the sum of the L? norms of the first s derivatives, provide
a natural measure of the roughness of a realization £. This makes elliptic operators
a natural choice for the precision operators of finitely smooth Gaussian fields. They
can either be constructed by discretizing the precision operator using a finite element
basis (see [155,] for examples), based on a closed-form of the Green’s operator G
(the most well-known example being the Matérn family of kernels [167, , D.
We point out that the popular Gaussian kernel is not a Green’s function of an elliptic
PDE, but of a parabolic PDE corresponding to infinite order smoothness or s — oo.
We also note that many finitely smooth Gaussian process models from the literature,
such as fractional order Matérn covariances or the “Cauchy class” of covariance
functions, do not strictly fit into the framework of Section , yet show the same

behavior in practice.

21
2.3 The cubic bottleneck

In Sections 2.1 and 2.2, we have introduced the closely related problems computing
with linear elliptic operators and smooth Gaussian processes. Here and in the
following, we denote as £ : Hjj (Q) — H™* (L) the differential precision operator,
and as G : H™ (Q) — H; (Q) its inverse, the Green’s or covariance operator.
We cannot compute with the infinite operators £ and G on a finite machine and
therefore approximate £ and G by the stiffness or precision matrix A € RV and
the Green’s or covariance matrix ® € RV*V that describe the actions of £ and G on
N-dimensional subspaces of H; (Q2) and H™* (Q).

In most applications, we are interested in performing some of the following opera-

tions

1. Compute f — A~!f to solve an elliptic PDE with right hand side f using a

Galerkin discretization.

2. Compute b — Oq s (@59’“))_1 b to solve an elliptic boundary value prob-
lem with boundary data b.

-1 -1
3. Conlpute Yr — ®Pr,Tr (®Tr,Tr) YTr OF YyTr — — (APr,Pr) APr,TryTr to com-

pute the conditional mean given training data yTy.

4. Compute Op; p; — Op;. 1y (@Tr,Tr)_l O1r.pr OF (Apr,pr)_1 to compute the condi-

tional covariance matrix.

5. Compute the marginal log-likelihood

1 1 N
-5 0-m7 Ol (y-p - 5 logdet(®) — = log(2n), (2.30)
or
1 - 1 N
~3 (y—u) Aly—-p)+ 7 logdet(A) —) log(27), (231

and its derivatives with respect to ® or A, in order to perform model selection

using the likelihood criterion.
6. Sample from the Gaussian process N (i, ®) or N (u, A™1).
The problem in all these applications is that while A and ®~! are (almost) sparse

when using localized basis functions or measurements to discretize £ and O, their

inverses A~! and © are invariably dense. This can be illustrated by plotting the

22

Figure 2.1: An elliptic Green’s function. We plot the graph of the Green’s function
y = [x0, Gy] of anelliptic PDE on the . Most of its values are significantly
larger than zero, leading to a dense matrix ©.

Green’s function (x,y) + [0y, Gd,] for & denoting the Dirac delta function, as

shown in Figure

Performing the above operations using dense linear algebra leads to computational
complexity O (N?) in space and O (N?) in space, making them excessively expensive
for N 2 10° and presenting a major computational bottleneck for the computation

with large amounts of data or high-resolution physical models.

Existing approaches

Given the immense importance of elliptic operators throughout computational math-
ematics, it is not surprising that a vast range of methods has been developed to
facilitate their computational treatment. Each of these methods is based on finding

simple representations of the seemingly complicated solution operators A~! and ©.

Efficient representation of dense covariance matrices

Most approximations of ® present in the literature rely on sparsity, low-rank struc-
ture, their combinations, and multiscale variants. Low-rank techniques such as
the Nystrom approximation [&7, ,] or rank-revealing Cholesky factoriza-
tion [21, 85] seek to approximate ® by low-rank matrices whereas sparsity-based
methods like covariance tapering [38] seek to approximate ® with a sparse ma-
trix by setting entries corresponding to long-range interactions to zero. These two
approximations can also be combined to obtain sparse low-rank approximations
[25, , , ,], which can be interpreted as imposing a particular graph-
ical structure on the Gaussian process. When O is neither sufficiently sparse nor
of sufficiently low rank, these approaches can be implemented in a hierarchical

manner. For low-rank methods, this leads to hierarchical (H- and HH?>-) matrices

23
[112, , |, hierarchical off-diagonal low rank (HODLR) matrices [10, 11],

and hierarchically semiseparable (HSS) matrices [150,] that rely on computing
low-rank approximations of sub-blocks of ® corresponding to far-field interactions
on different scales. The interpolative factorization developed by [! 18] combines
hierarchical low-rank structure with the sparsity obtained from an elimination or-
dering of nested-dissection type. Hierarchical low-rank structures were originally
developed as an algebraic abstraction of the fast multipole method of [100]. In order
to construct hierarchical low-rank approximations from entries of the kernel ma-
trix efficiently, both deterministic and randomized algorithms have been proposed
[28,]. For many popular covariance functions, including Green’s functions
of elliptic PDEs [29], hierarchical matrices allow for (near-)linear-in-N complex-
ity algorithms for the inversion and approximation of ®, at exponential accuracy.
Wavelet-based methods [38, 94], using the separation and truncation of interactions
on different scales, can be seen as a hierarchical application of sparse approximation
approaches. The resulting algorithms have near-linear computational complexity
and rigorous error bounds for asymptotically smooth covariance functions. [82] use
operator-adapted wavelets to compress the expected solution operators of random
elliptic PDEs. In [134], although no rigorous accuracy estimates are provided,
the authors establish the near-linear computational complexity of algorithms re-
sulting from the multiscale generalization of probabilistically motivated sparse and
low-rank approximations [25, , , ,]. Finally, we note that Veccha
approximations [136,] and factorized sparse approximate inverses [33,]
are able to utilize sparsity of the Cholesky factors of A or ®! to compute effi-
cient approximations of ® and A~!. We will encounter these algorithms again in
Chapter

Obtaining approximations of A~! from A

In applications where we are given access to the sparse stiffness or precision matrix

A, we can use slightly different techniques.

Firstly, we can use iterative methods such as conjugate gradient [218] to approxi-
mate the matrix-vector products v — A~! in terms of matrix-vector products with
A. These matrix-vector products can usually be computed in complexity O (N)
providing us with a candidate for a much more efficient algorithm. However, the
sparsity pattern of A will usually be geometric in the sense that it captures inter-

actions of basis functions within a certain distance h. Therefore, in order for the

24

approximation to A~! to account for any interaction between two degrees of freedom
of distance ¢, we need to perform at least 6/h iterations of the conjugate gradient
method. This means that the required number of iterations grows at least with
N4 where d is the spatial dimension. In practice, in particular for higher-order
PDE:s, it can be much higher than that. This problem can be mitigated by the use
of multigrid solvers [4 1, 81, ,] that work on grids of different length scales
simultaneously. In classical multigrid methods, these grids are constructed based
on only geometric information, without accounting for the values of the entries of
A. This approach achieves high performance on spatially homogeneous problems,
but it can perform arbitrarily badly on general PDEs with rough coefficients [20]. In
order to overcome this problem, algebraic multigrid methods [7, 41, 42, ,]
or the operator adapted methods of [121, ,] construct the multiresolution

hierarchy using the entries of A.

The sparsity of A further enables us to apply techniques from sparse linear algebra
such as sparse Cholesky factorization in nested dissection ordering [90-92,].
The computational complexity of these methods is superlinear, but they can be
highly efficient for moderate size. Therefore, some authors [155, -207] in
the spatial statistics literature suggest replacing the kernel matrices obtained from
Matérn covariance functions with the inverses of sparse stiffness matrices obtained

from finite element discretization of the associated PDE.

25
Chapter 3

SPARSE CHOLESKY FACTORS BY SCREENING

3.1 Gaussian elimination and Cholesky factorization

Gaussian elimination might be the oldest method of numerical linear algebra, being
known to Chinese mathematicians for more than two millennia [99]. For a more
modern treatment, we refer the reader to [236]. When applied to symmetric and
positive definite matrices, it is also known as Cholesky factorization and amounts to
representing the input matrix A = LLT as the product of a lower triangular matrix

with its transpose, using Algorithm 1.

Algorithm 1 Cholesky factorization.
RNXN

Input: Positive definite matrix A €
Output: Lower triangular matrix L € RVN

1: fori=1:Ndo

2. Ly« A;/VA;

33 forj=i+1:Ndo

4 fork=i+1:Ndo
5. Axj — Arj — 252
6: end for

7 end for

8: end for

Once the lower triangular factor L is computed, the determinant of A can be obtained
as the squared product of the diagonal entries of L and linear systems in A can be

solved by substitution (Algorithm 2)

Algorithm 2 Solving a linear system by forward and back substitution.

Input: Nonsingular lower triangular matrix L € RN and vector b € RV.
Output: Vector x = (LLT)~' € RV in place of b
{Forward substitution computing L' in place:}

fori=1:Ndo
bi — (bi — Liyi-1 - bl:(i—l)) /Lii
end for

{Backward substitution computing L~ b in place:}
fori=N:-1:1do

bi « (bi — Lis1y:n,i - bisryn) [Lii
end for

SN

26

Furthermore, by multiplying a standard Gaussian vector with either L™ (or L™1),
we can obtain samples of a Gaussian vector with covariance (or precision matrix)
given by A. Finally, by using only the first k columns of L, we can obtain a rank-k

approximation or A.

3.2 Sparse Cholesky factorization

A serious limitation of Cholesky factorization is that its computational cost scales
cubically with the dimension N of the matrix. If A is sparse, as is the case in
many applications, this cost seems excessive. A vast body of work is concerned
with using sparsity properties of A to reduce the computational cost of its Cholesky
factorization. The main difficulty that these methods need to overcome is the
phenomenon of fill-in by which the Cholesky factor L of A can contain considerably

more nonzero entries than the original matrix A.

Fill-in is usually analyzed using graph theory, by defining the undirected sparsity
graph of a symmetric matrix A € RV*V as the undirected graph with N vertices that
has an edge between nodes i and j if and only if A;; # 0. After each iteration of the
outer loop in Line |, the sparsity graph of A is modified by adding an edge between
each pair of neighbors of i that are still to be eliminated.

As illustrated in Figure 3.1, the fill-in produced by the factorization strongly depends
on the elimination ordering: the ordering of the rows and columns of the matrix.
This observation initiated a substantial body of research that uses graph-theoretical
approaches to find fill-in reducing elimination orderings. Popular approaches are ap-
proximate minimal degree [| 2], (reverse) Cuthill-McKee [56], and nested dissection
[20, 156] orderings. In Figure 3.1, we show how these approaches affect the amount
of fill-in when factorizing a finite-difference Laplacian in two dimensions. For a
general sparsity pattern, the cost of the resulting algorithms is hard to characterize,
but in the important special case of lattice graphs in two and three dimensions, it
is well understood. In two dimensions, the factors have O (N log(N)) nonzero en-
tries and can be computed in O (N 3/ 2) time with relatively small constants, making
sparse Cholesky factorization an attractive choice for two-dimensional problems of
moderate size. In three dimensions, the factors have O (N4/ 3) nonzeros and can
be computed in O (N 2) time [63]. The quadratic scaling of the computational cost,
and in particular the superlinear memory requirements, greatly limit the utility of

sparse Cholesky factorization for three-dimensional problems.

%

Fill-in. For a given matrix with nonzero entries denoted in blue, the

Figure 3.1:

r
Fl-?.

27

amount of fill-in (in red) depends strongly of the ordering of the rows and columns
of the matrix (note that we do not plot self-edges of the sparsity graph).

AAG J‘«X.

?Wﬁ

,ﬁ“ii {5 ‘f«g
v(ig'('\‘) 'g

:v$§,zv %
zwygz,,zﬁ
ittt

Random

AL };‘vw‘:
§zv1 ¥ 4 A1 <i<1000
24l] 1001 < 4 < 1500 B .
VV t;
W‘i’ A @ 2001 < i < 2250
RAAE @ 2251 < i < 2500

&
i ’V"‘"?‘%‘? i g

X }sr 7 ; 240 ‘7
g ! g%g”r; 17“"6%253
r'“';, Ty J,x 2
;zg§§* P“gvvv

53‘5 i i

}Vv;VS

v;"’ ¢
z AR
o)

v & 1501 < i < 2000 .

Nonzeros /N = 208.958

bl a1

28

Reverse Cuthill-McKee Nonzeros /N = 34.81

&

A 1<i<1000
1001 < i < 1500

3 %1501 < i < 2000
2001 < i < 2250

S8 @ 2251 < i < 2500

%
258

A

A
AA
AAA

AAAA

Approximate Minimal Degree Nonzeros /N = 14.3652

O TTTIK:
......

A1 <i<1000

[J oot < i <1500
gesses O 1501 < i < 2000
s Q© 2001 < i< 2250
@ 2251 < i< 2500 f

o

_ B oH
> P !1!

2
A AATAAR
AR ‘“‘E

\/

\/

\/

B
Sp

A4 7V v
AC1A ACAAACTAA, \4

SO

AL IAAA A,

AA e
AR AARAAAA AR HHEH N
I 1AAA 1] o
EARRARR

ARCAAARAR A AAAAT . .
AAA AAATIAAATIAAATTTTT N a - 3 - \

Nested Dissection Nonzeros /N = 14.7756

CIAAAAA. AA44 AATATTIATATIACIATIATIAI

£ A1<i<i000 |
1001 < i < 1500 B

%1501 <0< 2000 B

2001 < i < 2250

@ 2251 < i < 2500

AAALL
AAAAO O
AA

) I
OO T O L
i v

050, ign'
n‘ ‘A = Q P s a R N

0o %N

>
>
<
A3

Hooo.

= - 3 a S B R

Figure 3.1: Fill-reducing ordering. We show common reordering heuristics and
their effects on the sparsity of the Cholesky factor of a finite difference Laplacian.

29

3.3 Gaussian elimination and Gaussian conditioning

As described in the last section, the amount of fill-in incurred when computing
the Cholesky factorization of sparse matrices can be studied by analyzing the spar-
sity graph of the matrix. This line of work leads to the development software
libraries such as CHOLMOD [46] that are now widely applied for solving sparse
linear systems in practice. But the graph-theoretic way of thinking about Cholesky
factorization has two important limitations. It is not helpful when computing the
Cholesky factorization of dense matrices, and the resulting algorithms usually have

superlinear running time.
In this section, we present an alternative, probabilistic heuristic for reasoning about
the sparsity of Cholesky factors.

The dense (block-)Cholesky factorization of a matrix ® can be seen as the recursive
application of the matrix identity

011 O
01 O

1d 0
0,,1(01)"" Id

I 0
0 ©2-0,1(011)'0,

Id (0,70,
0 Id

s

where, at each step of the outermost loop, the above identity is applied to the Schur
complement @, — 0, ; (@ 1,1)_] 01, obtained at the previous step. As a result, the
k-th column of the final Cholesky factor L is a multiple of the first column of the

Schur complement when setting ©11 = O1.(x_1),1:(k-1)-

Interpreting the positive definite matrix ® as the covariance matrix of the Gaussian
vector X = (X1, X2) ~ N (0, ©®), the well-known identities

E[X, | X; =a] =0©,1(011) 'a, (3.2)
Cov[Xs | X1] =022 —0,1(011) '@, (3.3)

allow us to relate Equation 3.1 to the conditional expectation and variance of X.

Observation 1. For O positive definite with lower triangular Cholesky factor L and

X ~ N(0,®), we have
Cov | X;, X1 Xq.(i-
L[j _ []| L1:(j 1)] (34)

\/Vaf [X;|X1:-1)]

In particular, the (i, j)-th entry of L is (almost) zero if and only if the X; and X are

(almost) independent, conditional on Xy.(j_1).

This observation follows directly from well-known results, yet we are not aware that

it has made before. Since conditional independence is a core concept of probability

30

0 eliminations 61 eliminations 177 eliminations 961 eliminations

0
-2.5
-5.0
-7.5
-10.0

Figure 3.2: Sparsification by elimination. As we eliminate more columns (left
to right), the Cholesky factor and Schur complement become increasingly sparse
(top row, magnitude on log,,-scale). The bottom row shows the geometric locations
corresponding to the eliminated columns, and how they dissect the graph.

theory, there should be interesting dense matrices with sparse Cholesky factors,

contrary to what the classical view described in Section 3.2 suggests.

A first example of this phenomenon are Gaussian processes with a Markov property.

Definition 3. A random vector X € RN has the Markov property according to
the graph G with vertices given by V.= {1,...N} if for all I,J C V that are not
connected by an edge of G, X; and X are independent, conditional on { X } ey (1u)-

For X ~ N (0, ®), this is equivalent to assuming that the precision matrix A = @~!
has G as its sparsity graph. When computing the Cholesky factorization of the
dense inverse of a sparse matrix, this suggests using an elimination ordering that
recursively divides the sparsity graph into conditionally independent components,
as illustrated in Figure 3.2. As we progress through the factorization, the initially
dense matrix becomes more and more sparse. Instead of fill-in, we observe a novel

fade-out phenomenon!

The elimination ordering in Figure 3.2 is the reverse of a nested dissection-type
ordering (see Figure 3.1 and [90]). This is no coincidence since, as mentioned in

Section 2.2.1, the inverse covariance or precision matrix A = ©~! of a Gaussian

31
vector X is related to its conditional correlation by
Ay (—1)i*) Cov [Xi. X; | Xe(iy]

VAiiAjj \/Var [Xi | Xegiy] Var [X; | Xegi

; (3.5)

where ¢ {i, j} denotes the set {1,... N} \ {i, j}.
Observation 2. For A € RNV positive definite with lower triangular Cholesky
factor L and X ~ N (0, A1), we have
Lij _ (—1) Cov [Xi. X;|X (41
Ljj Var [X;|X e

In particular, the (i, j)-th entry of L is (almost) zero if and only if the X; and X are

(3.6)

(almost) independent, conditional on X j41):n\{i}-

Observation 2 on Cholesky factorization of precision matrices is more well-known
in the statistics community than Observation | and has been used, for instance, in
the context of Vecchia approximation [135]. While sparsity of the j-th column of
the Cholesky factor of ® is determined by conditional independence conditional on
the variables appearing before j in the ordering, the sparsity of A is determined by
the conditional independence, conditional on the variables appearing after j in the
ordering. In elimination orderings for ®, we want the earlier variables to induce as
much conditional independence as possible, while in elimination orderings for A,
we want the later variables to induce as much conditional independence as possible.
Therefore, reversed sparsity inducing elimination orderings for ® tend to be sparsity

inducing elimination orderings for A, and vice versa.

3.4 The screening effect

Observation | together with the Markov property in Definition 3 allows us to compute
exact sparse Cholesky factors of dense matrices with sparse inverses. Unfortunately,
as mentioned in Section 3.2, the sparsity pattern of A = ©®~! only allows for
superlinear time algorithms in most cases. This raises the question whether there
are other mechanisms for conditional (near-)independence that lead to near-linear

complexity algorithms.

Spatial statisticians have long observed that many smooth Gaussian processes are
subject to the “screening effect” [49,], described by [228] as: “The screening
effect is the geostatistical term for the phenomenon of nearby observations tending to

reduce the influence of more distant observations when using kriging (optimal linear

32

prediction) for spatial interpolation.” The intuitive explanation behind the screening
effect is that the values at any given site are most strongly dependent on those at
nearby sites. Thus, after conditioning on values at nearby sites, the information gain
from knowing the values at distant sites is marginal. They are conditionally near-
independent from the value at the point in question. In Figure 3.3, we illustrated the

screening effect in a Gaussian process with Matérn covariance.

As described in Section , many smooth Gaussian processes arise naturally from
(local) elliptic PDEs and therefore naturally satisfy a form of Markov property. In
this case, the maximin ordering can be seen as a relaxation of the nested dissection
approach of Figure that achieves approximate independence with much fewer
conditioning points. However, the Markov property is only based on the nonzero
pattern of the entries of the precision matrix. In contrast, the screening effect
crucially depends on what its nonzero values are. One can construct matrices
that satisfy a Markov property without exhibiting a screening effect. For instance,
precision matrices of the form (A—A7)? often do not admit a screening effect for large
A, even if the precision matrix A does.’ Conversely, important covariance models
such as fractional order Matérn kernels seem to admit a screening effect, even though
they are not associated to a known local precision operator (see Section , in

particular Tables and 5.0).

3.5 The maximin ordering and sparsity pattern
When computing the Cholesky factorization of a covariance matrix ®, Observation
suggests beginning the elimination with degrees of freedom that induce as much

conditional independence as possible.

If © is subject to a screening effect as illustrated in Figure 3.3, this can be done by
ensuring that for any k, the leading k columns correspond to points that are spread
out as far and evenly as possible. This motivates the maximin ordering [?,] that

successively picks points that are furthest from those points picked before.

Definition 4 (Maximin ordering). A maximin ordering of a point set {x;};c; € R?
with starting set C is obtained by picking as k-th point x;, a point that has the
}l<k U C. We call ¢, := dist (xl-k, {xil}1<k U C) the

length-scale of the point x;, in the maximin ordering.

furthest possible distance to {x,-l

IThis is closely related to the difficulty of solving high-frequency Helmholtz equations.

33

. °) e e ° ° . e e
. .
...® . T® . PS .
. P . [] P .
. _0 o ° . .o o °
o °® .o. L4 ° ‘e °o ., °® LY
. L] .
.. . . e e o ° .. . ° ° o ° °
. 00 N . o° °
° . [.
°® o °® o
B . ° ° J .
. b * e r) ‘e) N . c e L4 « []
o O S .. . & . o e o, 0. . o . o
° o ® e o o ® e
o ® Bhe ,° . . e [) [] o. o o
. .
'.o . . '.) .." Oy '. [
. .
[J [] [] []
- . o - ° o
: . . ® O ° o: C e .. .O .o ° o: e .
. [] [] .
® . oo 4 ° [. PR) °
. 0
‘e @ ® . [J . @ . o, o o [J) @

Figure 3.3: The screening effect. We condition a Gaussian process with Matérn
covariance on increasing conditioning scts and plot the conditional correlation of

the point in red as a heat map.

34

] Y

Figure 3.4: Maximin ordering. The first nine elements of the maximin ordering
on a pointset in R?, with the asocciated length scale ¢; visualized as a shaded radius.

Based on our observation in Figure 3.3, we expect the conditional correlations to
decay on a scale ¢, after conditioning on the first k£ points in the maximin ordering.
This suggests to use the maximin sparsity pattern illustrated in Figure 3.5 where we

include only interactions of x;, with points within a distance ~ 4.

Definition 5 (Maximin sparsity pattern). Given a maximin ordering of the point set
{x:}ie; € RY with length scales {€} <<y and a sparsity parameter p € Ry, we
define its sparsity set S C I X1 as S := {(ik,il) s. t. k >l and dist (x;,x;) < pfk}.

The entries outside of the maximin sparsity pattern will be of small magnitude but
not zero. Therefore a trade-off between accuracy and computational cost needs to

be chosen by varying p. As we increasing p, under mild assumptions, the size of the

35

o ® o ® o ..
. ° []
o N LIPS [} . o . [&
N [] R ° e ® ° @ o Py °
° [] ° ° ° o ° : .
[} ‘e N . .
° o []
.. . . . L] L] ..
: [] @ L) : L] ton I -
. ° ’ .. °
L] N .
« @ .
4 . °. O - o
e @O ° o © [] ° . b H
ce N .o ° ° i
» ° O o L ' o © e L
. iEENEE EEE SESEEEEEE ,,,,,,,,,,,,,,,,,,,,,,,,%
e HiH HH,

Figure 3.5: Maximin sparsity pattern. Each column of the maximin sparsity pat-
tern includes interactions with points that are within a factor p of the corresponding
length scale ¢j.

36

sparsity pattern will grow as O (N log(N) pd) , allowing us to compute the factors in
time O (N log?(N)p*), as detailed in Chapter 5. As we will discuss in Chapter 4,
the approximation error € will usually decay exponentially as log(e) < log(N) — p,

allowing us to compute an € approximation in complexity O (N log?(N) log(N/ e)).

We have seen in Section that when factorizing the precision matrix A = ©~!,
sparsity of a given column is equivalent to independence of the Gaussian process
conditional on degrees of freedom after k in the elimination ordering. Thus we
factorize the precision matrices of smooth Gaussian processes by using the reverse

maximin ordering as elimination ordering.

Definition 6 (Reverse maximin ordering). A reverse maximin ordering of a point
set {x;};c; € R with starting set C is obtained by reverting a maximin ordering
of {xi}ic; € RY with starting set C. The associated €y is then obtained as the
(#1 + 1 — k)-th length scale of the maximin ordering.

As before, the associated sparsity pattern only contains interactions between points

within distance p times the associated length scale.

Definition 7 (Reverse maximin sparsity pattern). Given a reverse maximin ordering
of the point set {x;};c; C R? with length scales {;},x<y and a sparsity parameter
p € Ry, itssparsityset S C IXIisS = {(ik,il) s. t. k> 1 and dist (x,-k,xi,) < pfk}.

However, as shown in Figure , there is an important difference. Since each
degree of freedom only interacts with others later in the ordering and the largest
length scales now appear last in the ordering, the reverse maximin sparsity pattern
has only O (N pd) entries. As we will see in Chapters 5 and 6, this allows to compute
the Cholesky factors of A in only O (Np??) time.

3.6 Cholesky factorization, numerical homogenization, and gamblets

3.6.1 The maximin ordering as a multiresolution method

In Section 3.5, we have introduced the maximin ordering in terms of a sequential
maximum distance selection. Instead, we now interprete it as a multiresolution
basis transform. To this end, we choose a scale factor 2 € (0, 1) and define the
index sets 1) = {i :hk < fi/fl}. As illustrated in Figure 3.8, the subspaces
V) = span {1,},c;, with 1; being the i-th standard basis vector, then form a
multiresolution sequence of subspaces of R’ “ ~ RN in the sense of [162]:

0=V cyD c cyle)cyl@ Rl (3.7)

37

[] X ... [] .-)
P LIPS) ® . ..
N .. ° e ® ° [] ° 9 °
° [] ° ° ° o °
° ‘ . . :
) ° []
* .. KX .
. N .o ®
. []
b J % .
¢ o. ° o
. ® e ®
[] . [] [} .
« © L o e
. : [] ° ..
- @ . .. ° .
» ° o o e o o o

Figure 3.6: Reverse maximin sparsity pattern. Each column of the reverse
maximin sparsity pattern includes interactions within a factor p of the corresponding
length scale £;. The number of nonzeros per column is approximately constant.

38

Figure 3.7: A Haar-type multiresolution basis. We begin the construction by
forming averages on different scales. On all but the coarsest scale, we obtain the
basis function functions as linear combination of nearby averages on a given scale
that are chosen to be orthogonal to all averages on the coarser scale. In the Figure,
we show basis functions on the three coarsest scales.

By computing the orthogonal complement of V4~ in V() for 1 < k < ¢, we obtain
the orthogonal subspaces W(¥) that form an orthogonal multiresolution splitting of

V(@ = RN in the sense that for all 1 < k < g we have I%) = oy JHE,
1<I<k

Based on the above, the maximin ordering can be thought of as a rudimentary mul-
tiresolution basis, a generalization of the so-called “lazy wavelets” to multivariate,
irregularly sampled data. Instead of using subsampling with density ~ A=, we
could have obtained V¥) by forming averages over regions of size ~ h* and ob-
tained WX as orthogonal complement of V*~1 in V(¥ resulting in a Haar-type

multiresolution basis as illustrated in Figure

Analogs of the screening effect illustrated in Figure 3.3 hold true for a wide range of
multiresolution systems in the sense that after measuring a smooth Gaussian process
against the elements of V%), its conditional correlations decay rapidly on the scale
h* of the measurements. In particular, the Cholesky factors of Green’s and stiffness
matrices of elliptic PDEs have almost sparse Cholesky factors, when represented in
a multiresolution basis and using a coarse to fine (Green’s matrix) or fine to coarse
(stiffness matrix) elimination ordering. The connection to multiresolution analysis
will also allow us to use tools from numerical homogenization to provide rigorous

proofs of the screening effect.

3.6.2 Cholesky, Nystrom, and numerical homogenization

Let us now represent the Green’s matrix ® and its inverse A in a two-scale basis
with the first block ©; 1, A1, representing the coarse scale and the second block
0,2, Ay 5 representing the fine scale, and ©1;, ®21, A12, Az representing the inter-

actions between the two scales.

39

Figure 3.8: The hidden multiscale structure of the maximin ordering. The index
sets [(F) = {i Dhk < /e 1} of the maximin ordering can be interpreted as the scale
spaces VX of a multiresolution basis. The index sets J) := 1) \ 1= can then
be viewed as the resulting orthogonal multiresolution decomposition. In this figure,
from left to right, we display / M 1@ and 1), plotting J M in red, ,
and

An important problem in numerical analysis is to compute a low-rank approximation
of O that correctly captures the coarse-scale behavior. Given access to O, this

problem can be solved by using the “Nystrom” approximation

O1,1 O
01 O

Id
09,1 (@)1,1)_1

~
~

o1 (1. (@) 0n). (3.8)

A classical method in numerical analysis [23, Chapter 3], the Nystrom approximation
has recently been used to compress kernel matrices arising in machine learning
[87, ,]. Following the discussion in Section 3.3, this approximation amounts
to assuming that the fine-scale behavior is deterministic, conditional on the coarse-
scale behavior. As describedin[199], many popular sparse Gaussian process models

arise from refinements of this assumption.

In physical problems described by elliptic PDEs, we typically do not have access
to ©, but rather to its inverse A, the stiffness matrix arising from a discretization
of the differential operator. The field of numerical homogenization is concerned
with computing low-rank approximations of ® that capture its coarse-scale behavior,
from access only to A. At the same time, it tries to preserve (some of) the sparsity of

the stiffness matrix A that arises from the locality of the partial differential operator.

The seminal work of [163] solves this problem by constructing an operator-adapted
set of basis functions that achieve (up to a constant factor) the optimal discretization

error while being (up to an exponentially small error) localized in space.

40

To understand the relationship of numerical homogenization to sparse Cholesky
factorization, we remind ourselves of the linear algebraic identity (see Lemma ,

we give indexing [-]; ; precedence over inversion [- 1™H

O Oz ([1d Aa4zh (Al,l—Al,zAg,lez,l) 0 a0 49
021 05, 0 Id 0 Ao) \AZhA Td)
-1 . -1 !
[0} ((Ani-Aipazhan) 0 |10 Aaagh 510
A5,12A2’1 Id 0 A£’12 0 Id
-1
(1 o) ((A-Aeazhan) 0 |[la —AnAzh) .
-A3b4,, 1d 0 AYAL Id
We can now recover the Nystrom approximation as
011 012 Id _
P2 L]ou (1 (@) en) (3.12)
01 02 021 (O1,1)
Id -1 - 1
=iy (AI,I—AI,ZAZ’ZAZJ) (Id, —Al,zAzz) (3.13)
2,2 2,1
T LT Id
¥ (WTAY) YT, forw=| | (3.14)
—Ay 5421

If we interpret the columns of ¥ as a new set of operator adapted finite element
functions, obtain the Nystrom approximation by projecting the problem onto the
space of these adaptive finite element functions, inverting the resulting stiffness
matrix, and expressing the resulting solution again in terms the original set of finite
element functions. The authors of [163] show that for a two-scale splitting similar
to the one in Figure 3.7 and for A being the stiffness matrix of a second-order elliptic
PDE with L*™-coefficients, the following holds:

1. The matrices ¥ and T AW are sparse up to exponentially small terms (local-

ization).

2. As we decrease the scale of the small-scale, and hence increase the dimension
of W, the resulting Nystrom approximation of ® improves with the optimal

rate (homogenization).

41
3.6.3 Gamblets as Block-Cholesky factorization

The work of [163] provides an efficient, near-optimal coarse-graining of A, but it
does not provide us with a fast solver. In fact, computing ¥ requires inverting the

matrix A, which could be almost as difficult as inverting A.

Motivated by ideas from game and decision theory, as well as Gaussian process re-
gression, [| 8] extend the construction of W in the last section to multiple scales. The
resulting family of operator-adapted wavelets, called gamblets, can be constructed

in near-linear time. Once constructed, it can be used to invert A in near-linear time.

In order to relate gamblets to Cholesky factorization, we assume that we are given an
orthogonal multiresolution decomposition {W®} _ ., and that for 1 <k, < g,
the matrix blocks ®y ;, Ax; represent the restriction of ®, A onto W x wh A

multiscale extension of Equation 3.9 can then be obtained (see Lemma 1) by writing

O=vB 'Y =y (¢TaY) T (3.15)
with
-1
BD 0o ... 0 Id 0
0 B® .. : B(z),—lA(Z) 0 :
Bi=| Y= A I (3.16)
0 0 .. B@ B@--149) - pl@~lg@ g
q.1 q.q-1

where AK®) = (©.4,14) and B® = Al(cklz'

The columns of W represent the gamblet basis functions, and B is the (block-
diagonal) stiffness matrix obtained when representing A in the gamblet basis. In the

same setting as [163], [188] prove that

1. The matrices ¥ and " AW are sparse up to exponentially small terms (local-

ization).

2. The approximation of A obtained by using only the leading k& block-columns

of ¥ improves at the optimal rate when increasing k (homogenization).
3. The matrices B) have uniformly bounded condition numbers.
Using and extending proof techniques of [142], [189,] extend these results

to higher order operators and more general classes of multiresolution splittings

{W(k)}1 <k<q’ We build upon these results in order to prove the sparsity of the

42

Cholesky factors of ®. To this end, the main analytic contribution of our work is an
extension of the homogenization estimates of gamblets to simplistic multiresolution

splittings such as the one implied by the maximin ordering.

43
Chapter 4

PROVING EXPONENTIAL DECAY OF CHOLESKY FACTORS

4.1 Overview

In Chapter 3, we have used the intuition provided by the screening effect to ob-
tain elimination orderings and sparsity patterns that lead to near-linear complexity
solvers based on sparse Cholesky factorization. But the resulting sparse Cholesky
factor merely approximates the original ® or A, with the approximation accuracy

depending on p.

This raises the question at what rate the error decays when increasing p? How
strong is the screening effect, and when does it hold? Despite numerous attempts
[26, , 228], arigorous understanding has proven largely elusive. Existing results

(see [228] for an overview) are asymptotic and do not provide explicit rates.

A central contribution of this thesis is to provide proof of an exponential screening
effect for Gaussian processes with covariance functions given as Green’s function of
elliptic partial differential equations. This allows us to prove that up to exponentially
small errors, the Cholesky factors of ® and its inverse A can be approximated by
sparse matrices with only O (N log(N)p?) and O (Np?) nonzero entries for an
approximation error € satisfying log(e) < log(N) — p. These results, which are

summarized in Section 4.6, can be specialized to:

Theorem 1. Let Q € RY be a Lipschitz-bounded domain and let L be a linear
elliptic partial differential operator of order 2s > d. Let {x;},<;<y be roughly
uniformly distributed in Q and ordered in the maximin [reverse maximin| ordering.
For G = L7 the Dirichlet Green’s function define, ©;; = G (x;,x;) and let L be
the Cholesky factor of ® [A .= O ']. Let S c {1,..., N}2 be the maximin [reverse
maximin] sparsity pattern with starting set 02 and sparsity parameter p. Defining

(LS)l.j = 1 j)esLij, we then have
tog (||L5L5T - L7,) < log(N) - p. (4.1)

A key step for proving this result is the derivation of a novel low-rank approximation

result that is interesting in its own right.

44

Theorem 2. In the setting of Theorem I, let L. 1. be the rank k matrix defined by
the first k columns of the Cholesky factor L of ® in the maximin ordering. Denoting

as || - || the operator norm and as €. the length scales of the ordering, we have
1© - Liawy (L)]| 5 1O, (4.2)
Following the discussion in Section , this low-rank approximation also results

in a numerical homogenization results for L.

Theorem 3. In the setting of Theorem |, let L. 1., be the rank k matrix defined by the
first k columns of the Cholesky factor L of A := © in the reverse maximin ordering.
We then have

1© = W(Lik 1k LTy 1) T S 1O, for W =

Id
~LiesyNa iy)
4.3)

Here, it is important to note that the resulting approximation of ® can be efficiently
applied to a vector using matrix-vector multiplication of L and substitution (see

Algorithm 2) in Lj.x 1.k, without forming another matrix.

Rigorous forms of the above theorems are stated and proved as Theorems 11,

and 13 in Section

For s < d/2, Theorems 2 and 3 are false, and while Theorem | seems to hold
empirically, a proof of it remains elusive. However, following the discussion in
Section , we will prove analogues of Theorems 1, 2, and 3 where the maximin

ordering is replaced by a simple averaging-based multiresolution scheme.

While we present our results in terms of the exact Green’s matrix, analog results
for the approximate Green’s matrix Ogiscrete Obtained as the inverse of a Galerkin
discretization Agjscrete Of L using locally supported basis functions could be obtained

by repeating the proof in this setting.

4.2 Setting and notation

4.2.1 The class of elliptic operators

For our rigorous, a priori, complexity-vs.-accuracy estimates, we assume that G
is the Green’s function of an elliptic operator £ of order 2s (s,d € N), defined
on a bounded Lipschitz domain Q C R4, and acting on Hg(Q), the Sobolev space

of (zero boundary value) functions having derivatives of order s in L*>(Q). More

45

Q
{xz}Z c g
‘:l(smin

5 max

Figure 4.1: A regularity criterion. We measure the regularity of the distributions of
measurement points as the ration of d,,i,, the smallest distance between neighboring
points or points and the boundary, and that does
not contain any points.

precisely, writing H™*(Q) for the dual space of H{j(€2) with respect to the L*(Q)

scalar product, our rigorous estimates will be stated for an arbitrary linear bijection
L: Hy(Q) — H(Q) (4.4)

that is symmetric (i.e. /Q ulvdx = /Q v.Lu dx), positive (i.e. /Q uludx > 0), and

local in the sense that

/ uLlvdx =0forall u,v € Hy(Q) such that suppu Nsuppv = 0. 4.5)
Q

Let [|LIl = sup,eps lI-Lullir=+/llully and 1L = sup s 1L fllegg /11 f Nl

denote the operator norms of £ and £~!. The complexity and accuracy estimates for

our algorithm will depend on (and only on) d, s, , ||.L]|, ||£~"||, and the parameter
5min min#je] dist (x,-, {Xj} U 89)

0= = , 4.6
Omax max,cq dist (x, {x;}ie7 U Q) (*+0)

the geometric meaning of which is illustrated in Figure

46

4.2.2 Discretization in the abstract
Before talking about computation, we need to discretize the infinite-dimensional
spaces Hj(€2) and H™*(£2) by approximating them with finite vector spaces. We

first introduce this procedure in the abstract.

For 8 a separable Banach space with dual space 8* (such as H;j(2) and H™*(Q)),
we write [-, -] for the duality product between 8* and B. Let L: 8 — B* be a
linear bijection and let G := £~!. Assume £ to be symmetric and positive (i.e.
[Lu,v] = [Lv,u] and [Lu,u] > 0foru,v € B). Let || -|| be the quadratic (energy)
norm defined by ||u||? := [Lu, u] foru € B and let || - || be its dual norm defined by

Il = sup 122

ozues |lul|

= [¢, G¢] for ¢ € B*. 4.7)

Let {¢;}ic; be linearly independent elements of 8* (known as measurement func-

tions) and let ® € R/ be the symmetric positive-definite matrix defined by

®ij = [¢,,Q¢,] for l,] el (48)

We assume that we are given g € N and a partition I = ;<< JH) of I. We
represent / X I matrices as g X g block matrices according to this partition. Given
an / X I matrix M, we write My ; for the (k,)™ block of M, and My, k,.1,:1, for
the sub-matrix of M defined by blocks ranging from k; to k, and /; to /5. Unless
specified otherwise, we write L for the lower-triangular Cholesky factor of ® and
define

00 = O, AW =001 B0 = A forl<k<g (49

We interpret the {J*)}, - k<q as labelling a hierarchy of scales with J () representing
the coarsest and J(¢) the finest. We write IX) for | J; <4< J*7.

Throughout this section, we assume that the ordering of the set I of indices is
compatible with the partition I = |Ji_14 J®, ie. k < 1,i € J® and j € JO
together imply i < j. We will write L or chol(®) for the Cholesky factor of ® in

that ordering.

4.2.3 Discretization of H(€2) and H™°(Q)
While similar results are true for a wide range of measurements {¢;} € 8 = H*(Q)
we will restrict our attention to two archetypical examples given by pointwise

evaluation and nested averages.

47

We will assume (without loss of generality after rescaling) that diam(Q) < 1. As
described in Figure 3.8, successive points of the maximin ordering can be gathered
into levels so that after appropriate rescaling of the measurements, the Cholesky

factorization in the maximin ordering falls in the setting of Example

Example 1. Let s > d/2. For h,6 € (0,1) let {x;};c;0) C {Xi}ie;@ C -+ C
{xi}ies@) be a nested hierarchy of points in Q that are homogeneously distributed at

each scale in the sense of the following three inequalities:

(1) Sup,.co minielw |X - X,’| < hk,
(2) min;c ;) infyepq |x — xi| > Sh*, and

(3) min, ey 16 = xj| = 6h*.

Let JV = I and JHO) = [0\ [&=D for k € {2,...,q}. Let & denote the unit

Dirac delta function and choose

b= h26(x—x)forieJ® andk e {1,....q). (4.10)

The discretization chosen in Example | is not applicable for s < d/2 since in
this case, functions in H{(€2) are not defined point-wise and thus § ¢ B*. A
possible alternative is to replace ¢; =) (x — x;) with ¢; = s 1z, 0)(x —
x;). However, while the exponential decay result in Theorem 4 seems to be true
empirically for this choice of measurements, we are unable to prove it for s < d/2.
Furthermore, the numerical homogenization result of Theorem 7 is false for this
choice of measurements and s < d/2. However, our results can still be recovered

by choosing measurements obtained as a hierarchy of local averages.

Given subsets I, J C I, we extend a matrix M € R™ to an element of R’ by

padding it with zeros.

Example 2. (See Figure 4.2.) Forh,6 € (0, 1), let (Ti(k))[el(k) be uniformly Lipschitz

convex sets forming a regular nested partition of Q in the following sense. For

ke {l,....,q}, Q = Ujes Ti(k) is a disjoint union except for the boundaries.
10 is a nested set of indices, i.e. I'®) c I**VD for k € {1,...,q — 1}. For
ke{2,....,q}andi € 15D there exists a subset ¢; € I'®) such that i € ¢; and
Tl.(k_l) = Ujee; TJ(.k). Assume that each Tl.(k) contains a ball B« (xfk)) of center xl.(k)

and radius Sh*, and is contained in the ball B (xl.(k)). Fork e {2,...,q}andi €

$1 =

¢s =

M=(,.,4 1®=(,.,153 ®=1q,..,4 J®={5,..,15)

Figure 4.2: Hierarchical averaging. We illustrate the construction described in
Example 2 in the case ¢ = 2. On the left we see the nested partition of the domain,
and on the right we see (the signs of) a possible choice for ¢, ¢5, and ¢g.

15D let the submatrices wF) e RciMib)xei satisfy Zjeci miﬁiﬁimilf}’ilrjk)l = Omn
and 3 e, mg,"j)’ih-;kﬂ =0 foreachl € ¢; \ {i}, where |Ti(k)| denotes the volume of
Ti(k). Let JV == I and JO = [\ 16D for k € {2,...,q}. Let WV be the
JD 5 1D matrix defined by Wl.(jl) ‘= 0;;. Let W& be the 7 x 10 matrix defined

by WK = . ey w0 for k> 2, where we set
o = hkdl2 Z Wiff)ngk) foreachi € J® 4.11)
jert® !
and define | ¢;, u] = fQ ¢;udx. In order to keep track of the distance between the

different ¢; of Example 2, we choose an arbitrary set of points {x;}ic; C Q with the
property that x; € supp(¢;) for eachi € I.

In the above, we have discretized the Green’s functions of the elliptic operators
resulting in the Green’s matrix ® as the fundamental discrete object. The inverse A of
O can be interpreted as the stiffness matrix obtained from the Galerkin discretization

of £ using the basis given by
vi=) AyG (9)) € B. (4.12)
J

These types of basis functions are referred to as gamblets in the prior works of

[188=190] that form the basis for the proofs in this chapter. While exponentially

49

decaying, these basis functions are nonlocal and unknown apriori, hence they cannot
be used to discretize a partial differential operator with unknown Green’s function.
For O the inverse of a Galerkin discretization of £ in a local basis, analog results

can be obtained by repeating the proofs of Theorems 4 and 7 in the discrete setting.

In the setting of Examples | and 2, denoting as L the lower triangular Cholesky

factor of ® or ®~!, we will show that
|Lij| < poly(N) exp(—yd(i, j)), (4.13)
for a constant y > 0 and a suitable distance measure d(-, -): I X I — R.

4.3 Algebraic identities and roadmap

We will use the following block-Cholesky decomposition of ® to obtain (4.13).
Lemma 1. We have ® = LDLT, with L and D defined by

B~ 0 0 Id 0
0 B@.-1 . : ~ B@.-142 .. 0
D = JL = 2.1 . (4.14)
(9).-1 (9).—1 4 (@) (9).-1 4 (@)
0 0 ... B B Aq’1 ... B AM_1 Id

In particular, if L is the lower-triangular Cholesky factor of D, then the lower-
triangular Cholesky factor L of © is given by L = LL.

Proof. To obtain Lemma |, we successively apply Lemma 2 to ® (see Section .| for
details). Lemma 2 summarizes classical identities satisfied by Schur complements.

O

Lemma 2 ([258, Chapter 1.1]). Let ©® = (g;} 8;;) be symmetric positive definite

AL A .
and A = (A"' Al’z) its inverse. Then
2,1 2,2

Id 0)\(D 0 \(1d L]
0= b 2.1 (4.15)
L2,1 1d 0 Dz,z 0 Id
Id -L7,\(D;} O d 0
A= 7 , (4.16)
0 Id 0 D35 \-L, Id
where
Ly1 =0,107] = —A33Ay, (4.17)
-1
Dyi1=0= (Al,l —Al,zAi]zAz,l) (4.18)

Dy =0,, - @2’1(’91_’1]@1’2 = A;lz 4.19)

50

Based on Lemma |, (4.13) can be established by ensuring that:

(1) the matrices A%) (and hence also B®)) decay exponentially according to
(2) the matrices B*) have uniformly bounded condition numbers;

(3) the products of exponentially decaying matrices decay exponentially;

(4) the inverses of well-conditioned exponentially decaying matrices decay expo-

nentially;

(5) the Cholesky factors of the inverses of well-conditioned exponentially decay-

ing matrices decay exponentially; and

(6) if a ¢ X ¢ block lower-triangular matrix L with unit block-diagonal decays

exponentially, then so does its inverse.

We will carry out this program in the setting of Examples | and 2 and prove that
() holds with

d(i, j) = h~™*D dist(x;, x;), foreachi e J®), j e J®. (4.20)

To prove (1), the matrices ®%), A (interpreted as coarse-grained versions of G
and £), and B%) will be identified as stiffness matrices of the £-adapted wavelets
described in Section . This identification is established on the general identities

(l;) (61, G ;] fori,] € 100, At = (@(k)) 1 (k) [Lw(k) zp(k)] and B(k)
[£)((k),)((k)] where w(k) and)(() are the gamblets mtroduced in [190].

4.4 Exponential decay of A*%)
Our proof of the exponential decay of L will be based on that of A%) as expressed

in the following condition:

Condition 1. Let y, C, € Ry be constants such that for 1 < k < qandi,j € 10,

|A(k)| <C \/A(k)A(k) exp(—yd(i, j))- (4.21)

The matrices A%) are coarse-grained versions of the local operator £ and thus inherit
some of its locality in the form of exponential decay. Such exponential localization

results were first obtained by [163] for the coarse-grained operators obtained from

51

local orthogonal decomposition (LOD) applied to second-order elliptic PDEs with
rough coefficients. [188] gives similar results for measurement functions chosen as
in Example 2. [120] extend the results on exponential decay to higher-order operators
satisfying a strong ellipticity condition. These results were obtained using similar
mass chasing techniques that are difficult to extend to general higher-order operators.
[142] present a simpler proof of the exponential decay of the LOD basis functions
of [163] based on the exponential convergence of subspace iteration methods. [189]
extend this technique (by presenting necessary and sufficient conditions expressed
as frame inequalities in dual spaces) to elliptic PDEs of arbitrary (integer) order
and new classes of (possibly non-conforming) measurements, including those of
Examples! and 2. More recently, [43] show localization results for the fractional
partial differential operators by using the Caffarelli-Silvestre extension. The results
of [189] are sufficient to show that Condition | holds true in the setting of Examples

and 2.

Theorem 4 ([189]). In the setting of Examples | and 2, the matrices A satisfy
k k) 4 (k
‘Alﬁj) < CyJAD AW exp (- dist (supp (4,) . supp (¢j))) 4.22)

This implies that in Example |, they satisfy

)A‘“ < Cy AP AN exp(—yd (i,) (4.23)

and in Example 2, they satisfy

4] < € exp (1] AP AY exp(—yali,). (4.24)

with the constants C,, and vy depending only on || L]], LY, s, d @ and 6. In

particular, they satisfy Condition | with the constants described above.

Proof. Our Example | is equivalent to Example 2.29 of [189]. In [189, Theo-
rem 2.25 and Theorem 2.26], it is shown that in the gamblets {i,bl.(k) }iey computed
in this setting decay exponentially on the length-scale /¥, with respect to the energy
norm. By [189, Theorem 3.8], we have A(k) [w(k) tp(k)] and, therefore, the

exponential decay of gamblets implies the exponentlal decay of the AKX,

We further note that Example 2 is equivalent to Example 2.27 in [189]. Therefore,
by the same theorems, as above, the results of [189] imply exponential decay of the
A in this setting.

'The block Aff)l in our notation is W (™ 7 (m-k) A(K) z (kD (DT jp the notation of [189].

52
See also [190, Theorem 15.45] for a detailed proof and [!90, Theorem 15.43] for

required sufficient lower bounds on Afik). m|

4.5 Bounded condition numbers
In this section, we will bound the condition numbers of B*) based on the following

condition, which we will show to be satisfied for Examples | and 2.

Condition 2. Let H € (0,1),Co > 1 be constants such that for 1 < k <1 < gq,

1
Amin (OW)) > C—@H”‘, (4.25)

Anax (07 — 0% 09 0) < CoH? . (4.26)

1,1k 1k, ik 1k,
Theorem 5. Condition 2 implies that, for all 1 < k < g,

Co' H2FD1d < BY < CoH 14, (4.27)

and, for k = H2CZ,
cond(B%®) < k. (4.28)

Proof. The lower bound in () follows from () and

k) _ (@) (9) (@).—1 5(q) -1
B = (0 =0 1 @1 1@y) (4.29)
The upper bound in (4.27) follows from (4.25) and B = ((®(k))_l)k7k, O

The following theorem shows that (4.26) is a Poincaré inequality closely related
to the accuracy of numerical homogenization basis functions [120, ,] and
() is an inverse Sobolev inequality related to the regularity of the discretization

of L:

Theorem 6. Condition 2 holds true if the constants Co > 1 and H € (0, 1) satisfy

2
(1) ch,sz < W fora e R and ¢ = Yielo @;¢i; and

= el
2
(2) Mingegpan(an),_ gy B < CoH** D, for a € R'Y, k < I < g, and

¢ = 2ies0 Aidi.

Proof. Inequality () is a direct consequence of the first assumption of the the-

orem, whereas (4.26) follows from the variational property [258, Theorem 5.1] of

53

the Schur complement:

o™ (01 - 0[1,0(0 7,014)a= inf (a-pTO"(a-p) (4.30)
BeR

= min |l¢-¢|? < CoH*|a®. 4.31)
pespan{¢;|iel®)}

O

We will now show that Examples | and 2 satisfy the conditions of Theorem 6. For
simplicity, for Q@ ¢ Q and ¢ € H*(Q), we still write ¢ for the unique element
¢ € H™(Q) such that [$,u] = [¢,u] for u € Hi(Q). The following Fenchel
conjugate identity [40, Ex. 3.27, p. 93] will be useful throughout this section.

1613y = sup_ 206,v] = IVIPyps g 432)

veH;(Q)

The first condition can be verified in a similar way as is done in [89].

Lemma 3. Let © be given as in Examples | and 2. Then there exists a constant C

depending only on 6, s, and d, such that

1 ll¢I2
—h¥k < * 4.33
Ca al? (4.33)

for Co = || L||C, a € R and ¢ =2, ;.
Proof. The proof can be found in Section . 1. O

In order to verify the second condition in Theorem 6, we will construct a ¢ such
that ¢ — ¢ integrates to zero against polynomials of order at most s — 1 on domains
of size h*. Then an application of the Bramble—Hilbert lemma [65] will yield the
desired factor h*S. To avoid scaling issues, we define, for 1 < k < gandi el (k)

Oy, in Example 1,

oM = (4.34)

17§k>/|Ti(k)|, in Example 2,

noting that span{q&fk) | i € I} = span{¢; | i € I'®}. To obtain estimates
independent of the regularity of Q, for the simplicity of the proof and without loss
of generality, we will partially work in the extended space R? (rather than on Q).
We write v for the zero extension of v € H(€2) to H* (R?) and ¢§k) for the extension
of ¢fk) € H™*(Q) to an element of the dual space of H’

(R?). We introduce new
loc

54

measurement functions in the complement of Q as follows. For 1 < k < ¢, we

consider countably infinite index sets /) > 1¥). We choose points (x;),. f@n\ 1@

satisfying
sup min dist (x;, x) < 6 'hF, min dist(x;,x; UdQ) > 5hF. (4.35)
xerd\Q i€l i#jelO\1(K)

We then define, for 1 < k < g and i € [, q’)fk) := ¢y, for Example I, and

1 .
¢§k) = | ;“;f&"; for Example 2. Let #5~! denote the linear space of polynomials of
Sh t

degree at most s — 1 (on RY).

Lemma 4. Let © be as in Example | or Example 2. Given p € (2,00) and
l<k<l<gletwe R be such that

[o= Y wiol|wpeac=o0. forattpe P! andics®
B

phk (x:) jei(k)

(4.36)
and w;; # 0 = supp (¢§k)) C By (x;). Then, for a € RJU), ¢ = Yie 0 @ih; and
Y= Zie](l),je](k) a/iwijqﬁ;k) satisfy

d+2s

— 1Y -
6 = ¢l? < 1L IC(d) e (14 h7 00,) 2o, @37)

. 1 .
With Wik = Sup;eju X jejt [wijl and [|@ll. = supueﬂg(m[(p, ul/[Lu,ul? as in

(+.7).

We proceed by proving Lemma 4 in the setting of Example |. The proof in the
setting of Example 2 can be found in Section .1. For u € H*(Q), write D%u = u

and for 1 < k < s, write D¥y for the vector of partial derivatives of u of order k, i.e.

k
Dfu = (5613)
g 'k /i ir=1,....d

.....

of the Bramble—Hilbert lemma:

. The proof of Lemma 4 will use the following version

Lemma 5 ([65]). Let Q c R be convex and let ¢ be a sublinear functional on
H*(Q) for s € N such that

(1) there exists a constant C such that, forallu € H*(Q),

()| < € diam(Q)F D ull 2 (4.38)
k=0

(2) and ¢(p) =0 forall p € P51,

55
Then, for all u € H*(Q),

|¢(u)| < CC(d, s) diam(Q)*||D°ul|;2 (- (4.39)

The following lemma is obtained from Lemma 5:

Lemma 6. For 1 < k <[l < qandi € JO, let ¢i,wij be as in Lemma 4 and

Example 2 and define ¢; = ., jc wijd);k). Then there exists a constant C(d, s)
such that, for all v € Hy(€),

e s—d[2; (s—d/2)k | 11d]2 B s
/ (i =) (v () dx| < C(d.s)p* WP 2 i I)
Bphk(x, jel® ph

(4.40)

Proof. We apply Lemma 5 to the linear functional u +— fB . (¢; — ¢;)u. Since the
ph

second requirement of Lemma 5 is fulfilled by definition, it remains to bound C.
We only execute the proof for Example |; the proof for Example 2 is analogous. We

first note that while the sum in the definition of ¢; only ranges over j € I*), we can
increase it to run over all of j € I®, since for j € 1) \ 1) the support of ¢§.k) is
disjoint from that of v € Hj(€2). Letu € H*(Q). Writing C(d, s) for the continuity
constant of the embedding of H*(B;(0)) into C,(B1(0)), the inequalities

max |u(-)] = max ‘u (phk (x —x,-))’ <C(d,s) 2 (phky™
m=0

|D™u] (o (- = xi)

Bk (xi) x€B1(0) L2(B1(0))
and
||[Dmu] (phk(_xi))”Lz(B](O)) = (phk)_d/2”Dmulle(Bphk(xi))
imply that
i () =i (u)| < ntdl? 4 Wi max |u(x 441
9100 =i) (j;k)|]l XEBphk(xi)l (0l ()
< C(ds)p PR W24 5 fwigl |) (0l D™ ullia s, -
jei(k) m=0
4.42)
Therefore the first condition of Lemma 5 holds with
C =C(d,s)p d2pkdl2| pld/2 4 Z wiil| (4.43)

jelo

and we conclude the proof by writing C(d, s) for any constant depending only on d
and s. |

56

We can now conclude the proof of Lemma 4.

Proof of Lemma 4. Write ¢ = Y,c;0 ¢ip; and @; = X icpm wijd);k). Equa-
tion () implies that

ll¢ - <P||[21—s(g) = sup (E 2%‘/ (¢i — i) (X)v(x) dx) - ||V||12qs(g)-
0
ieJ Bk (xi

veH}(Q)
(4.44)

. . . _ d
The packing inequality ;0 ||st||i2 < C(d) (hk lp/(‘i) ||v||12{8(9) to-

(Bphk(xi))

gether with Lemma 6 yields

2
||¢ - ‘p”Hﬂ' (Q) < Sup Z
VEH (Q) ieJ

_d (g_d 1d
24 |C(d,$)p " TR DR AT+ 37wy ID*Vllz2(p o (x))
jert® '
(4.45)

-d
- (@)™ (#*1pjo) T IDI, : (4.46)

(Bp,,k (xi))

Applying the inequality 2ax — bx?> < a?/b to each summand yields

2
- d _d, (5-4 d
16 = @113 = C@) (1¥p15)" 3 |ajC(d s)p™ Eh =Dk 0T+ 3wyl (4.47)
ieJ@D jeJ®
\)

25
< C(d, s)‘;—d (1 +h‘ld(ul’k) W25k |a)? . (4.48)

Since, for all f € H*(Q),
A7 =[f, L7 f] < ”f”H*S(Q)HL_lf”Hg(Q) < ||£_1||||f||%175(9), (4.49)

we have ||¢ — ¢|l. < VIIL7||l¢ — ¢@l|z-s(q), and this completes the proof. O

The following geometric lemma shows that the assumption (4.36) of Lemma 4 can

be satisfied with a uniform bound on the value of p and the norm of weights w; ;.

Lemma 7. There exist constants p(d, s) and C(d, s,) such that for all 1 < k <
[< q, there exist weights w € R’ Ox1® satisfying (4.36) and (with wy . defined as
in Lemma 4)

wi, < HCd,s,96). (4.50)

Proof. For Example 1, () is equivalent to

WPp(xi) = > wip(x;),Vp € P, (4.51)

.7k
JEI[(,)

57
~ k . ~,
where [:= {j € I | x; € B(x;, ph*)}.

Fixi € JD, let 1 > 0, and write x? =)% Write 0 == (0, ...,0) € R?. Since the

function p(-) > p(—5%) is surjective on P*~1, (4.51) is satisfied if

H2p0) = > wip(x)),¥p e P (4.52)

jef;,k)
For a multiindex n = (ny,...,ng) € N? and a point z = (z1,...,z4) € RY, write
"= H,ﬁflzl zim. Use the convention 0" = 0 if n # 0 and 0° = 1. To satisfy (),

it is sufficient to identify a subset o= of f[()k) and w; . € R! “ such that #o = s,

w;j = 0for j ¢ o, and

B2y = Z wij ()" ¥n € {0,...,s = 1}, (4.53)

jeo

Let V4 € R{O1Ls=10 pe the 59 x ¢ matrix defined by

vl = () (4.54)

For a multiindex n € N? and a point x € R, x" := Hizl x"m_ Letw € R7 be

defined by w; := w; ; for j € . Equation () is then equivalent to
h'%e = viw, (4.55)

where e € RIOL-s=1" is defined by e, = 0" for n € {0,1,...,s — 1}9. We will
now identify w by inverting (). To achieve this while keeping the norm of w
under control, we will seek to identify the subset o~ and 4 > 0 such that oy (V4
(the minimal singular value of V*) is bounded from below by a constant depending

only on s and d.

For @ > 0, let (€;)jcqo.1..s-13¢ be elements of R satisfying |e;| < a for all
jefo,1,....,s—1}4 Letl:=(1,...,1) e R%and, for j € {0, 1,...,5 — 1}4, let
zj = 1+ j +¢€;. Observe that for @ = 0, the points z; are on a regular grid. Let
T € RIOLes—x{0.1ees=}¥ e the s¢ x 59 matrix defined by Ve = (z;)". Let
V be the s X s Vandermonde matrix defined by V; ; = i/. Writing omin (V) for the

minimal singular value of V, we have for @ = 0, by [19, Theorem 4.2.12],
Tnin (7°) = (@ (V). (4.56)

Since univariate polynomial interpolation on s points with polynomials of degree

s — 1 is uniquely solvable, we have omin (V) > 0 and omin(VY) > C(d,s) > 0.

58

Therefore, the continuity of the minimal singular value with respect to the entries
of V¢ implies that there exists a*, o* > 0 depending only on s, d such that @ < o*
implies omin(V¥) > o*. Since (by construction) the (xi);ejy form a covering of
R? of radius h¥, the ()clfl)l-e 7 form a covering of R< of radius 4*/A and for each
ne{0,1,...,s—1}9, there exists an xjn that is at distance at most 4% /A from n. Let
o={ju|ne{0,1,...,5s—1}} c I® be the collection of corresponding labels.
It follows from |x;?n| < Vds + k¥ /A that |x;, — x;| < AVds + k¥, and o C Ijgk) for
p > 1+ AVds/h*. Selecting A = h* /a* implies that i (V4) > o* and o C fgk)
for p > 1+ Vds/a*. Defining

(7 thre) | it = e,
Wij = n

(4.57)
0, otherwise,

the weights w;; satisfy wy; < C(s, a’)hld/2 and () with a p depending only on s
and d. This concludes the proof for Example |. The proof is similar for Example

with minor changes (the bound on w also depends on 9). O

The following lemma concerns the satisfaction of the second condition of Theorem 6:

Lemma 8. In the setting of Examples | and 2, there exists some constant C(d, s,) >
O such that, for2 <k <l < q, a € R/ and ¢ =Y iy,

: g - @lI? 1y 25(k=1)
min ——— < C(d,s,0)| L || . (4.58)
pespan(di), -1y ||
Proof. Apply Lemma 4 with the bounds on p and w obtained in Lemma 7. O

The following theorem is a direct consequence of Theorems 6, Lemma 3 and

Lemma 8.

Theorem 7. In the setting of Examples | and 2, there exists a constant C(d, s, 0) such
that Condition 2 is fulfilled with Ce := max (|| L], | L~ C(d, s, 6) and H = h*.

Propagation of exponential decay

We will now derive the exponential decay of the Cholesky factors L by combining
the algebraic identities of Lemma | with the bounds on the condition numbers of
the B (implied by Condition 2) and the exponential decay of the A%) (specified

in Condition 1). The core of our proof is based on a combination/extension of the

59

results of [31, 32, 34, 68, ,] on decay algebras. The pseudodistance d(-, -)
appearing in () is not a pseudometric because it does not satisfy the triangle
inequality. However, to prove (4.13), we will only need the following weaker version

of the triangle inequality:

Definition 8. A function d: I X I — R, is called a hierarchical pseudometric if

(1) d(i,i) =0, foralli € I;

(2) d(i,j) =d(j,i), foralli,j € I;

(3) forall1 < k < q, d(-, -) restricted to J**) x J®) is a pseudometric;

(4) forall 1 < k <1 <m < qandi € JK) s € J(l),j e J™M we have

d(i,j) < d(i,s) +d(s, j).

Note that the d(-, -) specified in () for Examples | and 2 is a hierarchical
pseudometric. For a hierarchical pseudometric d(-, -) and y € Ry, let

caly):= sup sup > exp(=yd(i,). (4.59)

I<k<l<q jey 50

The following theorem states the main result of this section:

Theorem 8 (Exponential decay of the Cholesky factors). Assume that © fulfills Con-

ditions | and 2 with the constants 'y, Cy, H, Cep and the hierarchical pseudometric

d(-,-). Then

~ 1on2 ~ 2\4 -
(chol(@)), | < 220D (4cd (1 2 T12)) exp -3,

(I-r) (I-r)?
(4.60)

. 2C,Co N O LR —log(r) Y
where Cp = max{l’ Tre } = T VT Teloglea(y/2)+log(Cr)—Tog(r) 2

k=H _ZC(% is defined as in Theorem 5.

and

The remaining part of this section will present the proof of Theorem 8. We will use
the following lemma on the stability of exponential decay under matrix multiplica-

tion, the proof of which is a minor modification of that of [128].

Lemma 9. Let I be an index set that is partitioned as I = JV U --- J9 and let
d: I X1 — Ryq satisfy

n
d(i1,ine1) < Zd(ik,ikﬂ) foralll <n<gq-1andiy € J(k).
k=1

60

Let M® € R b such that |Ml(f)| < Cexp(—yd(i,j)) for1 <k <g-1
and let

cq(y/2) = sup sup Z exp (—%d(i,j)) fory e R,. (4.61)
I<ksq-1 jejtsn S0

Then, for 1 <n <q -1,

(ﬂ M(“)' | = a0 e (-3aG.).
ij

k=1

Proof. Seti; :=1i,i,4+1 = j. Then

(ﬁ M(k)) <C" Z exp (—yand(ik,ikH))
k=1 k=1

ij i25esin€ @ .., J (M)

< C"exp (—%d (i1,in+1)) Z exp (—% i d (ik,ik+1))
=1

in,...in€l

< (ca (y/2) €)' exp (-Zd(i.).

The proof of the following lemma (on the stability of exponential decay under matrix
inversion for well-conditioned matrices) is nearly identical to that of [1 28] (we only
keep track of constants; see also [68] for a related result on the inverse of sparse

matrices).

Lemma 10. Let A € R™! be symmetric and positive definite such that for C,y > 0
and a metric d(-, -) on I we have |A; ;| < Cexp(—yd(i, j)). It holds true that

4 log(L
‘(A*‘)i,j| < og(7) Zd(i,j)) (4.62)

AT+ TAT1) (=2 S\ (1 4 log (cq (1/2)) + 10g(Cr)) + log(L) 2

o . ._ 2c _
where cq(y/2) = sup,e; Yierexp (-5d(i, j)), Cr = max{l,m} =

-1 -—L -1
max I,M o= —ANATTL Lo g e IAINA~Y| is the condition
e Maman
number of A.

Proof. On a compact set not containing 0, the function x — x~! can be accurately
approximated by low-order polynomials in x. Then, the spread of the exponential

decay can be controlled by Lemma 9. See Section .| for details. O

61

By representing Schur complements as matrix inverses, Lemma can also be
used to show that the Cholesky factors of well-conditioned exponentially-decaying
matrices are exponentially decaying. The following lemma appears in a similar form

in [34] for banded matrices and in [|44] without explicit constants.

Lemma 11. Let B € R =~ RN*N pe symmetric and positive definite with condition
number k and such that |B,-,j| < Cexp(—yd(i,J)) for some constant C > 0 and
some metric d on I. Let L be the Cholesky factor (in an arbitrary order) of B!
(B~' = LL"). Then

4+/||B| o log(r)
(IBI+ 1B) (1-r2 "

|Li.j| <

Lad j))
1+10g (cq (v/2)) +log(Cr) —log(r) 2"

(4.63)

-1
where cq(y/2) = sup;e; Yierexp (—3d (i, j)), Cr = max{l,%ﬁ”}, and r =

1-«~!

T+ T

Proof. Lemma 2 implies that the Schur complements of B~ can be expressed as
inverses of sub-matrices of B. The result then follows from Lemma 10 (see Proof
for details). d

The last ingredient needed to prove the exponential decay of the Cholesky factors of
O is the following lemma showing the stability of exponential decay under inversion

for block-lower-triangular matrices (this operation appears in the definition of L in

(4.14)):

Lemma 12. Let I be an index set that is partitioned as I = J D U- - - J'9 and assume
that the matrix L € R™! is block-lower triangular with respect to this partition, with
identity matrices as diagonal blocks. If d(-, -) is a hierarchical pseudometric such
that |L;j| < Cexp (—=yd(i, j)) (for some C > 1 and y > 0), then it holds true that

(L] £ 27 (ca (7/2) €) exp (-2) (4.64)
with cq(y) = SUP|<j<i<q SUPjes0 2iesv Xp (=yd(i,).

Proof. The Neumann series of a ¢ X g block-lower-triangular matrix with identity

matrices on the (block) diagonal can be written as

q

L= Z (Id - L)~ . (4.65)

k=0

62

Since the sum terminates in g steps, the thickening of the exponential decay can be

bounded using Lemma 9. See Proof .| for details. O

By applying the above results to the decomposition obtained in Lemma 1, we

conclude the proof of Theorem 8. See Proof .| for details.

4.6 Summary of results
The results of the previous sections allow us to prove the following theorem on the

exponential decay of the Cholesky factors and the accuracy of their truncation:

Theorem 9. In the setting of Examples | and 2, there exist constants C,y,a > 0
depending only on d, Q, s, || L, |L7 I, h, and 8, such that the entries of the
Cholesky factor L of © satisfy

|Lij| < CN® exp(=yd(i,), (4.66)
where dist: I X I — R is defined by

dist(i, j) = h~™"&D dist (supp (¢;) , supp (¢,)) foralli e J, j e JO.
(4.67)
As a consequence, writing
Ll‘j, fOl" (i,j) es

L} = . 1 (4.68)
N else,

with S D Saisee = {(i,j) | dist(i, j) < p}, we have ||® — LSLST||, < € for
p = C(C,y)log(N/e).

Proof. Theorems 4 and 7 imply that Conditions | and 2 are fulfilled with con-
stants depending only on d, s, || £|l, |£7"|l, &, and §. Theorem & concludes the
exponential decay of L. The accuracy of the truncated factors follows directly
from the exponential decay. We note that dist is not a hierarchical pseudometric,
but there exists a constant cpyin, ¢ > 0 only depending on 4 and ¢ such that for
dist (, /) > cmin, we have ¢~ 'd (i, j) < dist (i, j) < cd (i, j) where d(-, -) is the
hierarchical pseudometric specified in (). O

We next show the exponential decay of the Cholesky factor of A := A™'. We first

observe the following consequence of Lemma 1|:

63

Lemma 13. When ordering the multiresolution basis from fine to coarse (q to 1),

the Cholesky factors of A are given by the Block matrix

L=t ... 0
A(q_)l L(q),T . 0
L=| 91 , (4.69)
A(q)1 L@T AP L@ ()~
.4 1,2

where L) is the lower triangular Cholesky factor of B%)~1.

Proof. Lemma | implies @' = L™~!D~!'L~!. By computing the Cholesky factor-
ization of D and multiplying the resulting factors with L™~ and L~!, we obtain
a factorization ®~! = UUT with U block upper triangular with lower-triangular
diagonal blocks. Letting P denote the permutation matrix that inverts the order of

the blocks while keeping the order within each block the same, we obtain
PO'PT = PUUTPT = PUPTPUTPT = (PUPT) (PUPT)T . (4.70)

We can now verify that PUPT is lower triangular and equal to L, which concludes

the proof due to the uniqueness of the Cholesky factors. O

Theorem 10. In the setting of Examples | and 2, there exist constants C,y,a > 0
depending only on d, Q, s, || L|l, |L7'l, h, and 6, such that the entries of the
Cholesky factor L of © satisfy

|Lij| < CN® exp(—y dist(i, j)), 4.71)
where dist: I X I — R is defined by

dist(i, j) := h~ ™D gigt (supp (¢;) ,supp (¢;)) foralli € JO e g0,
4.72)

As a consequence, writing

Lij9 for(i7j)€S

S .
L: =
0, else,

with S > Sap = {(i,j) | d(i,j) < p}, we have |A - LSLST|. < € forp >
C(C.y)log(N/e).

64

Proof. The proof is similar to that of Theorem 9, but we will treat each block of L in
isolation. There exist ¢y, ¢ depending only on 4 and ¢ such that foreach 1 < k < ¢
and i, j € J®) with dist(i, j) > cmin, we have ¢'d (i, j) < dist(i, j) < cd (i, j) for
d defined as in (). 2 Therefore, we can use Lemmas and to prove the
exponential decay of L®) according to dist. According to Theorem 4, this means

that for any k,/ andi € JX, j, 7 € J©, we have

log ('(Aw) (L)
i7 i

(dist (supp (¢i) , supp (¢ J)) — dist (SUPP (¢f) > Supp (¢,-)))
Kl

) (4.74)

sc+cylog(N) —
(4.75)

(dist (supp (¢;) , supp (¢;)))
hl

<61 + 62 log(N) — . 4.76)
Here, the second inequality follows the fact that the size of supp (¢ f) is approxi-
mately 4’ and thus for dist(7, j) larger than a constant, it can lead to a violation of

the triangle inequality by at most a constant factor. |

Theorems 9 and 10 now allow us to prove a rigorous version of Theorem 1:

Theorem 11 (Rigorous version of Theorem 1). Let Q € R? be a Lipschitz-bounded
domain and let L : H; (Q) — H™* (Q) be a linear, symmetric, bounded, and local
operator of order 2s > d. Let {x;},<;,<n C Q and ordered in the maximin [reverse
maximin] ordering such that & as in (4.6) is positive. For G = L~V the Dirichlet
Green’s function define ©;; = G (xi,x]-) and let L be the Cholesky factor of ®
[A:=0""] LetS c {1,..., N}2 be the maximin [reverse maximin| sparsity pattern
with starting set 0 and sparsity parameter p. Defining (LS)l.j = 1 jyesLij, we
then have

log ([|LSL5T = LLT || < log(W) - p (4.77)

where the constants depend only on d, Q, s, || L||, |.L7"||, and 6.
Proof. We perform the proof for the Cholesky factorization of ® in the maximin

ordering. The Cholesky factor of A can be treated in an analog manner. As de-

scribed in , the maximin ordering can be represented as a hierarchical ordering

2We note that this is not true for i and j on different scales!

65

satisfying the conditions of Example |. The result follows from Theorem 9 by

observing that the maximin sparsity pattern S, satisfies
Sa,sn)-1p 2 Sp 2 Sdshp - (4.78)

Scaling the weights of the measurement functions ¢; to 1 increases the error by a
factor that is at most polynomial in N, which can be subsumed into the log(N)-

dependence of p by increasing the constants in the decay estimates. O

Similarly, Theorem 7 also implies a rigorous version of Theorem 2:

Theorem 12 (Rigorous version of Theorem 2). In the setting of Theorem |, let L. ;.x
be the rank k matrix defined by the first k columns of the Cholesky factor L of © in

the maximin ordering. Denoting as || - || the operator norm, we have
10 = Loy (Lere) '[| < CllONIE7 4.79)

with constant C depending only on || L||, | L7, d, 6, and s.

Proof. We begin by proving, in the setting of Example 1,

| - LOLW-T|| < ci2s. (4.80)

Tk+1

Write I = I U I, with I} := {i1,...,ix} and I, := I\ I} and ¢, ;41 for the
lenght-scales of the k, k + 1-th points in the ordering, respectively. By Lemma 2,
the approximation error made by keeping only the first kK columns of the Cholesky
factorization is equal to the Schur complement ®,, — @2,18111@1,2. Consider
the implicit hierarchy of the maximin ordering as described in Section with
h =1/2,and let p € {1,...,q} be such that 277 < [[k]/I[1] < 27P*!. Write
[=1,Ul,withl, = I and I, := I \7 (P), The variational property () implies
that ©22 — 02107013 < @) — 0,0, 0, Theorem 7 (with & = 1/2 obtained
from the implicit hierarchy) implies that ®;; — ®b,a®;’1a®a,b <C (%)25(1"1)“],
where the extra multiplicative (%)‘d term arises because the measurement functions
are scaled by #%%/? in Example | with i = % We conclude the proof of (4.80) using
277~ < ¢k +1]/€[1] < 27P*!. We can now prove the result by rescaling the basis

function and using a ball-packing argument to show that £ ~ k~1/4, O

Finally, Theorem 3 follows the discussion in Section that implies that the

resulting low-rank approximation of @ is identical to that in Theorem 2.

66

Theorem 13 (Rigorous version of Theorem 3). In the setting of Theorem |1, let
L. 1. be the rank k matrix defined by the first k columns of the Cholesky factor L of
A = O in the reverse maximin ordering. We then have

Id

||® - T(Ll:k,I:kLIk’lzk)_llPT” < C”@”k_zs/d, fOrlP = »

—Lk+1):N kL 1k

1:k,1
(4.81)
with constant C depending only on || L||, | L7, d, 6, and s.

4.7 Extensions and comparisons
We conclude this chapter by comparing our results in more detail to closely related
approaches and by mentioning some empirical observations that are not covered by

the theory presented in this chapter.

4.7.1 H-matrix approximations from sparse Cholesky factorization
The H-matrix data structure [!12] uses low-rank approximations for blocks ©;;
(I,J c I) fulfilling the admissibility condition

min(diam{x;};7, diam{x; },c7) < ndist({xi};ef, {xi}icy)- (4.82)

The approximation property of the incomplete Cholesky factorization in maximin
ordering (Theorem 1) directly implies bounds on the spectral decay of admissible

blocks in the H-matrix framework, as can be seen from the representation

N
O=LLT & 0= Z L:®L, (4.83)
i=1
of the Cholesky factorization of ®. If L is sparse according to the maximin sparsity
pattern, then L.; ® L.; can contribute to the rank of the sub-matrix ©;; only if

2pl[i] = dist ({xj}jel-, {Xj}jej) and max (dist (x,-, {xj}jei) , dist (xl-, {Xj}jej)) < ptli].

(4.84)
The number of i € I satisfying (4.84) is at most C (17, d)p? log N, which recovers
(up to constants) the same rank bounds as obtained in [29] for second-order elliptic
PDEs with rough coefficients. However the converse is not true and most hierarchical
matrix representations can not be written in terms of a sparse Cholesky factorization
of ®. For example, adding a diagonal matrix to ® does not affect the ranks of
admissible blocks, but it diminishes the screening effect and thus the approximation

property of the incomplete Cholesky, as shown in Section

67

4.7.2 Comparison to Cholesky factorization in wavelet bases

[94] compute sparse Cholesky factorizations of (discretized) differential/integral
operators represented in a wavelet basis. Using a fine-to-coarse elimination order-
ing, they establish that the resulting Cholesky factors decay polynomially with an
exponent matching the number of vanishing moments of the underlying wavelet

basis.

For differential operators, this coincides algorithmically with the Cholesky factor-
ization described by Theorem and the gamblet transform of [188] and [189],
whose estimates guarantee exponential decay. In particular [94] numerically ob-
serve a uniform bound on cond(B™®)) which they relate to the approximate sparsity

of their proposed Cholesky factorization.

For integral operators, [94] use a fine-to-coarse ordering and we use a coarse-to-
fine ordering. While their results rely on the approximate sparsity of the integral
operator represented in the wavelet basis, our approximation remains accurate for
multiresolution bases (e.g. the maximin ordering), in which ® is dense, which avoids
the O(N?) complexity of a basis transform (or the implementation of adaptive

quadrature rules to mitigate this cost).

4.7.3 Vanishing moments

Let P~ (1) denote the set of polynomials of order at most s— 1 that are supported on
7 C Q. [188] and [189] show that () and () hold when £ is an elliptic partial
differential operator of order s (as described in Section) and the measurements
are local polynomials of order up to s — 1 (i.e. ¢; o = 15, p, With p, € Ps=1(1)).
Using these ¢;, as measurements is equivalent to using wavelets ¢; satisfying the

vanishing moment condition
[¢;,p] =0 foralliel, pe Pl (4.85)

The requirement for vanishing moments has three important consequences. First, it
requires that the order of the operator be known a priori, so that a suitable number
of vanishing moments can be ensured. Second, ensuring a suitable number of
vanishing moments greatly increases the complexity of the implementation. Third,
in order to provide vanishing moments, the measurements ¢;, i € J (%) have to
be obtained from weighted averages over domains of size of order 4*. Therefore,
even computing the first entry of the matrix ® in the multiresolution basis will have
complexity O(N?), since it requires taking an average over almost all of I x I. One

of the main analytical result of this paper is to show that these vanishing moment

68

conditions and local averages are not necessary for higher order operators (which,
in particular, enables the generalization of the gamblet transform to hierarchies of

measurements defined as in Examples | and 2).

474 Thecasess <d/2ors ¢ N

Theorems | requires that s > d/2 to ensure that the elements of H*(Q) are con-
tinuous (by the Sobolev embedding theorem) and that pointwise evaluations of the
Green’s function are well defined. The accuracy estimate of Theorem | can be
extended to s < d/2 by replacing pointwise evaluations of the Green’s function
by local averages and using variants of the Haar pre-wavelets of as in Example
instead of the subsampled Diracs of Example | to form ®. Numerical experiments
suggest that the exponential decay of Cholesky factors still holds for s < d/2 if the
local averages of Example 2 are sub-sampled as in Example |, whereas the low-rank
approximation becomes sub-optimal. Our theory further requires s to be an integer,
excluding fractional order elliptic PDEs. However, our experiments suggest that this
is not strictly necessary, either. As illustrated in Table 5.5, for Matérn kernels we
observe no difference (in accuracy vs. complexity) between integer and non-integer
values of s. It is an open question how to reconcile this observation with the fact

that fractional order partial differential operators are in general nonlocal.

69
Chapter 5

INCOMPLETE CHOLESKY FACTORIZATION

5.1 Zero fill-in incomplete Cholesky factorization

5.1.1 ICHOL(®)

In Chapter 4, we have shown that discretized Green’s matrices of elliptic PDEs, as
well as their inverses, have exponentially decaying Cholesky factors. By setting
small entries to zero, we can approximate these Cholesky factors with exponential
accuracy by sparse matrices with near-linearly many nonzero entries. However,
computing the exact Cholesky factor in the first place requires access to all O (N 2)

nonzero entries and has computational cost O (N 3), and is therefore not practical.

A simple approach to decreasing the computational complexity of Cholesky fac-
torization is the zero fill-in incomplete Cholesky factorization [170] (ICHOL(0)).
When performing Gaussian elimination using ICHOL (0), we treat all entries of both
the input matrix and the output factors outside a prescribed sparsity pattern S C I X1

as zero and correspondingly ignore all operations in which they are involved.

5.1.2 Complexity vs accuracy
It is well known that the computational complexity of TCHOL (®)can be bounded in

terms of the maximal number elements of S either per row or per column:

Theorem 14. If m upper bounds the number of elements of (the lower triangular

part of) S in either each row or each column, then Algorithm 3 has time complexity

O(Nm?).

Proof. If m upper bounds the number of elements per column, we see that the
number of updates performed for a given i is upper bounded by the number of pairs
(k, j) for which (k,i) and (j,7) are contained in S. This number is upper bounded
by m?, leading to a complexity O (N mz). If m upper bounds the number of elements
per row, then the number of updates is upper bounded by the number of pairs (i, j)
for which both (k,i) and (k, j) are part of the sparsity pattern. This number is
bounded by m?, leading to a complexity O (N mz). O

We begin by providing a bound on the computational complexity of ICHOL(0)in

coarse-to-fine ordering.

70

Algorithm 3 Incomplete Cholesky factorization with sparsity pattern S.

Input: A € RV symmetric, nz(A) ¢ §
Output: L € RV*N Jower triang. nz(L) c S

for (i, j) ¢ Sdo

1:

2: A” «—0

3: end for

4: forie {1,...,N} do

5 L. (_A:i/\/A_ii

6: forje{i+1,...,N}: (i,j) € Sdo
7: forke{j,...,N}: (k,i),(k,j) e Sdo
8: Akj (—Akj—AkAi—:ﬁ

0: end for

10: end for

11: end for

12: return L

Figure 5.1: ICHOL(®). Incomplete Cholesky factorization, with the differences
to ordinary Cholesky factorization (Algorithm 1), highlighted in red. Here, for a
matrix A, nz(A) = {(i, j) | Aij # 0} denotes the index set of its non-zero entries.

Theorem 15. In the setting of Examples | and 2, there exists a constant C(d, 0),
such that, for

Sc{@,j)lieJ®, jeg®pminkD dist (supp (¢;),supp (¢;)) < p}, (5.1

the application of Algorithm 3 in a coarse-to-fine ordering has computational
complexity C(d,5)Nqp? in space and C(d,8)Ng*p*? in time. In particular,
g o« logN/In hld implies the upper bounds of C(d,d,h)p?NlogN on the space
complexity, and of C(d, 8, h)p** N log® N on the time complexity. In particular, the
above complexities apply to ICHOL (0)in the maximin ordering and sparsity pattern.

Proof. Fori € JX,j e JO, write d(i, j) = h~™"kD dist (supp (¢;) , supp (¢;))-
We write i < j if i precedes j in the coarse-to-fine ordering.

Definingm = maxej1<k<q #{i € JO i< jand d(i, j) < p}, |xi—x;| > 5~ h! for
i, j € IV implies that m < C(d, 6)p?. Therefore#{i € I | i < j and d(i, j) < p} <
gmN implies the bound on space complexity. The bound on the time complexity

follows from Theorem 14. O

71

When using the reverse ordering and sparsity pattern, the computational complexity

is even lower.

Theorem 16. In the setting of Example 1, there exists a constant C(d, 6), such that,

for
S c{(i,) liedW,je V™% dist (supp (¢,) , supp (¢;)) < p}. (5.2)

the application of Algorithm 3 in a fine-to-coarse ordering has computational com-
plexity C(d,5)Np? in space and C(d,5)Np*¢ in time. In particular, the above
complexities apply to ICHOL (®) in the reverse maximin ordering and sparsity pat-
tern. In the setting of Example 2, the complexities are C(d,§)N max (log(N), pd)
in space and C(d, 5) N max (log2 (N), pzd) in time.

Proof. Fori € J®,j e JO write d(i, j) = h~ ™D dist (supp (¢;) , supp (¢;))-

We write i < j if i precedes j in the fine-to-coarse ordering.

In the setting of Example |, fori € J (k), the i-th column has g pd nonzero entries,
since it contains only points within radius ph¥, while all points succeeding i in
the reverse maximin ordering have a distance of at least 64* from each other. In
the setting of Example 2, the i-th column also has at least a constant number of
elements in each of the subsequent levels, which is why even for constant p, the
number of elements per column and thus the complexity of ICHOL (@) will still scale

logarithmically with N. O

We can now make a first attempt at combining the estimates on computational

complexity and accuracy.

Theorem 17. In the setting of Theorems 9 and 10, there exists constants C,c
depending only on d, Q, s, || LI, | L7 I, h, and & such that for every p > clog(N),
there exists a perturbation E € R™! with 1og(||E|lro) < —Cp such that the result
applying Algorithm 3 in the coarse-to-fine [fine-to-coarse] ordering with sparsity

set S satisfying
{G,) | dist(z, j) < p/2} € S < {(,)) | dist(i, j) < 2p} (5.3)
returns a Cholesky factor LS satisfying

log (||LLT - LSLS’T”) < —Cp. (5.4)

72

Here, L is the exact Cholesky factor. Analogue results hold in the setting of
Theorem 11, when using the maximin [reverse maximin]| ordering and sparsity

pattern.

Proof. Writing E := LLT — LSL5T the results of Theorems 9 and show that
log(||E|lro) < —Cp. The Cholesky factor of LLT — E is equal to LS and thus
recovered exactly by Algorithm 3, when applied to the E-perturbed input matrix.

The results on the computational complexity follow from Theorems 15 and 16. O

If we were able to show that the incomplete Cholesky factorization is stable in the
sense that an exponentially small perturbation of the input matrix to ICHOL (0) leads
to a perturbation of its output that is amplified by a factor at most polynomial in
the size of the matrix, we could use Theorem 17 to obtain a rigorous result on the
complexity vs accuracy tradeoff. Unfortunately, despite overwhelming evidence that
this is true for the problems considered in this paper, we are not able to prove this
result in general. We also did not such a result in the literature, even though works

such as [94] would require it to provide rigorous complexity vs accuracy bounds.

We will however show that it holds true for a slightly modified ordering and sparsity
pattern that is obtained when introducing “supernodes” and multicolor orderings.
Since these techniques are also useful from a computational standpoint, we will
first introduce them as part of a description detailing the efficient implementation
of our methods, together with numerical results. We will then address and resolve

the question of stability again in Section

5.1.3 Efficient implementation of ICHOL ()

Theorems |5 and 16 show that in the limit of N going to infinity, using Algorithm
and a sparsity pattern satisfying (5.3) is vastly cheaper that computing a dense
Cholesky factorization. However, if we were to naively implement Algorithm
using a standard compressed sparse row representation of S, we would see that
the number of floating-point operations per second that our algorithm can perform
much lower compared to good implementations of dense Cholesky factorization.
This has three main reasons: irregular memory access, lack of memory re-use,

and parallelism.

Irregular memory access. While the random access memory (RAM) of present-

day computers allows to access memory in arbitrary order, the latency of random

73

memory access is often substantial. In order to mitigate this effect, present-day
computers have a hierarchy of caches, smaller units of memory that can be accessed
much more rapidly. As it is loading data from RAM, the computer constantly tries
to predict what data could be requested next and preemptively loads it into the
cache. So-called cache misses, instances where data requested from the CPU is not
preloaded in the cache but instead has to be loaded from RAM can lead to dramatical
regression in performance. Arguably the most fundamental heuristic used to predict
which data will be required next is known as spatial locality, meaning that whenever
we request data from RAM, the data immediately before and after will be pre-fetched
into the cache, as well. Thus, accessing data in linear order is one of the most reliable
ways to avoid cache misses. Without further thought, Algorithm 3 has poor spatial
locality. For instance, if we implement using a compressed sparse row (CSR) format
to store (the lower triangular part of) A, each iteration of the inner loop over k will
access a different row of the matrix that could be located in a part of memory far
away from where the previous row was stored. Therefore, every single update could
access memory in a different location that therefore is unlikely to be pre-fetched,

resulting in a large number of cache misses.

Our main remedy to this problem will be to change the order of the three for loops
in Algorithm 3 resulting in the left-looking and up-looking variants of Cholesky
factorization, as opposed to the right-looking variant presented in Algorithm

Choosing the appropriate combination of direction (up, left, or right) and storage
format (compressed sparse rows or compressed sparse columns) can greatly decrease

the running time of our algorithms.

Lack of memory re-use. Evenif we ignore questions of cache-misses and memory
latency, there is still the issue of memory bandwidth. In Algorithm 3, for each
loading of Ay, Ay;, and A ; only a minuscule amount of computation is performed.
Ay particular will only be used for a single computation, and it can take arbitrarily
long until its next appearance in the computation. This poor temporal locality of
Algorithm 3 means that even with perfect prefetching into the cache, the computation
might be limited by the bandwidth with which memory can be loaded into the cache,
rather than the clock speed of the CPU. In contrast, the canonical example for good
memory reused are blocked algorithms for matrix-matrix multiplication, the product
between two blocks of size k X k that are small enough to fit into cache only needs to
load only ~ k? floating-point numbers into the cache to perform ~ k> floating-point

operations.

74

We will mitigate this problem by introducing supernodes [158,], consisting
of successive rows and columns that share the same sparsity pattern. Due to the
flexibility for reordering rows and columns within each level of the multiresolution
scheme and the geometry of the associated measurements, we can identify supern-
odes of size ~ p? by only marginally increasing the size of the sparsity pattern.
Once the supernodes have been identified, Algorithm 3 can be reexpressed as a
smaller number of dense linear algebra operations that feature substantially more

data re-use.

Parallelism. Modern CPUs have multiple cores that have access to the same mem-
ory, but can perform tasks independently. Optimized implementations of dense
Cholesky factorization are able to exploit this so-called shared memory parallelism
by identifying subproblems that can be solved in parallel and assigning them to
the different cores of the CPU. For large computations, distributed parallelism is
necessary, where subproblems are solved by different computers that are connected
to form a so-called cluster. The amount of parallelism available on modern com-
putational platforms is increasing steadily. Thus, for an algorithm to be practically

viable, it is crucial that it allows for the efficient use of parallel computation.

We will exploit parallelism by observing that rows and columns with nonoverlapping
sparsity patterns can be eliminated in parallel. Using once again the fact that we have
complete freedom to choose the ordering within each level, we can use a multi-color
ordering [3, 4, 74,] inspired by the classical red-black ordering [127] in order

to maximize the number of operations that can be performed in parallel.

5.2 Implementation of ICHOL (®) for dense kernel matrices

5.2.1 Direction and storage

We propose to compute the factorization in-place, using a compressed sparse row
format to store the factor. This means that the matrix L € RV*V with sparsity pattern
S is stored as a tuple (rowptr(S), colval(S),nzval(S, L)) where rowptr(S) €
NN+ colval(s) € N*9) and nzval(S, L) € R*) such that foreach 1 < k < N,

the nonzero entries of the k-th row of L lie in the columns with indices
(colval[/j] | rowptr[k] < j < rowptr[k +1]) (5.5
and are given as

(nzvallj] | rowptr[k] < j < rowptr[k +1]). (5.6)

75

In Figure 5.2, we describe the algorithm for computing the up-looking Cholesky
factorization in the CSR format. We observe that this variant shows significantly
improved performance in practice. A possible approach to further improve its
performance would be to reorder the degrees of freedom on each level in a way that

increases locality, for instance ordered along a Z-curve.

5.2.2 Supernodes

We will now discuss a supernodal implementation appropriate for Cholesky factor-
ization of © in a coarse-to-fine ordering. In order to improve readability, we do not
provide rigorous proofs in this section and refer to the more technical discussion in

Section

The main idea of our implementation of supernodes is to aggregate degrees of free-
dom with length-scale ~ ¢ that are within a ball of radius p£ and appear consecutively

in the elimination ordering into a so-called supernode.

Definition 9. Let {x;},.;<y € RY. A supernodal aggregation of scale € is given by
a set {)?; 1<i<q C R¢ and assignment of each point x; to exactly one supernode X;.

We denote this assignment i ~> 1 and require that for i ~» I, we have dist(x;, %;) < €.

Given {x;} <<y € R4, such an ordering can be constructed efficiently using a greedy

algorithm.

Construction 1 (Supernodal aggregation). We successively select the first x; that is
not yet within range of one of the existing supernodes and make it a new supernode
until all x; are within a distance of € of at least one supernode. Then, we assign

each x; to the closest supernode, using an arbitrary mechanism to break ties.

Construction | can be implemented efficiently using, for instance, KD-tree based
range search. Under mild regularity conditions such as the one given in Equa-

tion (4.6), the number of resulting supernodes is bounded as N /<.

In a multi-scale setting, we will use separate aggregation scales for each level:

Definition 10. For 1 < k < g, let {xl.(k) € RY. A multiscale supernodal

}lsisN(")
aggregation with scales {f(k)}l <ksq Is given by the union of the supernodal
(k)

; } with the respective length scale €.
1<i<N®)

aggregation for each {x

Once a multiscale supernodal aggregation is available, we can use it to derive

associated orderings and sparsity patterns.

76

Algorithm 4 In-place, up-looking ICHOL (0)in CSR format
Input: L € RVV lower triangular, as CSR with rowptr, colval, nzval

I: fori=1:Ndo

2: for j = rowptr[i] : (rowptr[i+1] —1) do

3 j < colvall[/]

4: nzval[j] « nzval[j] — dot(i, j, rowptr, colval,nzval)
5: if j < i then

6: nzval[j] « nzval[j] / nzval[rowptr[j+ 1] — 1]

7: else

8: nzval[j] « ynzval[/]

9: end if

10: end for

11: end for

Algorithm 5 Alg. dot computes update as inner product of i-th and j-th row of L.

Input: L € RV*N Jower triangular, as CSR with rowptr, colval,nzval

1: [« rowptr[i]; j « rowptr[j]
2: i « colvall[i];j « colval[J]
3: out «— 0
4: while 7, j < min (i, j) do

if i == J then

5

6 out < out +nzval[i] * nzval[]]
7: [—i+1;]—j+1

8 s <

9

[« colvall[i];] < colval[/]
else if / > J then

10: Je—j+1

11:] « colvall/]
12: else

13: [—i+1

14: [« colvall[i]
15: endif

16: end while
17: return out

Figure 5.2: Up-looking ICHOL (®)in CSR format. We present an algorithm that
computes a Cholesky factorization of a lower triangular matrix in CSR format,
in-place. The up-looking factorization greatly improves the spatial locality.

7

Definition 11. Given a multiscale supernodal aggregation, a coarse-to-fine [fine-to-
coarse | multiscale supernodal ordering is any ordering of the underlying points in
which points assigned to the same supernode appear consecutively the supernodes
are ordered by scale, coarse-to-fine [fine-to-coarse|. We define the row-supernodal
sparsity pattern S~, column-supernodal sparsity pattern S\, and two-way-supernodal

sparsity pattern St as
S ={@) 1Fi~i:Gj)eS}c{l,....,N}x{l,....,N} (5.7)
St={@ D13~ J: G, j)eSc{l,....,Nyx{1,...,N} (5.8)
St={@N1Fi~Tj~> TG)eSc{l,... N x{l,....,N}. (59

Anentry (7, j) or (7, 1) existing in S~ or S is to be interpreted adding all interactions
between elements of 7 and j to the original sparsity pattern. Similarly, an entry (7, j)
existing in St signifies that all interactions between elements of 7 and j have been
added to the sparsity pattern. This means that we increase the sparsity pattern S in
order to ensure that in each supernode all rows, all columns, or both share the same

sparsity pattern.

For a coarse-to-fine sparsity pattern S as described in Theorem and using a
multiscale supernodal aggregation with £(*) = ph¥, the triangle inequality implies

that the associated St (interpreted, by abuse of notation, as subset of / 2 satisfies
S cStc{@,))|dist(i,j) <4(p+1)}. (5.10)
Thus, passing to St preserves the asymptotic results on accuracy and complexity.

The benefit of using the supernodal ordering and sparsity pattern is that instead

of performing O (N log?(N)p*) element-wise operations on a sparse matrix with
O (N log(N)p?) nonzero entries, we can perform O (N logz(N)p_d) block-wise

operations on a block-sparse matrix with O (N log?(N) p_d) nonzero blocks. Since
the size of the blocks is approximately p? x p?, the resulting asymptotic complexity
is the same. However, the block-wise operations can be performed using optimized
libraries for dense linear algebra. In particular, they require only ~ p*¢ memory

accesses for every ~ p3 floating point operations.

We can readily adapt Algorithm 4 to this setting by letting nzval have matrices
as entries. To maximize spatial locality, we store these matrices consecutively in
column-major format, in a buffer of length },,cpzva1 #1rows(m) - #cols(m). Using
cholesky to denote the dense Cholesky factorization returning a lower triangular

matrix, the resulting algorithm is presented in Figure

78

Algorithm 6 In-place, up-looking, supernodal ICHOL () in CSR format

Input: NxN block-1. triang. Matrix L, as block-CSR with rowptr, colval,nzval

1: fori=1:Ndo

2: for j = rowptr[i] : (rowptr[i+1]—1) do

3 j « colval[/]

4: nzval[j] « nzval[j] — dot(i, j, rowptr, colval,nzval)
5: if j < i then

6: nzval[j] « nzval[j] / nzval[rowptr[j+ 1] — 1]

7: else

8: nzval[j] < cholesky(nzval[j])

9: end if

10: end for

11: end for

Algorithm 7 Alg. dot computes update as inner product of i-th and j-th row of L.

Input: Supernodal indices i and j and block-CSR with rowptr, colval,nzval

1: 1 « rowptr[i]

2:] « rowptr[/]

3: { « colvalli]

4: j « colval[J]

5: out «— 0

6: while 7, ; < min (i, j) do

7

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

if / == j then

out « out +nzval[i]"T *nzval[/]

le—i+1

[« colval[i]

Je—Jj+1

] « colvall[/]
else if / > J then

Je—j+1

] « colvall/]
else

[—i+1

[< colval[i]
end if

20: end while
21: return out

Figure 5.3: Up-looking supernodal ICHOL(®)in CSR format. We only need
to replace the square root with Cholesky factorization in Algorithm 4 and add a
transpose in Algorithm 5 to obtain a supernodal factorization.

79
5.2.3 Multicolor ordering

We will now address the parallel implementation of Algorithms 4 and 6, focusing on
shared memory parallelism. The key observation is that depending on the sparsity
pattern, many iterations of the outermost for-loop of Algorithms 4 and 6 can be
performed in arbitrary order, and in particular in parallel, without changing the

result.

Definition 12. A set of indices J C {1,..., N} is pairwise independent under the
sparsity pattern S, if {(i,j) | i,j € J} NS =0.

If a consecutive set of indices is mutually independent, the corresponding iterations

of the outermost for-loops of Algorithms 4 and 6 can be performed in parallel.

The amount of parallelism afforded by this mechanism depends strongly on the
order of the degrees of freedom. This has motivated the development of multicolor
orderings 3, 4, 74,] that attempt to maximize the size of consecutive mutually
independent sets of indices. A downside of these techniques, which were designed
for the preconditioning of linear system, is the orderings that lead to the largest
amount of parallelism often do not achieve a good preconditioning effect. This
limitation has led [50] to develop altogether different, asynchronous, and iterative

approaches.

A key advantage of the method presented is this chapter is that its exponential
accuracy holds for an arbitrary ordering of the degrees of freedom on each scale.
This allows us to greatly increase the amount of parallelism by adopting a multiscale,

multicolor ordering of the supernodes.

Construction 2 (Multiscale multicolor ordering). Within each level, we initialize
each (supernodal) index uncolored. We then greedily select a maximal set of
uncolored and pairwise independent, with respect to S (S*) indices and assign a
new color to them. We proceed until every index is colored and order the indices

within each level by color.

In the setting of Theorem 17, the number of required colors is O (log(N)p?) when
coloring individual entries and O (log(N)) when coloring supernodes, leading to

practically unlimited amounts of parallelism for large problems.

80

5.3 Implementation of ICHOL (®) for sparse stiffness matrices

5.3.1 Limitations of two-way supernodes

We now shift our attention to the case of Theorem |7 where we want to compute
the sparse Cholesky factorization of the exponentially decaying inverse A := @~!
using a fine-to-coarse ordering. These matrices appear in the rigorous approach for
computing with sums of Gaussian processes outlined in Section ssec:noise and serve
as a model for the behavior of stiffness matrices arising from Galerkin discretization
of the differential operator L. Since we typically have explicit access to the sparse
input matrix A in these applications, we will almost always use the incomplete
Cholesky factorization as a preconditioner in conjunction with conjugate gradient
(CG) [218]. By increasing the value p, we can improve the convergence speed at

the cost of an increasing cost of factorization and of applying the preconditioner.

For smaller values of p, we can get decent results with a fairly simple implemen-
tation using Algorithm 4 combined with the multicolor ordering as described in
Construction 2. On an Nvidia GPU with sufficient amounts of RAM, we can even
use the parallelized implementation of Algorithm 4, as well as sparse variants of
Algorithm 2 provided as part of the cuSPARSE library [179, Algorithm 2].

For larger p, supernodal approaches necessary to obtain state-of-the-art perfor-
mance. Unfortunately, applying two-way supernodes to the fine-to-coarse sparsity
pattern of Theorem |7 degrades the asymptotic complexity of the algorithm. In this
setting and in the limit of large N, the nonzero entries introduced by St cannot be
accounted for by any finite increase of p. Thus, two-way supernodes increase the
computational complexity by a factor log?(N), making them a suboptimal choice

for large problems.

5.3.2 Column supernodes

In order to avoid the degradation of asymptotic complexity while still reaping the
benefits from dense matrix operations, we are going to use “one-way’ column
supernodes with sparsity pattern S!. This is, in fact, what is usually understood by

the term supernodal Cholesky factorization [64].

We will store our matrix L as a tuple (colptr(S'),rowval(S'),nzval(S',L))
where colptr is a vector of N + 1 integers, rowval is a vector of #S! integers, and
nzval is a vector of N matrices. If the j-th supernode has n degrees of freedom
associated to it and the j-th column of S! has m nonzero rows where we have

nzval[k] € R™". rowval[colptr[j] : (colptr[j + 1] — 1)] returns the list of

81

nonzero rows of the j-th supernodal column and nzval|] stores all of its nonzero
values, in a row-major ordering. Note that if each supernodal column only contains
a single column, this reduces to the compressed sparse column format. We will now
present the popular left-looking column-supernodal Cholesky factorization. Here,
for any supernodal index j, members(j) returns the vector of degrees of freedom
that are assigned to j. For a vector I of degrees of freedom and a supernode j,
rows (/) returns the indices of the rows innzval][j] that correspond to members of /.
Finally, for a supernodal index j, parents() returns the list of supernodes ordered
before j (excluding j) that have at least one nonzero row i, for which i ~» j. The
left-looking column-supernodal factorization is presented in Algorithm 8. While
this algorithm requires some indexing into the supernodes, the majority of the work

is done by calling dense linear algebra routines in Lines 5 and ©.

Algorithm 8 Left-looking, column-supernodal ICHOL (0)
Input: Column-supernodal block-lower triangular Matrix L with N supernodes

1: for j=1:Ndo

2: for j € parents[j] do

3 I « rowval[colptr[/]: (colptr[j+1]-1)]

4: I « rowval[colptr[j] : (colptr[j+1] = 1)]

5: in < nzval[j][rows(j,1N1),:]

6 out « in * (nzval[j][rows(j, members(;j) N 1)])T

7 nzval[j][rows(j, I N T), rows(j, members(j) N1i)] « nzval[j] - out
8 end for

nzval[j] < nzval[j]/cholesky(nzval[j][members(j),:])"

10: end for

5.3.3 Parallelism with column-supernodes

Just like in the case of the up-looking Cholesky factorization, any set of consecutive
supernodes that is pairwise independent under the sparsity set S* can be treated in
parallel in the outermost for-loop in Algorithm 8. Just as before, the number of
required colors is O (log(N)p?) when coloring individual entries and O (log(N))
when coloring supernodes, leading to practically unlimited amounts of parallelism

for large problems.

5.4 Proof of stability of ICHOL (0)
5.4.1 Overview
Theorem |7 implies that the application of Algorithm 3 to a suitable O (€)-perturbation

©® — E returns an O(€)-accurate Cholesky factorization of ® in computational com-

82

plexity O(N log?(N) log??(N/€)). In practice, we do not have access to E, so we
need to rely on the stability of Algorithm 3 to deduce that ® and ® — E (used as
inputs) would yield similar outputs for sufficiently small £. Even though such a
stability property of ICHOL (®) would also be required by prior works on incomplete
LU-factorization such as [94], we did not find this type of result in the literature. We
also found it surprisingly difficult to prove (and were unable to do so) when using
the maximin ordering and sparsity pattern, although we always observed stability of

Algorithm 3 in practice, for reasonable values of p.

The key problem is that the standard perturbation bounds for Schur complements
are multiplicative. Therefore, applying them N times (after each elimination) results
in a possible growth of the approximation error that is exponential in N and cannot

be compensated for by a logarithmic increase in p.

However, we have already seen in Section 5.2 that when using a supernodal multi-
color ordering, the incomplete Cholesky factorization can be expressed in a smaller
number of groups of independent dense linear algebra operations. In this section,
we are going to prove rigorously that the number of colors used by the multicolor
ordering is upper bounded as O (log(/N)) and that this allows us to control the
approximation of the supernodal factorization by only invoking O (log(N)) Schur
complement perturbation bounds. Therefore, the error amplification is polynomial
in N and can be controlled by choosing p % log(N). By relating ordinary and
supernodal Cholesky factorization, we are able to deduce the same error bounds for
the ordinary Cholesky factorization when using a supernodal multicolor ordering

and sparsity pattern.

5.4.2 Revisiting the supernodal multicolor ordering
We begin by reintroducing the supernodal multicolor ordering of Section in

slightly different notation.
Forr >0,1 <k <gandie€ JO) write

BX (i) = {j e J® | d(i, j) < r). (5.11)

Construction 3 (Supernodal multicolor ordering and sparsity pattern). Let ® € R/
with I = Jj<r<4 J® and let d(-, -) be a hierarchical pseudometric. For p > 1,

define the supernodal multicolor ordering <, and sparsity pattern S, as follows. For

83

eachk € {1,...,q}, select a subset J*) c J* of indices such that
T 7 =k T, 07 (k) (k)
Vi, jeJ®, i#] = B\ ()nB)(])=0, (5.12)
Vie JW, FHeJP:ieBY (D). (5.13)

Assign every index in J*®) to the element of J*®) closest to it, using an arbitrary
method to break ties. That is, writing j ~> | for the assignment of j to |,
J € argmind (j,]') , (5.14)

jreito

forall j € J% and | € J® such that j ~> . Define I = Ui<k<q J®) and define
the auxiliary sparsity pattern S b C I x 1 by

Sp={(l,j) e IxJ|Ti~ij~ j:di,j)<p}. (5.15)
Define the sparsity pattern S, C I X I as
Sp={G,j))elxI|3jel:i~ij~ J,(i.]) €S} (5.16)

and call the elements of J*) supernodes. Color each j € J%® in one of p®) colors
such that no i,] € J® with (i,7) € S, have the same color. Fori € J®) write
node(i) for the i € JX) such that i ~> [and write color(i) for the color of i. Define

the supernodal multicolor ordering <,, by reordering the elements of I such that

(1) i<, jforieJ®, jetDandk <I;

(2) within each level J*®), we order the elements of supernodes colored in the
same color consecutively, i.e. given i, j € J® such that color(node(i)) #
color(node(j)), i <, j = i’ <, j’ for color(node(i’)) = color(node(i)),
and color(node(j')) = color(node(j)), and

(3) the elements of each supernode appear consecutively, i.e. given i,j € J®
such that node(i) # node(j), i <, j = i’ <, j' for node(i’) = node(i),
and node(j') = node(j).

Starting from a hierarchical ordering and sparsity pattern, the modified ordering and

sparsity pattern can be obtained efficiently:

Lemma 14. In the setting of Examples | and 2, given {(i,j) | d(i,j) < p},
there exist constants C and pmax depending only on the dimension d and the cost of
computing d(-, -) such that the ordering and sparsity pattern presented in Construc-
tion 3 can be constructed with p®) < puax, for each 1 < k < g, in computational

complexity Cgp?N.

84

Proof. The aggregation into supernodes can be done via a greedy algorithm by
keeping track of all nodes that are not already within distance p/2 of a supernode
and removing them one at a time. We can then go through p-neighbourhoods and
remove points within distance p/2 from our list of candidates for future supernodes.
To create the coloring, we use the greedy graph coloring of [125] on the undirected
graph G with vertices J¥) and edges {(7,) € S, |7,/ € J®}. Defining deg(G)
as the maximum number of edges connected to any vertex of G, the computational
complexity of greedy graph coloring is bounded above by deg(G)# (J (k)) and the
number of colors used by deg(G) + 1. A sphere-packing argument shows that
deg(G) is at most a constant depending only on the dimension d, which yields the

result. O

5.4.3 Proof of stability of incomplete Cholesky factorization in the supernodal
multicolor ordering

We will now bound the approximation error of the Cholesky factors obtained from

Algorithm 3, using the supernodal multicolor ordering and sparsity pattern described

in Construction 3. For i, j € I, let 05 H be the submatrix (©;;) and let VM be

ici,jej
the (dense and lower-triangular) Cholesky factor of a matrix M.
Algorithm 3 with supernodal multicolor ordering <, and sparsity pattern S, is
equivalent to the block-incomplete Cholesky factorization described in Algorithm

where the function Restrict!(®, S,) sets all entries of ® outside of S, to zero.

Algorithm 9 Supernodal incomplete Cholesky factorization

Input: ® € R symmetric
Output: L € R™/ lower triangular

Restrict!(®,S,)
fori € I do
L:,f — @2’;/\/@1—
for j57:(i,j)eSdo
for k= j: (k,0),(k,j) e Sdo
Op 7« Op 7~ Op:(0;)7'0;;
end for
end for
end for
return L

85

We will now reformulate the above algorithm using the fact that the elimination of
nodes of the same color, on the same level of the hierarchy, happens consecutively.
Let p be the maximal number of colors used on any level of the hierarchy. We
can then write I = Uj<r<41<1<p J&D “where JD is the set of indices on level k
colored in the color [. Let ©x) (m,n) be the restriction of © to J (D) s gomm and
write (m,n) < (k,l) < m < kor(m = kandn < [). We can then rewrite

Algorithm 9 as:

Algorithm 10 Supernodal incomplete Cholesky factorization

Input: ® € R symmetric
Output: L € R™ lower triangular

for1 <k <gqgdo
for1 </ <pdo
Restrict!(0®,S),)

.
L.y k) < O, (k) /O WD), (k1)

© — © -0k (O k) O, (e
end for
end for
return L

Forl <k <¢q,1 <l < pand amatrix M € R with M.y imnys M(m.n),(.,-) = 0 for
all (m,n) < (k,1),letS [M] be the matrix obtained by applying Restrict!(M,S,)
followed by the Schur complementation M «— M—M. .) (k. (M(k,l),(k,l))_l M-
We now prove a stability estimate for the operator S. Let My (,,) be the restriction
of a matrix M € R to J(K) x jmn)

Lemma 15. For 1 < k° < gand1 < 1° < p let ®, E € R™! be such that
@(;,;),(m,n),@(m,n),(;,;) =0 forall (m,n) < (k°,1°), (5.17)

and (writing ®y; for the J &) % JO submatrix of ® and Amax for maximal singular

values) define

Amin = /lmin(®k°,k°)a Amax = max /lmax(®k°,k)- (5.18)
k°<k<q

If

/l .
max ||Egillro < € < =, (5.19)
°<k,l<q

k 2

86

then the following perturbation estimate holds:

3 /lmax /lrznax
_ (3 P
(max [(ste] - sfe+ £1),, Fro_(2+2/1min+8/lr2nin e (520

Proof. Write ®, E for the versions of ©, E set to zero outside of S p- Fork® < k,l <
q,

(S[®+E] - S[®])x, (5.21)
~ ~ ~ ~ ~ ~ _1 ~ ~
= @k’l + Ek,l - (@ + E)k,(ko,lo) (@ + E)(ko’lo),(ko’lo) (@ + E)(ko,lo),l (522)
~ Ok + ék,(k",lc’)é(_li°,l°),(k°,l°)é(k",l"),l (5.23)
~ ~ ~ ~ ~\—1 ~ =~ _1 ~ ~
=Eri+(©+ E)k,(k°,l°) (©+E) (ko,ZO),(ko,ZO)E(k",l"),(k°,l°)®(k°,z°),(ko,zo) (0+E) (k°,1°),1
(5.24)
. - - . - .
_ (@ + E)k,(ko,l°)®(k°,l°),(k°,l°) (@ + E) (k°,1°),1 + ®k,(k°,l°)®(k°,l°),(k°,l°)®(k°,lo)al
(5.25)
~ ~ ~ ~ ~\ —1 ~ =~ _1 ~ ~
=Eri+(0+ E)k,(k°,l°) (0+E) (ko 19y, (ke 12y E (ke.10) (k219 O (o 1oy (ko 1oy (O+E) (k°,1°),1
(5.26)
~ | & = =1 ~
= Ek, (k2,190 (ko 1oy (ko 1) O (k1)1 = O, (k2,12) O o oy (ko 1oy E (ko191 (5.27)
- Ek,(ko,lo)éf,io,,o),(ko,lo)E(ko,lo),z, (5.28)
where the second equality follows from the matrix identity
(A+B)'=A"'-(A+B)'BA™". (5.29)

Now recall that, for all A € R™™ B € R™, ||M|| < |[M|lro and ||AB|pr0 <
|A||| Bllfro. Therefore, ||(A + E)~Y| < 2/Amin and ||A + E|| < 2Amax. Combining

these estimates and using the triangle inequality yields

|(S[A +E] = S[ADku|yq (5.30)
/lrznax /lmax
< I Ekallero + 821 Exe ke llpro + = (Il Exatllfro + 1 Evi lIFro) (5.31)
min min
+ Aot I Ek ke llFro || Eke 1 llEeo (5.32)
A2 A
< [1+8F= +2=7F + i (5.33)
min min /lmin
3 Amax A2
< (— +2 8%) €. (5.34)
2 /1min /lmin

87

Recursive application of the above lemma gives a stability result for the incomplete

Cholesky factorization.

Lemma 16. For p > 0, let <, and S, be a supernodal ordering and sparsity
pattern such that the maximal number of colors used on each level is at most p.
Let L be an invertible lower-triangular matrix with nonzero pattern S » and define
M = L5 L5, Assume that M satisfies Condition 2 with constant k. Then there
exists a universal constant C such that, for all 0 < € < 2;2’%% and all E € R™¥!
with || E |lpro < €,

M — L5 L5% 7| < g*(Ck)*Pe, (5.35)
Fro

where L) is the Cholesky factor obtained by applying Algorithm 10 to M + E.
Proof. The result follows from applying Lemma 15 at each step of Algorithm 10. O

5.4.4 Conclusion

Using the stability result in Lemma 16, we can finally prove that when using the
supernodal multicolor ordering and sparsity pattern incomplete Cholesky factor-
ization applied to ® attains an e-accurate Cholesky factorization in computational
complexity O (N log?(N) logZd(N/e)).

Theorem 18. In the setting of Examples | and 2, there exists a constant C depending
only on d, s, | L|I,IL7l, h, and & such that, given the ordering <, and sparsity
pattern S, defined as in Construction 5 with p > Clog(N/e), the incomplete

Cholesky factor L obtained from Algorithm 3 has accuracy
ILL" = Ollfro < €. (5.36)

Furthermore, Algorithm 3 has complexity of at most CN p*? log2 (N) in time and at
most CNp?log(N) in space.

Proof of Theorem 5. Theorem 9 implies that by choosing p > Clog(N/e), there
exists a lower-triangular matrix L5 with ||® — L5 ZSP’T”FrO < € and sparsity pattern
S,. Theorem 7 implies that the Examples | and 2 satisfy Ayin > 1/poly(N).
Therefore, choosing p > Clog N ensures that € < ﬂ‘“‘"—z(@) and thus that ® :=
LS ST satisfies Condition 2 with constant 2Ce, where Cg is the corresponding

constant for ®. By possibly changing C again, p > C log N ensures that

/1min(®)
©242(Ck(6))""

88

where C is the constant of Lemma 16, since ¢ = log N and, by Lemma 14, p is
bounded independently of N. Thus, by Lemma 16, the Cholesky factor L5 obtained
from applying Algorithm 10 to © = © + (® — ©) satisfies

|6 — L L% 7|, < ¢* (4Ck)*” € < poly(N)e, (5.37)

where « is the constant with which ©® satisfies Condition 2 and the polynomial
depends only on C, k, and p. Since, for the ordering <, and sparsity pattern S,,,
the Cholesky factors obtained via Algorithms 3 and coincide, we obtain the

result. o

This result holds for both element-wise and supernodal factorization, in either its
left, up, or right-looking forms. As remarked in Section , using the two-way
supernodal sparsity pattern for factorization of ®! in the fine-to-coarse ordering
degrades the asymptotic complexity. Therefore, the above result does not immedi-
ately prove the accuracy of the Cholesky factorization in this setting, with optimal
complexity. However, the column-supernodal factorization described in Section
can similarly be described in terms of O (log(N)) Schur-complementations. Thus,
the above proof can be modified to show that when using the column-supernodal
multicolor ordering and sparsity pattern, ICHOL (0)applied to ®~! computes an
e-approximation in computational complexity O (N log(N/e)).

5.5 Numerical example: Compression of dense kernel matrices

5.5.1 Selection of the sparsity pattern and ordering

This section introduces an O(p¢N log® N)-complexity algorithm (Algorithm 11)
for computing the maximin ordering and sparsity pattern introduced in Section
This algorithm does not explicitly query the position of the {x;};c; and only uses
pairwise distances by processing points one by one by updating a mutable binary
heap, keeping track of the point to be processed at each step. With this approach,
our proposed algorithm is oblivious to the dimension d of the ambient space and,
in particular, can automatically exploit low-dimensional structure in the point cloud
{x:}ics. In order to avoid computing all O(N?) pairwise distances, Algorithm
uses the sparsity pattern obtained on the coarser scales to restrict computation at the

finer scales to local neighborhoods.

Theorem 19. The output of Algorithm || are the maximin ordering and sparsity

pattern described in Section 3.5, with starting set given by 0€2. Furthermore, in the

89

Algorithm 11 Ordering and sparsity pattern algorithm.

Input: Real p > 2 and Oracles dist(-, -),distgq(-) such that dist(i, j) = dist (x;,x;) and
distgg (i) = dist (x;, 0Q)

Output: An array /[:] of distances, an array P encoding the multiresolution ordering, and an array
of index pairs S containing the sparsity pattern.

24

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

37:
38:
39:
40:
41:
42:
43:
44

AN A ol

P=0
forie{l,...,N}do
[[i] « distga(i)
plil <0
cli] <0
end for
{Creates a mutable binary heap, containing pairs of indices and distances as elements: }
H « MutableMaximalBinaryHeap ({(i,[i])}ic(1,...N})
{Instates the Heap property, with a pair with maximal distance occupying the root of the heap:}

: heapSort!(H)

: {Processing the first index:}

: {Get the root of the heap, remove it, and restore the heap property: }
: (i,1) = pop(H)

: {Add the index as the next element of the ordering} push (P, i)
:forje{l,...,N} do

push(cli], j)

push(p[j].i)

sort! (c[i],dist(-,i))
decrease! (H, j,dist(i, }))

: end for
: {Processing remaining indices: }
: while H # 0 do

{ Get the root of the heap, remove it, and restore the heap property:} (i,1) = pop(H) £[i] « I

{Select the parent node that has all possible children of i amongst its children, and is closest
toi:}
k = argmin;c,;1.aist (i, jypeli) <pe(j] 15T ()
{Loop through those children of & that are close enough to k to possibly be children of i:}
for j € c[k] : dist(j, k) < dist(i, k) + pf[i] do

decrease! (H, j,dist(i,J))

if dist(i,j) < pl[i] then

push(c[i], j)
push(p[j],i)
end if
end for
{ Add the index as the next element of the ordering}
push (P, i)

{Sort the children according to distance to the parent node, so that the closest children can
be found more easily} sort! (c[i],dist(-,1))
end while
{ Aggregating the lists of children into the sparsity pattern: }
forie {1,...,N}do
for j € c[i] do
push! (S, (i, j))
push! (S, (j, /)
end for
end for

90

setting of Theorem |1, if the oracles dist(-, -) and distyq(-) can be queried in
complexity O(1), then the complexity of Algorithm 1] is bounded by Cp? N log® N,

where C is a constant depending only on d, Q and 6.

Theorem 19 is proved in Section . As discussed therein, in the case Q = RY,
Algorithm 11 has the advantage that its computational complexity depends only on

the intrinsic dimension of the dataset, which can be much smaller than d itself.

5.5.2 The case of the whole space (Q2 = R%)

Many applications in Gaussian process statistics and machine learning are in the
Q = R? setting. In that setting, the Matérn family of kernels () is a popular
choice that is equivalent to using the whole-space Green’s function of an elliptic
PDE as covariance function [248,]. Let Q be a bounded domain containing
the {x;}ic;. The case Q = R? is not covered in Theorem 9 and the resulting
theorems because in this case, the screening effect is weakened near the boundary
of Q by the absence of measurements points outside of Q. Therefore, distant
points close to the boundary of Q will have stronger conditional correlations than
similarly distant points in the interior of Q (see Figure 5.4). As observed by [207]
and [60], Markov random field (MRF) approaches that use a discretization of the
underlying PDE face similar challenges at the boundary. While the weakening
of the exponential decay at the boundary worsens the accuracy of our method, the
numerical results in Section (which are all obtained without imposing boundary
conditions) suggest that its overall impact is limited. In particular, as shown in
Figure 5.4, it does not cause significant artifacts in the quality of the approximation
near the boundary. This differs from the significant boundary artifacts of MRF
methods, which have to be mitigated against by careful calibration of the boundary
conditions [60),]. Although the numerical results presented in this section
are mostly obtained with x; ~ UNIF([0, 1]%), in many practical applications, the
density of measurement points will slowly (rather than abruptly) decrease towards
zero near the boundary of the sampled domain, which drastically decreases the
boundary errors shown above. Accuracy can also be enhanced by adding artificial
points {x;};.j at the boundary. By applying the Cholesky factorization to {x;};c;,7
and then restricting the resulting matrix to / X I, we can obtain a very accurate
approximate matrix-vector multiplication. This approximation can be efliciently
inverted using iterative methods such as conjugate gradient [2 18], preconditioned

with the Cholesky factorization obtained from the original set of points.

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

Figure 5.4: Weaker screening between boundary points. Left and center: i

-25

-5.0

-75

-10.0

-125

-15.0

I f ! N 1
0.00 0.25 0.50 0.75 1.00

-25
-5.0
-75
-10.0
-125

-15.0

exp(—2r)
. (LJJL,«J T]

ki

0.00 0.25 0.50 0.75 1.00 1.25
r= |z — 7]

91

'th

(left) and j th (center) column of the Cholesky factor L (normalized to unit diagonal)
of ® in maximin ordering, where x; is an interior point and x; is near the boundary.

Although [[i] is of the order of /[j], the exponential decay of L. ; near the boundary

is significantly weakened by the absence of Dirichlet boundary conditions. Right:
approximate correlations {(Lp LP T j} ey (With p = 3.0) and true covariance func-

tion exp(—2r) with r = |x; — x;|. Correlations between x; and remaining points are
captured accurately, despite the weakened exponential decay near the boundary.

92

5.5.3 Nuggets and measurement errors
In the Gaussian process regression setting it is common to model measurement error

by adding a nugget o-*1d to the covariance matrix:
0 =0+0%d. (5.38)

The addition of a diagonal matrix diminishes the screening effect and thus the
accuracy of Algorithm 3. This problem can be avoided by rewriting the modified
covariance matrix © as

0 =0(c?A +1d), (5.39)

where A := ©~!. As noted in Section , A can be interpreted as a discretized
partial differential operator and has therefore near-sparse Cholesky factors in the
reverse elimination ordering. Adding a multiple of the identity to A amounts to
adding a zeroth-order term to the underlying PDE and thus preserves the sparsity of

the Cholesky factors. This leads to the sparse decomposition
©=LL"PILLTPY, (5.40)

where P! is the order-reversing permutation and L is the Cholesky factor of P! (o2 A+
Id)P*. Figure shows that the exponential decay of these Cholesky factors is
robust with respect to o.

5.5.4 Numerical results

We will now present numerical evidence in support of our results. All experiments
reported below were run on a workstation using an Intel®Core™i7-6400 CPU with
4.00GHz and 64 GB of RAM, without using parallelism. In the following, nnz(L)
denotes the number of nonzero entries of the lower-triangular factor L; fsortsparse
denotes the time taken to compute the maximin ordering < and sparsity pattern S,
using Algorithm | 1; fgntries denotes the time taken to compute the entries of ® on
Sp; and f1cHoL (o) denotes the time taken to perform 4 (ICHOL (0)), all measured in

seconds. The relative error in Frobenius norm is approximated by

AT vl -e), I

, (5.41)
@ T Y
|| ”Fo 1:1:1 ||®ikjk||2

where the m = 500000 pairs of indices iy, jx ~ UNIF(/) are independently and
uniformly distributed in /. This experiment is repeated 50 times and the resulting

mean and standard deviation (in brackets) are reported. For measurements in [0, 1]¢,

93

Figure 5.5: (Lack of) robustness to varying size of the nugget. We plot the
log,, of the magnitude of the Cholesky factors of ® + o->Id in maximin ordering
(first column) and of A + o2 in reverse maximin ordering (second column). As
we increase o2 € [0.0,0.1, 1.0, 10.0] from left to right the decay of the Cholesky
factors of ® + o-2Id deteriorates, and that of the factors of A + o2Id is preserved.

94

2000 |- + [}
@ d=2 -2F s @ E:d—2v-10
+d=3 Q@ F:d=2v=10
1500 - sl 4+ Eid=3.v=05
N + E:d=3,vr=05
P~ o.
) o
ek S
+ 1000} 5 8.
* S 1 o
Z st L
: e
500 . .
* -6 °
+ i -1 °
Otesd-o—~o " 7 ‘ . ‘ Sl . . °
0 5.0x10° 1.0x10® 15x10° 2.0x10° 25x10° 2 4 6 8
N 14
1.00F 1.00F
Gl x;) Glx;.x;)
& p=20 & p=20
0.751 0.751 p=30
0.20
0.18 by
0.50 0.50 iy,
0.16 g,
i
014 R 1
0251 025} 0.12
035 036 037 038 039 040
0.001 0.001
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
| — ;] i — ;]

Figure 5.6: Accuracy and computational cost. First panel: the increase in com-
putational time taken by the Cholesky factorization, as N increases (for p = 3.0).
Second panel: the exponential decay of the relative error in Frobenius norm, as p is
increased. In the third (d = 2) and fourth panel (d = 3), we see the comparison of
the approximate and true covariance for p = 2.0 and p = 3.0.

in order to isolate the boundary effects, we also consider the quantity £ which is
defined as E, but with only those sample iy, ji for which x;,,x;, € [0.05, 0.95]¢.
Most of our experiments will use the Matérn class of covariance functions [167],
defined by

GMatern

(x,y) = (5.42)

21 (Vv —y1\" o (V2 -
C(v) l Y l ’

where K, is the modified Bessel function of second kind [I, Section 9.6] and
v, | are parameters describing the degree of smoothness, and the length-scale of
interactions, respectively [203]. In Figure 5.7, the Matérn kernel is plotted for
different degrees of smoothness. The Matérn covariance function is used in many
branches of statistics and machine learning to model random fields with finite order

of smoothness [109,].

As observed by [248,
PDE of possibly fractional order 2(v + d/2) in the whole space. Therefore, for

], the Matérn kernel is the Green’s function of an elliptic

2(v +d/2) € N, the Matérn kernel falls into the framework of our theoretical

95

1.00¢ |
—v=05 oL —v=05
v=1.0 ' v=1.0
075_ \. a— 15 /;; 0 \\\'”'""— — | v = 15
050 1 v=20 ’55 -2f |ov=20]
: / N a4
% NS 2 -6t
0.25¢ ~
. 8-
oot . 105502000 6000 8000
“15-1.0-05 00 05 1.0 15 9

Figure 5.7: The Matérn class of covariance functions. Matérn kernels for different
values of v (left), and the spectrum of ®, for 2000 points x; € [0, 1]? (right). Smaller
values of v correspond to stronger singularities at zero and hence lower degrees of
smoothness of the associated Gaussian process.

Table 5.1: GM™ with v = 0.5,1=0.2, p = 3.0, and d = 2.

N nnz(L) /N2 rank (L) IsortSparse fEntries [ICHOL(®) E E

20000 5.26e-03 20000 0.71 0.81 0.42 1.25e-03 (3.68e-06) 1.11e-03 (3.01e-06)
20000 5.26e-03 20000 0.71 0.81 0.42 1.25e-03 (3.68e-06) 1.11e-03 (3.01e-06)
40000 2.94¢-03 40000 1.21 1.19 1.00 1.27e-03 (3.32e-06) 1.12e-03 (3.56¢-06)
80000 1.62e-03 80000 2.72 2.82 2.55 1.30e-03 (3.20e-06) 1.21e-03 (3.29e-06)
160000 8.91e-04 160000 6.86 6.03 6.11 1.28e-03 (3.57e-06) 1.16e-03 (3.32¢-06)
320000 4.84e-04 320000 17.22 13.79 15.66 1.23e-03 (3.19¢-06) 1.11e-03 (2.40e-06)
640000 2.63e-04 640000 41.40 31.02 36.02 1.24e-03 (2.58e-06) 1.09¢-03 (3.02e-06)
1280000 1.41e-04 1280000 98.34 65.96 85.99 1.23e-03 (3.72e-06) 1.10e-03 (3.74¢-06)
2560000 7.55e-05 2560000 233.92 148.43 197.52 1.16e-03 (2.82e-06) 1.04e-03 (3.36e-06)

results, up to the behavior at the boundary discussed in Section

Since the

locations of our points will be chosen at random, some of the points will be very close
to each other, resulting in an almost singular matrix ® that can become nonpositive
under the approximation introduced by ICHOL(0). If Algorithm 3 encounters a
nonpositive pivot A;;, then we set the corresponding column of L to zero, resulting
in a low-rank approximation of the original covariance matrix. We report the rank of
L in our experiments and note that we obtain a full-rank approximation for moderate

values of p.

We begin by investigating the scaling of our algorithm as N increases. To this
end, we consider v = 0.5 (the exponential kernel), [= 0.2 and choose N randomly
distributed points in [0, 1]¢ for d € {2,3}. The results are summarized in Tables

and

, and in Figure 5.6, and confirm the near-linear computational complexity of

our algorithm.

Next, we investigate the trade-off between the computational efficiency and accuracy

of the approximation. To this end, we choose d =2, v =1.0and d = 3, v = 0.5,

96

Table 5.2: G with v =0.5,1=0.2,p =3.0,and d = 3.

N nnz(L) /N2 rank(L) ISortSparse IEntries TICHOL (0) E E
20000 1.30e-02 20000 1.61 1.44 2.94 1.49¢-03 (5.00e-06) 1.20e-03 (5.09¢-06)
40000 7.60e-03 40000 3.26 3.32 8.33 1.21e-03 (4.29¢-06) 9.91e-04 (3.72e-06)
80000 4.35e-03 80000 7.46 7.64 22.46 1.06e-03 (3.74e-06) 8.51e-04 (2.93e-06)
160000 2.45e-03 160000 20.95 18.42 57.64 9.81e-04 (2.33e-06) 7.88e-04 (3.23e-06)
320000 1.37e-03 320000 53.58 40.72 141.46 9.27e-04 (2.26e-06) 7.53e-04 (2.72e-06)
640000 7.61e-04 640000 133.55 96.67 350.10 8.98e-04 (3.25e-06) 7.25e-04 (3.02e-06)
1280000 4.19¢-04 1280000 312.43 212.57 820.07 8.59e-04 (2.79¢-06) 7.00e-04 (2.87e-06)
2560000 2.29e-04 2560000 795.68 480.17 1981.92 8.96e-04 (2.76e-06) 7.73e-04 (4.28e-06)
Table 5.3: Glyftem, withv =1.0,1=0.2, N = 10°, and d = 2.
Ill’lZ(L)/N2 rank (L) ISortSparse IEntries TICHOL (0) E E
p=20 8.78e-05 254666 38.06 33.72 17.54 2.04e-02 (1.73e-02) 2.34e-02 (2.75e-02)
p=3.0 1.76e-04 964858 71.07 67.85 61.35 2.32e-03 (6.02e-06) 2.09e-03 (7.50e-06)
p=4.0 2.90e-04 999810 115.07 112.56 152.93 3.92e-04 (1.44e-06) 3.72e-04 (2.32e-06)
p=5.0 4.26e-04 999999 165.91 166.60 312.19 6.70e-05 (2.98¢-07) 5.68e-05 (2.55e-07)
p=6.0 5.83e-04 1000000 227.62 229.76 566.94 1.45e-05 (6.69¢-08) 1.08e-05 (5.01e-08)
p=17.0 7.59¢-04 1000000 292.52 300.65 944.33 4.05e-06 (4.96e-08) 2.10e-06 (1.69¢-08)
p=8.0 9.53e-04 1000000 363.90 380.07 1476.71 1.62e-06 (2.30e-08) 4.08e-07 (9.47e-09)
p=9.0 1.16e-03 1000000 447.47 467.07 2200.32 8.98e-07 (1.44e-08) 1.42e-07 (5.14e-09)
Table 5.4: G%atem, withv =0.5,1=0.2, N =10%, and d = 3.
‘ nnz(L)/N2 rank(L) ISortSparse IEntries TICHOL (0) E E

p=2.0 1.87e-04 998046 87.83 56.44 85.20 1.69e-02 (6.89e-04) 1.60e-02 (3.36e-04)
p=3.0 5.17e-04 1000000 226.84 158.42 599.86 8.81e-04 (3.21e-06) 7.15e-04 (2.99¢-06)
p=4.0 1.05e-03 1000000 446.52 326.27 2434.52 1.85e-04 (5.37e-07) 1.59e-04 (5.30e-07)
p=5.0 1.82e-03 1000000 747.65 567.06 7227.45 2.89¢-05 (1.94e-07) 1.84e-05 (1.15e-07)
p=6.0 2.82e-03 1000000 1344.59 928.27 17640.58 1.15e-05 (1.06e-07) 5.34e-06 (5.34e-08)

Table 5.5: We tabulate the approximation rank and error for p = 5.0 and N = 10°

points uniformly distributed in [0, 1]3. The covariance function is GMa€m

0.2 for v

ranging around v = 0.5 and v = 1.5. Even though the intermediate values of v
correspond to a fractional order elliptic PDE, the behavior of the approximation
stays the same.

‘ v=0.3 v=0.5 v=0.7 v=0.9 v=1.1 v=13 v=1.5 v=1.7

rank (L) 1000000 1000000 1000000 1000000 1000000 1000000 1000000 999893
E 7.04¢-05 2.89¢-05 2.49¢-05 3.58e-05 6.03e-05 8.77e-05 1.18e-04 1.46e-04
(3.98¢-07) (1.79¢-07) (1.11e-07) (1.19e-07) (2.37e-07) (3.06e-07) (4.52e-07) (5.39¢-07)

E 5.19¢-05 1.85e-05 1.77e-05 2.82e-05 4.88e-05 6.87e-05 9.06e-05 1.13e-04
(2.26e-07) (1.18e-07) (8.11e-08) (1.30e-07) (2.37¢-07) (3.50e-07) (5.14e-07) (5.45¢-07)

97

Table 5.6: Gfg‘j;hy for (I,a,B) = (0.4,0.5,0.025) (first table) and (I, a,B) =
(0.2, 1.0, 0.20) (second table), for N = 10% and d = 2.

p=2.0 p=3.0 p=4.0 p=5.0 p=06.0 p=7.0 p=28.0 p=9.0

rank (L) 999923 1000000 1000000 1000000 1000000 1000000 1000000 1000000
E 4.65e-04 5.98e-05 2.36e-05 1.19e-05 4.84e-06 4.17e-06 2.25e-06 1.42e-06
(4.23e-07) (1.56e-07) (9.53e-08) (6.32e-08) (4.14e-08) (4.99e-08) (1.86e-08) (1.64e-08)
E 3.81e-04 3.49e-05 9.83e-06 4.65e-06 1.47e-06 8.49¢-07 4.25e-07 2.12e-07
(4.98e-07) (1.59e-07) (5.56e-08) (2.63e-08) (7.73e-09) (1.04e-08) (4.81e-09) (3.24e-09)

p=2.0 p=3.0 p=4.0 p=5.0 p=06.0 p=7.0 p=28.0 p=9.0

rank(L) | 999547 1000000 1000000 1000000 1000000 1000000 1000000 1000000

E | 108e-03 1.36e-04 2.89-05 235¢-05 533e-06 3.25e-06 2.53e-06 1.68¢-06
(5.02¢-06) (6.27e-07) (2.63e-07) (3.01e-07) (6.15e-08) (5.74e-08) (4.84e-08) (4.25¢-08)
E | 723e-04 896e-05 1.17e-05 5.65e-06 1.09e-06 5.84e-07 4.03e-07 2.40e-07
(4.07e-06) (2.63e-07) (7.10e-08) (1.47e-07) (7.71e-09) (5.48e-09) (3.44e-09) (2.23e-09)

Table 5.7: G for v = 0.5, 1= 0.2, and p = 3.0 with N = 10° points chosen as
in Figure

§.=00 8.=01 6,=02 6,=03 8.=04 5.=05 6.=06

mAl) | 176e04 177e:04 178¢-04 180e-04 1.82e-04 1.84e04 1.85¢-04
tICHOLCO) 61.92 62.15 62.81 64.27 64.87 65.50 66.12

rank(L) | 1000000 1000000 1000000 1000000 1000000 1000000 1000000

E | 117e03 1.11e03 12803 160e-03 17203 1.89%-03 2.11e-03

(2.74e-06) (3.00e-06) (2.73e-06) (4.28e-06) (3.95e-06) (5.11e-06) (5.07e-06)

corresponding to fourth-order equations in two and three dimensions. We choose
N = 10° data points x; ~ UNIF([0, 1]¢) and apply our method with different values
of p. The results of these experiments are tabulated in Tables and and the

impact of p on the approximation error is visualized in Figure

While our theoretical results only cover integer-order elliptic PDEs, we observe no
practical difference between the numerical results for Matérn kernels corresponding
to integer- and fractional-order smoothness. As an illustration, for the case d = 3,
we provide approximation results for v ranging around v = 0.5 (corresponding to a
fourth-order elliptic PDE) and v = 1.5 (corresponding to a sixth-order elliptic PDE).
As seen in Table 5.5, the results vary continuously as v changes, with no qualitative
differences between the behavior for integer- and fractional-order PDEs. To further
illustrate the robustness of our method, we consider the Cauchy class of covariance

functions introduced in [95]

lx —y[*\ @
Gy (x,) = (1 + (Ty . (5.43)

As far as we are aware, the Cauchy class has not been associated to any elliptic PDE.
Furthermore, it does not have exponential decay in the limit |[x — y| — oo, which

allows us to emphasize the point that the exponential decay of the error is not due to

1.00 0.00 : 1.00 0.00

Figure 5.8: Manifold data. A two-dimensional point cloud deformed into a two-
dimensional submanifold of R?, with §, € {0.1,0.3,0.5}.

05 1o 10 05 10 10 10 10

Figure 5.9: A high-dimensional example. We construct a high-dimensional dataset
with low-dimensional structure by rotating the above structures at random into a 20-
dimensional ambient space.

Table 5.8: G%atém for v =0.5,1 = 0.5, and N = 10° points as in Figure

nnZ(L)/Nz rank(L) fsortSparse I!Entries !ICHOL(®) E

p=20 1.62e-04 997635 80.60 57.11 52.49 1.57e-02 (1.13e-03)
p=30 3.76e-04 1000000 173.86 135.61 248.78 2.88e-03 (1.14e-05)
p =40 6.76e-04 1000000 302.98 247.74 748.62 8.80e-04 (4.97e-06)
p=50 1.05e-03 1000000 462.98 397.42 1802.44 3.44e-04 (2.54e-06)
p=6.0 1.49e-03 1000000 645.56 556.72 3696.31 1.44¢-04 (8.76e-07)
p=170 2.02e-03 1000000 891.08 758.88 6855.23 7.61e-05 (5.66e-07)
p =80 2.62¢-03 1000000 1248.90 990.86 11598.66 4.57¢-05 (4.36e-07)

the exponential decay of the covariance function itself. Chapter 5.6 gives the results
for (I,a,B) = (0.4,0.5,0.025) and (/,a,8) = (0.2,1.0,0.2).

In Gaussian process regression, the ambient dimension d is typically too large to
ensure the computational efficiency of our algorithm. However, since our algorithm
only requires access to pairwise distances between points, it can take advantage of
the possibly lower intrinsic dimension of the dataset. We might be concerned that
in this case, interaction through the higher dimensional ambient space will disable
the screening effect. As a first demonstration that this is not the case, we will
draw N = 10° points in [0, 1]? and equip them with a third component according
to xl.(3) = -0, sin(6xl.(1)) cos(2(1 — xfz))) +&1073, for &; i.i.d. standard Gaussian.
Figure shows the resulting point sets for different values of ¢,, and Table

shows that the approximation is robust to increasing values of d;.

An appealing feature of our method is that it can be formulated in terms of the

99

pairwise distances alone. This means that the algorithm will automatically exploit
any low-dimensional structure in the dataset. In order to illustrate this feature,
we artificially construct a dataset with low-dimensional structure by randomly ro-
tating four low-dimensional structures into a 20-dimensional ambient space (see
Figure 5.9). Chapter shows that the resulting approximation is even better than
the one obtained in dimension 3, illustrating that our algorithm did indeed exploit

the low intrinsic dimension of the dataset.

5.6 Numerical example: Preconditioning finite element matrices

5.6.1 Overview

In this section, we describe applications of the methods in Section 5.3 to the stiffness
matrices arising from finite element discretizations of elliptic partial differential
equations. We interpret the stiffness matrix as A = ©~!, reorder the degrees
of freedom from fine to coarse analog to Example |, and apply ICHOL(0®). We
consider both a classical Poisson problem

{ =V (a(x)Vu(x)) = g(x), (5.44)
u(x) =0 Vx € 0Q
and a linear elasticity problem
p(x) _
HEAG) + 775,V - u() =) (5.45)

u(x) =0 Vx € 8.

putting particular emphasis on settings where the ill-conditioning of the differential
operator arises not only from the unboundedness of the differential operators V
and A, but also from the large variability in magnitudes of the conductivity a and
Young’s modulus u. On top of this high contrast, the coefficient fields are also
rough, meaning that they are not expected to have any degree of smoothness or even

continuity.

This violates the setting of our theoretical results in three ways:

1. Rather than with the inverse of a Galerkin discretization of £~!, we are

working with a discretization of £ itself.

2. While our theoretical results fully cover rough coefficients, the constants in
our estimates depend on £ and A, and are therefore expected to deteriorate in

the presence of high contrast.

100

p 20125]3035 |40
#iter averaging | 184 | 135 | 85 | 80 | 67
#iter subsampling| 433 | 278 | 134 | 117 | 72

Table 5.9: Averaging vs Subsampling. For homogeneous Poisson problems and
small values of p, averaging can improve the preconditioning effect compared to
subsampling.

3. We use a reordering akin to Example | as opposed to an averaging averaging
scheme as in Example 2 even though the Laplace operator (s = 1) with spatial

dimension d € {2, 3} violates the condition s > d/2 of Example

Regarding the first point, analog results could be derived by repeating the proofs of
Chapter 4 in the fully discrete setting. Regarding the second point, in agreement with
earlier numerical results by [188], we observe that the impact of unstructured high-
contrast coefficients on our method is far less severe than could be expected based
on the theoretical results in Chapter 4. We suspect that the impact of the contrast
on the accuracy of our method is highly dependent on the geometric structure of the
coeflicients. While there should be adversarial choices of geometry with devastating
effects, unstructured coeflicient fields seem to be surprisingly benign. Regarding
the third point, while the numerical homogenization results of Theorem break
down if the condition s > d/2 is violated, the exponential decay result does seem to
hold. For Poisson problems with slowly varying, low-contrast coefficients and small
values of p, we obseve that using an averaging scheme improves the preconditioning

effect, as shown in Table

On the other hand, in the presence of high contrast coefficients reordering according
to Example | tends to perform better than averaging according to Example 2 since
the resulting incomplete Cholesky factorization is less prone to encountering non-

positive pivots. We have no theoretical explanation for this empirical observation.

5.6.2 Accuracy and computational complexity

We begin by investigating empirically the sparsity of the Cholesky factors and the
scaling of the computational complexity of our factorization. In Figure , We
show the sparsity pattern for different p together with the approximation error. We
next investigate the computational time of computing the Cholesky factorization
and how it scales with N. As shown in the log-log plot in Figure , for fixed p,

our factorization achieves the linear scaling predicted by the theory.

density percentage LLT — Allrro/ 1A llFro ILLT) ™ = A~ lpro / I A~ lIFro lAu-gll2/llg 2
T T T T T T T T T T T T T T T T
B ol |
E 10° |— —
6 = n
= 4| - | = =
s 10 e e e
o b5} 107 b} 1 el o) |
41 & .
=1
S ;
2| & B R N 107¢ |- —| 10— —
of ! ‘P ! R ‘P ! I R ‘.0 !] "L ! \p ! \7
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Figure 5.10: Sparsity pattern, error and factor density. When computing the
factorization of a Laplacian on a 16k X 16k grid in the reverse maximin ordering
of Definition 6, the Cholesky factors are approximately sparse according to the
reverse maximin sparsity pattern of Definition 7, despite the condition s > d/2 of
Example | not being satisfied.

Exact sparse Cholesky factorization, as discussed in Section 3.2, is a strong competi-
tor for many practical two-dimensional problems. However, its superlinear scaling
of both time and space complexity limits its applicability to three-dimensional
problems. In Figure , we compare our method against the highly optimized
CHOLMOD library on series of three-dimensional problems of increasing size.
While CHOLMOD is superior for small problems, our method shows superior per-
formance on problems with N > 10%. We note that CHOLMOD has the advantage
that it is not impacted by the geometric structure and magnitude of the coefficients
and would therefore preserve its computational cost if we were to choose a more
challenging problem of the same size. Nevertheless, it becomes infeasible for truly

large-scale problems, while our method preserves its near-linear scaling.

5.6.3 Comparison with algebraic multigrid methods

A popular choice for solving elliptic partial differential equations are algebraic

multigrid method [41, 42,]. Where geometric multigrid methods [&1, ,
] use predetermined multiresolution schemes that are vulnerable to rough and

high contrast coefficients [20], algebraic multigrid methods use an operator-adapted

102

2D factorization 3D factorization

T T T T T T 2 T A |
. p=1.] 10 p=2.5 >]
100 o ,-80] ——p=35]
s | | B - A
E E]
100) g i - i
E L1 \// Lol E 100 ; L1 \// Lol ?

S5 6 S5 6

10 N 10 10 N 10

Figure 5.11: Scalability. In 2D and 3D, our IC factorization time matches the
expected O (N p?9) time complexity for a matrix size NxN and a sparsity parameter
p; the dashed line indicates a slope of 1 in this log-log plot.

multiresolution analysis. While this improves their performance on many problems,

rough coefficients with high contrast still pose challenges [7,].

We compare our method to the popular AMG implementations AMGCL [67] and
Trilinos [237]. For AMGCL, we chose the Ruge-Stiiben method [230] to construct
the hierarchy and sparse inverse approximation [102] for relaxation. For Trilinos,

we use smoothed aggregation [240] for coarsening and symmetric Gauss-Seidel for

relaxation.
factorization time (s) total time (s) memory cost (Gb)
T T T T T 111177 T T T T TTTTIT] T T T 171 T T T T TTTTIT] T T 119
10% | v E | Vo | ‘
i | 107} y 110t A
N 3 I | 1 e
10 E ’ ‘ E 101 ; , é /// |
i |] i 1100 / | E
]OO;\ | \\HH‘; E 100 Ll Lol T ol | \\HH‘; e
10° 109 10° 106 10° 109

Vs.
Figure 5.12: Direct vs. iterative solvers. For a 3D Poisson solve, CHOLMOD
scales non-linearly in the linear system size N for factorization time, total solve
time (which include factorization and back-substitution), and memory use, and fails
for N > 1M; instead, a PCG-based iterative solve using our preconditioner exhibits
consistent linear behaviors on all three measurements.

103

We begin our comparison on the Poisson problem () and the elasticity problem
() in two and three dimensions on a bimaterial generated by randomly assigned
stiff regions. The stiff regions form about 1/8 of the problem in two dimensions
and 1/64 of the problem in three dimensions. We refer to the ratio of coefficient
magnitudes in stiff and normal regions as the contrast. We furthermore investigate

examples on both regular and (uniformly) randomly generated grids.

Poisson
regular mesh irregular mesh
» - —— =l . - —— :n)
L e j" y b s e . 4 'I'AV
AN T Y
= = b A A AN\ 5 NEY
S >4 6 VAN 2 A
x-axis shows contrast (N =2 X 105 g= 1)
[time (s)] B F time (s)T T B 5 time (s)] T time (s)’
|] I 1 10% | E
10 |- 40| ER 1 /"‘
i i g 1 iﬂi 102 8
100 | | i 1 10! | E
b 0 L N r 1
Ll ! ! 1 107 | | ! ! B Ll ! ! N ! ! !
100 102 10 100 102 10* 100 102 10* 100 102 10*
x-axis shows size (contrast= 10", g=1)
7\t1me (S) T T T 1117 ‘ Bl 7\ tlme (s) T T T T 1717 ‘ : :\ time (s) T T T 1117 ‘ E 4 7\ tlme (S) T T T 1117 ‘]
" 1 10% E 5 1 10° ¢ E
10" | = B 1 10% = r]
B g 5 1 F 1 10% | E
I 1 10 B = [] R i
100 £ E / 10! 1 | 107 E
:\\ \\HH\: 100 Bl I [R = :\\ \\HH\E]OI ;\\ \\\\\\\7;
10° 106 10° 106 10° 100 10° 106
—— AMGCL
As we can see in Figure our method beats both of these methods in all problems

with the exception of Poisson problems on regular grids, where it is outperformed
by AMGCL.

In many applications, our method will be used repeatedly during the solution of a
nonlinear problem via implicit time-stepping or Newton’s method. In Fiture , We
use our method to accelerate computations in quasi-statics: We stretch an armadillo
model with about 340k nodes (thus over 1M degrees of freedom), for which each
tetrahedron is randomly assigned one of two neo-Hookean materials whose contrast
between Young’s moduli is 10*. In each step of our Newton descent to find the final

shape, we project the neo-Hookean elastic stiffness matrix to enforce semi-positive

104

Elasticity
regular mesh irregular mesh
—_— i e
Z = 4 = o R S — 7
= Ly y4 : SR e L 4 R l
Lom e s 4‘ > “ R A A ’ " \
e ZAAW L St ¥
oA ya \ LS RS AS A ™y b
x-axis shows contrast (N =2 x 10°, g=1)
5 time (s)] [time (s)] T B [time (s)' I] F time (s)] E!
1 E = [B []
' E E 7‘//) 103 = E [1
B 1108 | E B 110% / £
2 | | - : . B - :
o 1 0 |0tk ERN]
N] 5 | | E 1 10% E / E
10! E 4 10k ERPEE i F]
£l | | = £ | | N 10 EL | | E| C | | .|
100 102 10 100 102 10* 100 102 10 100 102 10*
x-axis shows size (contrast=10%, g=1)
104 g\tlme (S) T L ‘? :\ tlme) T T 1 1T 117 ‘ E 104 :\tlme (S) T L ‘j :\ tlme (S) T T 1 T 117 ‘ E
0 L o0t 1 EI :
g 1 10% 4103 | .
2L 1 10° B E F 1 B 1
- 1 1102 1 e]
1L 1 e b _ B 1 02 L N
10 E £ 10 E 110! | . 10 g g
Lol Lol il [Erl Lol g | Lol d
10° 106 10 100 10° 106 10° 106
—— AMGCL

Figure 5.12: Comparisons with AMG libraries.. Figures indicate time costs
(including factorization and PCG iteration times) as a function of material contrast.
Our method is much less sensitive to contrast and problem size, and is particularly
efficient when the size N becomes large and/or for bad condition numbers. For our
method, timings are within the orange region depending on the actual value of p,
for which we used the range [6.5,8.5] in 2D and [2.5,4.0] in 3D. All meshes are
generated by Delaunay triangulation.

definiteness [234]. The linear solves of the Newton descent exhibit a 2.5 speedup

on average compared to AMGCL, with larger speed-ups for smaller error tolerances.

105

Our method — AMGCL

|
—_

| potenial engrgy value

-6

| | |
-02 0 02 04 06 038 1 1.241.4 16 1.8 2 22 24
time (10 s)

Figure 5.13: Nonlinear quasi-statics. An armadillo is stretched via lateral gravity
with a few nodes (marked in black) fixed at their initial position. We use a trust
region nonlinear optimization algorithm involving the solution of a linear system
using our IC preconditioner or AMGCL at each step; timing of the first 20 iterations
are plotted.

106
Chapter 6

CHOLESKY FACTORIZATION BY KULLBACK-LEIBLER
MINIMIZATION

6.1 Overview

6.1.1 Factorizing ©~' from entries of ®

In this chapter, we propose to compute a sparse approximate inverse Cholesky factor
L of ®, by minimizing with respect to L and subject to a sparsity constraint, the
Kullback-Leibler (KL) divergence between two centered multivariate normal distri-
butions with covariance matrices ® and (LLT)~!. Surprisingly, this minimization
problem has a closed-form solution, enabling the efficient computation of optimally

accurate Cholesky factors for any specified sparsity pattern.

The resulting approximation can be shown to be equivalent to the Vecchia approxi-
mation of Gaussian processes [24 |], which has become very popular for the analysis
of geospatial data (e.g., [62, , , , , 1); to the best of our knowledge,
rigorous convergence rates and error bounds were previously unavailable for Vecchia
approximations, and this work is the first one presenting such results. An equiva-
lent approximation has also been proposed by [133] and [141] in the literature on
factorized sparse approximate inverse (FSAI) preconditioners of (typically) sparse
matrices (see e.g., [33] for areview and comparison, [5] for an application to dense
kernel matrices); however, its KL-divergence optimality has not been observed be-
fore. KL-minimization has also been used to obtain sparse lower-triangular transport
maps by [166]; while this literature is mostly concerned with the efficient sampling
of non-Gaussian probability measures, the present work shows that an analogous
approach can be used to obtain fast algorithms for numerical linear algebra if the

sparsity pattern is chosen appropriately.

6.1.2 State-of-the-art computational complexity

The computational complexity and approximation accuracy of our approach depend
on the choice of elimination ordering and sparsity pattern. When @ is the covariance
function of a Gaussian process that is subject to the screening effect, we propose
to use the reverse maximin ordering and sparsity pattern proposed in Definitions
and 7. By using a grouping algorithm similar to the supernodes of Chapter 5 and

the heuristics proposed by [83, ,], we can show that the approximate inverse

107

Cholesky factor can be computed in computational complexity O(Np?“) in time
and O(Np“) in space, using only O(Np?) entries of the original kernel matrix ®,
where p is a tuning parameter trading accuracy for computational efficiency.

In settings where Theorem 10 on the exponential decay of ®~! holds, it allows us
to prove that the approximation error decays exponentially in p. In this setting, we
can thus compute an e-approximation of ® in complexity O (N log?¢ (N/ e)) by
choosing p ~ log(N/e). This is the best known trade-off between computational
complexity and accuracy for inverses of Green’s matrices of general elliptic boundary

value problems.

6.1.3 Practical advantages

Our method has important practical advantages complementing its theoretical and
asymptotic properties. In many GP regression applications, large values of p are
computationally intractable with present-day resources. By incorporating prediction
points in the computation of KL-optimal inverse-Cholesky factors, we obtain a GP
regression algorithm that is accurate even for small (= 3) values of p, including in
settings where truncation of the true Cholesky factor of ®~! to the same sparsity

pattern fails completely.

For other hierarchy-based methods, the computational complexity depends expo-
nentially on the dimension d of the dataset. In contrast, because the construction of
the ordering and sparsity pattern only uses pairwise distances between points, our
algorithms automatically adapt to low-dimensional structure in the data and operate
in complexities identified by replacing d with the intrinsic dimension d < d of the

dataset.

We have seen in section that the screening deteriorates for independent sums
of two GPs, such as when combining a GP with additive Gaussian white noise.
As noted there, this problem could be overcome if we had access to the inverse
of the covariance matrices. Analogs of the Cholesky factorization that compute
this inverse by recursive Schur complementation exist, but they are too unstable to
be useful in practice. The inherent stability of the KL minimization allows us to
realize this approach and thus compute both cheaply and accurately with sums of
independent Gaussian processes arising, for instance, from modeling measurement
noise. To the best of our knowledge, this is the first time this has been achieved by

a method based on the screening effect.

Finally, our algorithm is intrinsically parallel because it allows each column of

108

the sparse factor to be computed independently (as in the setting of the Vec-
chia approximation, factorized sparse approximate inverses, and lower-triangular
transport maps). Furthermore, we show that in the context of GP regression, the
log-likelihood, the posterior mean, and the posterior variance can be computed in
O(N +p?) space complexity. In a parallel setting, we require O(p?) communication
between the different workers for every O(p>?) floating-point operations, resulting
in a total communication complexity of O(N). Here, most of the floating-point

operations arise from calls to highly optimized BLAS and LAPACK routines.

6.2 Cholesky factorization by KL-minimization

The Kullback-Leibler divergence between two probability measures P and Q is de-
fined as Dgp (P || Q) = / log(dP/dQ)dP. If Q is an approximation of P, then
the KL divergence is the expected difference between the associated true and ap-
proximate log-densities, and so its minimization is directly relevant for accurate
approximations of GP inference, including GP prediction and likelihood-based in-
ference on hyperparameters. By virtue of its connection to the likelihood ratio test
[71], the KL divergence can also be interpreted as the strength of the evidence that
samples from P were not instead obtained from Q. If P and Q are both N-variate
centered normal distributions, the KL divergence is equivalent to a popular loss

function for covariance-matrix estimation [129], and it can be written as

2Dk (N(0,0) || N(0,0,)) = trace(G)gl@l) + logdet(®;) — logdet(®;) — N.
6.1)

Let ® be a positive-definite matrix of size N X N. Given a lower-triangular sparsity

set S c I x1I,wherel=1{1,...,N}, we want to use
L = argmin D, (N (0,0) || A0, (LLT)™)) 6.2)
LeS

as approximate Cholesky factor for ®~!, for S := {A eRMN A #0= (i,)) € S}.
While solving the non-quadratic program (6.2) might seem challenging, it turns out

that it has a closed-form solution that can be computed efficiently:

Theorem 20. The nonzero entries of the i-th column of L as defined in Equation (6.2)
are given by
-1

05,1
Lg;,=—"—— (6.3)

Ve 05l e
where s; == {j : (i,j) € S}, @S_ifsi i= (@y,5,)7 Y, Oy,, is the restriction of © to the

set of indices s;, as illustrated in Figure and e, € R**1 is the vector with the

109

k

Figure 6.1: The nonzero-vector of a sparse column. The set s is the vector of
row-indices contained in the k-th column of the sparsity pattern. The vector Ly, ¢
denotes the vector of nonzero entries of L with these row indices.

first entry equal to one and all other entries equal to zero. Using this formula, L

can be computed in computational complexity O (#S + (max;<;<y #s,-)z) in space
and O(XN, (#s:)*) in time.

Proof. By using the formula for the KL-divergence of two Gaussian random vari-

ables in (6.1), we obtain

L = argmin (trace(LLT®) — logdet(LL™) - logdet(®) — N) (6.4)
LeS
= arg min (trace(L"OL) — logdet(LL™)) (6.5)
LeS
N
=argmin Y (L] @y, Ly k ~210g(Li)) (6.6)
LeS k=1

The k-th summand depends only on the k-th column of L. Thus, taking the derivative

with respect to the k-the column of L and setting it to zero, we obtain Oy, 5, L, x =
1

CN
Lk = Lsk K= zk—" Therefore, L ..k can be written as /l@?‘Skel forad € R. By

Sk Sk

plugging this ansatz into the equation, we obtain A = \/ e Skel) \/e 05!
and hence Equation (6.3). By using dense Cholesky factorization to invert the ©y, , ,
the right-hand side of Equation (6.3) can be computed in computational complexity

0] (# (sk)z) in space and O (# (sk)3) in time, from which follows the result. O

110

Compared to ordinary sparse Cholesky factorization (see Algorithm 3), the algo-
rithm implied by Theorem 20 has the advantage of giving the best possible Cholesky
factor (as measured by KL) for a given sparsity pattern. Furthermore, it is embarrass-
ingly parallel — all evaluations of Equation (6.3) can be performed independently
for different ;. While the computational complexity is slightly worse than the one
of in-place incomplete Cholesky factorization, we will show in Theorem 21 that for
important choices of S, the time complexity can be reduced to O(X3_, (#s51)?),

matching the computational complexity of incomplete Cholesky factorization.

The formula in Equation (6.3) can be shown to be equivalent to the formula
that has been used to compute the Vecchia approximation [241] in spatial statis-
tics, without explicit awareness of the KL-optimality of the resulting L. In the
literature on factorized sparse approximate inverses, the above formula was de-
rived for minimizers of ||[Id — L chol(®)||ro subject to the constraints L € S
and diag(LOLT) = 1 [141], and for minimizers of the Kaporin condition num-
ber (trace(®@LLT)/N)N /det(®(LLT)) subject to the constraint L € S [133]. The
KL-divergence, as opposed to ||Id — L chol(®) ||, strongly penalizes zero eigen-
values of ®LLT, which explains the observation of [75] that adding the constraint
diag(LOL™) = 1 tends to improve the spectral condition number of the resulting
preconditioner, despite increasing the size of the fidelity term ||Id — L chol(®)||Ero.
[166] showed that the embarrassingly parallel nature of KL-minimization is even
preserved when replacing the Cholesky factors with nonlinear transport maps with
Knothe-Rosenblatt structure. As part of work on the sample complexity of the
estimation of transport maps, [27] discovered representations very similar to Equa-

tion (6.3), independently of the present work.
We propose the following procedure to approximate a positive-definite matrix ©:

1. Order the degrees of freedom (i.e., rows and columns of ®) according to some

ordering <.
2. Pick a sparsity set S C I X 1.
3. Use Formula (6.3) to compute the lower-triangular matrix L with nonzero

entries contained in S that minimizes Dy (N (0, ©) || N(0,(LLT)™Y)).

In the next section, we will describe how to implement all three steps of this
procedure in the more concrete setting of positive-definite matrices obtained from

the evaluation of a finitely smooth covariance function at pairs of points in R¢.

111

)

Figure 6.2: The reverse maximin ordering. To obtain the reverse maximin or-
dering, for k = N - 1,N - 2,...,1, we successively select the point x;,_ that has
the largest distance ¢;, to those

. All previously selected points within distance p; of x;, (here, p = 2)
form the

6.3 Ordering and sparsity pattern motivated by the screening effect

The quality of the approximation given by Equation (6.2) depends on the ordering of
the variables and the sparsity pattern S. For kernel matrices satisfying the screening
effect, we propose to use reverse maximin ordering and sparsity pattern introduced
in Chapter 3. For the convenience of the reader, we briefly recapitulate its definition

and provide some notation that will be useful later on.

6.3.1 The reverse maximin ordering and sparsity pattern
Assume that G is the covariance function of a Gaussian process that is conditioned
to be zero on (the possibly empty set) 3L, and the kernel matrix ® € R’*/ is obtained

as ©;; := G(x;,x;) for a set of locations {x;};c; C Q.

The reverse maximum-minimum distance (reverse maximin) ordering of {x;};c; is

achieved by selecting the last index as

iy = arg max dist (x;, 0Q) (6.7)
i€l
(or arbitrarily for 9Q = 0), and then choosing sequentially fork = N-1,N-2,...,1

the index that is furthest away from 0Q and those indices that were already picked:

ix = argmax dist (x;, {xi,,, ... X0y J U Q). (6.8)

i€\ {ig+1,e.in }

112

Algorithm 12 Without aggregation Algorithm 13 With aggregation

Input: g7 {xi}iel’ <, S<,l,p Input: g, {Xi}ie[s <, S<,l,p,/l
Output: L € RV*VN 1. triang. in < output: L € RVV |, triang. in <

1: for k € I do 1: for k € I do
2 for i,j € 51 do 2 for i,j € s; do
3 (Osin)yy = Glxinxj) 3, (Qw;,s;z).. — G(xi,x))
4 end for df ij
50 Ly < 0;l e 4. endlor
6: Lgx < L k/+/Lik > UI 1 N\ pl -
ks ks ’ P chol(P _ . PY)P
7: end for chol(P*®s; 5 P°)
8: return L 6: fork ~ k do
7: Lg, i — U Te;
8: end for
9: end for

10: return L

Figure 6.3: KL-minimizing Cholesky factorization. KL-minimization with and
without using aggregation. For notational convenience, all matrices are assumed
to have row and column ordering according to <. P! denotes the order-reversing
permutation matrix, and e; is the vector with 1 in the k-th component and zero
elsewhere.

Write £, = dist (x;,, {x,,,, ..., Xiy } UOQ), and write i < j if i precedes j in the

reverse maximin ordering. We collect the {(;};c; into a vector denoted by .

For a tuning parameter p € R*, we select the sparsity set S< ¢, C I x I as
S<ep =1{G,J) i = jdist(xi,x;) < pt;}. (6.9)
The reverse maximin ordering and sparsity pattern is illustrated in Figure

We can use a minor modification of Algorithm |1 to construct the reverse maximin
ordering and sparsity pattern in computational complexity O(N log?(N) p‘z) in time
and O(N p‘j) in space, where d < d is the intrinsic dimension of the dataset, as will
be defined in Condition 5. The inverse Cholesky factors L can then be computed

using Equation (6.3), as in Algorithm

6.3.2 Aggregated sparsity pattern
It was already observed by [23] in the context of sparse approximate inverses, and
by [104,] in the context of the Vecchia approximation that a suitable grouping

of the degrees of freedom makes it possible to reuse Cholesky factorizations of the

113

Figure 6.4: Geometric aggregation. The left figure illustrates the original pattern
S<.¢,p- For each orange point, we need to keep track of its interactions with all points
within a circle of radius ~ p. In the right figure, the points have been collected into
a supernode, which can be represented by a list of parents (the orange points within
an inner sphere of radius ~ p) and children (all points within a radius ~ 2p).

matrices Oy, ;; in Equation (6.3) to update multiple columns at once. The authors
of [83,] propose grouping heuristics based on the sparsity graph of L and show
empirically that they lead to improved performance. In contrast, we propose a
grouping procedure based on geometric information and prove that it allows us to

reach the best asymptotic complexity in the literature in a more concrete setting.

Assume that we have already computed the reverse maximin ordering < and sparsity
pattern S</ ,, and that we have access to the £; as defined above. We will now
aggregate the points into groups called supernodes, consisting of points that are
close in both location and ordering. To do so, we pick at each step the first (w.r.t. <)
index i € I that has not been aggregated into a supernode yet and then we aggregate
into a common supernode the indicesin {j : (i, j) € S<¢p,{; < AL;} forsome A > 1
(1 = 1.5 is typically a good choice) that have not been aggregated yet. We proceed
with this procedure until every node has been aggregated into a supernode. We write
[for the set of all supernodes; fori € 1, [€ I, we write i ~» [if{ is the supernode to
which i has been aggregated. We furthermore define s; := { j:di~ije si} and
introduce the aggregated sparsity pattern §<7f,p,/l = Uroi {(i, k) : k<ie s,;}.
This sparsity pattern, while larger than S. ¢ ,, can be represented efliciently by
keeping track of the set of parents (the k € I such that k ~ s;) and children
(the i € s) of each supernode, rather than the individual entries (see Figure

for an illustration). For well-behaved (cf. Theorem 21) sets of points, we obtain
O(Np~?) supernodes, each with O(p“) parents and children, thus improving the
cost of storing the sparsity pattern from O(Np“) to O(N).

114

b= N

Figure 6.5: Reusing Cholesky factors. (Left:) By adding a few nonzero entries to
the sparsity pattern, the sparsity patterns of columns in s; become subsets of one
another. (Right:) Therefore, the matrices {Oj, , },,z» Which need to be inverted
to compute the columns L. ; for k ~» k, become submatrices of one another. Thus,
submatrices of the Cholesky factors of ©;, ;. can be used as factors of @, s, for any

k~ k.

While the above aggregation procedure can be performed efficiently once < and
S<.¢,p are computed, it is possible to directly compute < and an outer approximation
S<tpa D S<rp. in computational complexity O(N) in space and O(N log(N))
in time. S<(, 1 can either be used directly, or it can be used to compute S <601
in O(N) in space and O(N log(N)p?) in time, using a simple and embarrassingly
parallel algorithm. Details are given in Section

In addition to reducing the memory cost, the aggregated ordering and sparsity pattern
sp.s; = UUT once

for each supernode and then use it to compute the Ly, ; for all k£ ~> k as in

allows us to compute the Cholesky factors (in reverse ordering) ©®

Algoritm 13 (see Figure 6.5 for an illustration).

As we show in the next section, this allows us to reduce the computational complexity
from O(Np3?) to O(Np??) for sufficiently well-behaved sets of points.

6.3.3 Theoretical guarantees
We now present our rigorous theoretical result bounding the computational com-
plexity and approximation error of our method. Proofs and additional details are

deferred to Section

Remark 1. As detailed in Section , the results below apply to more general
reverse r-maximin orderings, which can be computed in complexity O(N log(N)),

improving over reverse maximin orderings by a factor of 1og(N).

Computational complexity

We can derive the following bounds on the computational complexity depending on
pand N.

115

Theorem 21 (Informal). Under mild assumptions on {x;}ic; C RY, the KL-minimizer
L is computed in complexity CNp? in space and CNp>¢ in time when using Algo-
rithm 12 with S< ¢ , and in complexity CNp? in space and C, CNp*¢ in time when
using Algorithm 13 with S <tp.1- Here, the constant C depends only on d, A, and

the cost of evaluating entries of ©.

A more formal statement and a proof of Theorem 21 can be found in Section

As can be seen from Theorem 21, using the aggregation scheme decreases the
computational cost by a factor p?. This is because each supernode has ~ p?

members that can all be updated by reusing the same Cholesky factorization.

Remark 2. Asdescribed in Section .3.2, the computational complexity only depends
on the intrinsic dimension of the dataset (as opposed to the potentially much larger
ambient dimension d). This means that the algorithm automatically exploits low-

dimensional structure in the data to decrease the computational complexity.

Approximation error

The rigorous bounds on the approximation error are derived from Theorem 10 and
therefore hold under the same assumptions. We assume for the purpose of this
section that Q is a bounded domain of R? with Lipschitz boundary, and for an
integer s > d/2, we write H; (€2) for usual Sobolev the space of functions with zero
Dirichlet boundary values and order s derivatives in L?, and H* (Q) for its dual.
Let the operator

L:Hy(Q)— H'(Q), (6.10)

be linear, symmetric (/ ulv = / vLu), positive (/ ulu > 0), bijective, bounded
(write [|.L]| = sup, || Lullg-s)/|lull Hg (o) for its operator norm), and local in the
sense that f ulvdx =0, forallu,v € Hj () with disjoint support. By the Sobolev
embedding theorem, we have Hjj () C Co (£2), and hence {8, },cq C H™* (€2). We
then define G as the Green’s function of L,

G (x1,x2) = /6xl1:—16x2 dx. (6.11)

A simple example whend = 1 and Q = (0, 1),is £ = -A, and G(x,y) =]1x<y}% +
ILySX)y—C. Let us define the following measure of homogeneity of the distribution of

{xi}iers _ .
5 e miny, yef .dlst(x,-, {x;yu 69)' 6.12)
max,cq dist(x, {x;}ie; U 0Q)

116

Using the above definitions, we can rigorously quantify the increase in approximation

accuracy as p increases.

Theorem 22. There exists a constant C depending only on d, Q, A, s, || L], 1L,
and 6, such that for p > Clog(N/€), we have

DkL(N (0,8) || N0, (LPLPT)) + @ = (LPLPT) Y, < € (6.13)

Thus, Algorithm 12 computes an e-accurate approximation of ® in computational
complexity CN log? (N /€) in space and CN log>* (N /€) in time, from CN log® (N /€)
entries of ©. Similarly, Algorithm |3 computes an e-accurate approximation of ®
in computational complexity CN log? (N /€) in space and CN log?*(N/€) in time,
from CNlog? (N /€) entries of ®.

To the best of our knowledge, the above result is the best known complexity/accuracy
trade-off for kernel matrices based on Green’s functions of elliptic boundary value
problems. In particular, we improve upon the methods in Chapter 5, where we
showed that the Cholesky factors of ® (as opposed to those of ®~!) can be ap-
proximated in computational complexity O(N log?(N)log?(N/€)) in time and
O(Nlog(N) log?(N/¢€)) in space using zero-fill-in incomplete Cholesky factoriza-
tion (Algorithm 15) applied to ©.

Screening in theory and practice

The theory described in the last section covers any self-adjoined operator £ with an

associated quadratic form
N
L[u] = /uLudx=Z/a<k>(x)||D<k>u(x)||2dx
Q k=0

and c®) € L?(Q) positive almost everywhere. Thatis, £ [u] is a weighted average of
the squared norms of derivatives of u and thus measures the roughness of u. We can
formally think of a Gaussian process with covariance function given by G as having
density ~ exp(—ZL[u]/2) and therefore assigning an exponentially low probability
to “rough” functions, making it a prototypical smoothness prior. Theorems 10 and

imply that these Gaussian processes are subject to an exponentially strong screening
effect in the sense that, after conditioning a set of £-dense points, the conditional
covariance of a given point decays exponentially with rate ~ £~!, as shown in the

first panel of Figure 6.6. The most closely related model in common use is the

117

Figure 6.6: Limitations of screening. To illustrate the screening effect exploited
by our methods, we plot the conditional correlation with the point in red conditional
on . In the first panel, the points are evenly distributed, leading to a
rapidly decreasing conditional correlation. In the second panel, the same number
of points is irregularly distributed, slowing the decay. In the last panel, we are at the
fringe of the set of observations, weakening the screening effect.

Matérn covariance function [167] that is the Green’s function of an elliptic PDE
of order s, when choosing the “smoothness parameter” v as v = s — d/2. While
our theory only covers s € N, we observed in Section that Matérn kernels with
non-integer values of s and even the “Cauchy class” [95] seem to be subject to
similar behavior. In the second panel of Figure 6.6, we show that as the distribution
of conditioning points becomes more irregular, the screening effect weakens. In
our theoretical results, this is controlled by the upper bound on ¢ in (). The
screening effect is significantly weakened close to the boundary of the domain, as
illustrated in the third panel of Figure (cf. Figure 5.4). This is the reason
why our theoretical results, different from the Matérn covariance, are restricted to
Green’s functions with zero Dirichlet boundary condition, which corresponds to
conditioning the process to be zero on dQ. A final limitation is that the screening
effect weakens as we take the order of smoothness to infinity, obtaining, for instance
the Gaussian kernel. However, according to Theorem 2, this results in matrices that

have efficient low-rank approximations, instead.

6.4 Extensions

We now present extensions of our method that improve its performance in practice.
In Section , we show how to improve the approximation when @ is replaced
by © + R, for R diagonal, as is frequently the case in statistical inference where R
is the covariance matrix of additive, independent noise. In Section , we show
how including the prediction points can improve the computational complexity

(Section) or accuracy (Section) of the posterior mean and covariance. In

118

Section , we discuss memory savings and parallel computation for GP inference
when we are only interested in computing the likelihood and the posterior mean and
covariance (as opposed to, for example, sampling from N(0,®) or computing

products v — Qv).

We note that it is not possible to combine the variant in Section with that in
Section , and that the combination of the variants in Sections and

might diminish accuracy gains from the latter. Furthermore, while Section can
be combined with Section to compute the posterior mean, this combination

cannot be used to compute the full posterior covariance matrix.

6.4.1 Additive noise

Assume that a diagonal noise term is added to ©®, so that ¥ = ® + R, where R is
diagonal. Extending the Vecchia approximation to this setting has been a major open
problem in spatial statistics [62, ,]. Applying our approximation directly
to X would not work well because the noise term attenuates the exponential decay.
Instead, given the approximation @' = LLT obtained using our method, we can

write, following Section
Y*O+R=0OR'+6HR.

Applying an incomplete Cholesky factorization with zero fill-in (Algorithm 15) to
R 1+® !~ LLT, we have

Y~ (LLT)'LLTR.

The resulting procedure, given in Algorithm 14, has asymptotic complexity O (N p??),

because every column of the triangular factors has at most O(p?) entries.

Following the intuition that ®~! is essentially an elliptic partial differential operator,
®~! + R7! is essentially a partial differential operator with an added zero-order
term, and its Cholesky factors can thus be expected to satisfy an exponential decay
property just as those of ®~!. Indeed, as shown in Figure 5.5, the exponential decay
of the Cholesky factors of R~ + ®~! is as strong as for !, even for large R. We
suspect that this could be proved rigorously by adapting the proof of exponential
decay in [190] to the discrete setting. We note that while independent noise is most
commonly used, the above argument leads to an efficient algorithm whenever R™!

is approximately given by an elliptic PDE (possibly of order zero).

For small p, the additional error introduced by the incomplete Cholesky factorization

can harm accuracy, which is why we recommend using the conjugate gradient

119

Algorithm 14 Including independent Algorithm 15 Zero fill-in incomplete
noise with covariance matrix R Cholesky factorization (ichol (A, S))
Input: G, {x~,~},-€,, 0, (1,) and R Input: A e RVXN g

Output: L, L € RNXN 1, triang. in < Output: L € RNXN | triang. in <

I Comp. <and § < S<rp(S<rp1) 1. L« (0,...,0)(0,...,0)T

2: Comp. L using Alg. 12(13) 2: for j e {l,...,N} do

3: for (i,) € S do 3 forie{j,....,N}: (i,j) € Sdo
4: A[j — <Li,:, Lj,:> 4: L,‘j — Aij - (Li,lz(j—l)’ Lj,li(j—l)>
5: end for 5. end for

6: 4 — A+R 6: L.;«— A;/VA;

7. L « ichol(A,S) 7. end for

8: return L, L 8- return L

Figure 6.7: Sums of independent processes. Algorithms for approximating co-
variance matrices with added independent noise ® + R (left), using the zero fill-in
incomplete Cholesky factorization (right). Alternatively, the variants discussed in
Section could be used. See Section

algorithm (CG) to invert (R~' +©~") using L as a preconditioner. In our experience,

CG converges to single precision in a small number of iterations (~ 10).

Alternatively, higher accuracy can be achieved by using the sparsity pattern of LLT
(as opposed to that of L) to compute the incomplete Cholesky factorization of A in
Algorithm 14; in fact, in our numerical experiments in Section , this approach
was as accurate as using the exact Cholesky factorization of A over a wide range
of p values and noise levels. The resulting algorithm still requires O (Np>?) time,
albeit with a larger constant. This is because for an entry (7, j) to be part of the
sparsity pattern of LL T, there needs to exist a k such that both (i, k) and (j, k) are
part of the sparsity pattern of L. By the triangle inequality, this implies that (i, j)
is contained in the sparsity pattern of L obtained by doubling p. In conclusion, we
believe that the above modifications allow us to compute an e—accurate factorization
in O(N10og*¥(N/e)) time and O(N log?(N/€)) space, just as in the noiseless case.

6.4.2 Including the prediction points

In GP regression, we are given Nt points of training data and want to compute
predictions at Np, points of test data. We denote as Oty 1r, Opr pr, Ot pr, Opr 11 the
covariance matrix of the training data, the covariance matrix of the test data, and

the covariance matrices of training and test data. Together, they form the joint

120

G)Tr,Tr G)Tr,Pr
G)Pr,Tr G)Pr,Pr

training data y € RV™, we are interested in:

covariance matrix () of training and test data. In GP regression with

-1

* Computation of the log-likelihood ~ y"O, 1.

y + logdet O, 1r + N log(2n).
* Computation of the posterior mean yT®}r1 1 OTr.Pr-

» Computation of the posterior covariance ®p; p; — @pr,T@;rl’Tr@Tr,pr.

In the setting of Theorem 22, our method can be applied to accurately approximate
the matrix Ot 1y in near-linear cost. The training covariance matrix can then be

replaced by the resulting approximation for all downstream applications.

However, approximating instead the joint covariance matrix of training and pre-
diction variables improves (1) stability and accuracy compared to computing the
KL-optimal approximation of the training covariance alone, (2) computational com-
plexity by circumventing the computation of most of the Nt1.Np, entries of the

off-diagonal part Oy p; of the covariance matrix.

We can add the prediction points before or after the training points in the elimination

ordering.

Ordering the prediction points first, for rapid interpolation

The computation of the mixed covariance matrix ®p, 1y can be prohibitively expen-
sive when interpolating with a large number of prediction points. This situation is
common in spatial statistics when estimating a stochastic field throughout a large
domain. In this regime, we propose to order the {x;};c; by first computing the re-
verse maximin ordering <t of only the training points as described in Section

using the original Q, writing {1, for the corresponding length scales. We then
compute the reverse maximin ordering <p; of the prediction points using the mod-
ified Q = QU {x;},c I,» obtaining the length scales {p;. Since Q contains {x;},c I
when computing the ordering of the prediction points, prediction points close to
the training set will tend to have a smaller length-scale ¢ than in the naive ap-
plication of the algorithm, and thus, the resulting sparsity pattern will have fewer
nonzero entries. We then order the prediction points before the training points and
compute S(<p,. <), (borlr).p O S (<pr, <), (6or.trr).p,2 T0llowing the same procedure as in
Sections and , respectively. The distance of each point in the predic-

tion set to the training set can be computed in near-linear complexity using, for

121

example, a minor variation of Algorithm ! 1. Writing L for the resulting Cholesky

factor of the joint precision matrix, we can approximate ®p,p, ~ L5, L3l and

Pr,Pr™~Pr,Pr

Op. 1 ® Ly b Ly, p, based on submatrices of L. See Sections and 21 for ad-
ditional details. We note that the idea of ordering the prediction points first (last,
in their notation) has already been proposed by [136] in the context of the Vecchia

approximation, although without providing an explicit algorithm.

If one does not use the method in Section to treat additive noise, then the
method described in this section amounts to making each prediction using only
O(p?) nearby points. In the extreme case where we only have a single prediction
point, this means that we are only using O(p“) training values for prediction. On
the one hand, this can lead to improved robustness of the resulting estimator, but on

the other hand, it can lead to some training data being missed entirely.

Ordering the prediction points last, for improved robustness

If we want to use the improved stability of including the prediction points, maintain
near-linear complexity, and use all N1, training values for the prediction of even a
single point, we have to include the prediction points after the training points in
the elimination ordering. Naively, this would lead to a computational complexity
of O(Nt(p? + Np;)?), which might be prohibitive for large values of Np.. If
it is enough to compute the posterior covariance only among mp, small batches
of up to np, predictions each (often, it makes sense to choose np; = 1), we can
avoid this increase of complexity by performing prediction on groups of only np, at
once, with the computation for each batch only having computational complexity
O(Nr:(p? + np;)?). A naive implementation would still require us to perform this
procedure mp, times, eliminating any gains due to the batched procedure. However,
careful use of the Sherman-Morrison-Woodbury matrix identity allows to to reuse
the biggest part of the computation for each of the batches, thus reducing the
computational cost for prediction and computation of the covariance matrix to only
O(N1:((p? +npp)* + (p® + np;)mp;)). This procedure is detailed in Section and

summarized in Section

6.4.3 GP regression in O(N + p>?) space complexity
When deploying direct methods for approximate inversion of kernel matrices, a
major difficulty is the superlinear memory cost that they incur. This, in particular,

poses difficulties in a distributed setting or on graphics processing units. In the

122

following, I = I1; denotes the indices of the training data, and we write ©® = Oty 1y,
while Ip; denotes those of the test data. In order to compute the log-likelihood, we
need to compute the matrix-vector product LP Ty, as well as the diagonal entries
of LP. This can be done by computing the columns L'i' ; of L? individually using
(6.3) and setting (LP"Ty), = (Lfk)Ty, Ly, = (L':O,k)k, without ever forming the
matrix LP. Similarly, in order to compute the posterior mean, we only need to
compute @'y = LPTLPy, which only requires us to compute each column of L
twice, without ever forming the entire matrix. In order to compute the posterior
covariance, we need to compute the matrix-matrix product L?-T @1y p;, which again
can be performed by computing each column of L” once without ever forming
the entire matrix LX. However, it does require us to know beforehand at which
points we want to make predictions. The submatrices Oy, ;; for all i belonging to
the supernode k (i.e., i ~ k) can be formed from a list of the elements of §y.
Thus, the overall memory complexity of the resulting algorithm is O (3,7 #5x) =
O (N1:+Np+p>?). The above described procedure is implemented in Algorithms

and in Section . In a distributed setting with workers Wy, W, ..., this
requires communicating only O (#5) floating-point numbers to worker Wy, which
then performs O((#5;)?) floating-point operations; a naive implementation would
require the communication of O ((#5)?) floating-point numbers to perform the same

number of floating-point operations.

6.5 Applications and numerical results
We conclude with numerical experiments studying the practical performance of
our method. The Julia code can be found under https://github.com/f-t-

s/cholesky_by_KL_minimization.

6.5.1 Gaussian process regression and aggregation

We begin our numerical experiments with two-dimensional (d = 2) synthetic data.
We use circulant embeddings [VF,], [https://github.com/PieterjanRobbe/
GaussianRandomFields. j1] to create 10° samples of a Gaussian process with
Matérn covariance function at 10° locations on a regular grid in Q = [0, 1]%. From
these 10% locations, we select 2 x 10* prediction points and use the remaining points
as training data. As illustrated in Figure 6.8 (left panel), half of the prediction points
form two elliptic regions devoid of any training points (called “region”), while the
remaining prediction points are interspersed among the training points (called “scat-

tered”’). We then use the “prediction points first” approach of Section and the

https://github.com/f-t-s/cholesky_by_KL_minimization
https://github.com/f-t-s/cholesky_by_KL_minimization
https://github.com/PieterjanRobbe/GaussianRandomFields.jl
https://github.com/PieterjanRobbe/GaussianRandomFields.jl

123

0.90 [—$mtromps- --o-g.—Q_O—a—-u_
v

coverage
o
o
«

vy — theoretical coverage

training

® scattered

region

Figure 6.8: Prediction and uncertainty quantification with Matérn covariance.
We show the accuracy of our approximation with and without aggregation for a
Gaussian process with Matérn covariance (v = 3/2) on a grid of size 10° on the
unit square. (Left) Randomly sampled 2 percent of the training and prediction
points. (Middle) RMSE, averaged over prediction points and 1,000 realizations.
(Right) Empirical coverage of 90% prediction intervals computed from the posterior
covariance.

Time in s

5 10 15
nonzeros /107

7 8 0 5 10 15
nonzeros /107

Figure 6.9: Computational cost of factorization. Time for computing the factor
L* with or without aggregation (N = 10%), as a function of p and of the number of
nonzero entries. For the first two panels, the Matérn covariance function was com-
puted using a representation in terms of exponentials, while for the second two panels
they were computed using (slower) Bessel function evaluations. Computations per-
formed on an Intel®Core™i7-6400 CPU with 4.00GHz and 64 GB of RAM. The
second and fourth panels show that aggregation leads to faster computation despite
producing much denser Cholesky factors (and hence higher accuracy).

aggregated sparsity pattern §<,[, 0.4 of Section with A € {1.0, 1.3}, to compute
the posterior distributions at the prediction points from the values at the training
points. In Figure 6.8, we report the RMSE of the posterior means, as well as the
empirical coverage of the 90% posterior intervals, averaged over all 10° realiza-
tions, for a range of different p. Note that while the RMSE between the aggregated
(1 = 1.3) and non-aggregated (1 = 1.0) is almost the same, the coverage converges

significantly faster to the correct value with 1 = 1.3.

We further provide timing results for 10° training points uniformly distributed in
[0, 1]% comparing the aggregated and non-aggregated version of the algorithm in
Figure 6.9. As predicted by the theory, the aggregated variant scales better as
we are increasing p. This holds true both when using Intel® oneMKL Vector

Mathematics functions library to evaluate the exponential function, or when us-

124

4

PiOL

o B N O NN
T T 1

AWM 2O =N

2 4 6 8 10
Iterations

log‘w(?‘ym‘metrized KL)
~
©
IS
o
)

log o (symmetrized KL)

logyg(max |1 = prappl/111])

log,g 0 P

Figure 6.10: Factorization with additive noise. Comparison of the methods
proposed in Section for approximating ¥ = © + R, where O is based on a
Matérn covariance with range parameter 0.5 and smoothness v = 3/2 at N = 10*
uniformly sampled locations on the unit square, and R = o-*I is additive noise. For
each approximation, we compute the symmetrized KL divergence (the sum of the
KL-divergences with either ordering of the two measures) to the true covariance.
“Naive”: Directly apply Algorithm 13 to 2. “Exact”: Apply Algorithm 13 to ©,
then compute L as the exact Cholesky factorization of A := R™' +©~!, “IC”: Apply
Algorithm 13 to ©, then compute L using incomplete Cholesky factorization of
A on the sparsity pattern of either L or LLT. (Left) Varying o, fixed p = 3.0.
(Middle) Varying p, fixed oo = 1.0. (Right) Maximal relative error (over the above
o, p, v e {1/2,3/2,5/2} and 10 random draws) of inverting A using up to 10
conjugate-gradient iterations (x-axis), with IC, nonzeros(L) as preconditioner.

ing amos to instead evaluate the modified Bessel function of the second kind. While
the former is faster and emphasizes the improvement from O(Np3?) to O(Np??)
for the complexity of computing the factorization, the latter can be used to evaluate
Matérn kernels with arbitrary smoothness. Due to being slower, using Bessel func-
tions highlights the improvement from needing O (N p?¢) matrix evaluations without
the aggregation to just O(Np?). By plotting the number of nonzeros used for the
two approaches, we see that the aggregated version is faster to compute despite using
many more entries of ® than the non-aggregated version. Thus, aggregation is both
faster and more accurate for the same value of p, which is why we recommend using

it over the non-aggregated variant.

6.5.2 Adding noise

We now experimentally verify the claim that the methods described in Section
enable accurate approximation in the presence of independent noise while preserving
the sparsity, and thus computational complexity, of our method. To this end, pick a
set of N = 10* points uniformly at random in Q = [0, 1]%, use a Matérn kernel with
smoothness v = 3/2, and add I.LD. noise with variance o>. We use an aggregation
parameter A = 1.5. As shown in Figure , our approximation stays accurate over a

wide range of values of both p and o, even for the most frugal version of our method.

125

The asymptotic complexity for both incomplete-Cholesky variants is O (N p??), with
the variant using the sparsity pattern of LL T being roughly equivalent to doubling
p. Hence, to avoid additional memory overhead, we recommend using the sparsity
pattern of L as a default choice; the accuracy of the resulting log-determinant of
2 should be sufficient for most settings, and the accuracy for solving systems of
equations in X can easily be increased by adding a few iterations of the conjugate

gradient algorithm.

6.5.3 Including prediction points

We continue by studying the effects of including the prediction points in the approx-
imation, as described in Sections and . We compare not including the
predictions points in the approximation with including them either before or after
training points in the approximation. We compare the accuracy of the approxima-
tion of the posterior mean and standard deviation over three different geometries
and a range of different values for p. The results, displayed in Figure , show
that including the prediction points can increase the accuracy by multiple orders
of magnitude. The performance difference between the two schemes for including
prediction points varies over different geometries, degrees of regularity, and values
of p. If the number of prediction points is comparable to the number of training
points, the only way to avoid quadratic scaling in the number of points is to order the
prediction points first, making this approach the method of choice. If we only have
few prediction points, ordering the prediction variables last can improve the accu-
racy for low orders of smoothness, especially in settings in which only a small part
of the training data is used in the prediction-variables-first approach (e.g., second

row in Figure).

6.5.4 Comparison to HSS matrices

As described in the introduction, there are many existing methods for the approx-
imation and inversion of dense covariance matrices. Hierarchically semiseparable
(HSS) matrices [251] are natural candidates for comparison with our method be-
cause they are amenable to a Cholesky factorization [150], implementations of
whi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>