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The majority of resource-constrained project scheduling efforts assumes perfect information about the 

scheduling problem to be solved and a static deterministic environment within which the pre­

computed baseline schedule is executed. In reality, project activities are subject to considerable 

uncertainty, which generally leads to numerous schedule disruptions. In this paper, we present a 

resource allocation model that protects a given baseline schedule against activity duration variability. 

A branch-and-bound algorithm is developed that solves the proposed resource allocation problem. 

We report on computational results obtained on a set of benchmark problems. 

(Project management; Project planning; Scheduling; Resource Allocation; Constraint Satisfaction) 

1 Introduction 

The research on the resource-constrained project scheduling problem (RCPSP) has widely 

expanded over the last few decades (for reviews see Brucker et al., 1999; Herroelen et al., 

1998; Kolisch and Padman, 2001). The vast majority of these research efforts focuses on 

exact and sub-optimal procedures for constructing a workable schedule assuming perfect 

information and a static deterministic problem environment. Project activities are scheduled 

subject to both precedence and resource constraints, mostly under the objective of 

minimizing the project duration. The resulting schedule, subsequently referred to as pre­

schedule or baseline schedule, serves as the baseline for executing the project. 

During project execution, project activities are subject to considerable uncertainty, 

which may lead to numerous schedule disruptions. This uncertainty stems from a number 

of possible sources: activities may take more or less time than originally estimated, resources 

may become unavailable, material may arrive behind schedule, new activities may have to 

be incorporated or activities may have to be dropped due to changes in the project scope, 

workers may be absent, due dates may be modified because of changed customer demands, 

etc. The recognition that uncertainty lies at the very heart of project planning induced a 



number of research efforts based on stochastic analysis, in the absence of resource 

constraints (the PERT problem) (Adlakha and Kulkarni, 1989; Elmaghraby, 1977). When 

resource constraints are introduced, some authors do not start from a pre-schedule but 

construct the project schedule through the application of so-called scheduling policies or 

scheduling strategies as time progresses (Igelmund and Radermacher, 1983a; Stork, 2001). 

Mehta and Uzsoy (1998) state that a predictive schedule or pre-schedule serves two 

important functions. The first is to allocate resources to the different jobs to optimise some 

measure of (shop) performance. The second, as also pointed out by Wu et al. (1993), is to 

serve as a basis for planning external activities such as material procurement, preventive 

maintenance and committing to shipping dates to customers. Especially in multi-project 

environments, a schedule often needs to be sought before the start of the project that is in 

accord with all parties involved (clients and suppliers, as well as workers and other 

resources). It may be necessary to agree on a time window for work by sub-contractors; a 

deterministic schedule is also vital for cash flow projections and for performance appraisal 

subsequent to project completion. Further discussion of the purposes of a (pre-)schedule can 

be found in Aytug et al. (2002); they state that, if the level of uncertainty is low enough, an 

optimisation-based pre-schedule can outperform an on-line dispatching algorithm (but the 

converse is true once uncertainty exceeds a certain threshold). 

Since the schedule is the basis for project management, sta/Jility of the plan is 

indispensable. For more details on stability in scheduling, we refer to Herroelen and Leus 

(2002). It is also crucial, mainly in multi-project environments, to make advance bookings of 

key staff or equipment to guarantee their availability (Bowers, 1995), based on the pre­

schedule, thus making last-minute changes in resource allocation unachievable (contrary to 

the case of totally dedicated resources). In view of achieving stability, algorithms have been 

proposed that use a match-up point, described by Akturk and Gorgulu (1999) as the time 

instance "where the state reached by the revised schedule is the same as the initial 

schedule," when action is undertaken after a machine breakdown. They continue, "the pre­

schedule can be followed if no disruption occurs." Robust scheduling on the other hand 

builds protection into the pre-schedule, so is proactive rather than reactive. This paper 

studies resource allocation to optimally protect the schedule against activity duration 

variability, which is an intermediate solution between proactive and reactive scheduling. 

We consider the case of a single resource type, which can be chosen as the most restrictive or 

bottleneck resource of the organisation. 
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The structure of the paper is as follows. Resource allocation solutions correspond 

with resource flow networks, which are discussed in Section 2. Section 3 describes a branch­

and-bound procedure that generates a robust resource allocation. The procedure exploits 

constraint propagation techniques and an efficient procedure for testing for the existence of 

a feasible flow. Computational results obtained by the algorithm on a set of test problems 

are provided in Section 4. Section 5 provides overall conclusions and offers some 

suggestions for future research. 

2 Resource allocation and resource flow networks 

Section 2.1 presents some mathematical notation used throughout this paper. Resource flow 

networks are discussed in Section 2.2. The link with activity duration uncertainty is the 

subject of Section 2.3. 

2.1 Basic definitions and notation 

It is assumed that a set of activities N is to be scheduled on a single renewable resource type 

with availability a. Activities are numbered from 0 to n (I N I =n+1) and activity i has fixed 

baseline duration diE IN and requires TiE IN units of the single renewable resource type, all 

r; :::; a. Apart from the dummy start activity 0 and dummy end n, activities have non-zero 

duration; the dummies also have zero resource usage. A is the set of pairs of activities 

between which a finish-start precedence relationship with time lag 0 exists. We assume 

graph G(N,A) to be acyclic and equal to its transitive reduction (no redundant arcs are 

included). Without loss of generality, we also require 'd(i,j)EA: i<j. For any Xr;:NxN, we can 

obtain the immediate predecessors of activity i by function llx: N---'t2N: i~llx(i)= 

{iENI(j,i)EX}, and its immediate successor activities via ox: N~2N: i~ox(i)= {iENI(i,j)EX}, 

and we define TX as the transitive closure of X, meaning that (i,j)E TX if a path from i to j 

exists in G(N,X). To simplify notation, if X, Y~N, let (X, Y):={(i,j) I iE X 1\ jE Y}, and for any 

function g defined on N or NxN, if Z is a subset of the support of g, let g(Z):= L,ez g(z). We 

may denote a set consisting of one element by its single element and omit duplicated 

brackets. 

A schedule 5 is defined by an (n+1)-vector of start times S(50, ... ,5"); every S implies an 

(n+1)-vector of finish times e, ei=5i+di, 'diEN. With every schedule 5, we associate a set 0(5) 

of time instances or 'decision points', which correspond with its activity start and finish 
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times: tE~S) if 3iEN: t=Sj or t=ej. Define Nt:={iENlsj<t:::£j}, the activities that are active 

during period t. Schedule 5 is feasible if 

(1) \;f(i,j)EA: ej(S) ~ Sj(S), and (2) \;ftE ~S): r(Nt) ~ a. (2.1) 

An RCPSP-instance r(N,A,a,d,r) aims to find a feasible schedule that minimizes en (in this 

case for a single resource type). 

2.2 Resource flow networks 

Artigues and Roubellat (2000) present a resource flow network, in which the amount of 

resources being transferred immediately from one activity to another is explicitly recorded; 

they use this network to insert new activities into the project with constant resource 

allocation. Bowers (1995) defines 'resource-constrained float' as the CPM total float based 

on the technological precedences combined with the flow network. Naegler and Schoenherr 

(1989) solve deterministic. time/resource and time/cost trade-off problems via the 

correspondence between schedules and resource flows, and duality considerations. In their 

article, uncertainty is only studied by allowing stochastic resource usage of the activities. 

Schwindt (2001) and Neumann et al. (2002) use the network representation to test whether a 

schedule is feasible, in the context of sequence-dependent changeover times. They refer to a 

model for aircraft scheduling presented in Lawler (1976). 

Define Uj=Yj, \;fiE N\ {O,n}, and uo=un=a. A resource flow 1 associates with each pair 

(i,j)E NxN a value fii:=/(i,j)E IN. These values must satisfy the flow conservation constraints: 

l(i,N) = Uj \;fiEN\{n} (2.2) 

I(N,i) = Uj \;fiE N\ {O} (2.3) 

fii represents the (discrete) number of resources that are transferred from activity i (when it 

finishes) to activity j (when it starts). For a flow f, define the set of activity pairs 

Ef={(i,j)ENxN Ifii>O}, containing the arcs that carry flow in the resource flow network. We 

also define Rf= Ef\ TA: the arcs in Rf are the flow-carrying arcs that do not represent direct nor 

transitive precedence relations. We call flow 1 feasible when condition (2.4) holds: extra 

precedence constraints implied by Rf do not prevent execution of the project if 1 is feasible. 

Gf(N,TAuRf) acyclic (2.4) 

A small example is in order at this point. In Figure 1, an example network is 

represented in activity-on-the-node format, we assume a=3. According to our definitions, 

uo=u5=3, ul=u2=1 and U3=U4=2. One possible resource flow sets 102=/15=/23=fl1=/43=1 and 

104=/35=2, all other flows to 0; this flow is illustrated in Figure 2(a). We see for instance that 

one of the available resource units is transferred from the end of dummy activity 0 to the 
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start of activity 2. This unit is released at the completion of activity 2 and transferred to the 

start of activity 3. The resource flow network shown in Figure 2(b) represents an alternative 

resource allocation. In Figure 2(a), Rf={(4,1),(4,3)} while Rf={(1,3),(4,1)} in the resource flow 

network of Figure 2(b); arcs in Rf are dashed. 

Figure 1. Example project network. 

Define 9(X), X~xN, to be the schedule in which each activity i starts at time Sj= 

maxjeRAvX(i) {sj+dj}, provided graph G(N,AuX) is acyclic: the arcs in X represent extra 

precedence constraints, in addition to A. A solution to an RCPSP-instance can be obtained 

by finding a feasible flow f that minimizes sn(9(AuRt) (evidence for this follows from the 

material presented in Section 2.3), and we see that we obtain an extension of the disjunctive 

graph representation of the classical job shop scheduling problem (Roy and Sussman, 1964). 

(a) (b) 

Figure 2. Two resource flow networks. Flow values are indicated on the arcs. 

An important point to make is that, contrary to the job shop problem, we often have 

more than one possible resource allocation corresponding with a single schedule, an 

observation that is the starting point of this paper. Both resource flows in Figure 2, for 

instance, result in the same schedule depicted in Figure 3. 
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Figure 3. A schedule for the example project. 

2.3 Activity disruptions and stability 

We assume that all uncertainty during project execution can be represented by variability in 

task durations. The sources of this uncertainty are manifold, as discussed in the 

introduction. The stochastic variable representing the duration of activity ieN is denoted by 

Di, these variables are collected in vector D. During the schedule repair process, the 

resource allocation remains constant, i.e. the same resource flow is maintained. This reactive 

scheduling policy is preferred when specialist resources (e.g. expert staff) cannot be easily 

transferred between activities at short notice, for instance in a multi-project environment, 

where it is necessary to book key staff or equipment in advance. Artigues and Roubellat 

(2000) also refer to the desire to ensure schedule stability (avoiding system nervousness 

resulting from complete rescheduling), and limited computation time, especially in case of 

on-line scheduling. 

Igelmund and Radermacher (1983a) present different scheduling policies for 

stochastic project networks under resource constraints, all based on the concept of forbidden 

sets, which are sets of precedence unrelated activities that are not allowed to be scheduled 

simultaneously because of resource constraints. A set of policies of interest to us is the set of 

Earliest Start policies (ES-policies). The idea is to extend the given partially ordered set 

G(N,A) to a partially ordered set G(N,AuX), such that no forbidden set remains precedence 

unrelated and could thereby be scheduled in parallel. The condition for feasibility of the 

policy is that G(N,AuX) still be acyclic. Then, in order to obtain a feasible schedule S(d) for 

a given scenario d of activity durations, an ES-policy simply computes earliest activity start 

times in the graph by performing a forward CPM (longest path) pass (Stork, 2001). We let Gx 

represent graph G(N, T AuX). The following theorem is intuitive: 

Theorem 1. For any feasible resource flow f, X=R1 defines a feasible ES-policy. Conversely, if X 

defines a feasible ES-policy, a feasible flow f exists with TAuRl!: T(AuX). 
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The proofs of the theorems are relegated to Appendix A; the proof of Theorem 1 draws in 

part from Mohring (1985). Theorem 1 ensures that a complete search of feasible flows does 

not overlook any ES-policy. For an illustration, we refer again to the resource flow networks 

in Figure 2. Suppose that project management is uncertain about the duration of activity 4. 

It is obvious that in this case, the flow pattern in Figure 2(a) is more robust with regard to 

expected makespan than the pattern in Figure 2(b): with respect to a projected makespan of 

3 time units, activity 4 has a total slack (cfr. Wiest and Levy, 1977) of 1 in the first resource 

allocation, and 0 in the second. As a result, an increase in d4 will have an immediate impact 

on the makespan of the repaired schedule in 2(b), while a buffer of size 1 is provided in 2(a). 

Given the multitude of constraints involved in practical schedule development, we 

perform scheduling and resource allocation sequentially. We impose the constraint that 

resource allocation be compatible with a pre-determined pre-schedule 5: this compatibility 

guarantees that the pre-schedule will be realized if everything goes as planned. Define 

R(5)={(i,j)ENxNI(i,j)itTA" ej(5) S Sj(S)}. A feasible flow fis said to be compatible with a 

feasible schedule 5, written j-5, if V'(i,j)E TAuRf: ej(5) S sj(5), or in other words if Rf ~ R(5). 

As mentioned before, a pre-schedule 5 serves the purpose of co-ordinating with external 

parties: whatever was the basis for the development of this baseline schedule before project 

execution, the baseline will serve as a guideline during execution for all persons engaged. 

In situations where a pre-schedule is valuable (hinted at in the introduction, mainly 

when the resources are not entirely dedicated to the project), it will be of interest that 

activities are not started as soon as feasible but rather that it is attempted to respect the pre­

schedule to the best extent possible, in order to avoid system nervousness and constant 

resource rescheduling, in other words, to maintain stability in the system. As a result, 

activities are started at the maximum of the ending times of the predecessors and their pre­

schedule starting time. Other scheduling disciplines that operate in this way are railway 

and airline scheduling. The actual starting time of activity i is a stochastic variable 

Sj(Rf,5)=max{sj(5); maxjE",u/(i) {Sj(Rt;5)+Dj}}, with so(5)=0. Following Herroelen and Leus 

(2002), we adopt as measure of pre-schedule stability the expected weighted deviation in start 

times in the actual schedule from those in the pre-schedule. Our aim is to construct a feasible 

flow f with Rf~R(5) such that E[ LieN cJS;{Rf ,5) -s;(5)]]=g(RI) is minimized, where E[·] is 

the expectation operator and schedule 5 is an input parameter. CjE IN denotes the non­

negative cost per unit time overrun on the start time of activity i, which reflects either the 

difficulty in obtaining the required resources (internal stability) or the importance of on-time 

performance of the activity to the customer (external stability). We always set co=O; 
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minimisation of expected makes pan is the special case ci=D, i"on, and cn"oO. It is clear from the 

definition of R(5) that for any feasible solutionf f-5. 

The following theorem shows that for convenient input data, the allocation problem 

will not have an empty solution space. 

Theorem 2. For every feasible schedule 5 there exists at least one feasible flow f such that j-5. 

3 A branch-and-bound procedure 

This section gives an overview of our resource allocation algorithm. Section 3.1 reformulates 

the problem in the context of constraint satisfaction and presents the basic branching 

scheme. Section 3.2 provides more details on the search strategy used. Section 3.3 explains 

how we test for the existence of a feasible flow in the network we have constructed. 

Constraint propagation techniques speed up our algorithm and are discussed in Section 3.4. 

The evaluation of the objective function is the subject of Section 3.5. We compare our 

algorithm with a forbidden set branching scheme and discuss our branching rule in Sections 

3.6 and 3.7, respectively. 

3.1 Constraint satisfaction problem and branching 

A constraint satisfaction problem (csp) is defined by a triple (F,B,C) where F is a finite set of 

variables, B is a function which maps every variable k in F to a set of possible values Bk, 

called its domain, and C is a set of constraints on variables in F (Tsang, 1993). The csp comes 

down to assigning to each variable a value from within its domain, such that the assigrunent 

satisfies all constraints. A constraint satisfaction optimisation problem (csop) is defined as a csp 

together with an optimisation function g that maps every solution tuple to a numerical 

value; the csop aims to identify a value assignment with optimal objective function. In this 

paper, the set of decision variables is the set of flows F={fij I (i,j)E TAuR(5)}. For fiiE F, 

Bij=[O;+oo] is the domain initially associated with fij, and Z contains constraint sets (2.2) and 

(2.3) and the requirement that j-5, which is implicit from F. Eq. (2.4) is also satisfied 

because arc (i,j)E TAuRfhas ei(5):5sj(5)~j(5), since input schedule 5 is feasible. 

For fiiE F, Bij can be represented by its lowest entry LBij and highest entry UBij: we 

represent the domains as intervals. The csop can be solved by enumerating all potentially 

valid assignments and storing the feasible one with minimal objective function value. 

Unfortunately, this method is not practical due to the size of the search space. Thus, we are 
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interested in methods to reduce the search space prior to starting and also during the search 

process. The basic idea of constraint propagation is to make implicit constraints more 

visible, thus allowing detection and removal of inconsistent variable assignments, which 

cannot participate in any solution (Domdorf et al., 2000). Our branch-and-bound procedure 

relies on constraint propagation for search space reduction. Remark that, by its very 

definition, we do not lose any solution tuple by the application of constraint propagation. 

We restrict ourselves to administration of current domains, and do not evaluate multi­

dimensional assignments during constraint propagation (a similar decision was made by 

Nuijten, 1994). This approach was termed 'domain consistency' by Domdorf et al. (2000). 

We find an optimal resource allocation for a schedule 5 by considering all subsets 

MkR(S) that allow a feasible flow in network TAuMi one such set corresponds with at least 

one and mostly multiple feasible f, with Rf~. We iteratively add arcs from R(S) to M until 

a feasible flow is attainable (the feasibility test is the subject of Section 3.3). The following 

observation enables us to restrict our attention to subset minimal M: 

Observation 1. For two feasible flows fi and f2, if RI, C RJ. , then g( RI, ) S g( RI, ). 

A similar remark appears in Stork (2001) (Lemma 5.3.2). Observation 2 enables us to restrict 

the search to the integer numbers contained in the interval domains of the flows without loss 

of better solutions (and which is in line with the interpretation we gave to the flow values in 

Section 2). 

Observation 2. For any feasible flow It, we can always find a feasible integer flow f2 such that 

RI, ~RI,. 

Observation 2 follows because fi is a maximal flow in the network GI, , and all capacities and 

lower bounds are integer. Thus, an integer maximal flow 12 in the same network exists. 12 
mayor may not use all arcs in TAu RI, ,hence RI, ~RI, . 

At any level p of our search tree, set TAuR(S) is partitioned into three disjoint 

subsets: TAuR(S)=apuvpuC4, with ap={(i,j): LBij>O} the set of included arcs, vp={(i,j): UBirO} 

the set of forbidden arcs, and C4={(i,j): LBij=O and UBij>O} the set of undecided arcs. Bounds 

LBij and UBij are established through constraint propagation (to be discussed in Section 3.4), 

in conjunction with branching decisions. We add all arcs in ap \ T A to Mp, which results in 

partial network G,,=GMr • If a feasible flow can be obtained in Gp, we fathom the current node 
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and backtrack, otherwise we need further branching decisions. The branching decision itself 

entails the selection of an undecided arc (i,j)ER(S)(l~: the left branch is to set LBij:=l, so to 

include (i,j) in the partial network Gp; the right branch is to impose UBij:=O, so to forbid any 

flow across (i,j) and prohibit inclusion of (i,j) in M by placing the arc into set vp. We 

elaborate on the selection of the branching arc in Section 3.7. Note that such binary 

branching suffices for our purposes: either an arc is in RJ, or it is not. The amount of flow 

across an arc is not important, only the question whether the flow is zero or nonzero, given 

the form of g(Rf). In effect, by adding a new constraint, we split up the domain into two 

disjoint subsets, one of which is singleton {OJ, which is unlike the classical approach in 

constraint satisfaction to branch on every single domain value separately. 

3.2 Details of the branch-and-bound algorithm 

By Jensen's inequality, the deterministic value obtained when activity durations are set 

equal to their expected values is a lower bound for our objective function (efr. Fulkerson, 

1962, for an application to expected makespan bounding). In order to obtain a lower bound 

at every node of the search tree, we maintain a set of earliest starting times in Gp based on 

expected activity durations; these earliest starting times are continuously updated. We refer 

to this bound as the critical path lower bound. 

Combinations of the precedence relations defined by TAuMp imply extra transitive 

relations, captured by T(AuMp). These implicit precedences are incurred anyway, so we can 

extend set Mp:=T(AuMp)\ vp without deteriorating the objective. In our implementation, we 

continuously update this set rather than reconstruct it from scratch each time it is needed. In 

a forbidden set branching scheme, the same insight is reflected by the use of a destruction 

matrix (Radermacher, 1985) or alternatives with less memory usage (Stork, 2001) (cfr. Section 

3.6). 

Stork (2001) presents a single machine relaxation bound for stochastic project 

scheduling. This bound considers sets of precedence unrelated activities that are pair-wise 

incompatible because of resource constraints, and computes a lower bound on expected 

project makespan as the smallest expected head plus smallest expected tail added to the sum 

of the expected durations of the activities. In our problem, the sequencing problem for such 

sets of activities has already been completely solved, and either directly or transitively, a 

precedence constraint i~j will be included for all pairs of incompatible activities (i,j) with 

ei(S) :s; Sj(S). We can include all those pairs into Mo from the outset (in our implementation, 

we add them to A). We refer to this extra measure as the single machine rule. For the 
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example project in Figure 1, we see that activities 3 and 4 jointly consume more than the 

available 3 resource units. The schedule in Figure 3, referred to as 5*, solves this conflict by 

positioning activity 4 before activity 3. We can therefore add element (4,3) to Mo or A. 

When too many arcs have been forbidden, the partial network can no longer be 

completed to generate a feasible flow. Fast detection of these situations allows termination 

of exploration of the current branch of the search tree. For this purpose, we resort to a 

second network: the remainder network G; = GR(S)\V,. As long as G; allows a feasible flow, 

respecting the branching decisions higher in the search tree, it is possible to select a set Rf ~ 

R(5)\ vp that allows a feasible flow in Gp and corresponds with all branching decisions. 

Otherwise, we prune the branch and backtrack. From Theorem 2, G~ always allows a 

feasible flow. When G; verifies the existence of at least one feasible solution down the 

search tree, we apply constraint propagation to further tighten the domains of the decision 

variables, to avoid branching into infeasible areas as well as making branching decisions 

that are already implicit. A discussion of this propagation is the subject of Section 3.4. 

3.3 Testing for the existence of a feasible flow 

In this section, we discuss a simple way to test for the existence of a feasible flow in a given 

network, using maximal flow computations in a transformed network. Mohring (1985) 

studies a related transformation that, in our terminology, allows to determine the minimal 

required value of a (cfr. the proof of Theorem 1). Naegler and Schoenherr (1989), Schwindt 

(2001) and Neumann et al. (2002) discuss similar transformations. 

For network GM, M~(S), we construct a new network G~ as follows. We switch 

from bounds on node flow to bounds on arc flow by duplicating each node ieN\{O,n} into 

two nodes is and il and adding arc (il,is) to the network, with upper bound on flow (il,is) equal 

to its lower bound, both equal to Uj (cfr. Ford and Fulkerson, 1962); nodes a and n are 

renamed as and nl, respectively. All arcs entering i in GM now lead to ii, all arcs leaving i now 

emanate from is. Figure 4(a) shows the transformed network G~ of Go for the project shown 

in Figure 1. We choose 5=5* and take Mo={(4,3)}, as suggested in Section 3.2. Node il can be 

interpreted as the start of activity i (reception of resources), node is as its completion (passing 

on the resources). We augment network G~ with source node s, sink node t and arc (t,s). 

Every arc (il,is) in G~ is replaced by arcs (il,t) and (s,is); the resulting network is referred to as 

G:. Capacity function c assumes the following values: c(s,is)=c(il,t)=Ui' \lieN, all other 

capacities equal to +00. All flow lower bounds are set to O. Figure 4(b) shows the network 

G; obtained from the network G~ of Figure 4(a). 
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Denote by JJ.(M) the maximal s-t flow value in G~, and let h be a corresponding 

maximal flow. It is clear that h satisfies the following two conditions: 

h(i"UdjEN}):5Ui 'fiEN\{n} 

h(U, liE N},il) :5 Ui 'fiE N\ {OJ 
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(a) (b) 

(3.1) 

(3.2) 

Figure 4. G; and C; for the example problem. Lower and upper bounds on arc flow are as indicated 

between brackets, otherwise (0,+00). Flow values in (b) are indicated in italic, otherwise O. 

If we define j.lmax:= a+r(N), we see that ,u(M)::5 /-lma", and equality J.l(M)=/-lmax holds if and only 

if a maximal s-t flow in G~ saturates all source and sink arcs, so that conditions (3.1) and 

(3.2) are satisfied as equality. The following lemma holds: 

Lemma 1. For M!:R(S), a feasible flow f exists in GM with Rf~ if and only if ,u(M)=J.Im;.x. 

The maximal flow in network C; of Figure 4(b) amounts to 8</-lmax=9 (arc flows are in the 

figure), so we conclude that a feasible flow is not attainable in Go. We apply Lemma 1 

during the course of the branch-and-bound algorithm to test for the existence of a feasible 

flow in both the partial network Gp and the remainder network G;. For this purpose, we 

use the extended networks G; and G;'. We impose LBij and UBij as lower and upper 

bounds on f(i"jl) in either network, if the arc is present, rather then (0,+00): these bounds have 

been tightened based on the branching decisions and constraint propagation and hold for 

any feasible flow. 

At level 0 of the search tree, f(i"j,) in both networks is initialised at LBij for every (i,j) 

present, and we use a simple and efficient version of the classical labelling algorithm (Ford 

and Fulkerson, 1962) to maximize flow, the shortest augmenting path algorithm (Edmonds 

and Karp, 1972, Ahuja et al., 1993). This algorithm is strongly polynomial and is 
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implemented in a breadth first approach such that the labels are immediately available for 

use in the branching rule (efr. Section 3.7). 

The flows in the two extended networks are maintained on an incremental basis, 

rather than that they be recalculated restarting from the lower bounds every time a 

feasibility check is required. This supports the use of the shortest augmenting path 

algorithm, which can be implemented with very little overhead. When an upper bound UBij 

is tightened by amount /)., we maintain a feasible flow by reducing flow on arcs (s,is), (i"jt), 

(jt,t) and (t,s) by max{O ; fii - UBij + /).). When a lower bound LBij is tightened by /)., we try to 

reconstitute a feasible flow by looking for a series of augmenting cycles that contain (i"jt) as 

a forward arc and jointly set fii ;:: LBij + /).. As an example, we explain how the addition of arc 

(4,1) in Go because of extra constraint LB41=1 as branching decision at level 1 of the search 

tree is handled: we add arc (4,1) in G; and find augmenting cycle s-4.-1r-Os-4r-t-s, such that 

f1(Ml)= 9, which indicates a feasible flow. 

3.4 Constraint propagation 

Define a csp to be consistent for a constraint c if VkEF, \fqkEBk: 

3(11, , .. ·,11,-,,11,+1 '''''~FI )E(X/EF,l#B/): c holds for solution (k=qk and VIE F\ (k): 1= 11/). We 

propagate constraints to achieve desired consistency in a manner comparable with Davis 

(1987), which is related to algorithm AC-3 to obtain arc-consistency in binary constraint 

satisfaction problems (Mackworth, 1977). In this section, we cover the topics of flow and 

schedule consistency, and provide some details of the manner in which constraint 

propagation is implemented in our algorithm. Since constraint propagation is performed 

after updating C;, infeasibilities will be discovered beforehand, and constraint propagation 

is used only for (flow) bound tightening (unlike it classical use), leading to a smaller search 

tree and aiding in strengthening the objective bound. 

3.4.1 Flow consistency 

We define our csp to be outflow-consistent if it is consistent for Eqs. (2.2). Inflow-consistency is 

achieved by consistency for Eqs. (2.3). We tighten the upper and lower arc flow bounds as 

follows. Consider constraints (2.2) for a particular i-value. We can achieve consistency by 

tightening our bounds in the following way (efr. also Brearley et aI., 1975): 

LBir=max{LBij ; Ui- LU""TAUR(S) UBi' ) \fjE N\ {OJ (3.3) 
'0) 

UBivmin{UBij; Ui- L(i""TAUR(S)LBi,) \fjEN\{O) (3.4) 
'0) 
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Consistency is achieved if we iterate (3.3) and (3.4) as long as any of the updates changes the 

argument of any other. It is clear that no feasible values are deleted from the domains and 

that after tightening the bounds, the csp is consistent for the constraint under consideration. 

For inflow consistency, we obtain similar equations. For the example project, again with 

5=5*, we can immediately set LB02=1 and LB04=2 from inflow-consistency in activities 2 and 

4, respectively. This in turn gives UBQ1=UBQ3=UB05=O from outflow-consistency in activity O. 

Outflow-consistency in activity 3 sets LB35=2, and it then follows from inflow-consistency in 

activity 5 that UB4S=l (which was 2, originally). We also notice that LB41=1 because activity 1 

cannet obtain its resource unit elsewhere, and this leads to UB43=1. Given these new 

bounds, we extend llIJ with (4,1) (and other arcs), and beget .u(Mo)=9 (cfr. the example in 

Section 3.3), such that Go contains a feasible flow and we do not need to branch at all. Such a 

flow is depicted in Figure 2(a). Since, by the single machine rule, activity 4 will either 

directly or transitively pass on flow to activity 3, there is no need for using (1,3), and the 

flow in Figure 2(b) is dominated; notice, however, that LB43=O, because flow from 4 to 3 

across activity 1 is dominated, but not impossible. 

3.4.2 Schedule consistency 

Define It:={(i,j)eTAuR(5)ljeNtl, all arcs entering N,-jobs, and Pt:={(i,])eTAuR(5) I ej<tssj}, 

the arcs that are 'in parallel' with Nt. As an example, for the schedule of Figure 3, N3={3}, 

I3=({O,l,2,4},3) and P3=({O,l,2,4},5). 

Lemma 2. ItuPt is a network cut in the graph GR(S), Vte ~S)\ {OJ. 

Corollary. If feasible flow f is compatible with feasible schedule 5, it holds that 

r(Nt) + f(P t) = a Vte ~S)\ {OJ (3.5) 

Figure 5 shows the graph GR(S) and the three cuts defined by I1UP1, huP2, huh for the 

example schedule in Figure 3. As can be verified, the flow across each of these cuts equals 3 

for both resource flows depicted in Figure 2. 
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Figure 5. Network cuts corresponding with the example schedule (dashed lines). 

We define our csp to be schedule-consistent at period to if it is consistent for Eq. (3.5) with t=to. 

It is clear that schedule-consistency for period 1 corresponds with outflow-consistency for 

activity 0. In a similar way as before, we obtain the following consistency-updates: 

LBij:=max{LBij; a-r(NI)- L(k,/)eP, ,'(i.j) UBkl } V(i,j)E PI (3.6) 

UBij:=min{UBij; a-r(NI)- L(k,/)eP".u,j)LBkl } V(i,j)E PI (3.7) 

We see that r(NI)=a permits to eliminate all arc flows in PI from the outset. 

3.4.3 Application of the consistency updates in the branch-and-bound procedure 

Artigues (2000) remarks that we can initialise UBij as min{Ui,Uj}. At level ° of the search tree 

of the branch-and-bound algorithm, we tighten the domains of F by making them flow and 

schedule consistent. If we branch on fij at level p, the left branch is to impose LBij:=l, the 

right branch is to set UBiVO. We propagate this bound and make the domains consistent 

again. As a result, after constraint propagation at level p, the set of domains is consistent for 

the set of constraints consisting of the branching decisions up until p combined with Eqs. 

(2.2), (2.3) and (3.5). 

We use a queuing structure, where a constraint is added to the queue when one of its 

arguments is changed, and removed when propagated. At level 0, the update queue is 

initialised to include all available updates. When executed, an update is removed from the 

queue. If a bound is tightened, all updates that carry the bound as an argument are re­

added to the queue. Leus and Herroelen (2001) show that an update of a bound b(x) of 

variable x because of an update of b' (y) of variable y can be omitted from this re-addition if 

b(x) itself was an input to the last update of b'(y). This means that if we tighten UBij by 

outflow consistency in i, we do not add the LB-outflow-consistency test for i to the queue, 

only the LB-inflow-consistency test for j. From this last set of tests, we might eliminate the 

update of LBij, but we actually only use one boolean indicator variable per set of updates. 
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Constraints are chosen from the queue in FIFO order. Following Davis (1987), we 

have also implemented a fixed sequential order, with comparable computational results. At 

level p>O, we make the csp consistent in the knowledge that it was consistent at level p-1: if 

we branch on flow fij, the domain of fij is reduced on one side (the branching decision is 

implemented), and the queue of updates is initialised with only the updates having LBij (left 

branch) or UBij (right branch) as argument. 

3.5 Evaluation of the objective function 

Evaluation of the objective value g(RI) for a given flow f amounts to the PERT problem, 

which cannot be efficiently solved (Hagstrom, 1988; Mohring, 2000). For this reason one 

usually approximates the expectation of the objective function of a given policy by means of 

simulation (Igelmund and Radermacher, 1983b; Mohring and Radermacher, 1989; Stork, 

2001). In our algorithm, if we have obtained a feasible Mp, we do not compute g(RI) for a 

feasible flow f on TAuMp, but rather g(Mp); logically we have g(RI)5.g(Mp). We show that this 

does not change the results of the algorithm in Section 3.6 (Observation 5). 

Examination of code execution has shown that some 95% is absorbed by the 

evaluation of the objective by means of simulation (more details are provided in Section 4.2). 

This part of the algorithm is clearly the bottleneck with respect to time consumption. 

Maximal flow computations and consistency updates make up the larger part of the 

remainder of the running time, the former requiring about half the time of the latter. We can 

conclude that for comparison of different optimal search algorithms, the number of different 

solutions that need to be evaluated, is a good indicator of overall running time. 

Stork (2001) works with gamma distributions for activity durations and states that 

200 samples turn out to provide a reasonable trade-off between precision and computational 

effort. In our computational experiments, we strive for a constant value of the standard 

deviation of the percentage deviation of simulated versus 'true' makespan (the last one 

obtained from a high number of runs) over the dataset - it turns out that the number of 

simulation runs corresponding with the same standard deviation decreases with the number 

of activities. This approach has the advantage of redUCing (relative) simulation effort for 

larger problem instances. 
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3.6 Minimal forbidden sets and minimal solutions 

Branch-and-bound algorithms have been proposed for various classes of policies for the 

stochastic resource-constrained project scheduling problem (Igelmund and Radermacher, 

1983b; Stork, 2001). For ES-policies, these are based on the forbidden set branching scheme, 

which proceeds as follows. The (subset) minimal forbidden sets (mfss) are arranged in a pre­

determined order. Each node v in the search tree is associated with a mfs F and branching 

on v systematically resolves F by creating a child node Uij of v for each ordered pair (i,j), 

i,jEF, i*j. Each leaf v of the search tree represents a policy that is defined by resolving each 

mfs according to the decisions made on the path from v to the root of the tree. It is not 

mentioned in what order the branching alternatives in a specific node are to be considered, 

we presume an ordering based on activity indices. An obvious dominance rule can be 

applied (as referred to in Section 3.2): if we have added (i,j) to resolve a mfs higher in the 

search tree, and {i,j}eF' with F' the next mfs to be resolved, then choice (i,j) to resolve F' 

dominates all other child nodes of v. It is easy to see how this branching scheme can be 

applied to solve the resource allocation problem studied in this paper: a mfs can now only be 

resolved by adding pairs (i,j)ER(5), the other branches are not considered. The project in 

Figure 1, for instance, has mfss {l,2,4} and {3,4}, yielding immediately arcs (4,1) and (4,3) as 

only possible solution if 5=5*, thus making a strong case for this scheme - note, however, 

that extension of binary branching with constraint propagation also eliminates any need for 

branching. 

For a feasible flow f consider the following definition. An arc (i,j)ER(S) is minimal 

with respect to f if apart from arc (i,j) itself, no path from i to j exists in G(N,T(AvRf). We 

call a minimal arc (io,l)ER(5) redundant with respect to f if /;01"*0 and a feasible flow exists 

on G(N,T(AvRf)\(io,l). A feasible flow is called minimal if it does not contain redundant 

minimal arcs. From Observation 1, we have 

Observation 3. A feasible flow that is not minimal is dominated. 

We ask the reader to note that the set of solutions that we wish to examine is the set of 

possible (subset) minimal selections of arcs from R(S) such that for each mfs F, an arc 

(i,j)ER(5) is selected with i,jE F (or alternatively, a feasible flow exists). On the other hand, a 

selection rof arcs from R(S) is defined to be sufficient if a minimal feasible flow fexists such 

that ris the set of the minimal arcs off that are not in TA. We notice that there is a one-to-
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one relationship between sufficient selections and transitive closures T(AuRl) of minimal 

feasible flows f We obtain the following result. 

Observation 4. There is a many-to-one relationship between minimal selections and sufficient 

selections. 

This can be seen since the sufficient selection is always subset of at least one minimal 

selection. The sufficient selection may not explicitly resolve all mfss, but implicitly, all mfss 

have been dealt with, since a feasible flow exists on its transitive closure. There may exist 

multiple ways in which to identify a 'subset minimal hitting set' of the set of arcs in the 

transitive closure, that explicitly undoes each of the remaining mfss. The following lemma 

demonstrates that our algorithm spans the entire search space of minimal selections, a fact 

which is evident for mfs-branching schemes, but perhaps less intuitive for binary branching. 

Lemma 3. The transitive closure of each minimal flow is examined in at least one leaf node in the 

search tree (without bounding). 

With respect to a leaf node at level p of the search tree, an arc (i,j}EMp is minimal, if apart 

from arc (i,j) itself, no path from i to j exists in G(N,T(AuMp». We call a minimal arc 

(io,t)EMp redundant in the leaf node, if a feasible flow exists on G(N,T(AuMp}\(io,t)}. A leaf 

node is called minimal if it does not contain redundant minimal arcs. We notice that for 

every minimal arc (i,j) in a leaf node, LBij ~ 1 (if the single machine rule adds to A, rather 

than Mo): the arc has been added to M by a branching decision or constraint propagation, 

and not as part of the transitive closure of other arcs in M. In other words, each minimal arc 

of the node is also a minimal arc off, which leads to 

Observation 5. For any leaf node at level p of the search tree and any feasible flow f compatible with 

all branching decisions at all higher levels of the node, T(AuMp} = T(AuRl). 

This justifies our approach for objective function evaluation as explained in Section 3.5, since 

g(Mp}=g(RI) for every feasible flow f compatible with the decisions corresponding with a leaf 

node. If the node is not minimal, neither is f, so we have 

Observation 6. Non-minimal leaf nodes can be discarded without loss of better solutions. 

18 



3.7 Branching rules 

In this section, we discuss the branching rule implemented in the binary branching scheme, 

and we compare binary branching and mfs-branching from a theoretical viewpoint. 

Computational comparisons are provided in Section 4. 

3.7.1 A heuristic branching rule 

In order to obtain an increase in flow in G;, the branching arc itself or one of the other arcs 

that are added to Mp, needs to create a new augmenting path from s to t. Define 

S={iEN\ {n)1 is labelled), Tl=/jEN\ {O)ljt is unlabelled), Tz=/jE Tli t can be reached from jt via 

an augmenting path), and T3=/jE Tzi flow on (jt,t) in G; is strictly lower than Uj). T3limits the 

augmenting path in the definition of Tz to a single edge. The set of arcs considered for 

branching is set (S,T3) if it is not empty, otherwise (S,Tz) if it is not empty, otherwise (S,Tl) 

(which is never void). 

We limit the set of candidate arcs to include only the arcs that have nonzero flow in 

the remainder network; this set is never empty. In effect, we mimic the remainder flow with 

the partial flow: we acknowledge the flow-carrying arcs in the left branch, and afterwards 

destroy feasibility of the remainder flow in the right branch. Choice between eligible arcs is 

based on highest sum of flow in G; on the arc itself plus the other arcs that are added to Mp 

(by precedence, not constraint propagation). This sum is an estimate of the increase in flow 

in Gp that is achieved by the addition of the arc. A tiebreaker rule selects an arc with lowest 

difference between head and tail index. Multiple other evaluation criteria have been 

considered but turned out to lead to less efficient results. This criterion intends to branch on 

the minimal arcs of the remainder flow first (although this is not guaranteed). 

It is difficult to apply a dominance rule based on Observation 3 earlier than just 

before solution evaluation, but since G; always contains a feasible flow, we can apply the 

test to the remainder network. If it were possible to maintain flow in G; not only feasible 

but also minimal, we could eliminate all non-minimal leaf nodes by mimicking this 

remainder flow by the partial network - addition of only the minimal arcs would suffice. 

Examination of this possibility is material for further research. The testing of leaf nodes for 

minimality before evaluation of the objective has not been implemented either, and needs 

further research for efficient implementation. 
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3.7.2 Comparison with minimal forbidden set based branching 

An advantage of the binary branching scheme is that knowledge of the mfs-structure of the 

problem to be solved, is not indispensable: the algorithm functions correctly as long as the 

branching arcs are always selected from R(S)\ (Mpu vp). The choice of the branching arc has 

to be made heuristically: it follows from Stork (2001) that the question whether a single arc 

(i,j)ER(S) resolves any mfs, is NP-complete. We have developed a version of the binary 

branching scheme that successively branches on mfss, when the complete mfs-structure of 

the problem to be solved is derived beforehand. Once all resolution alternatives for a mfs 

have been exhausted (all arcs are in vp), the mfs may still be undone by transitive 

precedences because of decisions further down the search tree, so when this point is 

reached, we skip the mfs and consider the next. When the last mfs in L has been dealt with 

and still j..l(Mp)<J.lmax, the node can be fathomed although G; may still admit a feasible flow. 

This algorithm was clearly outperformed by the heuristic branching rule discussed in 

Section 3.7.1 (although the differences were not very large). 

A disadvantage of mft-branching schemes is that branching is often not done on arcs 

that will be minimal in leaf nodes resulting from the node in which they are added; as 

explained in Section 3.6, addition of a sufficient selection of arcs suffices. A second 

disadvantage is set out in the following example. 

(3) (4) (5) 
INFEASIBLE 

(2,4) 

(6) (7) 
INFEASIBLE (1) (2) (3) (4) (5) (6) (7) 

(a) (b) 

Figure 6. The search trees for (a) the mfo-branching scheme and (b) the binary branching scheme. The barred 

right branches in (b) indicate exclusion of the corresponding arc from carrying flow. 
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An example project has 4 non-dummy activities, with r1=r2=2, r3=r4=1, and a=4. The 

two miss are ml={1,2,3} and m2={1,2,4}, order L=(ml,m2), e1(S)~2(S)<e2(S):S; s3(S)<e3(S)~4(S), 

and the 4 activities are not precedence-related. Figure 6 pictures the search trees of the 

binary branching scheme and the mfs-branching scheme, both when branching arcs are 

chosen according to L. The binary branching scheme has 8 leaf nodes, 3 of which are 

recognized as infeasible and thus need no evaluation of the objective, and the remaining 5 

correspond with the minimal nodes in the mis-branching scheme. The mis-branching scheme 

performs 7 evaluations of the objective, 2 of which for non-minimal nodes (labelled '(2)' and 

'(5)') (at most, if no bounding applies). We see that the miss are resolved one by one in the 

same order in L, but on backtracking from the selection of an arc to resolve a mis, apart from 

adding a new arc, the binary branching scheme also labels the previous arc as 'forbidden'. 

This means that the arc will not be used at lower levels in the search tree for resolution of 

another mis, which may occur in the associated mfs-branching scheme we start from, in 

which we can therefore recognize dominated nodes (the arc that was added first need not be 

present anymore, if it does not resolve other miss at the same time). This does not exclude 

non-minimal nodes from being visited by binary branching: consider the case where {1,2,3} 

is first resolved by (1,3) rather than (1,2) in Figure 6: one non-minimal leaf node would result 

in (b) (and still 2 in (a)). 

The disadvantage of the binary branching scheme is that it distinguishes between 

precedence relations with and without flow, which is not always necessary. An illustration 

is provided in the following example. Consider a project with three non-dummy activities 

1,2 and 3, the only precedence relation being (2,3)EA, n=a=3 and r2=r3=2, and S1=0, s2=e1=1, 

and s3=e2=2. The miss are {1,2} and {1,3}. A feasible flow exists both when/13=O and when 

113=1, and the binary branching scheme will study these 2 possibilities separately, if no 

constraint propagation is applied (otherwise, LB12=2 immediately and no branching is 

required) and (1,3) is branched on first. 

4 Computational experiments 

We have implemented the algorithms in C++, using the Microsoft Visual C++ 6.0 

programming environment, on a Dell XPS B800r personal computer with Pentium III 

processor. Section 4.1 explains the general experimental set-up. Different branching 

schemes are compared in Section 4.2. Section 4.3 provides details on algorithm speedup. 

Objective function comparisons with an allocation heuristic are the subject of Section 4.4. 
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4.1 Experimental set-up 

The scheduling problems are generated by RanGen, a recently developed network generator 

for activity-on-the-node networks, which has the advantage of being able to generate so­

called 'strongly random' networks (Demeulemeester et aI., 2002). We specify values for the 

order strength OS (values 0.2 and 0.5), the resource factor RF (0.7 and 0.9) and the resource­

constrainedness RC (0.2 and 0.4); for a thorough discussion of the network generator and the 

parameters involved, we refer to Demeulemeester et a1. (2002). For various values of n, we 

generate 25 problem instances for each of the 23 parameter settings, resulting in 200 

instances in total. The reader may note that not the entire domain of the problem 

parameters is covered, contrary to benchmark datasets such as PSPLIB (available at 

http://www.bw1.uni-kiel.de/Prod/psplib/index.htrnl; see also Kolisch and Sprecher 

(1997)). Nevertheless, our choices are logical: if OS is large, many precedence constraints are 

present from the outset, and M=0 will regularly already admit a feasible flow. If RF is low, 

only a small number of activities have nonzero resource usage, and little options remain for 

allocation. If RC is low, more activities can in general be scheduled in parallel, and this 

increases the number of possible allocations. For larger resource-constrainedness, a general 

ES-policy would still have to make sequencing decisions, but our input schedule will 

already have made most important choices. 

As mentioned before, any schedule may be the input for the resource allocation 

algorithm. In our experiments, we work with the schedule resulting from branch-and­

bound based on deterministic baseline durations (Demeulemeester and Herroelen, 1992, 

1997). The scheduling algorithm is truncated after 1 minute of CPU-time. We assume that 

only duration increases occur compared with the baseline plan; Gutierrez and Kouvelis 

(1991) provide a motivation based on expected worker behaviour under Parkinson's Law. 

The duration of activity i (i *- O,n) is disrupted with probability Pi, a rational number. When 

this occurs, its actual duration Di exceeds its baseline duration di, its disruption length 

L= Di - di being a random variable. The probability Pi that activity i is prolonged in this 

way, is drawn from a uniform distribution on the interval [0;0.7]. We assume exponential 

activity disruption lengths, with average length if disrupted equal to the baseline duration. 

After an examination of the standard deviation of the percentage deviation of 

simulated makespan versus the 'true' value obtained from 2000 simulations, we opt for a 

standard deviation of some 3%, since any lower, the standard deviation as a function of 

simulation count 'flattens out'. This results in 450 iterations (n=21), 350 iterations (n=31) and 
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300 iterations (n=41). The final evaluation of the performance of an allocation after 

termination of the algorithm is carried out by means of 2000 simulations. 

4.2 Branching schemes 

Table 1a presents computational results for the binary branching scheme. A time limit of 

150 seconds on CPU-time is imposed; we report the computational results averaged over all 

instances, solved to guaranteed optimality or not, such that we in effect examine the 

performance of a truncated branch-and-bound heuristic. The results pertain to the branch­

and-bound algorithm with AMR allocation (efr. Section 4.4) as initial solution, critical path 

lower bound, single machine rule and schedule and flow consistency. The average number 

of nodes that can be visited within the time limit is around 100,000 (n=31) to 85,000 (n=41). 

For n=21, 92.72% of the running time of the algorithm is absorbed by simulation of the 

objective, which rises to 96.03% and 95.90% for n=31 and n=41, respectively. 

Table Ib provides details for an implementation of the mfs-branching scheme. 

Enumeration of the mJss is performed as described in Stork and Uetz (2000) and Stork (2001), 

with the particular implementation advantages for a single resource type, and the reduction 

tests; they are represented as a vector list, allowing fast access. When a mfs consists of two 

activities, it is already dealt with by the single machine rule, and is not listed. Table 2 

provides some details on the mfs-structure of the problems in the datasets. The mfss are 

ordered as in Stork (2001), based on the effect on the initial lower bound and on the number 

of branching alternatives. The objective evaluation function is borrowed from the binary 

branching code. Apart from changes resulting from the 'fitting' of the ES-policy onto a 

schedule, a difference with the implementation of Stork (2001) is the test whether a mfs is 

implicitly resolved: we continuously administer the set of implicit arcs in the same way as 

T(AuMp) is recorded in the binary branching scheme. This choice may induce (minor) 

differences in running time, but it does not influence the number of evaluations, which is a 

primary overall time efficiency measure. No simulation is performed for lower bound 

computation at intermediate levels of the search tree. The computational results obtained 

seem compatible with the ones in Stork (2001) for general ES-policies, taking into account 

the differences in problem characteristics, mfs-structure and computing system. For n=31, all 

157 problems that were solved optimally by mfs-branching were also solved to optimality by 

binary branching. For this subset of the dataset, binary branching required 0.78 seconds on 

average, 567 nodes and 253 evaluations. The same holds for n=41, with 0.72 seconds, 435 

nodes and 202 evaluations. 
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Table 1a. Results for the binary branching scheme, for all problems (only those solved to optimality). 

n =21 n =31 n=41 

avg. nr. nodes 1596 14178 (6118) 20097 (5853) 

avg. CPU (sec) 1.49 20.77 (8.66) 34.55 (9.78) 

avg. nr. evaluations 608 6585 (2809) 9171 (2689) 

# optimal 100% 91.5% 82.5% 

Table lb. Results for mfs- branching scheme, for all problems (only those solved to optimality). 

n =21 n = 31 n =41 

avg. nr. nodes 6652 (2893) 15355 (3134) 17778 (2356) 

avg. CPU (sec) 11.46 (4.91) 37.75 (6.85) 64.66 (5.56) 

avg. nr. evaluations 5496 (2354) 12620 (2448) 13671 (1467) 

# optimal 95.5% 78.5% 61% 

Table 2. Details on the mfs-structure of the datasets. 

avg. # mfss; only >2 activo 

avg. # alto 1 mfs >2 activ. 

avg. time mfss info. (sec) 

4.3 Improving efficiency 

n =21 

146; 137 

3.93 

o 

n =31 

1542; 1523 

5.14 

0.01 

n=41 

11288 ; 11323 

6.42 

0.07 

For problems with 30 non-dummy activities, we present successive improvements in the 

efficiency of the binary branching algorithm in Table 3. Results pertain again to the 

algorithm truncated after 150 seconds of CPU-time. The table indicates the average 

percentage of number of nodes visited, CPU-time and number of objective function 

evaluations when compared with the final version of the algorithm. For computation of the 

values in the table, for the rare cases where the reference setting (5) obtained 0, we 

substituted the unit of measurement, namely 1 (node or evaluation) or 0.01 (sec). The table 

also indicates the percentage of problems for which the optimum was guaranteed within the 

time limit. 
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Table 3. Successive improvements in the binary branching algorithm, for all problems (only those solved to 

optimality). 

avg. nr. nodes avg. CPU time number of # optimal 

(sec) evaluations 

(1) = B&B, CPLB and AMR 725.89% (780.36 %) 137.02% (140.7%) 124.3% (126.56%) 90.5% 

(2) = (1) + single machine rule 548.94% (584%) 118.3 % (120.01 %) 115.88% (117.3%) 90.5% 

(3) = (1) + schedule consistency 595.32% (636.59%) 129.54% (132.55%) 118.79% (120.49%) 91% 

(4) = (1) + flow consistenClj 432.37% (463.2%) 133.44 % (136.7%) 121.32% (123.19%) 90.5% 

(5) = (2) + (3) + (4) 100% 100% 100% 91.5% 

We notice that the single machine rule speeds up the algorithm considerably. The 

combination of schedule and flow consistency and single machine rule is most efficient 

overall. Imposing schedule consistency alone is more efficient with regard to CPU time, 

whereas flow consistency alone is more efficient when it comes to number of nodes; we 

conclude that pursuing flow consistency is more time-intensive, but strongly reduces the 

search space. There is a trade-off between computation time and tightness of the domains: 

considering the large difference in number of nodes of the search tree, only a less than 

proportionate gain in average CPU-time is obtained. Nevertheless, the constraint 

propagation effort is more than offset by the benefits: consistency leads to less infeasible 

branches (forbidden arcs are recognized sooner), shorter branches (required arcs are 

identified sooner and hence more arcs become implicit), and the domains are tighter in the 

maximal flow computations, such that these take less computation time. 

4.4 Objective function comparisons 

Artigues et al. (2000) present a simple method to obtain a feasible resource flow by 

extending a parallel schedule generation scheme to derive the flows during scheduling. The 

allocation routine can easily be uncoupled from the schedule generation; the stand-alone 

algorithm, denoted by AMR, is outlined in Appendix B. For the quality of the allocation, we 

compare the allocation of the binary branching algorithm (again truncated after 150 seconas) 

with the AMR result. The results are summarized in Table 4. CPU-time for AMR is 

negligible. The branch-and-bound algorithm performs significantly better than the simple 

allocation heuristic, but evidently requires more computational effort. Inclusion of the 

problems for which optimality was not guaranteed, increases the deviations, which indicates 
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that the hard problems have a wider variety of objective function values (and thus benefit 

more from optimisation). 

Table 4. Deviation in objective function value of allocation heuristic AMR for increasing problem size 

(20, 30 and 40 non-dummy activities), for all problems (only those solved to optimality). 

n=21 n =31 n=41 

avg. dev. AMR 5.03% 6.21% (5.81%) 5.61% (5.57%) 

5 Conclusions and suggestions for further research 

This paper proposes a model for resource allocation for projects with variable activity 

durations. The allocation is required to be compatible with a deterministic pre-schedule, 

and the objective is to guarantee stability in activity starting times compared with the pre­

schedule. We restrict our attention to the case of a single resource type, since this 

environment maps into a single resource network. Constraint propagation is applied during 

the search to accelerate the algorithm. 

When day-to-day changes in job assignments are possible in a project-based 

organisation, resource allocation is not required to remain constant. This situation is 

encountered especially in single project settings, where the resources are entirely dedicated 

to one project. In such environments, stability is typically not very important either and 

makespan will be the primary objective. The search for an optimal earliest start policy, 

compatible or not with a baseline schedule, is of little value in such cases, since (among 

other policies) pre-selective policies also comply with environmental requirements, and are 

known to dominate the class of earliest start policies for the makespan objective. 

Ideally, scheduling and resource allocation would be performed in parallel. This 

would also allow to formally consider a trade-off between (initial) schedule length and 

stability. In view of the complexity of sequential scheduling and resource allocation, the 

joint approach does not appear a workable alternative for the moment. 

With regard to constraint propagation, an option that is regularly mentioned in the 

literature (Dorndorf et al. 2000) is to obtain a certain degree of consistency, but not to pursue 

completion of the constraint propagation at every step, because this might be too time 

consuming. Another possibility is to let the consistency concept at hand vary throughout 

the search. These ideas require further research. 
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Appendix A 

Proof of Theorem 1. 

Suppose thatfis a feasible flow and let X=R!. G(N,AuX) is acyclic because of feasibility off. 

For any set of activities v c N that is precedence-unrelated in G(N,AuX), construct set 

C=RJ(UievOr(AuX)(i». Since OeN\C and neC, (N\C,C) is a cut in network G(N,AuX). We 

have (C,i)=0, 'Vie V, such that (N,V)=(N\ C,v), because any (j,I), jeC, would imply that vhas 

precedence-related activities. For every ie C, all je O'r(AuX)(i) are also in C, so (C,N\ C) is 

empty. We see that r(V) = f(N,V) = f(N\ c, V) 5.f(N\C,C) = f(N\C,C) - f(C,N\C) = a and so vis 

not a forbidden set. Consequently, all forbidden sets have been implicitly resolved by f and 

X defines an ES-policy, which proves the first part of the theorem. 

Suppose now that X defines a feasible ES-policy. It remains to be shown that a 

feasible flow fexists with R!~T(AuX)\TA. Gfwill then automatically be acyclic because of 

feasibility of the policy. This part of the proof is based on Mohring (1985) (theorem 

numbered 1.25), who proves that (in our terminology) the minimum required capacity amin 

to guarantee a feasible flow equals the maximum resource usage by any antichain of the 

partially ordered set, based on the min-flow max-cut theorem (efr. Lawler, 1976) (an 

antichain being a set of precedence unrelated activities), for network G(N,AuX) in which Ui 

is considered as a lower bound on flow through node i, and no transitive arcs are 

considered. Such a flow can always be rearranged, by addition of transitive flow-carrying 

arcs, to one in which Ui is both lower and upper bound on all nodes. Feasibility of the ES­

policy guarantees that no forbidden set remain an antichain, or in other words, we have 

amin5. a, which proves the second part of the theorem. o 

As hinted at by Neumann et al. (2002), the second part of this proof can also be obtained 

directly from the min-flow max-cut theorem, inspired especially by the accompanying 

remarks in Lawler (1976). 

Proof of Theorem 2. 

Network G(N,AuR(S» is acyclic, since every arc (i,j) has ei(S)5.sj(S)5.ej(S). For any antichain 

vof the resulting partial order, it holds that maxievsi(S)<min;evei(S), or in other words, 

~t', with decision point tOe ~S) determined as to=min;e vei(S). Since feasibility of 5 

implies that r(Nt') 5. a, the ES-policy defined by the partially ordered set is feasible. By 

Theorem 1, a feasible flow f exists with TAuR! ~ T(AuR(S». We have that T(AuR(S» = 

TAuR(S) because (i,j)e T(AuR(S» if a path exists from i to j in G(N,AuR(S», which may use 
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arcs from A and R(S). If it uses only A-arcs, then (i,j)E TA, otherwise (i,j)E R(S) by the 

definition of this last set. Hence we see thatfis compatible with 5 because Rf (;;;; R(S). 0 

Proof of Lemma 1. 

(if) Call h a flow that realizes JJ(M). For every (i,j)ETAuM, setfij:=h(i"jt). The constructedf 

only uses arcs in TAuM and from equality in (3.1) and (3.2) follows equality in (2.2) and 

(2.3). Also, as TAuR(S) leads to an acyclic graph and M~(S), condition (2.4) is met. 

(only if) Analogously, h-values can be derived from feasible f that satisfy (3.1) and (3.2) as 

equality. 0 

Proof of Lemma 2. 

Define C=NtU(iENI3jEN:(j,i)EPt}. Clearly, C~, and it holds that CUO'rAuR(S)(C)=C, because 

for any iE C and jE O"TAuR(S)(i) we have (O,j)E Pt. From the definitions of It and Pt, we can see 

that ItuPt=(N\ c,C), the single source node is in N\ C and the single sink node is in C. A set 

of arcs that satisfies these conditions is a network cut in graph GR(s)=G(N,TAuR(S». 0 

Proof of Lemma 3. 

We provide a proof ex absurdo. Suppose that a minimal feasible flow f exists whose 

transitive closure is not obtained in any leaf node of the search tree. If we consider the tree, 

and start at the root node, we can follow it downwards, selecting each time the branch that 

allows f there is always exactly one choice, since the branching options at one level are 

mutually exclusive and jointly exhaustive. Once a leaf node is reached, not enough arcs 

have been added to Mp (by branching and transitive closure, and possibly also constraint 

propagation) to include all flow-carrying arcs of f. As we are in a leaf node of the search 

tree, a feasible flow exists on T(AuMp)\ vp, with T(AuMp) c T(AuR!) and the inclusion is 

strict. Since only minimal arcs determine such transitive extensions, at least one minimal arc 

off is redundant, so f cannot be a minimal flow and we arrive at a contradiction. 0 

AppendixB 

Artigues et a1. (2000) present a simple method to obtain a feasible resource flow by 

extending a parallel schedule generation scheme to derive the flows during scheduling. 

Uncoupled from the schedule generation, this algorithm looks as follows. fOn is initialised 

with value a, all other flows are set to O. The algorithm iteratively reroutes flow quantities 
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until a feasible overall flow is obtained. Condition (*) is not mentioned in the reference but 

seems logical. 

AMR(schedule S) 

for increasing i in O(S) do 

for j:=l to (n-l) do 

if (Sj(S) == i) 

reg: :rj; k: =0; 

while (req > 0) do 

if ekeS) ::; Sj(S) (*) 

m: =min{req, f kn }; req-=m; 

k++; 
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