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Abstract. We studya resourceallocationproblem,which is a centralpieceof a
real-world crew schedulingoroblem.We first formulatethe problemasa hybrid

soft constraintsatishiction and optimization problemand shav that its worst-
casecomplity is NP-completeWe thenpropcseandstudya setof decisionand
optimizationmodelingschemedgor the problem.We considerthe expressieness
of thesemodelingmethodsSpecifically we experimentallyinvestigatehow these
modelingschems interplay with the bestexisting systematicsearchand local

searchmethodsOurexperimentakesultsshav thatsoftconstraintechniquegan
be effective on large resourceallocationprobleminstancesandan optimization
approzh is more efficient than a model checkingappro&zh basedon decision
models.

1 Introduction

Resourceallocationproblens usually lie at the core of mary real-world scheduliig
and planring probdems. The propertiesof an underlying resouce allocationproddem
can help charactaze a schedling prodem. If the resouce allocationprodem is a
critical pieceof theschedling prablem,thecompleity of theformerwill domiratethe
compleity of thelatter If the resourceallocationprodem is difficult, the schedulig
prodemis doanedto behardaswell.

Thefirst stepstoward undestandinga resoure allocationproblemcorsist of for-
mulatingandmockling the problem. Modeling is oneof the centraltheme of Al and
a critical stepof prodem solving A goad mockl canusuallylenditself to an efficient
prodem-solvirg stratgyy. However, mockeling s difficult becaus¢herearemary affect-
ing factors,andno geneal guideliresexist on whichfactos mustbetakeninto account

* This researchwasfundedin partby NSF GrantslIS-01960% andEIA-0113618, andin part
by DARPA Cooperatie Agreements=30602-@-2-0531and F3361501-C-1897.Thanksto
USC/ISICameragroupfor bringing to usthe schedulingoroblem,to AlejandroBugaca for
mary helpful discussios, andto PengWangand Xiaotao Zhangfor experimeration. Some
preliminary resultsof this researchwere presentedat CP2001 Workshop on Modeling and
Solving Problems with Soft Constraints.
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Ry | B3 [ Rg

T, | @1.1 0 1 1
Q1,2 1 0 0

Ty [ @21 1 1 0
Q2,2 1 1 0

Table 1. A simplebundled,exclusive resourceallocationproblem.

in amockling process.Theefore,developing a goad mocel remairs largely anart, de-
pendng on expeiienceandtaste .Neverthelessfor a given prodem, differentmodelirg
techniqgiescanbestudied andtheir expressvenessandcompleity canbecompaed.

In this paperwe corsideraresouceallocationprablem,whichresidesatthecenter
of a comple, real-world task schedling prodem [3]. We call the prodem bundled,
exclusive resource allocation problem, or BERAP for short.Briefly, the prodem is to
allocatea setof sharedresoucesto satisfythe resouce requrementsof a setof tasks.
Thedifficulties of the problemstemfrom therestrictionghata taskis notfulfilled until
all its resouce requrementsaremetandthata resoure canonly be usedto meetone
resoure requiement.

Our objectivesof this researchare multifold. Thefirst is to solve the resourceal-
locationproblemusingsoft constrainttechniqes|[1, 9]. The seconds to analyzethe
compleity of the problem Thethird objective is to develop constraih modelsfor the
prodem and analyz their repesentationapower. The final and mostimportant ob-
jectiveis to undestandthe possibleinterplaybetweerconstraintmodels andprablem-
solvingstratgjiesandsearchalgoiithms.

We proceel asfollows. We first describethe problemin Section2 andanalyzeits
worst-caseompleity in Section3. We discusghe mainmockling choicesn Section4
andhardandsoftconstraiitsin Sections. We develop constrént modelsSections and
6. Thesemodelsareexpetimentally evaluatel by systemati@andnorsystematicsearch
algorithmsin Section8. We discusgelatedwork in Section9, andfinally condudein
Sectionl0.

2 Bundled, Exclusive Resource Allocation Problem

Theresouce allocationproblenm wasoriginatal from a scrav schedling prodem [3].
We aregivena setof ¢ tasks, 7 = {T4,T»,---,T;}, anda setof r resourcesR =
{Ri1,R»,---, R.}. Eachtaskrequres a certainnumker of resource in orde to ex-
ecute,which we call resourcerequrements.Eachresouce can only be allocateto
oneresourcerequrement,anda resourcerequiementcan be met by having onede-
sirableresourceallocatedto it. We denotethe ¢; resoure requiementsof taskT; by
Qi ={Qi1,Qiz2, -, Qi } Tablel shavsasmallexanple of resourcgequirenents
of two tasksover threeresouces.An entity of 1 (0) in thetablemeanghata resouce
can(canrot) beallocatedo the corresponéhg requirenent.Iln geneal, theavailablere-
sourcesnaynotbesuficientto fulfill everytask;andataskcarriesapenalty calledtask
penalty, if notschedled. Theresouce allocationprodem is to allocatethe resources
to thetaskssothattheoverall penaltyof unfufilled tasksis minimized, anoptimization
prodem. If all taskshave equalpenaltiesit is equivalentto fulfill the maximal numker
of tasks.
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Compaedto someotherresourceallocationproblems for instanceshepernutation
prodemsconsideredn [12,14], our prodem hasa unique, small structureembeded
within atask.A taskcanbe scheduledf andonly if all its resourceequirenentsare
met.We call this featurebundled resource requirement. Furthermore a pair of resouce
requiementshave an exclusive resouce contentim in thata resoure acqured by one
requiementcannotbe allocatedto the otha's. We call this featureexclusive resource
contention. Overall, we call the prodem bundled, exclusive resource allocation prob-
lem, or BERAP for short.

3 Computational Complexity

We now shav thatBERAPis NP-hard[5]. To thisend,we prove thata decisionversin

of theprodemis NP-compete[5]. A simple,specialdecisionversionof BERAPis the
following. Givenasetof tasks gachof which hasa setof resoucerequiementsdecide
if atleastk taskscanbefulfilled. Herewe simply conside every taskhaving a peralty

oneif it is notfulfilled.

Theorem 1. BERAP with morethan two resource requirements per taskis NP-complete.

Proof: We shav the above decisionversionof BERAP is NP-compete. We reducea
NP-comjpete setpackng prodem [5] to this decisionproblem.GivenacollectionS of
finite setsanda positive integer K’ < |.S|, setpackingis to decideif S containsat least
K mutudly disjoint subsetsFormally; it is to decideif thereexists S’ C S suchthat
|S’| > K andfor all S; € S" andS; € S', 51 NSa = 0. Theprablemis NP-compete
wheneverysubsetS; € S hasmorethantwo elemers. We now reduceanNP-compete
setpackng prablemto ourdecisior BERAP We mapall theelementsin thesubset®f a
setpackingprodeminstanceo theresource®f BERAPR, eachsubsetf thesetpackirg
instanceo ataskof BERAP andanelementin the subseto aresoure requirenent of
therespectie task.In otherwords,the total nunber of tasksis the nunber of subsets
|S], the number of resoucesis the numter of distinct elementsin all subsetof S,
andthe numbe of resourcerequrementsof a taskis the numter of elementsn the
correspnding subsetGivenK < |S|, theconstretedBERAPIs to decick if atleastK’
taskscanbefulfilled. Clearly, a solutionto the BERAP s alsoa solutionto the original
setpackirg prablem.O

4 Modeling Consider ations and Choices

Threemodding decisionsshouldbe madewhenbuilding a constrain mocel. The first
is to chaosevariablesandvalues. For instancewe may useresouice requiementsas
variabes anddesirableresouresastheir values, or vice versa.A goad choiceof vari-
ablesandvaluesseemso bearupontherepesentationgbower of theresultingmodels
andthe searchalgorithm use.Thele mayexist soft constraims thatis hiddenin amodel
built from onemodelingchoicewhich may be explicit in anothemmodelfrom a differ-
entchoice.Theris atradeof betweerthe expressvenesof amodé andtheefficiency
of a searchalgoithm. One of our objecties of this researchs to undestandthe ex-
pressveressof different designschemesindtheirimpacton theperfamanceof search
algorithms.
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Optimization Decision
general variables aCOPmodel |asetof CSPmodels
Boolean variables||a MAX-SAT mode|a setof SAT models

Table 2. Fourmodding choicesfor soft constraintoptimizationproblems.

The secondandsubtlemodelirg decisionis to choosethe variabletypes.We may
usereguar variabes with large domainsto develop a generalCSPor COP model,or
Booleanvariablesto build a Booleansatisfiability (SAT) or maxinum Booleansatis-
fiability (MAX-SAT) mockl. This consideation is inspiredby the succesof Davis-
Putnamkongmann-Lovelard algoithm [2] andlocal searchor solving SAT [11,10].
We will compae thesechoicesn thisresearch.

Thethird anddifficult decisionis to chosebetweeraCSPmodel anda COPmockl.
Using a CSP model follows the spirit of model checling [7]. However, mary real-
world applicatiors, including the schedling problem whereour BERAP residesare
optimization prodems. Taking a CSPapprachwill force oneto solve a setof CSP
modelsgachof whichis for findingasolutionof aprescibedqudity, suchasaschedule
with a certainnunber of tasksto befulfilled. SuchCSPmodelscanbe built andused
to carry out a binary searchin the spaceof solutionquality to rediwce comgexity. If a
CSPmodel canbe solved efficiently andthe numker of optimal solutionsis limited,
the CSPapprach may be a good choice For instance whenthe goal for a BEREP
is to fulfill the maximd numter of taskspossible the CSPappoachmay be feasible
when suchmaximal nunber of possibletasksis relatively small. A seriousprodem
with this CSP-basednodelcheclng approahis thatit doesnot seento beapplicdle
whentaskshave differert pendties if notfulfilled andthe overall goalis to minimize
thetotal peralty of unscleduledtasks.Whenthe numter of optimal solutiors is large
or the goal is to minimize the total penaltyof unfulfilled tasks,solving the prodem
directly by a COP appioachmay be more tractable Nevertreless,in this researchwe
considerthe CSP-basednockel-checkig appoachandstudyhow it compaeswith a
directoptimizaion apprach.

As summaizedin Table2, we have four modelingschemesbhasedon the decision
of variadesandvaluesaswell asprodem-solvingstratejies.

5 Hard and Soft Constraints

Hardcorstraintsis theonesthatmustbe pratected;a violation to oneof themis forbid-
denor will incura prohbitively high peralty. In contast,soft constraintsaarethe ones
thatmaybeviolated;a violation to oneof themis not fatalbut will degradethe quality
of asolution[1]. Therebre,to distinctsoftandhardconstraintsn a constrait mocel,
we give themdifferert penaltiesThe penaltyfor violating a hardconstraintshouldbe
setto sucha prohbitively high valuethat a searchalgorithmwould ratherviolate all
soft constraits thanviolate the hardconstraintThus, the peralty for a hardconstraint
shouldbe at leastaslarge asthetotal peralty of all soft constrants plusone.

Not all tasksof a BERAP canbe fulfilled if resoures areinsuficient. We usea
BooleanvariableT; to representaskT;. VariableT; = 1 if taskT; is fulfilled, T; = 0



Soft ConstrainfTechniquedor ResourceAllocation 5

otherwise We thenintroducea constrént (T; = 1), call atask constraint, to specify
fulfilling taskT;. As ataskconstrait maybeviolated,sothatit is a soft constrain We
useC; = /\ﬁzl(Ti =1)orC = /\f:1 T; to representthe setof soft taskconstraints.
The penaltyfor anunsatisfiedaskconstrain shouldbe at leastequalto the penaltyof
thecorrespadingtask.

Thetwo eminen featuresof BERAR bundled resource requirements andexclusive
resource contentions, make theprodem difficult to modelandsolve. They imposehard
restrictionson how resoucescanandshouldbe allocated We usehardconstraintgdo
represehsuchrestrictions.

To facilitate our discussionwe useC; and(, to shorthanad the setof bundled
constraints andC, the setof exclusion constraints, respectiely. Therebre,the overall
constraits of anBERAP canbewrittenasC = C; A Cy A Ce. How to praperly model
thehardconstraits in C andC, anddefinea penaltyfunction for eachof themarethe
mainfocus of our mockeling effort.

6 Modeling in Soft Constraint Optimization

Modelsin constrainbptimizationarecalledMAX-SAT modelsif Booleanvariableare
used,or COPmocels otherwise We discusghesetwo typesof modelsin turn. We will
useourtoy exanplein Tablel to illustratetheresultingmockls.

6.1 COP models
Differert choicesof variable/valuepairsleadto differentmocels.

Model 1: Requirementsasvariables Ourfirst attempis to castresourceequirenents
asvaliablesandtheirdesirableesource asvalues WefurtherintroduceaNULL value,
dendedasf, into a variabledomain to representthe casewhentherequrementhasno
resoure allocated For instancethedoman of requrementvarisble @ 1,1 of Tablel is
{0, Rs, Rs).

We now corsiderthe hard bundleconstraits C;. We introducea hardconstrant to
specifyif ataskcorstraintis satisfied,i.e., the correspndirg taskvarialle hasvalue
1, thenarequiementvarialle associatedavith thetaskcanrot have a NULL value For
instancewhentaskvariableT; = 1 in Table1, therequirenentvariade Q1 # 0.
We thuswrite a hardconstraint((Ty, = 0) V (Q1,1 # 0)). Spellingoutall suchhard

constraits for all taskswe thenhave
qi

t
C=N\C(T); C(T) = N(T:=0)V (Qi; #0)). (1)
i=1 =1

We now turn to exclusion constraintsj,vvhich prevent a resourceto be allocated
to multiple requrements.We usea constraintto exclude the possibility that two re-
quirenent variabes have the same,nonNULL value.In our examge, to exclude al-
locatingresouce R; to Q12 and @, at the sametime, we write a hard constraint
((Q1,2 # R1) V (Q2,1 # Ra)). Forall resourcesye write,

T

Ce= N\ Ce(Ri); Ce(Bi) = N(Qirji # Ri)V Qoo £ Bi))- (2

k=1

wherel < i; < nyi <ido <n3l <1 < @iyl < g2 < Qi1 75]2 if i1 = i5. Note
thatrequirenentvariable@;, ;, maybethesameas®;, ;,.
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To illustrate,we have a constraih mode for our exampge prodem asfollows.
Ct = (T1 = ].), (T2 = ].)
Cr — { (T =0)vV(Qi1 #0)),(T1 =0) V (Qu,2 # 7))
’ (Ta =0) V(Q21 #0)),((Ta =0) V (Q2,2 #0))
(@2 # R1) V (Q21 # R1)), (Q1,2 # R1) V (Q2,2 # R1))
=19 ((Q2,1 # R1) V (Q2,2 # R1)), (Q1,1 # R2) V (Q2,1 # Rz))
(@11 # Ra2) V (Q22 # R2)), (Q2,1 # Ra2) V (Q2,2 # R2))

Model 2: Resource as variables Our secondmethodis to useresoucesasvariables
andresouce requiranentsastheir values.Take thefirst resourceR ; of Tablel asan
exampe. ResourcevariableR; hasadomain{Qi 2, Q2,1, @22}

To definethe bunde constraintsye introduwce a hardconstraim for eachresouce
requiementto specifythatthe associatedask canrot be fulfilled withou the require-
mentunsatisfiedIn our exanple for instanceto specifythatwhenT is fulfilled its
requiement@+ 1 mustbe satisfied,we write a hard constrait (77 = 0) V (R, =
Q1,1) V (R3 = Q1,1)). Wethuswrite all bunded corstraintsasfollows

— — — T

qi

t r
Co=N\GC(T); C(T) = \(T. \/ R = Qi) @)
i=1 k=1

j=1

Fortunately the exclusion constrints disapper autonatically in this modd, be-
causea resourcevariablecanhave only onevalueat a time. The size of this modelis
typically smallerthanthatof Model 1.

For our working example the constraint®f themodel canbewritten as

Ct = (Tl = ].), (TZ = 1)
{C _ { (Tr=0) V(R = Q1) V (Rs = Q11)), (T1 = 0) V (B1 = Q1,2))
PTU(T=0) V(R =Q2,1) V(R2 = @2,1)), (T = 0) V (R1 = Q2,2) V (Re

Model 3: Resource as variables, a more explicit model In Model 2, a requrement
maygrabmore thanoneresouce. This hapgnswhenmultiple resoure variadeshave
thesamerequrementastheirvalues Sucha scenarias legitimate ,but maybewasteful
whenresoucesarescarcelf we exclude suchanundesirake, redindantresouceallo-
cation,theresultingmocel will be more expressie andlarger thanthe origind versim
asmorehidden corstraintswill bebroughtto bear Whetheror notanexpressie model
is more effective thana lessexpressie modelis a questionto be examired closely a
topic of Section8.

To make Model 2 explicit, we introdwce constrais to prevent a requiranentto
have more thanoneresouce. For examge, we exclude therequrement( ; 1 hasboth
resoures R, andR; usingaconstrain((R, # Q1,1) V (Rs # Q1,1)). In geneal, we
have to considereachpossiblepair of desirableesource®sf arequilementandrewrite
thebundleconstraintas

Co = Nizi Co(T3) Nizy C(T3)
Co(Ti) = /\? 1(( =0) Vk 1(Rk = Qz,J)) 4)
CII)(Tl) = A1§k1§r,k1<k2§r;1§]§qi (Rkl ;é inj v (RkQ 7£ Ql,]))

= Q22))
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The new corstraintsaresoft, violating themcanonly resultin resoure wast. Further-
more,compringto the softtaskconstraits, the soft bunded constraiis arelessimpor-
tantandshouldthuscarry smallerpenaltiesWe may give eachsoft bunded constraint
apendty one,andeachsoft taskcorstrainta penaltyequal to the total numker of soft
bunded constraintplusthe penaltyof thetask.The peralty of ahardconstrainis then
adjustedaccodingly.

For our working example the new soft bundledconstraits are,

Cp = {((R2 # Q1) V (Rs # Q1.1)), (R1 # Q2,1) V (B2 # @2,1)), (R1 # Q2.2) V (R2 # Q2,2))

6.2 MAX-SAT models

In MAX-SAT models thetaskvarialesareBoolean.Therefore,taskconstrint (T; =
1) is simply (T;).

Model 4: Requirements as Boolean variables Thisis parallelto Modd 1. The only

differenceis thatinsteadof onevariableperresoucerequrementwe now have a setof
Booleanvariablesperrequiement.Considera requrementvariable( ; ; with domain

{Rg,, Rk, - -, Rk, ,0}. Weintroducev Boolearrequirenentvariables{ @ ; j k. » Qi,jks> " - > Qi j ks }»
whereBooleanvarialle Q; ; r, correspndsto resourceRy,. VariableQ; ; , hasvalue

T if resouce Ry, is assignedo @); ;, andvalue F' otherwise With Booleanvariables,

we rewrite the hardbunded constraintsas

Co(Ti) = N2y (T3 Viey Qiiik)-

Similarly, we updatethe exclusionconstrais to

Ce = /\221 Ce(Rk);
Ce(Rk) = Algilsn;ilsizgn;lglsqil;1sz§qi2;1'1¢j2 if =iy (6)
(_'Qilyjhk \% _'Qimh,k)

For our working example the MAX-SAT mode is givenasfollows.

C=T1,T,
CG=(T1VQi12VQ1,13),"T1VQi21),("ToVQR211VQ212),("ToVQ221VQa22)
C. = { (@121 V Q21,1),("Q121VQ221),("Q21,1V Q221)

¢ (7Q1,1,2V =Q2,1,2), ("Q1,1,2 V 7Q22,2), (-Q2,1,2 V ~Q2,2,2)

Model 5: Requirements as Boolean variables, a more explicit model The useof
Booleanvariallesin Model 4 introducesadditiona corstraints,i.e., multiple Boolean
requiementvarialles for a resouce requirenent may have valueT at the sametime,
meaniny thatthe requrementholds multiple resourcs, a similar problem that Model
3 attemptsto correct over Model 2. Similarly, we introduce additiona corstraintsto
preventthis from happemg, making somehidden soft constraits explicit. Onesuch
mutuallyexclusive constraimis (—Q; j,x, V ~Qs,j,k. ), Meaniy thatBooleanvariables
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Qi,j,, andQ; k., Shouldnot have value T' simultaneasly. Specifically we have the
following soft constrairs:

Co = Niy Co(T3) Nizy Co(T3)
Co(Ti) = Njoi (5T3 Vi Qiik) (7)

Co(Th) = /\15;‘541-;15/615r;k1<k2§r(_‘Qi,j,k1 V 2Qi ks )-

It is interestingo notethatMAX-SAT modelscorrespondig to COPModel 2 and
Model 3 collapseinto the samemodel, MAX-SAT Model 5. A directamgumentis left
asanexercisefor thereader

Themodelfor ourexanple is thenModel 4 plusthefollowing,

Ch=("Q1,12VQ1,1,3),( Q21,1 V Q21,2),(7Q22,1V "Q222)

7 Modeling in Soft Constraint Satisfaction

The objective hereis to createa setof models,eachof which specifiesat leasta fixed
numter k& of tasksto be fulfilled. Thesemodels arethenchecledto verify if at least
k tasksareindeedsatisfiable The overall processsearchegor the maximalnumbe of
tasksto bescheduled

7.1 CSPmodels

Thekey to building a CSPmodelfor anoptimizatian prodemis to introduceconstraints
to repesentthe goalof fulfilling at leasta fixed nunber of tasks.Specifyingat leastk
tasksto beturnedonis realizedby asetof dunmy variables,anideapraoposedn [3]. We
introducen dummyvariables, onefor eachtask. Thedomain of V; is {0,1,2,-- -, k},
wherek is thenumbe of tasksto beturnedon. ThevalueO in thedomainis special A
dumny variableis turned off if its valueis 0, or turnedon otherwise We thenconrect
V; with task variableT; by hard constraintsspecifying that task T'; can be fulfilled
if andonly if its dummyvariable V; is turned on. Thatis, we write hardconstraints,
((T; =0) v (V; #0)) and((T; = 1) v (V; = 0)). Thefirst constrainimeanghatwhen
taskT; is fulfilled, i.e., (T; = 0), its associatedariale mustbeon,i.e.,V; # 0. The
secondconstraintspecifiesthe casewhentask T; is unfulfilled, its associatediumrny
variable canna beturnedon.

Furthermore we introduce constraiits to turn on atleastk dumny variablesso as
to fulfill atleastk tasks.We useconstraintgo specifythatoneof V; musttake valuej,
for j = 1,2,---, k. Thatis, we have a total of ¥ hardconstraintg(V; = j) vV (Vo =
Vv (V, =j),forj =1,2,---,k. We call all thesehard constraits CSP

constraints, denotedascggp, In short,we write
w | Ne@=nvEi=0)
Cosp = /\%21((]% =0)Vv (Vi #0))
/\j:l (Vi:l (Vz = .7))

To turnon 2 taskin our examge of Table1, the CSPconstraits are,

2 _ { (M=) v =0),(Th =0V (1 #0), (T =1) v (V2 =0))
CEP T (T2=0) v (V2 £0), (Vi = 1) Vv (o = 1)), (Vi = 2) v (}2 = 2))
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Oneof theCOPmodelsModel 1, Model2 or Model 3 presenteéh Section6 canbe

combiredwith a setof CSPconstrints Cg“gp to form a CSPmodel.We cantherefae
derive threeCSPmodels.

7.2 SAT models

The ideafor developing a SAT modelfollows the sameprinciple for a CSP mockl,
excef thatinsteadof one dummy vaiable for a task we introdwce a set of dumny
Booleanvariables For taskT;, we have {V; 1,V 2, - -, Vi x }, wherek is the minimal
numter of tasksto befulfilled. We will have constraims to ensue thattaskT; is turned
onif andonly if oneof its associatedlumnmny variabesis turnedon. To specifyturning
on oneof its respectie dummyBooleanvariades whenT'; is on, we have constraint
constraim (—T; V;?:l Vi,;), andto specifynore of its dunmy variableis onwhenT'; is

noton,we have constraiis /\;?:1 (T; vV, ;). Furthernore,since{V; 1, Vi.2,- -+, Vix }
represetiT;, only oneof themshouldbeonwhenT; is on.In otherwords thesedumry
variades mustbe mutually exclusive whentherespectie taskis turnedon. Therebre,
for ta_sk_Ti, we introdwce constrants AlSU«Sk%USv_<k(_|V;”” V V). _
Similarly, to turnon atleastk tasks we specifythatoneof {V; ;, V2 j,---, Vi ; } is
) : k t
turnedonforj =1,2,-- k i.e.,we ha\/e_/\jzl(viz1 V,-,j_). _ _
We call the above additinal constraintsSAT constrais, which arewritten asfol-
lows.

k k
" A£:1(_‘Ti Viz1 Vi) Nj=i (Ti v Vi)
Csar = /\2:1 /\1t§u§k;u§v§k(_‘v;',u V Vi) (8)
/\j:1(vz':1 Vi)

For ourexamge in Tablel, we have thefollowing SAT constraitts for fulfilling two
tasks.

2, = { (=T V Via V Vi2), (<T5 V Vo V Vi), (T3 V Vi), (Ti Vi), (To V —1ay)
SAT (T v —Vap), (=Vi1 VVi2), (Vo1 VaVap), (Vi V Vo), (Vie V Vas)

Similarto CSR we canwrite two SAT modklsto matchthetwo MAX-SAT models
by combining themwith CgﬁT.

8 Experimental Analysis

As shavn in Table3, we now have atotal of tendifferentmocelsin thefour cateyories
thatarelisted in Table 2. Thesemodelshave different sizesand expressvenessThe
objective of this sectionis to uncerstandheeffectivenesof a model andits interactio
with a searchalgoithm.

To thisend,we carryoutanexperimentalanalysisusingsystemati@ndnonsystem-
aticsearchmethals.We choseheexisting (andavailable)algorittmsandprogamsthat
areeitherthebestor amorg the bestfor themodds. Whenno goodsolveris availableto
usfor a particdar modelthatwe needto study we make our besteffort to develop one
onourown. Thealgorithmthatwill beusedonaparticularmodé is alsoincludedin Ta-
ble 3in parenthesesafterthemockl. Thefirst namein the parerthesess for systematic
searchandthe secondor norsystematicsearch.
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| variabletype || optimization I satisfaction |
COPY/( -, COPsoler) CSP1/( -, NB-WSat)
general variables COP2/( -, COPsoler) CSP2/( -, NB-WSat)
COP3/( -, COPsoler) CSP3/( -, NB-WSai)

Boolean variables|| M AX-SAT 4/(MAX-SATsolver, WSat(OP) ||SAT4/(SATZ,WalkSat
MAX-SAT5/(MAX-SAT solver, WSat(OIR||SAT5/(SATZ,WalkSat

Table 3. Constraintmodelsandthe algorithmsto be usedon them.

In all our expetiments,we setthe penaltyfor an unsatisfiedaskto be one. This
simple penaltyfundion makesa comparson betweenan optimization apprach and
a mocel-checkiy basedapprachpossible As discussedkarlier whena decisionap-
proat wastakento find the maximalnumter of tasksto beturnedon, abinaly search
wascarriedout ona setof CSPor SAT modds to find the maxmal possiblenunber of
tasksthatcanbesatisfied.

We generatedandomprobleminstancesby changimy the prokability, called the
resoure density thata resouce canbe usedby atask.

8.1 Systematic search

For systematicsearchwe focusedon MAX-SAT andSAT mocklssinceno goad com-
pletesolversfor COPandCSPwereavailableto us.For the SAT mockls, we adoged
SATZ [6], oneof the bestcompleteSAT solversbasedon Davis-Putma-Longmanni
Loveland (DPLL) algoithm [2]. We developed an algoiithm for MAX-SAT models,
which directly exterds the Davis-PutmanLongmannLoveland (DPLL) algorithm [2]
andwe call it MAX-SATsoler.

In our experimentswe usedrandam probleminstancesvith various sizes,rangirg
from five to tentasks Every taskhasthreeresourceequirenents,sothatthe comgex-
ity of aprodeminstancas NP-hardin theworstcaseasprovedin Section3. We chose
thesesmallproblemsizesin orderto solve the probdemsto optimality usingthe system-
atic searchalgoithms.Theresourcalensitief therandm prodeminstancesncrease
from0.1to 0.9with anincrememof 0.1.For apairof prablemsizeandresoucedensity
we generged 100instancesandaveragedtheresultsover the 100trials. Theresultson
six tasksandthreerequiementspertaskareshovn in Figuresl and2. As thevertical
axesin the figuresarein a logaithmic scale,the comgexity of the algorithis grows
exponentially with the numkber of resourceandthe resourcedensity One conclusiam
from Figurel is thatmodel MAX-SAT4 is moreeffective thanmodelMAX-SATS. For
exampe, for prablemswith tenresouresand0.4 resouice density an optimal solution
canbefoundonMAX-SAT4 in 425second onaveragewhile it needsmore than17Q
second®n MAX-SATS.

We compaed the two SAT modelson the sameset of problem instancesusing
SATZ. Figure2 shavstheresult.In contiastto theresultson MAX-SAT models,SATS
is moreeffective thanSAT4. Oneplausibleexplarationfor modelSATS beingmore ef-
fectivethanmodelSAT4 is thefollowing. Recallthatmodds SAT4 andSAT5 aredirect
extensiors of modelsSMAX-SAT4 andMAX-SATS5, in whichit is specifiedo turnonat
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log10(CPU time) (second) log10(CPU time) (second)

0.4 0.4

0.3 0.3

5 0.2 . .
# resources 4 01 density #resources 401 density

Fig. 1. CPUtime of MAX-SATsolwer, in a logarithmicscale,on modelsMAX-SAT4 (left) and
MAX-SATS5 (right) (6 tasksand3 requiremets/task).

log10(CPU time) (seconds) log10(CPU time) (seconds)

0.4

03 0.3

# resources density # resources density
Fig.2. CPUtime of SATZ, in a logarithmic scale,on modelsSAT4 (left) and SAT5 (right) (6

tasksand3 requirements/task).

leasta certainnumter of tasks.RecallthatMAX-SAT5 is moreexpressve thanMAX-
SAT4 by bringng somehiddenconstrints to bear By the sametoken, SATS is more
expressve thanSAT4 with more constraits introduced.Therefae, theratio of numker
of clausesversusthe numter of varialles is highe for SATS thanthatfor SAT4 for a
giventarget numbe of tasksto be satisfied Whensearchingor the maximalnumkber
of tasksto beturnedon, mary unsatisfiableSAT mocklswill bechecled. Theseunsat-
isfiablemocelsaresubstantialljfargerthansatisfiablanodelsfor the sameproblem as
theformer hasto encalethefactthatmoretasksareto befulfilled. As aresult,asearch
algorithm typically spendsmoretime on anunsatisfiablenodd thana satisfiableone.
Furthemore,decidirg if anunsatisfiable&SAT model is unsatisfiablés relatively easier
whentherearemoreconstrants andthe numter of variablesis fixed. This obsevation
is in line with the easy-hail-easyphaetransitionphenomeron of 3-SAT [8]. Combin
ing thesefacts,therefae, we can speculatehat model SAT5 mustbe more effective
thanSAT4.

In addition, while thecompleity of SATZ still gronsexponentiallywith thenumber
of resoucesandresouce density it is smallerthanthat of our MAX-SATsolver on
MAX-SAT models.For examge, for prablemswith ten resource and 0.4 resouce
density SATZ finishesin 59 second on averag while the MAX-SAT algorithmneeds
425second. Although the resultsin Figures 1 and2 indicatethata combiration of a
SAT mockl and SATZ algorithmis betterthana combiration of a MAX-SAT model
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and our MAX-SATsolver, we needto mentiontwo issuesrelatedto this comparison.
First, our MAX-SAT algorithmandimplemetation arenot optimizedandthey canbe
furtherimproved For exampge, mary lookateadtechnigesfor SAT algorithms maybe
exploitedto speedupthe MAX-SATsolver. Secongdwe only consideedtheproblemof
turning on the maximalnumter of tasks.More importantly, whentaskshave different
penaltiesandthe goal is to minimize the total penaltyof all unfulfilled tasks,we can
only rely ontheMAX-SAT Modelsanda MAX-SAT algoithm.

8.2 Local search

We considerd all the modelsusing nonsytematicsearchmethod. We usedWalk-
Sat[11,10], themostcelebatedlocal searchalgorithmfor SAT prodems,for our SAT
models.We ran NB-WSat[4] on our CSPmodelsand chcse WSat(OIP)[13] for the
MAX-SAT mockls. NB-WSat and WSat(OIP)are direct extersions of WalkSat, but
alongdifferent directions.NB-WSatexterdsWalkSatto include non-Boolearvarables.
WSat(OIP)expandsWalkSatto handleconstraim optimizaion prodems.We leave the
detailsof thesealgoritims to their original descriptionin [11,10,4,13] Thesealgo-
rithms are pertapsthe bestfor the modelsfor which they will be applied.Finally, we
devedlopedour own local searchalgorithm for COPmockls, which we call COPsoler.
This solwver is also an extersion of WalkSatto dealwith non-Booleanvariablesand
constraim optimizgion prodems at the sametime. One significantdeviation of this
COPsoler from WalkSatis thatan unsatisfiectorstraintof the highestweightamory
all unsatisfiedbnesis selectedn eachstep.Whenmorethanonesuchhighest-weigt
constrais exist, thetie is brokenrandmly. The detail of this constraintsolver will be
repotedelsavhere.

Again we usedrandomprableminstancesvith threeresoure requrementgertask
to male the prodem instancedlifficult. We tried someproldem instancesn therange
with thenumbe of tasksgoing from 30to 100 the nunberof resouresrangng from
oneto two timesof thenumter of tasks,andthedensityof resoucerequirenentsspan-
ning from 0.1to 0.9for prablemswith 30,40 and50tasks,and0.1to 0.5for thelarger
prodemsizes.

We run WalkSatversion 39 with nine rancdbm restarts(giving a total of 10 runs)
on eachprodem instance andseteachrun to 100,M0 flips. The noiseratio was set
to 50/100. We usedNB-WSatversim 4 andadoped the samesetof paranetersasfor
WalkSat.We only appliedWSat(OIP)onceto eachprodem instance,andlet it run
50,00 moves. We setits noiseprabability at 0.01 For our own COPsoler, we gave
a total of 600 second or 10 minutesof CPU time. If the algorithm malkesmorethan
5,00 plateaumoves,it will restartfrom arandm startingpoint.

For perfomanceof the algoithms on a specificinstancewe take into account the
quality of the bestsolutionthey provided andthe time in which the bestsolutionwas
found (notthetotal CPUtime ontheinstance).

The resultson CPU time on the instanceof 60 tasksand 80 resoucesare given
in Table4, averaged over 10instancesOn theseprableminstancesall algorithis pro-
ducedthe samesolutionqudity of fulfilling 26 taskson averag. The testresultson
otherproblemsizesexhibit similartrends.

Basedon Table4, we canmake a few obserationson the modelsandthe search
algoritims.Goingfrom themodelsin the COP(MAX-SAT) family to thosein the CSP
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COPsoler NB-WSat WSat(OIR WalkSat

p |[COPI[COP2[COP3|| CSP1] CSP2[ CSP3|MSAT4[MSATS|| SAT4] SAT5
0.1 5.4 0.09 0.92] 168.67 49.62 100.0€ 0.20 0.80Q| 41.94 51.22
0.2 22.68 0.03 4.04] 494.19 81.41 287.63 1.60 2.00| 80.24108.49
0.3| 53.63 0.07 19.91] 1186.67132.26 551.5¢ 3.60 7.00)131.29184.68
0.4]106.90 0.12 86.73 2076.74191.291759.58  7.80 12.4()178.52257.19
0.5)|498.21 0.22132.45/10198.70269.24§ 9599.1SH 16.00 29.6()235.41339.65

Table 4. Average CPUtime (in seconad) whenthe bestsolutionswerefound on instancef 60
tasks,3 resourceequirementpertask,and80 resources.

(SAT) family, the relative effectivenessof different modelswithin the samecateyoty
seemdo be presered from one algorithmto anotter algorithm. Specifically the or-
derof strengtls within COPfamily is COP2,followed by COP3andthenby COP1;a
similarorde appeasin theCSPfamily, i.e.,CSP2 CSP3andthenCSP1.Thesameob-
senationcanbemade acressthe MAX-SAT andSAT families.Theseobserationscan
leadusto someinterestingconclusios. First, within COPandCSPfamilies,the mod
elsusingresoucesasvaiiables(i.e., COP2,COP3,CSP2andCSP3)aremoreeffective
thanthe mocels usingresouce requirenentsasvariables(i.e., COP1landCSP1).Sec-
ond,makingamodelmore expressve does not payoff for localsearchCOP3andCSP3
aremoreexplicit modelsthanCOP2andCSP2 However, COPsolerandNB-WSatrun
longeronthemoreexpressive models Similar obserationcanbemadebetweerMAX-
SAT4 (SAT4) andMAX-SATS5 (SATS). Thisresultfor local searctcontradictswith that
of SATZ on SAT4 andSATS5. Obviously, theexpressvenessasdifferentimpacton dif-
ferentsearchmethod.

Now corsiderthe bestcombirationsof algorithms andmocklsfrom all cateories.
The COPsoler/COP2Zpair is the chanpion of all. Its CPUtime is typically morethan
anorderof magrntudessmallerthanthe seconestpair, WSat(OIP)/MAX-SAT4. NB-
WSat/CSP2s the slowest. The sizesof actual CSP modelsthat NB-WSat runs on,
in termsof megabyesof memory are usually significantly larger thanthe equivdent
modelsusedby othersolvers. This is partly dueto the factthat NB-WSatintroduces
a Booleanvariablefor eachvaiable value. It remairs to be clarified if NB-WSat's
perfamancecanbeimprovedif the memay requirenent canbe redued usingsome
engineringeffort.

Theresultsin Table4 clearly shav thatthe combnationsof decisionmocels and
CSPor SAT solvers cannd competewith the combnationsof optimization models
andCOPor MAX-SAT solvers. This indicates thatthe appoachof mocel checling is
not appopriatefor theresoure allocationproblem consigredhere.The situationwill
becone worseif taskshave differentperaltiesif unfufilled.

SinceCOPsolerandWSat(OIP)perfom significantlybetterthanthetwo decision
basedsolvers,we compaedthemonlarger problems.Table5 shavstheir CPUtimeson
prodemsof 100tasksand200resouices,averagedover 10 trials. Both algoritrms can
fulfill the samenunber of 66 tasks.However, COPsoler is ableto find the solutions
a few ordersof magntudessoonerthanits courterpart.To further our uncerstanding
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| p [COPsolerWSatQIP)|

0.1 0.71 13.21
0.2 0.92 86.67
0.3 1.65 276.33
0.4 3.32 601.33
0.5 6.09 1175.1(Q

Table 5. Average CPUtime of WSat(OIB and COPsoler (in second) whenthe bestsolutions
werefoundoninstance®f 100tasks,3 resourcaequirementpertask,and200resources.

COPsoler]| WSatQIP)]
p ||tasks time[[taskg time
0.1/ 55.1 3.0/|66. 14.4
0.2 56.1 12.0| 65.2 74.1
0.3] 52.7 19.5| 63.1 220.4
0.4 54.4 65.1| 62.4 497.1
0.5 53.7 93.0| 62.1]1526.(

Table 6. Averagesolutionquality (in the numberof tasksturnedon) andaverageCPUtime (in
second) of WSat(OIB and COPsoler whenthe bestsolutionswerefound Probleminstances
have 100tasks,200 resourcesnda randomnumberof resourceequirementper taskwhich is
uniformly choserfrom 1 to 10.

we usedprablem instanceswith variade numter of resouce requrementsper task
within a prodem. The averageresultsof 10 probleminstancesare in Table 6. The
tasksin a prodem may have a differentnumkbers of resouce requrements,uniformly
rangirg from 1 to 10. As the resultsindicate, WSat(OIP)is more effective, finding
bettersolutionsthanCOPsoler, while usesmoretime to do so.In our experimentswe
alsoincreasedhe allowed CPU time for the COPsoler. However, it did not produce
bettersolutiors. This implies that the local searchspaceof COPsoler is restricted.
Someof the real problem instancegprovided by the authas of [3] also have varieble
requiementsandtherelative strenghesof COPsolerandWSat(OIP)exhibit a similar
patternontheseprobleminstances.

Thesexpeiimentalresultandicatethatthefeatureof thisresouceallocationprob-
lem indeedinterplaywith searchalgorithns. It alsomeanghatalthoud it is more ef-
fective and efficient thanthe CSPand SAT solwers, COPsoler canstill beimproved
andfutureresearchs in order Furthernore, WSat(OIP)canbeimproved aswell. As
pointedoutin [13], it remaingto beinvestigatedf WSat(OIP)is suitablefor prodems
with intricate solutionstructuresOur resouce allocationprodem indeedhasits own
tight structureswhich may crippe WSat(OIP)andmale it not efficient.

9 Redated Work and Discussions

Theclosestworkis [3]. In fact,theresouceallocationprablemconsideredin this pager
wasdirectly broughtto ourattentionby theauthas of thatpaper Theconstrainmodels
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we developedwereinspiredby themodeling work dore there.Our MAX-SAT Modd 5
is in factthe modelstudiedin [3]. Compaing to thework in [3], we have mack several
contritutions.First, we introducesoft constraintechnigqiesto addresshe prodem and
develop a family of ten different mockls suitablefor different optimizationcriteria.
Our mockls cansupprt both satishctionandoptimizationproblem-sohing stratgies.
Secondwe prove thatthe worst-casecomgexity of the problemis NP-compete. This
resultstronglysuppats the currentpracticeof usinglocal searchtechnquesfor finding
high-quality appoximatian solutiors to large prodeminstance$3].

Ther is alarge body of researclon modding usingCSPandsoft CSP Along this
line, ourwork canbeconsiderd asadirectapplicdion of softconstraimappracheq1,
9] for mockling compgex constraintproblems.

In essencehemethal of usingdecisionor CSPmodelsfollows the spirit of model
checkirg [7]. Model checling hasbeenshowvn very effedtive and efficient on mary
formal verification prodems and planring prodems, andthe amount of publicgions
onthesetopicsis overwhelmirg. However, on theresourceallocationprablem studied
here,model checkirg is inferior to directly solvingusingoptimizationmethod. Thisis
perhgsmainly dueto thedifficulty of developingtheright decisionmodelsat thefirst
place.

10 Conclusions

We have formuated a resoure allocationproblen, which is a centralpart of a real-
world crew schedling prodem, asa soft constraintsatisfictionandoptimizationprob
lem andprovedthatthe prablemis NP-compete. Using this resouce allocationprob-
lem as a casestudy we investigaed mockeling choicesin developing soft constraint
modelsWe proposedour typesof mocelsfor theprodem andtensoft corstraintmod
elswith differert optimizationobjectives andexpressvenessWe thenappliedthe best
known systemati@ndnonsystemtic searchalgoithmsto solve theresouceallocation
prodem andto analyzetheinterplayof modelirg choiceandsearchalgorithmchoice.
Among othes, we candraw two important conclusios from our experimentalstudy
First, soft constrint techniges are vely effective for comgex constrint prodems,
suchasthe oneconsideedin this paper Effective constraih modding cangive riseto
constraih mocklsthatcanbe efficiently solved Seconddecisionmocels anda model
checkirg appoachare not suitablefor the inheiited optimization prodem embedied
in theresouce allocationprodem. In all the prodem instancesve have testedin our
analysisusinglocal searchsolvingthe optimization problem directly is moreefficient
thansolvinga setof decisionprodems.
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