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Abstract. We studya resourceallocationproblem,which is a centralpieceof a
real-world crew schedulingproblem.We first formulatetheproblemasa hybrid
soft constraintsatisfaction and optimizationproblemand show that its worst-
casecomplexity is NP-complete.Wethenproposeandstudyasetof decisionand
optimizationmodelingschemesfor theproblem.Weconsidertheexpressiveness
of thesemodelingmethods.Specifically, weexperimentallyinvestigatehow these
modelingschemes interplay with the bestexisting systematicsearchand local
searchmethods.Ourexperimentalresultsshow thatsoftconstrainttechniquescan
beeffective on largeresourceallocationprobleminstances,andanoptimization
approach is more efficient than a model checkingapproach basedon decision
models.

1 Introduction

Resourceallocationproblems usually lie at the core of many real-world scheduling
andplanning problems.The propertiesof an underlying resource allocationproblem
can help characterize a scheduling problem. If the resource allocationproblem is a
critical pieceof thescheduling problem,thecomplexity of theformerwill dominatethe
complexity of the latter. If the resourceallocationproblem is difficult, thescheduling
problem is doomedto behardaswell.

Thefirst stepstowardunderstandinga resource allocationproblemconsist of for-
mulatingandmodeling theproblem.Modeling is oneof thecentralthemes of AI and
a critical stepof problem solving. A good model canusuallylenditself to anefficient
problem-solving strategy. However, modelingis difficult becausetherearemany affect-
ing factors,andnogeneral guidelinesexist onwhichfactorsmustbetakeninto account�

This researchwasfundedin part by NSFGrantsIIS-0196057 andEIA-0113618, andin part
by DARPA Cooperative AgreementsF30602-00-2-0531andF33615-01-C-1897.Thanksto
USC/ISICameragroupfor bringing to us theschedulingproblem,to AlejandroBugacov for
many helpful discussions, andto PengWangandXiaotaoZhangfor experimentation.Some
preliminary resultsof this researchwere presentedat CP2001 Workshop on Modeling and
Solving Problems with Soft Constraints.
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Table 1. A simplebundled,exclusive resourceallocationproblem.

in a modeling process.Therefore,developing a good model remains largely anart,de-
pending onexperienceandtaste.Nevertheless,for a given problem,differentmodeling
techniquescanbestudied,andtheirexpressivenessandcomplexity canbecompared.

In thispaper, weconsideraresourceallocationproblem,whichresidesat thecenter
of a complex, real-world taskscheduling problem [3]. We call the problem bundled,
exclusive resource allocation problem, or BERAPfor short.Briefly, theproblem is to
allocatea setof sharedresourcesto satisfytheresourcerequirementsof a setof tasks.
Thedifficultiesof theproblemstemfrom therestrictionsthata taskis not fulfilled until
all its resourcerequirementsaremetandthata resource canonly beusedto meetone
resource requirement.

Our objectivesof this researcharemultifold. The first is to solve the resourceal-
locationproblemusingsoft constrainttechniques[1,9]. The secondis to analyzethe
complexity of theproblem. Thethird objective is to developconstraint modelsfor the
problem andanalyze their representationalpower. The final andmost important ob-
jective is to understandthepossibleinterplaybetweenconstraintmodelsandproblem-
solvingstrategiesandsearchalgorithms.

We proceed asfollows. We first describetheproblemin Section2 andanalyzeits
worst-casecomplexity in Section3.Wediscussthemainmodelingchoicesin Section4
andhardandsoftconstraints in Section5.Wedevelop constraint modelsSections6 and
6. Thesemodelsareexperimentallyevaluated by systematicandnonsystematicsearch
algorithms in Section8. We discussrelatedwork in Section9, andfinally concludein
Section10.

2 Bundled, Exclusive Resource Allocation Problem
Theresourceallocationproblem wasoriginated from a screw scheduling problem [3].
We aregiven a setof � tasks, ����������������������� ���"!�# , anda setof $ resources,%&���'(�)��'*������������'*+)# . Eachtask requires a certainnumber of resources in order to ex-
ecute,which we call resourcerequirements.Eachresource can only be allocateto
oneresourcerequirement,anda resourcerequirementcanbe met by having onede-
sirableresourceallocatedto it. We denotethe ,.- resource requirementsof task �/- by0 -1�2�)3(-54 � �63(-54 � ������� �63(-54 7�86# . Table1 showsasmallexampleof resourcerequirements
of two tasksover threeresources.An entity of 1 (0) in thetablemeansthata resource
can(cannot) beallocatedto thecorresponding requirement.In general, theavailablere-
sourcesmaynotbesufficientto fulfill everytask;andataskcarriesapenalty, calledtask
penalty, if not scheduled. Theresourceallocationproblem is to allocatetheresources
to thetaskssothattheoverall penaltyof unfulfilled tasksis minimized, anoptimization
problem.If all taskshaveequalpenalties,it is equivalentto fulfill themaximal number
of tasks.
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Comparedtosomeotherresourceallocationproblems,for instancesthepermutation
problemsconsideredin [12,14], our problem hasa unique,small structureembedded
within a task.A taskcanbescheduledif andonly if all its resourcerequirementsare
met.Wecall this featurebundled resource requirement. Furthermore,apairof resource
requirementshave anexclusive resourcecontention in thata resource acquired by one
requirementcannotbe allocatedto the others. We call this featureexclusive resource
contention. Overall, we call theproblem bundled, exclusive resource allocation prob-
lem, or BERAP for short.

3 Computational Complexity
Wenow show thatBERAPis NP-hard[5]. To thisend,weprovethatadecisionversion
of theproblemis NP-complete[5]. A simple,specialdecisionversionof BERAPis the
following.Givenasetof tasks,eachof whichhasasetof resourcerequirements,decide
if at least 9 taskscanbefulfilled. Herewe simply consider every taskhaving a penalty
oneif it is not fulfilled.

Theorem 1. BERAP with more than two resource requirements per task is NP-complete.

Proof: We show the above decisionversionof BERAP is NP-complete.We reducea
NP-completesetpacking problem[5] to thisdecisionproblem.Givenacollection : of
finite setsanda positive integer ;=<?> :@> , setpackingis to decideif : containsat least; mutually disjoint subsets.Formally, it is to decideif thereexists :BADCE: suchthat> :FA�>HGI; andfor all :��*JK:/A and :L�MJK:/A , :1�/NO:��P�RQ . Theproblemis NP-complete
wheneverysubset: - JS: hasmorethantwo elements.Wenow reduceanNP-complete
setpacking problemtoourdecisionBERAP. Wemapall theelements in thesubsetsof a
setpackingprobleminstanceto theresourcesof BERAP, eachsubsetof thesetpacking
instanceto a taskof BERAP, andanelementin thesubsetto a resource requirementof
therespective task.In otherwords,the total numberof tasksis thenumberof subsets> :@> , the number of resourcesis the number of distinct elementsin all subsetsof : ,
andthe number of resourcerequirementsof a task is the number of elementsin the
corresponding subset.Given ;T<U> :V> , theconstructedBERAPis to decide if at least;
taskscanbefulfilled. Clearly, asolutionto theBERAPis alsoasolutionto theoriginal
setpacking problem. WX
4 Modeling Considerations and Choices
Threemodeling decisionsshouldbemadewhenbuilding a constraint model. Thefirst
is to choosevariablesandvalues.For instance,we may useresource requirementsas
variablesanddesirableresourcesastheir values, or vice versa.A good choiceof vari-
ablesandvaluesseemsto bearupontherepresentationalpowerof theresultingmodels
andthesearchalgorithm use.Theremayexist soft constraints thatis hiddenin amodel
built from onemodelingchoicewhich maybeexplicit in anothermodelfrom a differ-
entchoice.There is a tradeoff betweentheexpressivenessof amodel andtheefficiency
of a searchalgorithm. Oneof our objectives of this researchis to understandthe ex-
pressivenessof different designschemesandtheir impactontheperformanceof search
algorithms.
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Optimization Decision
general variables a COPmodel a setof CSPmodels
Boolean variables aMAX-SAT modela setof SAT models

Table 2. Fourmodeling choicesfor soft constraintoptimizationproblems.

Thesecondandsubtlemodeling decisionis to choosethevariabletypes.We may
useregular variables with largedomainsto develop a generalCSPor COPmodel,or
Booleanvariablesto build a Booleansatisfiability(SAT) or maximum Booleansatis-
fiability (MAX-SAT) model. This consideration is inspiredby the successof Davis-
Putnam-Longmann-Loveland algorithm [2] andlocal searchfor solvingSAT [11,10].
We will compare thesechoicesin this research.

Thethirdanddifficult decisionis tochoosebetweenaCSPmodel andaCOPmodel.
Using a CSPmodel follows the spirit of model checking [7]. However, many real-
world applications, including the scheduling problem whereour BERAP resides,are
optimization problems.Taking a CSPapproachwill force one to solve a setof CSP
models,eachof whichis for findingasolutionof aprescribedquality, suchasaschedule
with a certainnumberof tasksto befulfilled. SuchCSPmodelscanbebuilt andused
to carryout a binarysearchin thespaceof solutionquality to reducecomplexity. If a
CSPmodelcanbe solved efficiently andthe number of optimal solutionsis limited,
the CSPapproachmay be a goodchoice. For instance,whenthe goal for a BEREP
is to fulfill the maximal number of taskspossible,the CSPapproachmay be feasible
whensuchmaximalnumber of possibletasksis relatively small. A seriousproblem
with thisCSP-based,modelchecking approach is thatit doesnotseemto beapplicable
whentaskshave different penalties if not fulfilled andtheoverall goal is to minimize
the total penalty of unscheduledtasks.Whenthenumber of optimalsolutions is large
or the goal is to minimize the total penaltyof unfulfilled tasks,solving the problem
directly by a COPapproachmaybe more tractable.Nevertheless,in this researchwe
considerthe CSP-based,model-checking approachandstudyhow it compareswith a
directoptimization approach.

As summarizedin Table2, we have four modelingschemes,basedon thedecision
of variablesandvaluesaswell asproblem-solvingstrategies.

5 Hard and Soft Constraints
Hardconstraintsis theonesthatmustbeprotected;aviolation to oneof themis forbid-
denor will incur a prohibitively high penalty. In contrast,soft constraintsaretheones
thatmaybeviolated;a violation to oneof themis not fatalbut will degradethequality
of a solution[1]. Therefore,to distinctsoft andhardconstraintsin a constraint model,
we give themdifferent penalties.Thepenaltyfor violating a hardconstraintshouldbe
setto sucha prohibitively high valuethat a searchalgorithmwould ratherviolate all
soft constraints thanviolatethehardconstraint.Thus, thepenalty for a hardconstraint
shouldbeat leastaslarge asthetotal penalty of all soft constraints plusone.

Not all tasksof a BERAP canbe fulfilled if resourcesare insufficient. We usea
Booleanvariable� - to representtask � - . Variable � - �ZY if task � - is fulfilled, � - �U[
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otherwise.We thenintroducea constraint \]� - �^Y�_ , call a task constraint, to specify
fulfilling task � - . As a taskconstraint maybeviolated,sothatit is asoft constraint. We
use `
!@�ba !-dc � \]� - �eY�_ or `
!V�fa !-gc � � - to representthesetof soft taskconstraints.
Thepenaltyfor anunsatisfiedtaskconstraint shouldbeat leastequalto thepenaltyof
thecorrespondingtask.

Thetwo eminent featuresof BERAP, bundled resource requirements andexclusive
resource contentions, maketheproblemdifficult to modelandsolve.They imposehard
restrictionson how resourcescanandshouldbeallocated. We usehardconstraintsto
represent suchrestrictions.

To facilitateour discussion,we use `ih and `kj to shorthanded the setof bundled
constraints and `lj thesetof exclusion constraints, respectively. Therefore,theoverall
constraints of anBERAPcanbewritten as `m�U`"! a `Hh a `
j . How to properly model
thehardconstraints in `�h and `kj anddefinea penaltyfunction for eachof themarethe
mainfocus of ourmodelingeffort.

6 Modeling in Soft Constraint Optimization
Modelsin constraintoptimizationarecalledMAX-SAT modelsif Booleanvariableare
used,or COPmodelsotherwise.We discussthesetwo typesof modelsin turn.We will
useour toy example in Table1 to illustratetheresultingmodels.

6.1 COP models
Different choicesof variable/valuepairsleadto differentmodels.

Model 1: Requirements as variables Ourfirst attemptis to castresourcerequirements
asvariablesandtheirdesirableresourcesasvalues.WefurtherintroduceaNULL value,
denotedas Q , into a variabledomain to representthecasewhentherequirementhasno
resource allocated.For instance,thedomain of requirementvariable 3m� 4 � of Table1 is�)Qn�o'B����'*pq# .

We now considerthehard, bundleconstraints ` h . We introducea hardconstraint to
specifyif a taskconstraint is satisfied,i.e., the corresponding taskvariable hasvalue
1, thena requirementvariable associatedwith thetaskcannot havea NULL value. For
instance,whentaskvariable � � ��Y in Table1, the requirement variable 3 � 4 �sr�tQ .
We thuswrite a hardconstraint\u\5� � �b[�_�vw\x3 � 4 �Kr�fQ�_u_ . Spellingout all suchhard
constraints for all tasks,we thenhave` h � !y-dc � ` h \]��-�_{z|` h \]��-x_}� 7�8y~ c � \u\5�"-���[._�v�\�3(-54 ~ r��Q�_u_ � (1)

We now turn to exclusion constraints,which prevent a resourceto be allocated
to multiple requirements.We usea constraintto exclude the possibility that two re-
quirement variables have the same,non-NULL value.In our example, to exclude al-
locating resource '�� to 3�� 4 � and 3M� 4 � at the sametime, we write a hardconstraint\u\x3�� 4 � r��'P��_iv�\x3(� 4 � r��'(��_u_ . For all resources,we write,` j � +y� c � ` j \5' � _{z|` j \x' � _/� y \u\x3M- � 4 ~ � r��' � _Lv�\�3(- � 4 ~ � r��' � _u_ � (2)

where Y�<�����<��Fz��
�M<�����<��Fz�Y�<w�q��<�, - � z�Y�<w����<�, - � z��q� r����� if �u�*����� . Note
thatrequirementvariable3 - � 4 ~ � maybethesameas 3 - � 4 ~ � .
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To illustrate,we havea constraint model for ourexample problem asfollows.�������� �������
`n!���\]�L���?Y�_ ��\]���V�UY�_`Hh}��� \u\]�L����[�_�v�\x3�� 4 � r�RQ�_�_{��\�\]�L����[�_�v�\x3�� 4 � r��Q�_u_\u\]� � ��[�_�v�\x3 � 4 ��r�RQ�_�_{��\�\]� � ��[�_�v�\x3 � 4 ��r��Q�_u_`Hj�� �� � \�\x3 � 4 ��r��' � _iv�\x3 � 4 ��r��' � _�_{��\u\x3 � 4 ��r��' � _iv�\x3 � 4 ��r��' � _u_\�\x3 � 4 ��r��' � _iv�\x3 � 4 ��r��' � _�_{��\u\x3 � 4 ��r��' � _iv�\x3 � 4 ��r��' � _u_\�\x3 � 4 ��r��' � _iv�\x3 � 4 ��r��' � _�_{��\u\x3 � 4 ��r��' � _iv�\x3 � 4 ��r��' � _u_

Model 2: Resource as variables Our secondmethodis to useresourcesasvariables
andresource requirementsastheir values.Take thefirst resource' � of Table1 asan
example. Resourcevariable' � hasadomain �q3 � 4 � �63 � 4 � �o3 � 4 � # .

To definethebundle constraints,we introduce a hardconstraint for eachresource
requirementto specifythat theassociatedtaskcannot be fulfilled without therequire-
mentunsatisfied.In our example for instance,to specifythat when �*� is fulfilled its
requirement 3�� 4 � mustbe satisfied,we write a hardconstraint \�\]�}���T[�_}v�\5'*���3�� 4 ��_�v�\5'*pB��3�� 4 �{_�_ . We thuswrite all bundled constraintsasfollows

`
h�� !y-dc � `Hh�\]� - _{z|`Hh�\5� - _}� 7 8y~ c � \u\]� - ��[�_ +�� c � \5' � �R3 -54 ~ _u_ (3)

Fortunately, the exclusion constraints disappear automatically in this model, be-
causea resourcevariablecanhave only onevalueat a time. Thesizeof this modelis
typically smallerthanthatof Model1.

For ourworking example, theconstraintsof themodel canbewrittenas�� � `�!F�?\5�L���UY)_{��\5���V�2Y�_`
h��Z� \u\5�L����[._�v�\x'B�*��3�� 4 � _iv�\x'BpV�R3�� 4 � _u_ ��\�\]�L����[._�v�\5'(�@��3�� 4 ��_�_\u\5���V��[._�v�\x'P�V��3(� 4 � _iv�\x'B�V�R3(� 4 � _u_ ��\�\]���V��[._�v�\5'(�@��3(� 4 ��_Lv�\x'B�V�R3(� 4 ��_�_
Model 3: Resource as variables, a more explicit model In Model 2, a requirement
maygrabmore thanoneresource.This happenswhenmultiple resource variableshave
thesamerequirementastheirvalues.Suchascenariois legitimate,but maybewasteful
whenresourcesarescarce.If weexclude suchanundesirable, redundantresourceallo-
cation,theresultingmodel will bemore expressiveandlarger thantheoriginal version
asmorehidden constraintswill bebroughtto bear. Whetheror notanexpressivemodel
is moreeffective thana lessexpressive modelis a questionto beexamined closely, a
topicof Section8.

To make Model 2 explicit, we introduce constraints to prevent a requirement to
have more thanoneresource.For example, we exclude therequirement 3�� 4 � hasboth
resources ' � and ' p usinga constraint\u\x' ��r�23 � 4 � _1v�\5' p�r�23 � 4 � _�_ . In general, we
haveto considereachpossiblepairof desirableresourcesof a requirement,andrewrite
thebundleconstraintsas�� � `Hh}� a ! -dc � `Hh�\]� - _ a ! -gc � `�Ah \5� - _`Hh�\5� - _/��a 7 8~ c � \�\]� - ��[�_H  +� c � \5' � ��3 -54 ~ _u_`iAh \5� - _/��a �{¡ � � ¡l+{¢ � �o£ � � ¡"+6¢ �{¡ ~ ¡ 7 8 \x' � � r��3 -54 ~ vK\x' � � r��3 -54 ~ _u_{� (4)
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Thenew constraintsaresoft, violating themcanonly resultin resource wast.Further-
more,comparingto thesoft taskconstraints, thesoftbundledconstrainsarelessimpor-
tantandshouldthuscarrysmallerpenalties.We maygive eachsoft bundled constraint
a penalty one,andeachsoft taskconstrainta penaltyequal to the total number of soft
bundledconstraintsplusthepenaltyof thetask.Thepenalty of ahardconstraint is then
adjustedaccordingly.

For ourworking example, thenew softbundledconstraints are,` Ah ��¤ \�\5'*� r��3�� 4 � _Lv�\x'Bp r�R3�� 4 � _�_{��\�\5'(� r�R3(� 4 � _iv�\5'*� r��3(� 4 � _�_{��\u\5'(� r�R3(� 4 ��_iv�\5'*� r��3M� 4 ��_u_
6.2 MAX-SAT models

In MAX-SAT models,thetaskvariablesareBoolean.Therefore,taskconstraint \]� - �Y�_ is simply \]� - _ .
Model 4: Requirements as Boolean variables This is parallelto Model 1. Theonly
differenceis thatinsteadof onevariableperresourcerequirement,wenow haveasetof
Booleanvariablesperrequirement.Considera requirementvariable 3�-]4 ~ with domain��' � � ��' � � ����������' �6¥ �oQn# . Weintroduce¦ Booleanrequirementvariables,�)3§-54 ~ 4 � � �63(-]4 ~ 4 � � ���������o3(-54 ~ 4 �6¥ # ,
whereBooleanvariable 3 -]4 ~ 4 �{¨ correspondsto resource' �{¨ . Variable 3 -54 ~ 4 �{¨ hasvalue� if resource ' �{¨ is assignedto 3 -]4 ~ , andvalue © otherwise.With Booleanvariables,
we rewrite thehardbundledconstraintsas

� ` h � a ! -dc � ` h \]��-�_{�` h \5��-x_}� a 7 8~ c � \�ª��"-   + � c � 3M-]4 ~ 4 � _{� (5)

Similarly, we updatetheexclusionconstraints to�� � `
j��Ra +� c � `Hjq\x' � _ �`
j�\5' � _/� a �{¡ - � ¡"«�¢ - � ¡ - � ¡"«�¢ �6¡ ~ � ¡ 7 8 � ¢ �6¡ ~ � ¡ 7 8 � ¢ ~ ��¬c ~ � if - � ci- �\xªF3 - � 4 ~ � 4 � vOªF3 - � 4 ~ � 4 � _ (6)

For ourworking example, theMAX-SAT model is givenasfollows.���� ��� `�!F���L�q�u���`
h��U\�ª��i�/v§3�� 4 � 4 �/vO3�� 4 � 4 p�_ ��\xª��L�FvO3�� 4 � 4 �{_{��\xª����}vO3(� 4 � 4 ��vO3(� 4 � 4 ��_{��\xª����}v§3(� 4 � 4 ��vO3(� 4 � 4 ��_`
j���� \�ªF3�� 4 � 4 �FvOªF3(� 4 � 4 � _{��\xªF3�� 4 � 4 ��v§ªF3M� 4 � 4 � _ ��\xªF3M� 4 � 4 �FvOªF3(� 4 � 4 �{_\�ªF3 � 4 � 4 � vOªF3 � 4 � 4 � _{��\xªF3 � 4 � 4 � v§ªF3 � 4 � 4 � _ ��\xªF3 � 4 � 4 � vOªF3 � 4 � 4 � _
Model 5: Requirements as Boolean variables, a more explicit model The useof
Booleanvariables in Model 4 introducesadditional constraints,i.e., multiple Boolean
requirementvariables for a resource requirementmayhave value � at thesametime,
meaning that the requirementholdsmultiple resources, a similar problem that Model
3 attemptsto correct over Model 2. Similarly, we introduceadditional constraintsto
prevent this from happening, making somehidden soft constraints explicit. Onesuch
mutuallyexclusive constraint is \�ªF3 -54 ~ 4 � � vOªF3 -54 ~ 4 � � _ , meaning thatBooleanvariables
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3 -]4 ~ 4 � � and 3 -]4 ~ 4 � � shouldnot have value � simultaneously. Specifically, we have the
following soft constraints:�� � ` h � a ! -dc � ` h \]��-x_ a ! -dc � `iAh \]��-�_` h \]��-�_/� a 7�8~ c � \xª���-   + � c � 3(-54 ~ 4 � _`�Ah \]��-�_/� a �{¡ ~ ¡ 7 8�¢ �6¡ � � ¡"+6¢ � �6£ � � ¡"+ \�ªF3(-]4 ~ 4 � � vOªF3(-54 ~ 4 � � _ � (7)

It is interestingto notethatMAX-SAT modelscorresponding to COPModel 2 and
Model 3 collapseinto thesamemodel,MAX-SAT Model 5. A directargumentis left
asanexercisefor thereader.

Themodelfor ourexample is thenModel4 plusthefollowing,` Ah �?\�ªF3 � 4 � 4 � v§ªF3 � 4 � 4 p _{��\�ªF3 � 4 � 4 � vOªF3 � 4 � 4 � _{��\xªF3 � 4 � 4 � v§ªF3 � 4 � 4 � _
7 Modeling in Soft Constraint Satisfaction
Theobjective hereis to createa setof models,eachof which specifiesat leasta fixed
number 9 of tasksto be fulfilled. Thesemodels arethenchecked to verify if at least9 tasksareindeedsatisfiable.Theoverall processsearchesfor themaximalnumber of
tasksto bescheduled.

7.1 CSP models
Thekey to building aCSPmodelfor anoptimization problemis to introduceconstraints
to representthegoalof fulfilling at leasta fixednumberof tasks.Specifyingat least 9
taskstobeturnedonis realizedbyasetof dummyvariables,anideaproposedin [3]. We
introduce � dummyvariables, onefor eachtask.Thedomain of ­ - is ��[H��Y��6®n�������{�69l# ,
where 9 is thenumber of tasksto beturnedon.Thevalue0 in thedomainis special.A
dummy variableis turnedoff if its valueis 0, or turnedon otherwise.We thenconnect­ - with task variable � - by hard constraintsspecifying that task � - can be fulfilled
if andonly if its dummyvariable ­ - is turned on. That is, we write hardconstraints,\u\]� - ��[�_"vS\�­ - r��[._u_ and \u\5� - �UY�_"vS\�­ - ��[�_�_ . Thefirst constraintmeansthatwhen
task ��- is fulfilled, i.e., \5�i-D�Z[�_ , its associatedvariable mustbeon, i.e., ­1- r�E[ . The
secondconstraintspecifiesthecasewhentask �F- is unfulfilled, its associateddummy
variable cannot beturnedon.

Furthermore,we introduceconstraints to turn on at least 9 dummy variablessoas
to fulfill at least 9 tasks.We useconstraintsto specifythatoneof ­�- musttakevalue� ,
for �S�¯Y��6®n�������{�69 . That is, we have a total of 9 hardconstraints\u\x­ � �U��_�v°\�­ � ��._Dv������Hv�\x­k«E�T��_u_ , for �U�±Y��o®n�������{�o9 . We call all thesehard constraints CSP

constraints, denotedas `�² �{³´1µ.¶ , In short,wewrite

`�² �{³´�µ.¶ � ��� �� a ! -gc � \u\5� - �UY)_�v�\�­ - ��[._u_a ! -gc � \u\5� - ��[._�v�\�­ - r��[._u_a �~ c � \   ! -gc � \x­k-1�w��_u_
To turnon2 taskin ourexample of Table1, theCSPconstraints are,

`�² � ³´1µ.¶ � � \u\5� � �UY)_�v�\�­ � ��[._u_{��\u\5� � ��[�_�v�\�­ ��r��[�_�_{��\�\]� � �UY�_iv�\x­ � ��[�_u_\u\5� � ��[._�v�\�­ ��r��[._u_{��\u\�­ � �?Y�_�v�\�­ � �UY�_�_{��\�\x­ � ��®�_�v�\x­ � �R®�_u_
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Oneof theCOPmodels,Model1,Model2 orModel3 presentedin Section6 canbe
combinedwith a setof CSPconstraints `�² �{³´1µ.¶ to form a CSPmodel.We cantherefore
derive threeCSPmodels.

7.2 SAT models
The idea for developing a SAT model follows the sameprinciple for a CSPmodel,
except that insteadof one dummy variable for a task we introduce a set of dummy
Booleanvariables.For task � - , we have �)­ -54 �)�o­ -54 �����������o­ -]4 � # , where 9 is theminimal
numberof tasksto befulfilled. We will haveconstraints to ensure thattask � - is turned
on if andonly if oneof its associateddummy variablesis turnedon.To specifyturning
on oneof its respective dummyBooleanvariables when � - is on, we have constraint
constraint \�ª��i-   �~ c � ­k-]4 ~ _ , andto specifynone of its dummy variableis onwhen ��- is

noton,wehaveconstraints a �~ c � \5� - vMªF­ -54 ~ _ . Furthermore,since �q­ -54 �q�6­ -54 �����������o­ -]4 � #
represent � - , onlyoneof themshouldbeonwhen� - is on.In otherwords,thesedummy
variablesmustbemutually exclusive whentherespective taskis turnedon.Therefore,
for task � - , we introduceconstraints a �6¡"·�¡ � ¢ ·�¡l¸�¡ � \xªF­ -54 ·*vOªF­ -]4 ¸�_ .

Similarly, to turnonat least 9 tasks,we specifythatoneof �q­ � 4 ~ �6­ � 4 ~ ���������6­ ! 4 ~ # is
turnedon for ���?Y��o®
�������u9 , i.e.,wehave a �~ c � \   ! -dc � ­k-54 ~ _ .

We call theabove additional constraintsSAT constraints, which arewritten asfol-
lows.

` ² �{³µ�¹�º � ��� �� a ! -gc � \�ª�� -   �~ c � ­ -]4 ~ _ka �~ c � \5� - v§ªF­ -54 ~ _a ! -gc � a �6¡"·�¡ � ¢ ·�¡l¸�¡ � \xªF­ -]4 ·(v§ªF­ -54 ¸�_a �~ c � \   ! -gc � ­k-]4 ~ _ (8)

For ourexample in Table1,wehavethefollowing SAT constraints for fulfilling two
tasks.`�² � ³µ.¹�º � � \xª�� � vO­ � 4 � vO­ � 4 � _ ��\�ª�� � v§­ � 4 � vO­ � 4 � _ ��\]� � vOªF­ � 4 � _{��\]� � vOªF­ � 4 � _{��\5� � vOªF­ � 4 � _\]� � vOªF­ � 4 � _ ��\�ªF­ � 4 � vOªF­ � 4 � _{��\�ªF­ � 4 � vOªF­ � 4 � _{��\x­ � 4 � v§­ � 4 � _{��\x­ � 4 � v»­ � 4 � _

Similar to CSP, we canwrite two SAT modelsto matchthetwo MAX-SAT models
by combining themwith `D² �{³µ.¹�º .

8 Experimental Analysis
As shown in Table3, we now havea total of tendifferentmodelsin thefour categories
that are listed in Table2. Thesemodelshave different sizesandexpressiveness.The
objectiveof thissectionis to understandtheeffectivenessof amodel andits interaction
with a searchalgorithm.

To thisend,wecarryoutanexperimentalanalysisusingsystematicandnonsystem-
aticsearchmethods.Wechosetheexisting(andavailable)algorithmsandprogramsthat
areeitherthebestor among thebestfor themodels.Whennogoodsolveris availableto
usfor a particular modelthatwe needto study, we makeourbesteffort to develop one
onourown.Thealgorithmthatwill beusedonaparticularmodel is alsoincludedin Ta-
ble3 in parenthesesafterthemodel. Thefirst namein theparenthesesis for systematic
searchandthesecondfor nonsystematicsearch.
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variabletype optimization satisfaction

COP1/( -, COPsolver) CSP1/( -, NB-WSat)
general variables COP2/( -, COPsolver) CSP2/( -, NB-WSat)

COP3/( -, COPsolver) CSP3/( -, NB-WSat)

Boolean variables MAX-SAT4/(MAX-SATsolver, WSat(OIP) SAT4/(SATZ,WalkSat)
MAX-SAT5/(MAX-SAT solver, WSat(OIP) SAT5/(SATZ,WalkSat)

Table 3. Constraintmodelsandthealgorithmsto beusedon them.

In all our experiments,we set the penaltyfor an unsatisfiedtask to be one.This
simplepenaltyfunction makesa comparison betweenan optimization approachand
a model-checking basedapproachpossible.As discussedearlier, whena decisionap-
proach wastakento find themaximalnumber of tasksto beturnedon,a binary search
wascarriedoutona setof CSPor SAT models to find themaximal possiblenumberof
tasksthatcanbesatisfied.

We generatedrandomprobleminstancesby changing the probability, called the
resource density, thata resourcecanbeusedby a task.

8.1 Systematic search

For systematicsearch,we focusedon MAX-SAT andSAT modelssinceno good com-
pletesolversfor COPandCSPwereavailableto us.For theSAT models,we adopted
SATZ [6], oneof the bestcompleteSAT solversbasedon Davis-Putman-Longmann-
Loveland (DPLL) algorithm [2]. We developedan algorithm for MAX-SAT models,
which directly extends the Davis-Putman-Longmann-Loveland (DPLL) algorithm [2]
andwecall it MAX-SATsolver.

In our experiments,we usedrandom probleminstanceswith varioussizes,ranging
from five to tentasks.Every taskhasthreeresourcerequirements,sothatthecomplex-
ity of aprobleminstanceis NP-hardin theworstcase,asprovedin Section3.Wechose
thesesmallproblemsizesin orderto solvetheproblemsto optimalityusingthesystem-
aticsearchalgorithms.Theresourcedensitiesof therandomprobleminstancesincrease
from0.1to0.9with anincrement of 0.1.Forapairof problemsizeandresourcedensity,
we generated100instancesandaveragedtheresultsover the100trials.Theresultson
six tasksandthreerequirementspertaskareshown in Figures1 and2. As thevertical
axesin the figuresarein a logarithmic scale,the complexity of the algorithms grows
exponentiallywith the number of resourcesandthe resourcedensity. Oneconclusion
from Figure1 is thatmodel MAX-SAT4 is moreeffective thanmodelMAX-SAT5. For
example, for problemswith tenresourcesand0.4resourcedensity, anoptimal solution
canbefoundonMAX-SAT4 in 425secondsonaverage,while it needsmore than1700
secondsonMAX-SAT5.

We compared the two SAT modelson the sameset of problem instancesusing
SATZ. Figure2 showstheresult.In contrastto theresultsonMAX-SAT models,SAT5
is moreeffective thanSAT4.Oneplausibleexplanationfor modelSAT5 beingmoreef-
fectivethanmodelSAT4 is thefollowing.Recallthatmodels SAT4 andSAT5 aredirect
extensionsof modelsMAX-SAT4 andMAX-SAT5, in whichit is specifiedto turnonat
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Fig. 1. CPU time of MAX-SATsolver, in a logarithmicscale,on modelsMAX-SAT4 (left) and
MAX-SAT5 (right) (6 tasksand3 requirements/task).
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Fig. 2. CPU time of SATZ, in a logarithmicscale,on modelsSAT4 (left) andSAT5 (right) (6
tasksand3 requirements/task).

leasta certainnumber of tasks.RecallthatMAX-SAT5 is moreexpressive thanMAX-
SAT4 by bringing somehiddenconstraints to bear. By thesametoken,SAT5 is more
expressive thanSAT4 with more constraints introduced.Therefore, theratioof number
of clausesversusthenumber of variables is higher for SAT5 thanthat for SAT4 for a
given target number of tasksto besatisfied.Whensearchingfor themaximalnumber
of tasksto beturnedon,many unsatisfiableSAT modelswill bechecked.Theseunsat-
isfiablemodelsaresubstantiallylargerthansatisfiablemodelsfor thesameproblem, as
theformerhasto encodethefactthatmoretasksareto befulfilled. As aresult,asearch
algorithm typically spendsmoretime on anunsatisfiablemodel thana satisfiableone.
Furthermore,deciding if anunsatisfiableSAT model is unsatisfiableis relatively easier
whentherearemoreconstraints andthenumber of variablesis fixed.This observation
is in line with theeasy-hard-easyphasetransitionphenomenon of 3-SAT [8]. Combin-
ing thesefacts,therefore, we canspeculatethat modelSAT5 mustbe moreeffective
thanSAT4.

In addition,while thecomplexity of SATZ still growsexponentiallywith thenumber
of resourcesandresource density, it is smallerthan that of our MAX-SATsolver on
MAX-SAT models.For example, for problemswith ten resources and 0.4 resource
density, SATZ finishesin 59 seconds on average while theMAX-SAT algorithmneeds
425seconds. Although the resultsin Figures 1 and2 indicatethata combinationof a
SAT model andSATZ algorithmis betterthana combination of a MAX-SAT model
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andour MAX-SATsolver, we needto mentiontwo issuesrelatedto this comparison.
First, our MAX-SAT algorithmandimplementationarenot optimizedandthey canbe
further improved. For example, many lookaheadtechniquesfor SAT algorithmsmaybe
exploited to speeduptheMAX-SATsolver. Second, weonly consideredtheproblemof
turning on themaximalnumber of tasks.More importantly, whentaskshave different
penaltiesandthe goal is to minimize the total penaltyof all unfulfilled tasks,we can
only rely on theMAX-SAT Modelsanda MAX-SAT algorithm.

8.2 Local search
We considered all the modelsusing nonsystematicsearchmethods. We usedWalk-
Sat[11,10], themostcelebratedlocalsearchalgorithmfor SAT problems,for ourSAT
models.We ran NB-WSat [4] on our CSPmodelsandchoseWSat(OIP)[13] for the
MAX-SAT models. NB-WSat and WSat(OIP)are direct extensionsof WalkSat,but
alongdifferent directions.NB-WSatextendsWalkSatto includenon-Booleanvariables.
WSat(OIP)expandsWalkSatto handleconstraint optimization problems.We leave the
detailsof thesealgorithms to their original descriptionin [11,10,4,13] Thesealgo-
rithmsareperhapsthebestfor themodelsfor which they will beapplied.Finally, we
developedour own local searchalgorithm for COPmodels,which we call COPsolver.
This solver is alsoan extension of WalkSatto dealwith non-Booleanvariablesand
constraint optimization problems at the sametime. One significantdeviation of this
COPsolver from WalkSatis thatanunsatisfiedconstraintof thehighestweightamong
all unsatisfiedonesis selectedin eachstep.Whenmorethanonesuchhighest-weight
constraints exist, thetie is brokenrandomly. Thedetailof this constraintsolver will be
reportedelsewhere.

Again weusedrandomprobleminstanceswith threeresourcerequirementspertask
to make theproblem instancesdifficult. We tried someproblem instancesin therange
with thenumber of tasksgoing from 30 to 100, thenumberof resourcesranging from
oneto two timesof thenumberof tasks,andthedensityof resourcerequirementsspan-
ningfrom 0.1to 0.9for problemswith 30,40and50 tasks,and0.1to 0.5for thelarger
problem sizes.

We run WalkSatversion 39 with nine random restarts(giving a total of 10 runs)
on eachproblem instance,andseteachrun to 100,000 flips. The noiseratio wasset
to 50/100.We usedNB-WSatversion 4 andadoptedthesamesetof parametersasfor
WalkSat.We only appliedWSat(OIP)onceto eachproblem instance,and let it run
50,000 moves. We set its noiseprobability at 0.01. For our own COPsolver, we gave
a total of 600seconds or 10 minutesof CPU time. If the algorithm makesmorethan
5,000 plateaumoves,it will restartfrom a randomstartingpoint.

For performanceof thealgorithmson a specificinstance,we take into account the
quality of thebestsolutionthey providedandthe time in which thebestsolutionwas
found (not thetotal CPUtimeon theinstance).

The resultson CPU time on the instancesof 60 tasksand80 resourcesaregiven
in Table4, averagedover 10 instances.On theseprobleminstances,all algorithms pro-
ducedthe samesolutionquality of fulfilling 26 taskson average. The test resultson
otherproblemsizesexhibit similar trends.

Basedon Table4, we canmake a few observationson the modelsandthe search
algorithms.Goingfrom themodelsin theCOP(MAX-SAT) family to thosein theCSP
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COPsolver NB-WSat WSat(OIP) WalkSat¼ COP1 COP2 COP3 CSP1 CSP2 CSP3 MSAT4 MSAT5 SAT4 SAT5

0.1 5.46 0.09 0.92 168.67 49.62 100.06 0.20 0.80 41.94 51.22
0.2 22.68 0.03 4.04 494.19 81.41 287.63 1.60 2.00 80.24108.49
0.3 53.63 0.07 19.91 1186.67132.26 551.56 3.60 7.00 131.29184.68
0.4 106.90 0.12 86.73 2076.74191.291759.58 7.80 12.40 178.52257.19
0.5 498.21 0.22132.45 10198.70269.289599.19 16.00 29.60 235.41339.65

Table 4. Average CPUtime (in seconds) whenthebestsolutionswerefoundon instancesof 60
tasks,3 resourcerequirementspertask,and80 resources.

(SAT) family, the relative effectivenessof different modelswithin the samecategory
seemsto be preserved from onealgorithmto another algorithm. Specifically, the or-
derof strengths within COPfamily is COP2,followedby COP3andthenby COP1;a
similarorder appears in theCSPfamily, i.e.,CSP2,CSP3andthenCSP1.Thesameob-
servationcanbemade acrosstheMAX-SAT andSAT families.Theseobservationscan
leadusto someinterestingconclusions.First, within COPandCSPfamilies,themod-
elsusingresourcesasvariables(i.e.,COP2,COP3,CSP2andCSP3)aremoreeffective
thanthemodelsusingresourcerequirementsasvariables(i.e.,COP1andCSP1).Sec-
ond,makingamodelmoreexpressivedoesnotpayoff for localsearch.COP3andCSP3
aremoreexplicit modelsthanCOP2andCSP2.However, COPsolverandNB-WSatrun
longeronthemoreexpressivemodels.SimilarobservationcanbemadebetweenMAX-
SAT4 (SAT4)andMAX-SAT5(SAT5).Thisresultfor localsearchcontradictswith that
of SATZ onSAT4 andSAT5.Obviously, theexpressivenesshasdifferentimpactondif-
ferentsearchmethods.

Now considerthebestcombinationsof algorithmsandmodels from all categories.
TheCOPsolver/COP2pair is thechampion of all. Its CPUtime is typically morethan
anorderof magnitudessmallerthanthesecondbestpair, WSat(OIP)/MAX-SAT4. NB-
WSat/CSP2is the slowest.The sizesof actualCSPmodelsthat NB-WSat runs on,
in termsof megabyesof memory, areusuallysignificantly larger thanthe equivalent
modelsusedby othersolvers. This is partly dueto the fact that NB-WSat introduces
a Booleanvariablefor eachvariable value. It remains to be clarified if NB-WSat’s
performancecanbe improved if the memory requirement canbe reduced usingsome
engineeringeffort.

The resultsin Table4 clearlyshow that the combinationsof decisionmodels and
CSPor SAT solvers cannot competewith the combinationsof optimization models
andCOPor MAX-SAT solvers. This indicates that theapproachof model checking is
not appropriatefor theresource allocationproblemconsideredhere.Thesituationwill
become worseif taskshavedifferentpenaltiesif unfulfilled.

SinceCOPsolverandWSat(OIP)perform significantlybetterthanthetwo decision-
basedsolvers,wecomparedthemonlargerproblems.Table5showstheirCPUtimeson
problemsof 100tasksand200resources,averagedover 10 trials.Both algorithmscan
fulfill thesamenumberof 66 tasks.However, COPsolver is ableto find thesolutions
a few ordersof magnitudessoonerthanits counterpart.To further our understanding,



14 W. Zhang ¼ COPsolver WSat(OIP)

0.1 0.71 13.21
0.2 0.92 86.67
0.3 1.65 276.33
0.4 3.32 601.33
0.5 6.09 1175.10

Table 5. Average CPUtime of WSat(OIP) andCOPsolver (in seconds) whenthebestsolutions
werefoundon instancesof 100tasks,3 resourcerequirementspertask,and200resources.

COPsolver WSat(OIP)¼ tasks time tasks time

0.1 55.1 3.0 66.6 14.4
0.2 56.1 12.0 65.2 74.1
0.3 52.7 19.5 63.1 220.4
0.4 54.6 65.1 62.4 497.1
0.5 53.7 93.0 62.11526.0

Table 6. Averagesolutionquality (in thenumberof tasksturnedon) andaverageCPUtime (in
seconds) of WSat(OIP) andCOPsolver whenthe bestsolutionswerefound. Probleminstances
have 100 tasks,200 resourcesanda randomnumberof resourcerequirementsper taskwhich is
uniformly chosenfrom 1 to 10.

we usedproblem instanceswith variable number of resource requirementsper task
within a problem. The averageresultsof 10 probleminstancesare in Table 6. The
tasksin a problem mayhave a differentnumbersof resource requirements,uniformly
ranging from 1 to 10. As the resultsindicate,WSat(OIP)is more effective, finding
bettersolutionsthanCOPsolver, while usesmoretime to doso.In ourexperiments,we
alsoincreasedthe allowedCPU time for the COPsolver. However, it did not produce
bettersolutions. This implies that the local searchspaceof COPsolver is restricted.
Someof the real problem instancesprovided by the authors of [3] alsohave variable
requirements,andtherelativestrengthesof COPsolverandWSat(OIP)exhibit asimilar
patternon theseprobleminstances.

Theseexperimentalresultsindicatethatthefeaturesof thisresourceallocationprob-
lem indeedinterplaywith searchalgorithms. It alsomeansthatalthough it is more ef-
fective andefficient thanthe CSPandSAT solvers,COPsolver canstill be improved
andfutureresearchis in order. Furthermore,WSat(OIP)canbe improvedaswell. As
pointedout in [13], it remainsto beinvestigatedif WSat(OIP)is suitablefor problems
with intricatesolutionstructures.Our resource allocationproblem indeedhasits own
tight structures,whichmaycripple WSat(OIP)andmake it notefficient.

9 Related Work and Discussions
Theclosestwork is [3]. In fact,theresourceallocationproblemconsideredin thispaper
wasdirectlybroughtto ourattentionby theauthorsof thatpaper. Theconstraintmodels
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wedevelopedwereinspiredby themodelingwork donethere.OurMAX-SAT Model 5
is in factthemodelstudiedin [3]. Comparing to thework in [3], we havemade several
contributions.First,we introducesoftconstrainttechniquesto addresstheproblemand
develop a family of ten different models suitablefor different optimizationcriteria.
Our modelscansupport bothsatisfactionandoptimizationproblem-solving strategies.
Second, we prove that theworst-casecomplexity of theproblemis NP-complete.This
resultstronglysupports thecurrentpracticeof usinglocalsearchtechniquesfor finding
high-qualityapproximation solutions to large probleminstances[3].

There is a largebody of researchon modeling usingCSPandsoft CSP. Along this
line,ourwork canbeconsidered asadirectapplication of softconstraint approaches[1,
9] for modelingcomplex constraintproblems.

In essence,themethod of usingdecisionor CSPmodelsfollows thespirit of model
checking [7]. Model checking hasbeenshown very effective and efficient on many
formal verificationproblemsandplanning problems,andthe amount of publications
on thesetopicsis overwhelming. However, on theresourceallocationproblemstudied
here,model checking is inferior to directlysolvingusingoptimizationmethods.This is
perhapsmainlydueto thedifficulty of developingtheright decisionmodelsat thefirst
place.

10 Conclusions

We have formulateda resource allocationproblem, which is a centralpart of a real-
world crew scheduling problem,asasoftconstraintsatisfactionandoptimizationprob-
lem andprovedthat theproblemis NP-complete.Usingthis resourceallocationprob-
lem as a casestudy, we investigated modeling choices in developing soft constraint
models.Weproposedfour typesof modelsfor theproblemandtensoftconstraintmod-
elswith different optimizationobjectives andexpressiveness.We thenappliedthebest
known systematicandnonsystematic searchalgorithmsto solve theresourceallocation
problem andto analyzetheinterplayof modeling choiceandsearchalgorithmchoice.
Amongothers, we candraw two important conclusions from our experimentalstudy.
First, soft constraint techniques are very effective for complex constraint problems,
suchastheoneconsideredin this paper. Effective constraint modeling cangive riseto
constraint models thatcanbeefficiently solved. Second,decisionmodelsanda model
checking approacharenot suitablefor the inherited optimization problem embedded
in the resourceallocationproblem. In all theproblem instanceswe have testedin our
analysisusinglocal search,solvingtheoptimization problem directly is moreefficient
thansolvinga setof decisionproblems.
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