4,434 research outputs found

    Cross-Lingual Adaptation using Structural Correspondence Learning

    Full text link
    Cross-lingual adaptation, a special case of domain adaptation, refers to the transfer of classification knowledge between two languages. In this article we describe an extension of Structural Correspondence Learning (SCL), a recently proposed algorithm for domain adaptation, for cross-lingual adaptation. The proposed method uses unlabeled documents from both languages, along with a word translation oracle, to induce cross-lingual feature correspondences. From these correspondences a cross-lingual representation is created that enables the transfer of classification knowledge from the source to the target language. The main advantages of this approach over other approaches are its resource efficiency and task specificity. We conduct experiments in the area of cross-language topic and sentiment classification involving English as source language and German, French, and Japanese as target languages. The results show a significant improvement of the proposed method over a machine translation baseline, reducing the relative error due to cross-lingual adaptation by an average of 30% (topic classification) and 59% (sentiment classification). We further report on empirical analyses that reveal insights into the use of unlabeled data, the sensitivity with respect to important hyperparameters, and the nature of the induced cross-lingual correspondences

    Introduction to the special issue on cross-language algorithms and applications

    Get PDF
    With the increasingly global nature of our everyday interactions, the need for multilingual technologies to support efficient and efective information access and communication cannot be overemphasized. Computational modeling of language has been the focus of Natural Language Processing, a subdiscipline of Artificial Intelligence. One of the current challenges for this discipline is to design methodologies and algorithms that are cross-language in order to create multilingual technologies rapidly. The goal of this JAIR special issue on Cross-Language Algorithms and Applications (CLAA) is to present leading research in this area, with emphasis on developing unifying themes that could lead to the development of the science of multi- and cross-lingualism. In this introduction, we provide the reader with the motivation for this special issue and summarize the contributions of the papers that have been included. The selected papers cover a broad range of cross-lingual technologies including machine translation, domain and language adaptation for sentiment analysis, cross-language lexical resources, dependency parsing, information retrieval and knowledge representation. We anticipate that this special issue will serve as an invaluable resource for researchers interested in topics of cross-lingual natural language processing.Postprint (published version

    Cross-Lingual Low-Resource Set-to-Description Retrieval for Global E-Commerce

    Full text link
    With the prosperous of cross-border e-commerce, there is an urgent demand for designing intelligent approaches for assisting e-commerce sellers to offer local products for consumers from all over the world. In this paper, we explore a new task of cross-lingual information retrieval, i.e., cross-lingual set-to-description retrieval in cross-border e-commerce, which involves matching product attribute sets in the source language with persuasive product descriptions in the target language. We manually collect a new and high-quality paired dataset, where each pair contains an unordered product attribute set in the source language and an informative product description in the target language. As the dataset construction process is both time-consuming and costly, the new dataset only comprises of 13.5k pairs, which is a low-resource setting and can be viewed as a challenging testbed for model development and evaluation in cross-border e-commerce. To tackle this cross-lingual set-to-description retrieval task, we propose a novel cross-lingual matching network (CLMN) with the enhancement of context-dependent cross-lingual mapping upon the pre-trained monolingual BERT representations. Experimental results indicate that our proposed CLMN yields impressive results on the challenging task and the context-dependent cross-lingual mapping on BERT yields noticeable improvement over the pre-trained multi-lingual BERT model.Comment: AAAI 202

    Applying digital content management to support localisation

    Get PDF
    The retrieval and presentation of digital content such as that on the World Wide Web (WWW) is a substantial area of research. While recent years have seen huge expansion in the size of web-based archives that can be searched efficiently by commercial search engines, the presentation of potentially relevant content is still limited to ranked document lists represented by simple text snippets or image keyframe surrogates. There is expanding interest in techniques to personalise the presentation of content to improve the richness and effectiveness of the user experience. One of the most significant challenges to achieving this is the increasingly multilingual nature of this data, and the need to provide suitably localised responses to users based on this content. The Digital Content Management (DCM) track of the Centre for Next Generation Localisation (CNGL) is seeking to develop technologies to support advanced personalised access and presentation of information by combining elements from the existing research areas of Adaptive Hypermedia and Information Retrieval. The combination of these technologies is intended to produce significant improvements in the way users access information. We review key features of these technologies and introduce early ideas for how these technologies can support localisation and localised content before concluding with some impressions of future directions in DCM

    Towards a Universal Wordnet by Learning from Combined Evidenc

    Get PDF
    Lexical databases are invaluable sources of knowledge about words and their meanings, with numerous applications in areas like NLP, IR, and AI. We propose a methodology for the automatic construction of a large-scale multilingual lexical database where words of many languages are hierarchically organized in terms of their meanings and their semantic relations to other words. This resource is bootstrapped from WordNet, a well-known English-language resource. Our approach extends WordNet with around 1.5 million meaning links for 800,000 words in over 200 languages, drawing on evidence extracted from a variety of resources including existing (monolingual) wordnets, (mostly bilingual) translation dictionaries, and parallel corpora. Graph-based scoring functions and statistical learning techniques are used to iteratively integrate this information and build an output graph. Experiments show that this wordnet has a high level of precision and coverage, and that it can be useful in applied tasks such as cross-lingual text classification

    Building simulated queries for known-item topics: an analysis using six european languages

    Get PDF
    There has been increased interest in the use of simulated queries for evaluation and estimation purposes in Information Retrieval. However, there are still many unaddressed issues regarding their usage and impact on evaluation because their quality, in terms of retrieval performance, is unlike real queries. In this paper, we focus on methods for building simulated known-item topics and explore their quality against real known-item topics. Using existing generation models as our starting point, we explore factors which may influence the generation of the known-item topic. Informed by this detailed analysis (on six European languages) we propose a model with improved document and term selection properties, showing that simulated known-item topics can be generated that are comparable to real known-item topics. This is a significant step towards validating the potential usefulness of simulated queries: for evaluation purposes, and because building models of querying behavior provides a deeper insight into the querying process so that better retrieval mechanisms can be developed to support the user
    • …
    corecore