52,027 research outputs found

    Modeling and Solving a Resource Allocation Problem with Soft Constraint Techniques

    Get PDF
    We study a resource allocation problem, which is a central piece of a real-world crew scheduling problem. We first formulate the problem as a hybrid soft constraint satisfaction and optimization problem and show that its worst-case complexity is NP-complete. We then propose and study a set of decision and optimization modeling schemes for the problem. We consider the expressiveness of these modeling schemes for the problem. We consider the expressiveness of these modeling methods. Specifically, we experimentally investigate how these modeling schemes interplay with the best existing systematic search and local search methods. Our experimental results show that soft constraint techniques can be effective on large resource allocation problem instances, and an optimization approach is more efficient than a model checking approach based on decision models

    Beamforming Techniques for Non-Orthogonal Multiple Access in 5G Cellular Networks

    Full text link
    In this paper, we develop various beamforming techniques for downlink transmission for multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) systems. First, a beamforming approach with perfect channel state information (CSI) is investigated to provide the required quality of service (QoS) for all users. Taylor series approximation and semidefinite relaxation (SDR) techniques are employed to reformulate the original non-convex power minimization problem to a tractable one. Further, a fairness-based beamforming approach is proposed through a max-min formulation to maintain fairness between users. Next, we consider a robust scheme by incorporating channel uncertainties, where the transmit power is minimized while satisfying the outage probability requirement at each user. Through exploiting the SDR approach, the original non-convex problem is reformulated in a linear matrix inequality (LMI) form to obtain the optimal solution. Numerical results demonstrate that the robust scheme can achieve better performance compared to the non-robust scheme in terms of the rate satisfaction ratio. Further, simulation results confirm that NOMA consumes a little over half transmit power needed by OMA for the same data rate requirements. Hence, NOMA has the potential to significantly improve the system performance in terms of transmit power consumption in future 5G networks and beyond.Comment: accepted to publish in IEEE Transactions on Vehicular Technolog

    Allocating educational resources through happiness maximization and traditional CSP approach

    Full text link
    This is an electronic version of the paper presented at the 4th International Conference on Software and Data Technologies, held in Sofia on 2009An instance of an Educational Resources Allocation (ERA) problem is the distribution of a set of students in different laboratories. This can be a complex and dynamic problem if non-quantitative considerations (i.e. how close the final allocation is to the student preferences or desires) are involved in the decision process. Traditionally, different approaches based on Constraint-Satisfaction techniques and Multi-agent negotiation have been applied to the general problem of Resource Allocation. This paper shows how a Multi-agent approach can be used to model and simulate the assignment of sets of students to several predefined laboratories, by using their preferences to guide the allocation process. This approach aims at finding new solutions that try to satisfy individual student needs with no knowledge about the general allocation problem. The paper shows some experimental results and a comparison, between a CSP-based solution modeled in CHOCO, a CSP Java-based library, and a Multi-agent model implemented using MASON, a multi-agent simulation platform.This work has been supported by research projects TIN2007-65989 and TIN2007-64718. We also thank IBM for its support to the Linux Reference Cente

    A Complete Solver for Constraint Games

    Full text link
    Game Theory studies situations in which multiple agents having conflicting objectives have to reach a collective decision. The question of a compact representation language for agents utility function is of crucial importance since the classical representation of a nn-players game is given by a nn-dimensional matrix of exponential size for each player. In this paper we use the framework of Constraint Games in which CSP are used to represent utilities. Constraint Programming --including global constraints-- allows to easily give a compact and elegant model to many useful games. Constraint Games come in two flavors: Constraint Satisfaction Games and Constraint Optimization Games, the first one using satisfaction to define boolean utilities. In addition to multimatrix games, it is also possible to model more complex games where hard constraints forbid certain situations. In this paper we study complete search techniques and show that our solver using the compact representation of Constraint Games is faster than the classical game solver Gambit by one to two orders of magnitude.Comment: 17 page

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Models for robust resource allocation in project scheduling.

    Get PDF
    The vast majority of resource-constrained project scheduling efforts assumes complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. In reality, however, project activities are subject to considerable uncertainty which generally leads to numerous schedule disruptions. In this paper, we present a resource allocation model that protects the makespan of a given baseline schedule against activity duration variability. A branch-and-bound algorithm is developed that solves the proposed robust resource allocation problem in exact and approximate formulations. The procedure relies on constraint propagation during its search. We report on computational results obtained on a set of benchmark problems.Model; Resource allocation; Scheduling;

    Stability and resource allocation in project planning.

    Get PDF
    The majority of resource-constrained project scheduling efforts assumes perfect information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule is executed. In reality, project activities are subject to considerable uncertainty, which generally leads to numerous schedule disruptions. In this paper, we present a resource allocation model that protects a given baseline schedule against activity duration variability. A branch-and-bound algorithm is developed that solves the proposed resource allocation problem. We report on computational results obtained on a set of benchmark problems.Constraint satisfaction; Information; Model; Planning; Problems; Project management; Project planning; Project scheduling; Resource allocati; Scheduling; Stability; Uncertainty; Variability;
    • …
    corecore